Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkEdge.h"
     11 #include "SkFDot6.h"
     12 #include "SkMath.h"
     13 
     14 /*
     15     In setLine, setQuadratic, setCubic, the first thing we do is to convert
     16     the points into FDot6. This is modulated by the shift parameter, which
     17     will either be 0, or something like 2 for antialiasing.
     18 
     19     In the float case, we want to turn the float into .6 by saying pt * 64,
     20     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
     21 
     22     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
     23     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
     24 */
     25 
     26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
     27     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
     28     // away data in value, so just perform a modify up-shift
     29     return value << (16 - 6 - 1);
     30 }
     31 
     32 /////////////////////////////////////////////////////////////////////////
     33 
     34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
     35                     int shift) {
     36     SkFDot6 x0, y0, x1, y1;
     37 
     38     {
     39 #ifdef SK_RASTERIZE_EVEN_ROUNDING
     40         x0 = SkScalarRoundToFDot6(p0.fX, shift);
     41         y0 = SkScalarRoundToFDot6(p0.fY, shift);
     42         x1 = SkScalarRoundToFDot6(p1.fX, shift);
     43         y1 = SkScalarRoundToFDot6(p1.fY, shift);
     44 #else
     45         float scale = float(1 << (shift + 6));
     46         x0 = int(p0.fX * scale);
     47         y0 = int(p0.fY * scale);
     48         x1 = int(p1.fX * scale);
     49         y1 = int(p1.fY * scale);
     50 #endif
     51     }
     52 
     53     int winding = 1;
     54 
     55     if (y0 > y1) {
     56         SkTSwap(x0, x1);
     57         SkTSwap(y0, y1);
     58         winding = -1;
     59     }
     60 
     61     int top = SkFDot6Round(y0);
     62     int bot = SkFDot6Round(y1);
     63 
     64     // are we a zero-height line?
     65     if (top == bot) {
     66         return 0;
     67     }
     68     // are we completely above or below the clip?
     69     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
     70         return 0;
     71     }
     72 
     73     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
     74     const int dy  = SkEdge_Compute_DY(top, y0);
     75 
     76     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
     77     fDX         = slope;
     78     fFirstY     = top;
     79     fLastY      = bot - 1;
     80     fCurveCount = 0;
     81     fWinding    = SkToS8(winding);
     82     fCurveShift = 0;
     83 
     84     if (clip) {
     85         this->chopLineWithClip(*clip);
     86     }
     87     return 1;
     88 }
     89 
     90 // called from a curve subclass
     91 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
     92 {
     93     SkASSERT(fWinding == 1 || fWinding == -1);
     94     SkASSERT(fCurveCount != 0);
     95 //    SkASSERT(fCurveShift != 0);
     96 
     97     y0 >>= 10;
     98     y1 >>= 10;
     99 
    100     SkASSERT(y0 <= y1);
    101 
    102     int top = SkFDot6Round(y0);
    103     int bot = SkFDot6Round(y1);
    104 
    105 //  SkASSERT(top >= fFirstY);
    106 
    107     // are we a zero-height line?
    108     if (top == bot)
    109         return 0;
    110 
    111     x0 >>= 10;
    112     x1 >>= 10;
    113 
    114     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    115     const int dy  = SkEdge_Compute_DY(top, y0);
    116 
    117     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    118     fDX         = slope;
    119     fFirstY     = top;
    120     fLastY      = bot - 1;
    121 
    122     return 1;
    123 }
    124 
    125 void SkEdge::chopLineWithClip(const SkIRect& clip)
    126 {
    127     int top = fFirstY;
    128 
    129     SkASSERT(top < clip.fBottom);
    130 
    131     // clip the line to the top
    132     if (top < clip.fTop)
    133     {
    134         SkASSERT(fLastY >= clip.fTop);
    135         fX += fDX * (clip.fTop - top);
    136         fFirstY = clip.fTop;
    137     }
    138 }
    139 
    140 ///////////////////////////////////////////////////////////////////////////////
    141 
    142 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    143     Note that this limits the number of lines we use to approximate a curve.
    144     If we need to increase this, we need to store fCurveCount in something
    145     larger than int8_t.
    146 */
    147 #define MAX_COEFF_SHIFT     6
    148 
    149 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
    150 {
    151     dx = SkAbs32(dx);
    152     dy = SkAbs32(dy);
    153     // return max + min/2
    154     if (dx > dy)
    155         dx += dy >> 1;
    156     else
    157         dx = dy + (dx >> 1);
    158     return dx;
    159 }
    160 
    161 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
    162 {
    163     // cheap calc of distance from center of p0-p2 to the center of the curve
    164     SkFDot6 dist = cheap_distance(dx, dy);
    165 
    166     // shift down dist (it is currently in dot6)
    167     // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
    168     // this is chosen by heuristic: make it as big as possible (to minimize segments)
    169     // ... but small enough so that our curves still look smooth
    170     dist = (dist + (1 << 4)) >> 5;
    171 
    172     // each subdivision (shift value) cuts this dist (error) by 1/4
    173     return (32 - SkCLZ(dist)) >> 1;
    174 }
    175 
    176 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
    177 {
    178     SkFDot6 x0, y0, x1, y1, x2, y2;
    179 
    180     {
    181 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    182         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    183         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    184         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    185         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    186         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    187         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    188 #else
    189         float scale = float(1 << (shift + 6));
    190         x0 = int(pts[0].fX * scale);
    191         y0 = int(pts[0].fY * scale);
    192         x1 = int(pts[1].fX * scale);
    193         y1 = int(pts[1].fY * scale);
    194         x2 = int(pts[2].fX * scale);
    195         y2 = int(pts[2].fY * scale);
    196 #endif
    197     }
    198 
    199     int winding = 1;
    200     if (y0 > y2)
    201     {
    202         SkTSwap(x0, x2);
    203         SkTSwap(y0, y2);
    204         winding = -1;
    205     }
    206     SkASSERT(y0 <= y1 && y1 <= y2);
    207 
    208     int top = SkFDot6Round(y0);
    209     int bot = SkFDot6Round(y2);
    210 
    211     // are we a zero-height quad (line)?
    212     if (top == bot)
    213         return 0;
    214 
    215     // compute number of steps needed (1 << shift)
    216     {
    217         SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
    218         SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
    219         shift = diff_to_shift(dx, dy);
    220         SkASSERT(shift >= 0);
    221     }
    222     // need at least 1 subdivision for our bias trick
    223     if (shift == 0) {
    224         shift = 1;
    225     } else if (shift > MAX_COEFF_SHIFT) {
    226         shift = MAX_COEFF_SHIFT;
    227     }
    228 
    229     fWinding    = SkToS8(winding);
    230     //fCubicDShift only set for cubics
    231     fCurveCount = SkToS8(1 << shift);
    232 
    233     /*
    234      *  We want to reformulate into polynomial form, to make it clear how we
    235      *  should forward-difference.
    236      *
    237      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
    238      *
    239      *  A = p0 - 2p1 + p2
    240      *  B = 2(p1 - p0)
    241      *  C = p0
    242      *
    243      *  Our caller must have constrained our inputs (p0..p2) to all fit into
    244      *  16.16. However, as seen above, we sometimes compute values that can be
    245      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
    246      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
    247      *  application in updateQuadratic(). Hence we store (shift - 1) in
    248      *  fCurveShift.
    249      */
    250 
    251     fCurveShift = SkToU8(shift - 1);
    252 
    253     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
    254     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
    255 
    256     fQx     = SkFDot6ToFixed(x0);
    257     fQDx    = B + (A >> shift);     // biased by shift
    258     fQDDx   = A >> (shift - 1);     // biased by shift
    259 
    260     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
    261     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
    262 
    263     fQy     = SkFDot6ToFixed(y0);
    264     fQDy    = B + (A >> shift);     // biased by shift
    265     fQDDy   = A >> (shift - 1);     // biased by shift
    266 
    267     fQLastX = SkFDot6ToFixed(x2);
    268     fQLastY = SkFDot6ToFixed(y2);
    269 
    270     return this->updateQuadratic();
    271 }
    272 
    273 int SkQuadraticEdge::updateQuadratic()
    274 {
    275     int     success;
    276     int     count = fCurveCount;
    277     SkFixed oldx = fQx;
    278     SkFixed oldy = fQy;
    279     SkFixed dx = fQDx;
    280     SkFixed dy = fQDy;
    281     SkFixed newx, newy;
    282     int     shift = fCurveShift;
    283 
    284     SkASSERT(count > 0);
    285 
    286     do {
    287         if (--count > 0)
    288         {
    289             newx    = oldx + (dx >> shift);
    290             dx    += fQDDx;
    291             newy    = oldy + (dy >> shift);
    292             dy    += fQDDy;
    293         }
    294         else    // last segment
    295         {
    296             newx    = fQLastX;
    297             newy    = fQLastY;
    298         }
    299         success = this->updateLine(oldx, oldy, newx, newy);
    300         oldx = newx;
    301         oldy = newy;
    302     } while (count > 0 && !success);
    303 
    304     fQx         = newx;
    305     fQy         = newy;
    306     fQDx        = dx;
    307     fQDy        = dy;
    308     fCurveCount = SkToS8(count);
    309     return success;
    310 }
    311 
    312 /////////////////////////////////////////////////////////////////////////
    313 
    314 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
    315     SkASSERT((x << upShift >> upShift) == x);
    316     return x << upShift;
    317 }
    318 
    319 /*  f(1/3) = (8a + 12b + 6c + d) / 27
    320     f(2/3) = (a + 6b + 12c + 8d) / 27
    321 
    322     f(1/3)-b = (8a - 15b + 6c + d) / 27
    323     f(2/3)-c = (a + 6b - 15c + 8d) / 27
    324 
    325     use 16/512 to approximate 1/27
    326 */
    327 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
    328 {
    329     SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
    330     SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
    331 
    332     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
    333 }
    334 
    335 int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
    336 {
    337     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
    338 
    339     {
    340 #ifdef SK_RASTERIZE_EVEN_ROUNDING
    341         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
    342         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
    343         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
    344         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
    345         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
    346         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
    347         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
    348         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
    349 #else
    350         float scale = float(1 << (shift + 6));
    351         x0 = int(pts[0].fX * scale);
    352         y0 = int(pts[0].fY * scale);
    353         x1 = int(pts[1].fX * scale);
    354         y1 = int(pts[1].fY * scale);
    355         x2 = int(pts[2].fX * scale);
    356         y2 = int(pts[2].fY * scale);
    357         x3 = int(pts[3].fX * scale);
    358         y3 = int(pts[3].fY * scale);
    359 #endif
    360     }
    361 
    362     int winding = 1;
    363     if (y0 > y3)
    364     {
    365         SkTSwap(x0, x3);
    366         SkTSwap(x1, x2);
    367         SkTSwap(y0, y3);
    368         SkTSwap(y1, y2);
    369         winding = -1;
    370     }
    371 
    372     int top = SkFDot6Round(y0);
    373     int bot = SkFDot6Round(y3);
    374 
    375     // are we a zero-height cubic (line)?
    376     if (top == bot)
    377         return 0;
    378 
    379     // are we completely above or below the clip?
    380     if (clip && (top >= clip->fBottom || bot <= clip->fTop))
    381         return 0;
    382 
    383     // compute number of steps needed (1 << shift)
    384     {
    385         // Can't use (center of curve - center of baseline), since center-of-curve
    386         // need not be the max delta from the baseline (it could even be coincident)
    387         // so we try just looking at the two off-curve points
    388         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
    389         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
    390         // add 1 (by observation)
    391         shift = diff_to_shift(dx, dy) + 1;
    392     }
    393     // need at least 1 subdivision for our bias trick
    394     SkASSERT(shift > 0);
    395     if (shift > MAX_COEFF_SHIFT) {
    396         shift = MAX_COEFF_SHIFT;
    397     }
    398 
    399     /*  Since our in coming data is initially shifted down by 10 (or 8 in
    400         antialias). That means the most we can shift up is 8. However, we
    401         compute coefficients with a 3*, so the safest upshift is really 6
    402     */
    403     int upShift = 6;    // largest safe value
    404     int downShift = shift + upShift - 10;
    405     if (downShift < 0) {
    406         downShift = 0;
    407         upShift = 10 - shift;
    408     }
    409 
    410     fWinding    = SkToS8(winding);
    411     fCurveCount = SkToS8(-1 << shift);
    412     fCurveShift = SkToU8(shift);
    413     fCubicDShift = SkToU8(downShift);
    414 
    415     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
    416     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
    417     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
    418 
    419     fCx     = SkFDot6ToFixed(x0);
    420     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    421     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    422     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
    423 
    424     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
    425     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
    426     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
    427 
    428     fCy     = SkFDot6ToFixed(y0);
    429     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    430     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    431     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
    432 
    433     fCLastX = SkFDot6ToFixed(x3);
    434     fCLastY = SkFDot6ToFixed(y3);
    435 
    436     if (clip)
    437     {
    438         do {
    439             if (!this->updateCubic()) {
    440                 return 0;
    441             }
    442         } while (!this->intersectsClip(*clip));
    443         this->chopLineWithClip(*clip);
    444         return 1;
    445     }
    446     return this->updateCubic();
    447 }
    448 
    449 int SkCubicEdge::updateCubic()
    450 {
    451     int     success;
    452     int     count = fCurveCount;
    453     SkFixed oldx = fCx;
    454     SkFixed oldy = fCy;
    455     SkFixed newx, newy;
    456     const int ddshift = fCurveShift;
    457     const int dshift = fCubicDShift;
    458 
    459     SkASSERT(count < 0);
    460 
    461     do {
    462         if (++count < 0)
    463         {
    464             newx    = oldx + (fCDx >> dshift);
    465             fCDx    += fCDDx >> ddshift;
    466             fCDDx   += fCDDDx;
    467 
    468             newy    = oldy + (fCDy >> dshift);
    469             fCDy    += fCDDy >> ddshift;
    470             fCDDy   += fCDDDy;
    471         }
    472         else    // last segment
    473         {
    474         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
    475             newx    = fCLastX;
    476             newy    = fCLastY;
    477         }
    478 
    479         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
    480         // doesn't always achieve that, so we have to explicitly pin it here.
    481         if (newy < oldy) {
    482             newy = oldy;
    483         }
    484 
    485         success = this->updateLine(oldx, oldy, newx, newy);
    486         oldx = newx;
    487         oldy = newy;
    488     } while (count < 0 && !success);
    489 
    490     fCx         = newx;
    491     fCy         = newy;
    492     fCurveCount = SkToS8(count);
    493     return success;
    494 }
    495