Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkScalar_DEFINED
      9 #define SkScalar_DEFINED
     10 
     11 #include "SkFixed.h"
     12 #include "SkFloatingPoint.h"
     13 
     14 //#define SK_SUPPORT_DEPRECATED_SCALARROUND
     15 
     16 typedef float   SkScalar;
     17 
     18 /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
     19 */
     20 #define SK_Scalar1              (1.0f)
     21 /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
     22 */
     23 #define SK_ScalarHalf           (0.5f)
     24 /** SK_ScalarInfinity is defined to be infinity as an SkScalar
     25 */
     26 #define SK_ScalarInfinity       SK_FloatInfinity
     27 /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
     28 */
     29 #define SK_ScalarNegativeInfinity       SK_FloatNegativeInfinity
     30 /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
     31 */
     32 #define SK_ScalarMax            (3.402823466e+38f)
     33 /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
     34 */
     35 #define SK_ScalarMin            (-SK_ScalarMax)
     36 /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
     37 */
     38 #define SK_ScalarNaN            SK_FloatNaN
     39 /** SkScalarIsNaN(n) returns true if argument is not a number
     40 */
     41 static inline bool SkScalarIsNaN(float x) { return x != x; }
     42 
     43 /** Returns true if x is not NaN and not infinite */
     44 static inline bool SkScalarIsFinite(float x) {
     45     // We rely on the following behavior of infinities and nans
     46     // 0 * finite --> 0
     47     // 0 * infinity --> NaN
     48     // 0 * NaN --> NaN
     49     float prod = x * 0;
     50     // At this point, prod will either be NaN or 0
     51     // Therefore we can return (prod == prod) or (0 == prod).
     52     return prod == prod;
     53 }
     54 
     55 /** SkIntToScalar(n) returns its integer argument as an SkScalar
     56 */
     57 #define SkIntToScalar(n)        ((float)(n))
     58 /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
     59 */
     60 #define SkFixedToScalar(x)      SkFixedToFloat(x)
     61 /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
     62 */
     63 #define SkScalarToFixed(x)      SkFloatToFixed(x)
     64 
     65 #define SkScalarToFloat(n)      (n)
     66 #ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
     67 #define SkFloatToScalar(n)      (n)
     68 #endif
     69 
     70 #define SkScalarToDouble(n)      (double)(n)
     71 #define SkDoubleToScalar(n)      (float)(n)
     72 
     73 /** SkScalarFraction(x) returns the signed fractional part of the argument
     74 */
     75 #define SkScalarFraction(x)     sk_float_mod(x, 1.0f)
     76 
     77 #define SkScalarFloorToScalar(x)    sk_float_floor(x)
     78 #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
     79 #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
     80 
     81 #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
     82 #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
     83 #define SkScalarRoundToInt(x)       sk_float_round2int(x)
     84 #define SkScalarTruncToInt(x)       static_cast<int>(x)
     85 
     86 /**
     87  *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
     88  *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
     89  *
     90  *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
     91  *  extra precision is known to be valuable.
     92  *
     93  *  In particular, this catches the following case:
     94  *      SkScalar x = 0.49999997;
     95  *      int ix = SkScalarRoundToInt(x);
     96  *      SkASSERT(0 == ix);    // <--- fails
     97  *      ix = SkDScalarRoundToInt(x);
     98  *      SkASSERT(0 == ix);    // <--- succeeds
     99  */
    100 static inline int SkDScalarRoundToInt(SkScalar x) {
    101     double xx = x;
    102     xx += 0.5;
    103     return (int)floor(xx);
    104 }
    105 
    106 /** Returns the absolute value of the specified SkScalar
    107 */
    108 #define SkScalarAbs(x)          sk_float_abs(x)
    109 /** Return x with the sign of y
    110  */
    111 #define SkScalarCopySign(x, y)  sk_float_copysign(x, y)
    112 /** Returns the value pinned between 0 and max inclusive
    113 */
    114 inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
    115     return x < 0 ? 0 : x > max ? max : x;
    116 }
    117 /** Returns the value pinned between min and max inclusive
    118 */
    119 inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
    120     return x < min ? min : x > max ? max : x;
    121 }
    122 /** Returns the specified SkScalar squared (x*x)
    123 */
    124 inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
    125 /** Returns the product of two SkScalars
    126 */
    127 #define SkScalarMul(a, b)       ((float)(a) * (b))
    128 /** Returns the product of two SkScalars plus a third SkScalar
    129 */
    130 #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
    131 /** Returns the quotient of two SkScalars (a/b)
    132 */
    133 #define SkScalarDiv(a, b)       ((float)(a) / (b))
    134 /** Returns the mod of two SkScalars (a mod b)
    135 */
    136 #define SkScalarMod(x,y)        sk_float_mod(x,y)
    137 /** Returns the product of the first two arguments, divided by the third argument
    138 */
    139 #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
    140 /** Returns the multiplicative inverse of the SkScalar (1/x)
    141 */
    142 #define SkScalarInvert(x)       (SK_Scalar1 / (x))
    143 #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
    144 /** Returns the square root of the SkScalar
    145 */
    146 #define SkScalarSqrt(x)         sk_float_sqrt(x)
    147 /** Returns b to the e
    148 */
    149 #define SkScalarPow(b, e)       sk_float_pow(b, e)
    150 /** Returns the average of two SkScalars (a+b)/2
    151 */
    152 #define SkScalarAve(a, b)       (((a) + (b)) * 0.5f)
    153 /** Returns one half of the specified SkScalar
    154 */
    155 #define SkScalarHalf(a)         ((a) * 0.5f)
    156 
    157 #define SK_ScalarSqrt2          1.41421356f
    158 #define SK_ScalarPI             3.14159265f
    159 #define SK_ScalarTanPIOver8     0.414213562f
    160 #define SK_ScalarRoot2Over2     0.707106781f
    161 
    162 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
    163 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
    164 float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
    165 #define SkScalarSin(radians)    (float)sk_float_sin(radians)
    166 #define SkScalarCos(radians)    (float)sk_float_cos(radians)
    167 #define SkScalarTan(radians)    (float)sk_float_tan(radians)
    168 #define SkScalarASin(val)   (float)sk_float_asin(val)
    169 #define SkScalarACos(val)   (float)sk_float_acos(val)
    170 #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
    171 #define SkScalarExp(x)  (float)sk_float_exp(x)
    172 #define SkScalarLog(x)  (float)sk_float_log(x)
    173 
    174 inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
    175 inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
    176 
    177 static inline bool SkScalarIsInt(SkScalar x) {
    178     return x == (float)(int)x;
    179 }
    180 
    181 // DEPRECATED : use ToInt or ToScalar variant
    182 #ifdef SK_SUPPORT_DEPRECATED_SCALARROUND
    183 #   define SkScalarFloor(x)    SkScalarFloorToInt(x)
    184 #   define SkScalarCeil(x)     SkScalarCeilToInt(x)
    185 #   define SkScalarRound(x)    SkScalarRoundToInt(x)
    186 #endif
    187 
    188 /**
    189  *  Returns -1 || 0 || 1 depending on the sign of value:
    190  *  -1 if x < 0
    191  *   0 if x == 0
    192  *   1 if x > 0
    193  */
    194 static inline int SkScalarSignAsInt(SkScalar x) {
    195     return x < 0 ? -1 : (x > 0);
    196 }
    197 
    198 // Scalar result version of above
    199 static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
    200     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
    201 }
    202 
    203 #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
    204 
    205 static inline bool SkScalarNearlyZero(SkScalar x,
    206                                     SkScalar tolerance = SK_ScalarNearlyZero) {
    207     SkASSERT(tolerance >= 0);
    208     return SkScalarAbs(x) <= tolerance;
    209 }
    210 
    211 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
    212                                      SkScalar tolerance = SK_ScalarNearlyZero) {
    213     SkASSERT(tolerance >= 0);
    214     return SkScalarAbs(x-y) <= tolerance;
    215 }
    216 
    217 /** Linearly interpolate between A and B, based on t.
    218     If t is 0, return A
    219     If t is 1, return B
    220     else interpolate.
    221     t must be [0..SK_Scalar1]
    222 */
    223 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
    224     SkASSERT(t >= 0 && t <= SK_Scalar1);
    225     return A + (B - A) * t;
    226 }
    227 
    228 /** Interpolate along the function described by (keys[length], values[length])
    229     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
    230     clamp to the min or max value.  This function was inspired by a desire
    231     to change the multiplier for thickness in fakeBold; therefore it assumes
    232     the number of pairs (length) will be small, and a linear search is used.
    233     Repeated keys are allowed for discontinuous functions (so long as keys is
    234     monotonically increasing), and if key is the value of a repeated scalar in
    235     keys, the first one will be used.  However, that may change if a binary
    236     search is used.
    237 */
    238 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
    239                             const SkScalar values[], int length);
    240 
    241 /*
    242  *  Helper to compare an array of scalars.
    243  */
    244 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
    245     SkASSERT(n >= 0);
    246     for (int i = 0; i < n; ++i) {
    247         if (a[i] != b[i]) {
    248             return false;
    249         }
    250     }
    251     return true;
    252 }
    253 
    254 #endif
    255