Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2008 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkMathPriv.h"
     11 #include "SkPoint.h"
     12 
     13 void SkIPoint::rotateCW(SkIPoint* dst) const {
     14     SkASSERT(dst);
     15 
     16     // use a tmp in case this == dst
     17     int32_t tmp = fX;
     18     dst->fX = -fY;
     19     dst->fY = tmp;
     20 }
     21 
     22 void SkIPoint::rotateCCW(SkIPoint* dst) const {
     23     SkASSERT(dst);
     24 
     25     // use a tmp in case this == dst
     26     int32_t tmp = fX;
     27     dst->fX = fY;
     28     dst->fY = -tmp;
     29 }
     30 
     31 ///////////////////////////////////////////////////////////////////////////////
     32 
     33 void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) {
     34     SkASSERT(stride >= sizeof(SkPoint));
     35 
     36     ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l),
     37                                                    SkIntToScalar(t));
     38     ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l),
     39                                                    SkIntToScalar(b));
     40     ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r),
     41                                                    SkIntToScalar(b));
     42     ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r),
     43                                                    SkIntToScalar(t));
     44 }
     45 
     46 void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b,
     47                          size_t stride) {
     48     SkASSERT(stride >= sizeof(SkPoint));
     49 
     50     ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t);
     51     ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b);
     52     ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b);
     53     ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t);
     54 }
     55 
     56 void SkPoint::rotateCW(SkPoint* dst) const {
     57     SkASSERT(dst);
     58 
     59     // use a tmp in case this == dst
     60     SkScalar tmp = fX;
     61     dst->fX = -fY;
     62     dst->fY = tmp;
     63 }
     64 
     65 void SkPoint::rotateCCW(SkPoint* dst) const {
     66     SkASSERT(dst);
     67 
     68     // use a tmp in case this == dst
     69     SkScalar tmp = fX;
     70     dst->fX = fY;
     71     dst->fY = -tmp;
     72 }
     73 
     74 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
     75     SkASSERT(dst);
     76     dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
     77 }
     78 
     79 bool SkPoint::normalize() {
     80     return this->setLength(fX, fY, SK_Scalar1);
     81 }
     82 
     83 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
     84     return this->setLength(x, y, SK_Scalar1);
     85 }
     86 
     87 bool SkPoint::setLength(SkScalar length) {
     88     return this->setLength(fX, fY, length);
     89 }
     90 
     91 // Returns the square of the Euclidian distance to (dx,dy).
     92 static inline float getLengthSquared(float dx, float dy) {
     93     return dx * dx + dy * dy;
     94 }
     95 
     96 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
     97 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
     98 //
     99 // This logic is encapsulated in a helper method to make it explicit that we
    100 // always perform this check in the same manner, to avoid inconsistencies
    101 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
    102 static inline bool isLengthNearlyZero(float dx, float dy,
    103                                       float *lengthSquared) {
    104     *lengthSquared = getLengthSquared(dx, dy);
    105     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
    106 }
    107 
    108 SkScalar SkPoint::Normalize(SkPoint* pt) {
    109     float x = pt->fX;
    110     float y = pt->fY;
    111     float mag2;
    112     if (isLengthNearlyZero(x, y, &mag2)) {
    113         return 0;
    114     }
    115 
    116     float mag, scale;
    117     if (SkScalarIsFinite(mag2)) {
    118         mag = sk_float_sqrt(mag2);
    119         scale = 1 / mag;
    120     } else {
    121         // our mag2 step overflowed to infinity, so use doubles instead.
    122         // much slower, but needed when x or y are very large, other wise we
    123         // divide by inf. and return (0,0) vector.
    124         double xx = x;
    125         double yy = y;
    126         double magmag = sqrt(xx * xx + yy * yy);
    127         mag = (float)magmag;
    128         // we perform the divide with the double magmag, to stay exactly the
    129         // same as setLength. It would be faster to perform the divide with
    130         // mag, but it is possible that mag has overflowed to inf. but still
    131         // have a non-zero value for scale (thanks to denormalized numbers).
    132         scale = (float)(1 / magmag);
    133     }
    134     pt->set(x * scale, y * scale);
    135     return mag;
    136 }
    137 
    138 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
    139     float mag2 = dx * dx + dy * dy;
    140     if (SkScalarIsFinite(mag2)) {
    141         return sk_float_sqrt(mag2);
    142     } else {
    143         double xx = dx;
    144         double yy = dy;
    145         return (float)sqrt(xx * xx + yy * yy);
    146     }
    147 }
    148 
    149 /*
    150  *  We have to worry about 2 tricky conditions:
    151  *  1. underflow of mag2 (compared against nearlyzero^2)
    152  *  2. overflow of mag2 (compared w/ isfinite)
    153  *
    154  *  If we underflow, we return false. If we overflow, we compute again using
    155  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
    156  */
    157 bool SkPoint::setLength(float x, float y, float length) {
    158     float mag2;
    159     if (isLengthNearlyZero(x, y, &mag2)) {
    160         return false;
    161     }
    162 
    163     float scale;
    164     if (SkScalarIsFinite(mag2)) {
    165         scale = length / sk_float_sqrt(mag2);
    166     } else {
    167         // our mag2 step overflowed to infinity, so use doubles instead.
    168         // much slower, but needed when x or y are very large, other wise we
    169         // divide by inf. and return (0,0) vector.
    170         double xx = x;
    171         double yy = y;
    172     #ifdef SK_DISCARD_DENORMALIZED_FOR_SPEED
    173         // The iOS ARM processor discards small denormalized numbers to go faster.
    174         // Casting this to a float would cause the scale to go to zero. Keeping it
    175         // as a double for the multiply keeps the scale non-zero.
    176         double dscale = length / sqrt(xx * xx + yy * yy);
    177         fX = x * dscale;
    178         fY = y * dscale;
    179         return true;
    180     #else
    181         scale = (float)(length / sqrt(xx * xx + yy * yy));
    182     #endif
    183     }
    184     fX = x * scale;
    185     fY = y * scale;
    186     return true;
    187 }
    188 
    189 bool SkPoint::setLengthFast(float length) {
    190     return this->setLengthFast(fX, fY, length);
    191 }
    192 
    193 bool SkPoint::setLengthFast(float x, float y, float length) {
    194     float mag2;
    195     if (isLengthNearlyZero(x, y, &mag2)) {
    196         return false;
    197     }
    198 
    199     float scale;
    200     if (SkScalarIsFinite(mag2)) {
    201         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    202     } else {
    203         // our mag2 step overflowed to infinity, so use doubles instead.
    204         // much slower, but needed when x or y are very large, other wise we
    205         // divide by inf. and return (0,0) vector.
    206         double xx = x;
    207         double yy = y;
    208         scale = (float)(length / sqrt(xx * xx + yy * yy));
    209     }
    210     fX = x * scale;
    211     fY = y * scale;
    212     return true;
    213 }
    214 
    215 
    216 ///////////////////////////////////////////////////////////////////////////////
    217 
    218 SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a,
    219                                            const SkPoint& b,
    220                                            Side* side) const {
    221 
    222     SkVector u = b - a;
    223     SkVector v = *this - a;
    224 
    225     SkScalar uLengthSqd = u.lengthSqd();
    226     SkScalar det = u.cross(v);
    227     if (side) {
    228         SkASSERT(-1 == SkPoint::kLeft_Side &&
    229                   0 == SkPoint::kOn_Side &&
    230                   1 == kRight_Side);
    231         *side = (Side) SkScalarSignAsInt(det);
    232     }
    233     return SkScalarMulDiv(det, det, uLengthSqd);
    234 }
    235 
    236 SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
    237                                                   const SkPoint& b) const {
    238     // See comments to distanceToLineBetweenSqd. If the projection of c onto
    239     // u is between a and b then this returns the same result as that
    240     // function. Otherwise, it returns the distance to the closer of a and
    241     // b. Let the projection of v onto u be v'.  There are three cases:
    242     //    1. v' points opposite to u. c is not between a and b and is closer
    243     //       to a than b.
    244     //    2. v' points along u and has magnitude less than y. c is between
    245     //       a and b and the distance to the segment is the same as distance
    246     //       to the line ab.
    247     //    3. v' points along u and has greater magnitude than u. c is not
    248     //       not between a and b and is closer to b than a.
    249     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
    250     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
    251     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
    252     // avoid a sqrt to compute |u|.
    253 
    254     SkVector u = b - a;
    255     SkVector v = *this - a;
    256 
    257     SkScalar uLengthSqd = u.lengthSqd();
    258     SkScalar uDotV = SkPoint::DotProduct(u, v);
    259 
    260     if (uDotV <= 0) {
    261         return v.lengthSqd();
    262     } else if (uDotV > uLengthSqd) {
    263         return b.distanceToSqd(*this);
    264     } else {
    265         SkScalar det = u.cross(v);
    266         return SkScalarMulDiv(det, det, uLengthSqd);
    267     }
    268 }
    269