Home | History | Annotate | Download | only in util
      1 // Copyright 2006 The RE2 Authors.  All Rights Reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // DESCRIPTION
      6 //
      7 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
      8 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
      9 // fast iteration through the elements in the array and fast clearing
     10 // of the array.  The array has a concept of certain elements being
     11 // uninitialized (having no value).
     12 //
     13 // Insertion and deletion are constant time operations.
     14 //
     15 // Allocating the array is a constant time operation
     16 // when memory allocation is a constant time operation.
     17 //
     18 // Clearing the array is a constant time operation (unusual!).
     19 //
     20 // Iterating through the array is an O(n) operation, where n
     21 // is the number of items in the array (not O(m)).
     22 //
     23 // The array iterator visits entries in the order they were first
     24 // inserted into the array.  It is safe to add items to the array while
     25 // using an iterator: the iterator will visit indices added to the array
     26 // during the iteration, but will not re-visit indices whose values
     27 // change after visiting.  Thus SparseArray can be a convenient
     28 // implementation of a work queue.
     29 //
     30 // The SparseArray implementation is NOT thread-safe.  It is up to the
     31 // caller to make sure only one thread is accessing the array.  (Typically
     32 // these arrays are temporary values and used in situations where speed is
     33 // important.)
     34 //
     35 // The SparseArray interface does not present all the usual STL bells and
     36 // whistles.
     37 //
     38 // Implemented with reference to Briggs & Torczon, An Efficient
     39 // Representation for Sparse Sets, ACM Letters on Programming Languages
     40 // and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
     41 //
     42 // Briggs & Torczon popularized this technique, but it had been known
     43 // long before their paper.  They point out that Aho, Hopcroft, and
     44 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
     45 // 1986 Programming Pearls both hint at the technique in exercises to the
     46 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
     47 // exercise 8).
     48 //
     49 // Briggs & Torczon describe a sparse set implementation.  I have
     50 // trivially generalized it to create a sparse array (actually the original
     51 // target of the AHU and Bentley exercises).
     52 
     53 // IMPLEMENTATION
     54 //
     55 // SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
     56 // size max_size_. At any point, the number of elements in the sparse array is
     57 // size_.
     58 //
     59 // The vector dense_ contains the size_ elements in the sparse array (with
     60 // their indices),
     61 // in the order that the elements were first inserted.  This array is dense:
     62 // the size_ pairs are dense_[0] through dense_[size_-1].
     63 //
     64 // The array sparse_to_dense_ maps from indices in [0,m) to indices in
     65 // [0,size_).
     66 // For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
     67 // For indices not present in the array, sparse_to_dense_ can contain
     68 // any value at all, perhaps outside the range [0, size_) but perhaps not.
     69 //
     70 // The lax requirement on sparse_to_dense_ values makes clearing
     71 // the array very easy: set size_ to 0.  Lookups are slightly more
     72 // complicated.  An index i has a value in the array if and only if:
     73 //   sparse_to_dense_[i] is in [0, size_) AND
     74 //   dense_[sparse_to_dense_[i]].index_ == i.
     75 // If both these properties hold, only then it is safe to refer to
     76 //   dense_[sparse_to_dense_[i]].value_
     77 // as the value associated with index i.
     78 //
     79 // To insert a new entry, set sparse_to_dense_[i] to size_,
     80 // initialize dense_[size_], and then increment size_.
     81 //
     82 // Deletion of specific values from the array is implemented by
     83 // swapping dense_[size_-1] and the dense_ being deleted and then
     84 // updating the appropriate sparse_to_dense_ entries.
     85 //
     86 // To make the sparse array as efficient as possible for non-primitive types,
     87 // elements may or may not be destroyed when they are deleted from the sparse
     88 // array through a call to erase(), erase_existing() or resize(). They
     89 // immediately become inaccessible, but they are only guaranteed to be
     90 // destroyed when the SparseArray destructor is called.
     91 
     92 #ifndef RE2_UTIL_SPARSE_ARRAY_H__
     93 #define RE2_UTIL_SPARSE_ARRAY_H__
     94 
     95 #include "util/util.h"
     96 
     97 namespace re2 {
     98 
     99 template<typename Value>
    100 class SparseArray {
    101  public:
    102   SparseArray();
    103   SparseArray(int max_size);
    104   ~SparseArray();
    105 
    106   // IndexValue pairs: exposed in SparseArray::iterator.
    107   class IndexValue;
    108 
    109   typedef IndexValue value_type;
    110   typedef typename vector<IndexValue>::iterator iterator;
    111   typedef typename vector<IndexValue>::const_iterator const_iterator;
    112 
    113   inline const IndexValue& iv(int i) const;
    114 
    115   // Return the number of entries in the array.
    116   int size() const {
    117     return size_;
    118   }
    119 
    120   // Iterate over the array.
    121   iterator begin() {
    122     return dense_.begin();
    123   }
    124   iterator end() {
    125     return dense_.begin() + size_;
    126   }
    127 
    128   const_iterator begin() const {
    129     return dense_.begin();
    130   }
    131   const_iterator end() const {
    132     return dense_.begin() + size_;
    133   }
    134 
    135   // Change the maximum size of the array.
    136   // Invalidates all iterators.
    137   void resize(int max_size);
    138 
    139   // Return the maximum size of the array.
    140   // Indices can be in the range [0, max_size).
    141   int max_size() const {
    142     return max_size_;
    143   }
    144 
    145   // Clear the array.
    146   void clear() {
    147     size_ = 0;
    148   }
    149 
    150   // Check whether index i is in the array.
    151   inline bool has_index(int i) const;
    152 
    153   // Comparison function for sorting.
    154   // Can sort the sparse array so that future iterations
    155   // will visit indices in increasing order using
    156   // sort(arr.begin(), arr.end(), arr.less);
    157   static bool less(const IndexValue& a, const IndexValue& b);
    158 
    159  public:
    160   // Set the value at index i to v.
    161   inline iterator set(int i, Value v);
    162 
    163   pair<iterator, bool> insert(const value_type& new_value);
    164 
    165   // Returns the value at index i
    166   // or defaultv if index i is not initialized in the array.
    167   inline Value get(int i, Value defaultv) const;
    168 
    169   iterator find(int i);
    170 
    171   const_iterator find(int i) const;
    172 
    173   // Change the value at index i to v.
    174   // Fast but unsafe: only use if has_index(i) is true.
    175   inline iterator set_existing(int i, Value v);
    176 
    177   // Set the value at the new index i to v.
    178   // Fast but unsafe: only use if has_index(i) is false.
    179   inline iterator set_new(int i, Value v);
    180 
    181   // Get the value at index i from the array..
    182   // Fast but unsafe: only use if has_index(i) is true.
    183   inline Value get_existing(int i) const;
    184 
    185   // Erasing items from the array during iteration is in general
    186   // NOT safe.  There is one special case, which is that the current
    187   // index-value pair can be erased as long as the iterator is then
    188   // checked for being at the end before being incremented.
    189   // For example:
    190   //
    191   //   for (i = m.begin(); i != m.end(); ++i) {
    192   //     if (ShouldErase(i->index(), i->value())) {
    193   //       m.erase(i->index());
    194   //       --i;
    195   //     }
    196   //   }
    197   //
    198   // Except in the specific case just described, elements must
    199   // not be erased from the array (including clearing the array)
    200   // while iterators are walking over the array.  Otherwise,
    201   // the iterators could walk past the end of the array.
    202 
    203   // Erases the element at index i from the array.
    204   inline void erase(int i);
    205 
    206   // Erases the element at index i from the array.
    207   // Fast but unsafe: only use if has_index(i) is true.
    208   inline void erase_existing(int i);
    209 
    210  private:
    211   // Add the index i to the array.
    212   // Only use if has_index(i) is known to be false.
    213   // Since it doesn't set the value associated with i,
    214   // this function is private, only intended as a helper
    215   // for other methods.
    216   inline void create_index(int i);
    217 
    218   // In debug mode, verify that some invariant properties of the class
    219   // are being maintained. This is called at the end of the constructor
    220   // and at the beginning and end of all public non-const member functions.
    221   inline void DebugCheckInvariants() const;
    222 
    223   int size_;
    224   int max_size_;
    225   int* sparse_to_dense_;
    226   vector<IndexValue> dense_;
    227   bool valgrind_;
    228 
    229   DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
    230 };
    231 
    232 template<typename Value>
    233 SparseArray<Value>::SparseArray()
    234     : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(),
    235       valgrind_(RunningOnValgrindOrMemorySanitizer()) {}
    236 
    237 // IndexValue pairs: exposed in SparseArray::iterator.
    238 template<typename Value>
    239 class SparseArray<Value>::IndexValue {
    240   friend class SparseArray;
    241  public:
    242   typedef int first_type;
    243   typedef Value second_type;
    244 
    245   IndexValue() {}
    246   IndexValue(int index, const Value& value) : second(value), index_(index) {}
    247 
    248   int index() const { return index_; }
    249   Value value() const { return second; }
    250 
    251   // Provide the data in the 'second' member so that the utilities
    252   // in map-util work.
    253   Value second;
    254 
    255  private:
    256   int index_;
    257 };
    258 
    259 template<typename Value>
    260 const typename SparseArray<Value>::IndexValue&
    261 SparseArray<Value>::iv(int i) const {
    262   DCHECK_GE(i, 0);
    263   DCHECK_LT(i, size_);
    264   return dense_[i];
    265 }
    266 
    267 // Change the maximum size of the array.
    268 // Invalidates all iterators.
    269 template<typename Value>
    270 void SparseArray<Value>::resize(int new_max_size) {
    271   DebugCheckInvariants();
    272   if (new_max_size > max_size_) {
    273     int* a = new int[new_max_size];
    274     if (sparse_to_dense_) {
    275       memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
    276       // Don't need to zero the memory but appease Valgrind.
    277       if (valgrind_) {
    278         for (int i = max_size_; i < new_max_size; i++)
    279           a[i] = 0xababababU;
    280       }
    281       delete[] sparse_to_dense_;
    282     }
    283     sparse_to_dense_ = a;
    284 
    285     dense_.resize(new_max_size);
    286   }
    287   max_size_ = new_max_size;
    288   if (size_ > max_size_)
    289     size_ = max_size_;
    290   DebugCheckInvariants();
    291 }
    292 
    293 // Check whether index i is in the array.
    294 template<typename Value>
    295 bool SparseArray<Value>::has_index(int i) const {
    296   DCHECK_GE(i, 0);
    297   DCHECK_LT(i, max_size_);
    298   if (static_cast<uint>(i) >= max_size_) {
    299     return false;
    300   }
    301   // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
    302   return (uint)sparse_to_dense_[i] < (uint)size_ &&
    303     dense_[sparse_to_dense_[i]].index_ == i;
    304 }
    305 
    306 // Set the value at index i to v.
    307 template<typename Value>
    308 typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
    309   DebugCheckInvariants();
    310   if (static_cast<uint>(i) >= max_size_) {
    311     // Semantically, end() would be better here, but we already know
    312     // the user did something stupid, so begin() insulates them from
    313     // dereferencing an invalid pointer.
    314     return begin();
    315   }
    316   if (!has_index(i))
    317     create_index(i);
    318   return set_existing(i, v);
    319 }
    320 
    321 template<typename Value>
    322 pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
    323     const value_type& new_value) {
    324   DebugCheckInvariants();
    325   pair<typename SparseArray<Value>::iterator, bool> p;
    326   if (has_index(new_value.index_)) {
    327     p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
    328   } else {
    329     p = make_pair(set_new(new_value.index_, new_value.second), true);
    330   }
    331   DebugCheckInvariants();
    332   return p;
    333 }
    334 
    335 template<typename Value>
    336 Value SparseArray<Value>::get(int i, Value defaultv) const {
    337   if (!has_index(i))
    338     return defaultv;
    339   return get_existing(i);
    340 }
    341 
    342 template<typename Value>
    343 typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
    344   if (has_index(i))
    345     return dense_.begin() + sparse_to_dense_[i];
    346   return end();
    347 }
    348 
    349 template<typename Value>
    350 typename SparseArray<Value>::const_iterator
    351 SparseArray<Value>::find(int i) const {
    352   if (has_index(i)) {
    353     return dense_.begin() + sparse_to_dense_[i];
    354   }
    355   return end();
    356 }
    357 
    358 template<typename Value>
    359 typename SparseArray<Value>::iterator
    360 SparseArray<Value>::set_existing(int i, Value v) {
    361   DebugCheckInvariants();
    362   DCHECK(has_index(i));
    363   dense_[sparse_to_dense_[i]].second = v;
    364   DebugCheckInvariants();
    365   return dense_.begin() + sparse_to_dense_[i];
    366 }
    367 
    368 template<typename Value>
    369 typename SparseArray<Value>::iterator
    370 SparseArray<Value>::set_new(int i, Value v) {
    371   DebugCheckInvariants();
    372   if (static_cast<uint>(i) >= max_size_) {
    373     // Semantically, end() would be better here, but we already know
    374     // the user did something stupid, so begin() insulates them from
    375     // dereferencing an invalid pointer.
    376     return begin();
    377   }
    378   DCHECK(!has_index(i));
    379   create_index(i);
    380   return set_existing(i, v);
    381 }
    382 
    383 template<typename Value>
    384 Value SparseArray<Value>::get_existing(int i) const {
    385   DCHECK(has_index(i));
    386   return dense_[sparse_to_dense_[i]].second;
    387 }
    388 
    389 template<typename Value>
    390 void SparseArray<Value>::erase(int i) {
    391   DebugCheckInvariants();
    392   if (has_index(i))
    393     erase_existing(i);
    394   DebugCheckInvariants();
    395 }
    396 
    397 template<typename Value>
    398 void SparseArray<Value>::erase_existing(int i) {
    399   DebugCheckInvariants();
    400   DCHECK(has_index(i));
    401   int di = sparse_to_dense_[i];
    402   if (di < size_ - 1) {
    403     dense_[di] = dense_[size_ - 1];
    404     sparse_to_dense_[dense_[di].index_] = di;
    405   }
    406   size_--;
    407   DebugCheckInvariants();
    408 }
    409 
    410 template<typename Value>
    411 void SparseArray<Value>::create_index(int i) {
    412   DCHECK(!has_index(i));
    413   DCHECK_LT(size_, max_size_);
    414   sparse_to_dense_[i] = size_;
    415   dense_[size_].index_ = i;
    416   size_++;
    417 }
    418 
    419 template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
    420   max_size_ = max_size;
    421   sparse_to_dense_ = new int[max_size];
    422   valgrind_ = RunningOnValgrindOrMemorySanitizer();
    423   dense_.resize(max_size);
    424   // Don't need to zero the new memory, but appease Valgrind.
    425   if (valgrind_) {
    426     for (int i = 0; i < max_size; i++) {
    427       sparse_to_dense_[i] = 0xababababU;
    428       dense_[i].index_ = 0xababababU;
    429     }
    430   }
    431   size_ = 0;
    432   DebugCheckInvariants();
    433 }
    434 
    435 template<typename Value> SparseArray<Value>::~SparseArray() {
    436   DebugCheckInvariants();
    437   delete[] sparse_to_dense_;
    438 }
    439 
    440 template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
    441   DCHECK_LE(0, size_);
    442   DCHECK_LE(size_, max_size_);
    443   DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
    444 }
    445 
    446 // Comparison function for sorting.
    447 template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
    448                                                        const IndexValue& b) {
    449   return a.index_ < b.index_;
    450 }
    451 
    452 }  // namespace re2
    453 
    454 #endif  // RE2_UTIL_SPARSE_ARRAY_H__
    455