Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2012 Google Inc.
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 #ifndef SkPathRef_DEFINED
     10 #define SkPathRef_DEFINED
     11 
     12 #include "SkDynamicAnnotations.h"
     13 #include "SkMatrix.h"
     14 #include "SkPoint.h"
     15 #include "SkRect.h"
     16 #include "SkRefCnt.h"
     17 #include "SkTDArray.h"
     18 #include <stddef.h> // ptrdiff_t
     19 
     20 class SkRBuffer;
     21 class SkWBuffer;
     22 
     23 /**
     24  * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
     25  * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
     26  * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
     27  * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
     28  * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
     29  * constructor returns.
     30  *
     31  * The points and verbs are stored in a single allocation. The points are at the begining of the
     32  * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
     33  * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
     34  * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
     35  * logical verb or the last verb in memory).
     36  */
     37 
     38 class SK_API SkPathRef : public ::SkRefCnt {
     39 public:
     40     SK_DECLARE_INST_COUNT(SkPathRef);
     41 
     42     class Editor {
     43     public:
     44         Editor(SkAutoTUnref<SkPathRef>* pathRef,
     45                int incReserveVerbs = 0,
     46                int incReservePoints = 0);
     47 
     48         ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
     49 
     50         /**
     51          * Returns the array of points.
     52          */
     53         SkPoint* points() { return fPathRef->getPoints(); }
     54         const SkPoint* points() const { return fPathRef->points(); }
     55 
     56         /**
     57          * Gets the ith point. Shortcut for this->points() + i
     58          */
     59         SkPoint* atPoint(int i) {
     60             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
     61             return this->points() + i;
     62         };
     63         const SkPoint* atPoint(int i) const {
     64             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
     65             return this->points() + i;
     66         };
     67 
     68         /**
     69          * Adds the verb and allocates space for the number of points indicated by the verb. The
     70          * return value is a pointer to where the points for the verb should be written.
     71          * 'weight' is only used if 'verb' is kConic_Verb
     72          */
     73         SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
     74             SkDEBUGCODE(fPathRef->validate();)
     75             return fPathRef->growForVerb(verb, weight);
     76         }
     77 
     78         /**
     79          * Allocates space for multiple instances of a particular verb and the
     80          * requisite points & weights.
     81          * The return pointer points at the first new point (indexed normally [<i>]).
     82          * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
     83          * space for the conic weights (indexed normally).
     84          */
     85         SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
     86                                      int numVbs,
     87                                      SkScalar** weights = NULL) {
     88             return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
     89         }
     90 
     91         /**
     92          * Resets the path ref to a new verb and point count. The new verbs and points are
     93          * uninitialized.
     94          */
     95         void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
     96             fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
     97         }
     98 
     99         /**
    100          * Gets the path ref that is wrapped in the Editor.
    101          */
    102         SkPathRef* pathRef() { return fPathRef; }
    103 
    104         void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); }
    105 
    106         void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
    107 
    108     private:
    109         SkPathRef* fPathRef;
    110     };
    111 
    112 public:
    113     /**
    114      * Gets a path ref with no verbs or points.
    115      */
    116     static SkPathRef* CreateEmpty();
    117 
    118     /**
    119      *  Returns true if all of the points in this path are finite, meaning there
    120      *  are no infinities and no NaNs.
    121      */
    122     bool isFinite() const {
    123         if (fBoundsIsDirty) {
    124             this->computeBounds();
    125         }
    126         return SkToBool(fIsFinite);
    127     }
    128 
    129     /**
    130      *  Returns a mask, where each bit corresponding to a SegmentMask is
    131      *  set if the path contains 1 or more segments of that type.
    132      *  Returns 0 for an empty path (no segments).
    133      */
    134     uint32_t getSegmentMasks() const { return fSegmentMask; }
    135 
    136     /** Returns true if the path is an oval.
    137      *
    138      * @param rect      returns the bounding rect of this oval. It's a circle
    139      *                  if the height and width are the same.
    140      *
    141      * @return true if this path is an oval.
    142      *              Tracking whether a path is an oval is considered an
    143      *              optimization for performance and so some paths that are in
    144      *              fact ovals can report false.
    145      */
    146     bool isOval(SkRect* rect) const {
    147         if (fIsOval && rect) {
    148             *rect = getBounds();
    149         }
    150 
    151         return SkToBool(fIsOval);
    152     }
    153 
    154     bool hasComputedBounds() const {
    155         return !fBoundsIsDirty;
    156     }
    157 
    158     /** Returns the bounds of the path's points. If the path contains 0 or 1
    159         points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
    160         Note: this bounds may be larger than the actual shape, since curves
    161         do not extend as far as their control points.
    162     */
    163     const SkRect& getBounds() const {
    164         if (fBoundsIsDirty) {
    165             this->computeBounds();
    166         }
    167         return fBounds;
    168     }
    169 
    170     /**
    171      * Transforms a path ref by a matrix, allocating a new one only if necessary.
    172      */
    173     static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
    174                                       const SkPathRef& src,
    175                                       const SkMatrix& matrix);
    176 
    177     static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
    178 
    179     /**
    180      * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
    181      * repopulated with approximately the same number of verbs and points. A new path ref is created
    182      * only if necessary.
    183      */
    184     static void Rewind(SkAutoTUnref<SkPathRef>* pathRef);
    185 
    186     virtual ~SkPathRef() {
    187         SkDEBUGCODE(this->validate();)
    188         sk_free(fPoints);
    189 
    190         SkDEBUGCODE(fPoints = NULL;)
    191         SkDEBUGCODE(fVerbs = NULL;)
    192         SkDEBUGCODE(fVerbCnt = 0x9999999;)
    193         SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
    194         SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
    195         SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
    196         SkDEBUGCODE(fEditorsAttached = 0x7777777;)
    197     }
    198 
    199     int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
    200     int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
    201     int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
    202 
    203     /**
    204      * Returns a pointer one beyond the first logical verb (last verb in memory order).
    205      */
    206     const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
    207 
    208     /**
    209      * Returns a const pointer to the first verb in memory (which is the last logical verb).
    210      */
    211     const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
    212 
    213     /**
    214      * Returns a const pointer to the first point.
    215      */
    216     const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
    217 
    218     /**
    219      * Shortcut for this->points() + this->countPoints()
    220      */
    221     const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
    222 
    223     const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
    224     const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
    225 
    226     /**
    227      * Convenience methods for getting to a verb or point by index.
    228      */
    229     uint8_t atVerb(int index) const {
    230         SkASSERT((unsigned) index < (unsigned) fVerbCnt);
    231         return this->verbs()[~index];
    232     }
    233     const SkPoint& atPoint(int index) const {
    234         SkASSERT((unsigned) index < (unsigned) fPointCnt);
    235         return this->points()[index];
    236     }
    237 
    238     bool operator== (const SkPathRef& ref) const;
    239 
    240     /**
    241      * Writes the path points and verbs to a buffer.
    242      */
    243     void writeToBuffer(SkWBuffer* buffer) const;
    244 
    245     /**
    246      * Gets the number of bytes that would be written in writeBuffer()
    247      */
    248     uint32_t writeSize() const;
    249 
    250     /**
    251      * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
    252      * same ID then they have the same verbs and points. However, two path refs may have the same
    253      * contents but different genIDs.
    254      */
    255     uint32_t genID() const;
    256 
    257 private:
    258     enum SerializationOffsets {
    259         kIsFinite_SerializationShift = 25,  // requires 1 bit
    260         kIsOval_SerializationShift = 24,    // requires 1 bit
    261         kSegmentMask_SerializationShift = 0 // requires 4 bits
    262     };
    263 
    264     SkPathRef() {
    265         fBoundsIsDirty = true;    // this also invalidates fIsFinite
    266         fPointCnt = 0;
    267         fVerbCnt = 0;
    268         fVerbs = NULL;
    269         fPoints = NULL;
    270         fFreeSpace = 0;
    271         fGenerationID = kEmptyGenID;
    272         fSegmentMask = 0;
    273         fIsOval = false;
    274         SkDEBUGCODE(fEditorsAttached = 0;)
    275         SkDEBUGCODE(this->validate();)
    276     }
    277 
    278     void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
    279 
    280     // Return true if the computed bounds are finite.
    281     static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
    282         int count = ref.countPoints();
    283         if (count <= 1) {  // we ignore just 1 point (moveto)
    284             bounds->setEmpty();
    285             return count ? ref.points()->isFinite() : true;
    286         } else {
    287             return bounds->setBoundsCheck(ref.points(), count);
    288         }
    289     }
    290 
    291     // called, if dirty, by getBounds()
    292     void computeBounds() const {
    293         SkDEBUGCODE(this->validate();)
    294         // TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
    295         // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
    296         //SkASSERT(fBoundsIsDirty);
    297 
    298         fIsFinite = ComputePtBounds(fBounds.get(), *this);
    299         fBoundsIsDirty = false;
    300     }
    301 
    302     void setBounds(const SkRect& rect) {
    303         SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
    304         fBounds = rect;
    305         fBoundsIsDirty = false;
    306         fIsFinite = fBounds->isFinite();
    307     }
    308 
    309     /** Makes additional room but does not change the counts or change the genID */
    310     void incReserve(int additionalVerbs, int additionalPoints) {
    311         SkDEBUGCODE(this->validate();)
    312         size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
    313         this->makeSpace(space);
    314         SkDEBUGCODE(this->validate();)
    315     }
    316 
    317     /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
    318      *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
    319     void resetToSize(int verbCount, int pointCount, int conicCount,
    320                      int reserveVerbs = 0, int reservePoints = 0) {
    321         SkDEBUGCODE(this->validate();)
    322         fBoundsIsDirty = true;      // this also invalidates fIsFinite
    323         fGenerationID = 0;
    324 
    325         fSegmentMask = 0;
    326         fIsOval = false;
    327 
    328         size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
    329         size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
    330         size_t minSize = newSize + newReserve;
    331 
    332         ptrdiff_t sizeDelta = this->currSize() - minSize;
    333 
    334         if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
    335             sk_free(fPoints);
    336             fPoints = NULL;
    337             fVerbs = NULL;
    338             fFreeSpace = 0;
    339             fVerbCnt = 0;
    340             fPointCnt = 0;
    341             this->makeSpace(minSize);
    342             fVerbCnt = verbCount;
    343             fPointCnt = pointCount;
    344             fFreeSpace -= newSize;
    345         } else {
    346             fPointCnt = pointCount;
    347             fVerbCnt = verbCount;
    348             fFreeSpace = this->currSize() - minSize;
    349         }
    350         fConicWeights.setCount(conicCount);
    351         SkDEBUGCODE(this->validate();)
    352     }
    353 
    354     /**
    355      * Increases the verb count by numVbs and point count by the required amount.
    356      * The new points are uninitialized. All the new verbs are set to the specified
    357      * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
    358      * uninitialized conic weights.
    359      */
    360     SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
    361 
    362     /**
    363      * Increases the verb count 1, records the new verb, and creates room for the requisite number
    364      * of additional points. A pointer to the first point is returned. Any new points are
    365      * uninitialized.
    366      */
    367     SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
    368 
    369     /**
    370      * Ensures that the free space available in the path ref is >= size. The verb and point counts
    371      * are not changed.
    372      */
    373     void makeSpace(size_t size) {
    374         SkDEBUGCODE(this->validate();)
    375         ptrdiff_t growSize = size - fFreeSpace;
    376         if (growSize <= 0) {
    377             return;
    378         }
    379         size_t oldSize = this->currSize();
    380         // round to next multiple of 8 bytes
    381         growSize = (growSize + 7) & ~static_cast<size_t>(7);
    382         // we always at least double the allocation
    383         if (static_cast<size_t>(growSize) < oldSize) {
    384             growSize = oldSize;
    385         }
    386         if (growSize < kMinSize) {
    387             growSize = kMinSize;
    388         }
    389         size_t newSize = oldSize + growSize;
    390         // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
    391         // encapsulate this.
    392         fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
    393         size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
    394         void* newVerbsDst = reinterpret_cast<void*>(
    395                                 reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
    396         void* oldVerbsSrc = reinterpret_cast<void*>(
    397                                 reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
    398         memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
    399         fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
    400         fFreeSpace += growSize;
    401         SkDEBUGCODE(this->validate();)
    402     }
    403 
    404     /**
    405      * Private, non-const-ptr version of the public function verbsMemBegin().
    406      */
    407     uint8_t* verbsMemWritable() {
    408         SkDEBUGCODE(this->validate();)
    409         return fVerbs - fVerbCnt;
    410     }
    411 
    412     /**
    413      * Gets the total amount of space allocated for verbs, points, and reserve.
    414      */
    415     size_t currSize() const {
    416         return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
    417     }
    418 
    419     SkDEBUGCODE(void validate() const;)
    420 
    421     /**
    422      * Called the first time someone calls CreateEmpty to actually create the singleton.
    423      */
    424     static SkPathRef* CreateEmptyImpl();
    425 
    426     void setIsOval(bool isOval) { fIsOval = isOval; }
    427 
    428     SkPoint* getPoints() {
    429         SkDEBUGCODE(this->validate();)
    430         fIsOval = false;
    431         return fPoints;
    432     }
    433 
    434     enum {
    435         kMinSize = 256,
    436     };
    437 
    438     mutable SkTRacyReffable<SkRect> fBounds;
    439     mutable SkTRacy<uint8_t>        fBoundsIsDirty;
    440     mutable SkTRacy<SkBool8>        fIsFinite;    // only meaningful if bounds are valid
    441 
    442     SkBool8  fIsOval;
    443     uint8_t  fSegmentMask;
    444 
    445     SkPoint*            fPoints; // points to begining of the allocation
    446     uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
    447     int                 fVerbCnt;
    448     int                 fPointCnt;
    449     size_t              fFreeSpace; // redundant but saves computation
    450     SkTDArray<SkScalar> fConicWeights;
    451 
    452     enum {
    453         kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
    454     };
    455     mutable uint32_t    fGenerationID;
    456     SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
    457 
    458     friend class PathRefTest_Private;
    459     typedef SkRefCnt INHERITED;
    460 };
    461 
    462 #endif
    463