Home | History | Annotate | Download | only in utils
      1 // Copyright 2013 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Implement gradient smoothing: we replace a current alpha value by its
     11 // surrounding average if it's close enough (that is: the change will be less
     12 // than the minimum distance between two quantized level).
     13 // We use sliding window for computing the 2d moving average.
     14 //
     15 // Author: Skal (pascal.massimino (at) gmail.com)
     16 
     17 #include "./quant_levels_dec.h"
     18 
     19 #include <string.h>   // for memset
     20 
     21 #include "./utils.h"
     22 
     23 // #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
     24 
     25 #define FIX 16     // fix-point precision for averaging
     26 #define LFIX 2     // extra precision for look-up table
     27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
     28 
     29 #if defined(USE_DITHERING)
     30 
     31 #define DFIX 4           // extra precision for ordered dithering
     32 #define DSIZE 4          // dithering size (must be a power of two)
     33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
     34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
     35  {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
     36  { 12,  4, 14,  6 },
     37  {  3, 11,  1,  9 },
     38  { 15,  7, 13,  5 }
     39 };
     40 
     41 #else
     42 #define DFIX 0
     43 #endif
     44 
     45 typedef struct {
     46   int width_, height_;  // dimension
     47   int row_;             // current input row being processed
     48   uint8_t* src_;        // input pointer
     49   uint8_t* dst_;        // output pointer
     50 
     51   int radius_;          // filter radius (=delay)
     52   int scale_;           // normalization factor, in FIX bits precision
     53 
     54   void* mem_;           // all memory
     55 
     56   // various scratch buffers
     57   uint16_t* start_;
     58   uint16_t* cur_;
     59   uint16_t* end_;
     60   uint16_t* top_;
     61   uint16_t* average_;
     62 
     63   // input levels distribution
     64   int num_levels_;       // number of quantized levels
     65   int min_, max_;        // min and max level values
     66   int min_level_dist_;   // smallest distance between two consecutive levels
     67 
     68   int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
     69 } SmoothParams;
     70 
     71 //------------------------------------------------------------------------------
     72 
     73 #define CLIP_MASK (int)(~0U << (8 + DFIX))
     74 static WEBP_INLINE uint8_t clip_8b(int v) {
     75   return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
     76 }
     77 
     78 // vertical accumulation
     79 static void VFilter(SmoothParams* const p) {
     80   const uint8_t* src = p->src_;
     81   const int w = p->width_;
     82   uint16_t* const cur = p->cur_;
     83   const uint16_t* const top = p->top_;
     84   uint16_t* const out = p->end_;
     85   uint16_t sum = 0;               // all arithmetic is modulo 16bit
     86   int x;
     87 
     88   for (x = 0; x < w; ++x) {
     89     uint16_t new_value;
     90     sum += src[x];
     91     new_value = top[x] + sum;
     92     out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
     93     cur[x] = new_value;
     94   }
     95   // move input pointers one row down
     96   p->top_ = p->cur_;
     97   p->cur_ += w;
     98   if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
     99   // We replicate edges, as it's somewhat easier as a boundary condition.
    100   // That's why we don't update the 'src' pointer on top/bottom area:
    101   if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
    102     p->src_ += p->width_;
    103   }
    104 }
    105 
    106 // horizontal accumulation. We use mirror replication of missing pixels, as it's
    107 // a little easier to implement (surprisingly).
    108 static void HFilter(SmoothParams* const p) {
    109   const uint16_t* const in = p->end_;
    110   uint16_t* const out = p->average_;
    111   const uint32_t scale = p->scale_;
    112   const int w = p->width_;
    113   const int r = p->radius_;
    114 
    115   int x;
    116   for (x = 0; x <= r; ++x) {   // left mirroring
    117     const uint16_t delta = in[x + r - 1] + in[r - x];
    118     out[x] = (delta * scale) >> FIX;
    119   }
    120   for (; x < w - r; ++x) {     // bulk middle run
    121     const uint16_t delta = in[x + r] - in[x - r - 1];
    122     out[x] = (delta * scale) >> FIX;
    123   }
    124   for (; x < w; ++x) {         // right mirroring
    125     const uint16_t delta =
    126         2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
    127     out[x] = (delta * scale) >> FIX;
    128   }
    129 }
    130 
    131 // emit one filtered output row
    132 static void ApplyFilter(SmoothParams* const p) {
    133   const uint16_t* const average = p->average_;
    134   const int w = p->width_;
    135   const int16_t* const correction = p->correction_;
    136 #if defined(USE_DITHERING)
    137   const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
    138 #endif
    139   uint8_t* const dst = p->dst_;
    140   int x;
    141   for (x = 0; x < w; ++x) {
    142     const int v = dst[x];
    143     if (v < p->max_ && v > p->min_) {
    144       const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
    145 #if defined(USE_DITHERING)
    146       dst[x] = clip_8b(c + dither[x % DSIZE]);
    147 #else
    148       dst[x] = clip_8b(c);
    149 #endif
    150     }
    151   }
    152   p->dst_ += w;  // advance output pointer
    153 }
    154 
    155 //------------------------------------------------------------------------------
    156 // Initialize correction table
    157 
    158 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
    159   // The correction curve is:
    160   //   f(x) = x for x <= threshold2
    161   //   f(x) = 0 for x >= threshold1
    162   // and a linear interpolation for range x=[threshold2, threshold1]
    163   // (along with f(-x) = -f(x) symmetry).
    164   // Note that: threshold2 = 3/4 * threshold1
    165   const int threshold1 = min_dist << LFIX;
    166   const int threshold2 = (3 * threshold1) >> 2;
    167   const int max_threshold = threshold2 << DFIX;
    168   const int delta = threshold1 - threshold2;
    169   int i;
    170   for (i = 1; i <= LUT_SIZE; ++i) {
    171     int c = (i <= threshold2) ? (i << DFIX)
    172           : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
    173           : 0;
    174     c >>= LFIX;
    175     lut[+i] = +c;
    176     lut[-i] = -c;
    177   }
    178   lut[0] = 0;
    179 }
    180 
    181 static void CountLevels(const uint8_t* const data, int size,
    182                         SmoothParams* const p) {
    183   int i, last_level;
    184   uint8_t used_levels[256] = { 0 };
    185   p->min_ = 255;
    186   p->max_ = 0;
    187   for (i = 0; i < size; ++i) {
    188     const int v = data[i];
    189     if (v < p->min_) p->min_ = v;
    190     if (v > p->max_) p->max_ = v;
    191     used_levels[v] = 1;
    192   }
    193   // Compute the mininum distance between two non-zero levels.
    194   p->min_level_dist_ = p->max_ - p->min_;
    195   last_level = -1;
    196   for (i = 0; i < 256; ++i) {
    197     if (used_levels[i]) {
    198       ++p->num_levels_;
    199       if (last_level >= 0) {
    200         const int level_dist = i - last_level;
    201         if (level_dist < p->min_level_dist_) {
    202           p->min_level_dist_ = level_dist;
    203         }
    204       }
    205       last_level = i;
    206     }
    207   }
    208 }
    209 
    210 // Initialize all params.
    211 static int InitParams(uint8_t* const data, int width, int height,
    212                       int radius, SmoothParams* const p) {
    213   const int R = 2 * radius + 1;  // total size of the kernel
    214 
    215   const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
    216   const size_t size_m =  width * sizeof(*p->average_);
    217   const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
    218   const size_t total_size = size_scratch_m + size_m + size_lut;
    219   uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
    220 
    221   if (mem == NULL) return 0;
    222   p->mem_ = (void*)mem;
    223 
    224   p->start_ = (uint16_t*)mem;
    225   p->cur_ = p->start_;
    226   p->end_ = p->start_ + R * width;
    227   p->top_ = p->end_ - width;
    228   memset(p->top_, 0, width * sizeof(*p->top_));
    229   mem += size_scratch_m;
    230 
    231   p->average_ = (uint16_t*)mem;
    232   mem += size_m;
    233 
    234   p->width_ = width;
    235   p->height_ = height;
    236   p->src_ = data;
    237   p->dst_ = data;
    238   p->radius_ = radius;
    239   p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
    240   p->row_ = -radius;
    241 
    242   // analyze the input distribution so we can best-fit the threshold
    243   CountLevels(data, width * height, p);
    244 
    245   // correction table
    246   p->correction_ = ((int16_t*)mem) + LUT_SIZE;
    247   InitCorrectionLUT(p->correction_, p->min_level_dist_);
    248 
    249   return 1;
    250 }
    251 
    252 static void CleanupParams(SmoothParams* const p) {
    253   WebPSafeFree(p->mem_);
    254 }
    255 
    256 int WebPDequantizeLevels(uint8_t* const data, int width, int height,
    257                          int strength) {
    258   const int radius = 4 * strength / 100;
    259   if (strength < 0 || strength > 100) return 0;
    260   if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
    261   if (radius > 0) {
    262     SmoothParams p;
    263     memset(&p, 0, sizeof(p));
    264     if (!InitParams(data, width, height, radius, &p)) return 0;
    265     if (p.num_levels_ > 2) {
    266       for (; p.row_ < p.height_; ++p.row_) {
    267         VFilter(&p);  // accumulate average of input
    268         // Need to wait few rows in order to prime the filter,
    269         // before emitting some output.
    270         if (p.row_ >= p.radius_) {
    271           HFilter(&p);
    272           ApplyFilter(&p);
    273         }
    274       }
    275     }
    276     CleanupParams(&p);
    277   }
    278   return 1;
    279 }
    280