Home | History | Annotate | Download | only in fts1
      1 /*
      2 ** 2006 September 30
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** Implementation of the full-text-search tokenizer that implements
     13 ** a Porter stemmer.
     14 */
     15 
     16 /*
     17 ** The code in this file is only compiled if:
     18 **
     19 **     * The FTS1 module is being built as an extension
     20 **       (in which case SQLITE_CORE is not defined), or
     21 **
     22 **     * The FTS1 module is being built into the core of
     23 **       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
     24 */
     25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
     26 
     27 
     28 #include <assert.h>
     29 #include <stdlib.h>
     30 #include <stdio.h>
     31 #include <string.h>
     32 #include <ctype.h>
     33 
     34 #include "fts1_tokenizer.h"
     35 
     36 /*
     37 ** Class derived from sqlite3_tokenizer
     38 */
     39 typedef struct porter_tokenizer {
     40   sqlite3_tokenizer base;      /* Base class */
     41 } porter_tokenizer;
     42 
     43 /*
     44 ** Class derived from sqlit3_tokenizer_cursor
     45 */
     46 typedef struct porter_tokenizer_cursor {
     47   sqlite3_tokenizer_cursor base;
     48   const char *zInput;          /* input we are tokenizing */
     49   int nInput;                  /* size of the input */
     50   int iOffset;                 /* current position in zInput */
     51   int iToken;                  /* index of next token to be returned */
     52   char *zToken;                /* storage for current token */
     53   int nAllocated;              /* space allocated to zToken buffer */
     54 } porter_tokenizer_cursor;
     55 
     56 
     57 /* Forward declaration */
     58 static const sqlite3_tokenizer_module porterTokenizerModule;
     59 
     60 
     61 /*
     62 ** Create a new tokenizer instance.
     63 */
     64 static int porterCreate(
     65   int argc, const char * const *argv,
     66   sqlite3_tokenizer **ppTokenizer
     67 ){
     68   porter_tokenizer *t;
     69   t = (porter_tokenizer *) calloc(sizeof(*t), 1);
     70   if( t==NULL ) return SQLITE_NOMEM;
     71 
     72   *ppTokenizer = &t->base;
     73   return SQLITE_OK;
     74 }
     75 
     76 /*
     77 ** Destroy a tokenizer
     78 */
     79 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
     80   free(pTokenizer);
     81   return SQLITE_OK;
     82 }
     83 
     84 /*
     85 ** Prepare to begin tokenizing a particular string.  The input
     86 ** string to be tokenized is zInput[0..nInput-1].  A cursor
     87 ** used to incrementally tokenize this string is returned in
     88 ** *ppCursor.
     89 */
     90 static int porterOpen(
     91   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
     92   const char *zInput, int nInput,        /* String to be tokenized */
     93   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
     94 ){
     95   porter_tokenizer_cursor *c;
     96 
     97   c = (porter_tokenizer_cursor *) malloc(sizeof(*c));
     98   if( c==NULL ) return SQLITE_NOMEM;
     99 
    100   c->zInput = zInput;
    101   if( zInput==0 ){
    102     c->nInput = 0;
    103   }else if( nInput<0 ){
    104     c->nInput = (int)strlen(zInput);
    105   }else{
    106     c->nInput = nInput;
    107   }
    108   c->iOffset = 0;                 /* start tokenizing at the beginning */
    109   c->iToken = 0;
    110   c->zToken = NULL;               /* no space allocated, yet. */
    111   c->nAllocated = 0;
    112 
    113   *ppCursor = &c->base;
    114   return SQLITE_OK;
    115 }
    116 
    117 /*
    118 ** Close a tokenization cursor previously opened by a call to
    119 ** porterOpen() above.
    120 */
    121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
    122   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
    123   free(c->zToken);
    124   free(c);
    125   return SQLITE_OK;
    126 }
    127 /*
    128 ** Vowel or consonant
    129 */
    130 static const char cType[] = {
    131    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
    132    1, 1, 1, 2, 1
    133 };
    134 
    135 /*
    136 ** isConsonant() and isVowel() determine if their first character in
    137 ** the string they point to is a consonant or a vowel, according
    138 ** to Porter ruls.
    139 **
    140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
    141 ** 'Y' is a consonant unless it follows another consonant,
    142 ** in which case it is a vowel.
    143 **
    144 ** In these routine, the letters are in reverse order.  So the 'y' rule
    145 ** is that 'y' is a consonant unless it is followed by another
    146 ** consonent.
    147 */
    148 static int isVowel(const char*);
    149 static int isConsonant(const char *z){
    150   int j;
    151   char x = *z;
    152   if( x==0 ) return 0;
    153   assert( x>='a' && x<='z' );
    154   j = cType[x-'a'];
    155   if( j<2 ) return j;
    156   return z[1]==0 || isVowel(z + 1);
    157 }
    158 static int isVowel(const char *z){
    159   int j;
    160   char x = *z;
    161   if( x==0 ) return 0;
    162   assert( x>='a' && x<='z' );
    163   j = cType[x-'a'];
    164   if( j<2 ) return 1-j;
    165   return isConsonant(z + 1);
    166 }
    167 
    168 /*
    169 ** Let any sequence of one or more vowels be represented by V and let
    170 ** C be sequence of one or more consonants.  Then every word can be
    171 ** represented as:
    172 **
    173 **           [C] (VC){m} [V]
    174 **
    175 ** In prose:  A word is an optional consonant followed by zero or
    176 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
    177 ** number of vowel consonant pairs.  This routine computes the value
    178 ** of m for the first i bytes of a word.
    179 **
    180 ** Return true if the m-value for z is 1 or more.  In other words,
    181 ** return true if z contains at least one vowel that is followed
    182 ** by a consonant.
    183 **
    184 ** In this routine z[] is in reverse order.  So we are really looking
    185 ** for an instance of of a consonant followed by a vowel.
    186 */
    187 static int m_gt_0(const char *z){
    188   while( isVowel(z) ){ z++; }
    189   if( *z==0 ) return 0;
    190   while( isConsonant(z) ){ z++; }
    191   return *z!=0;
    192 }
    193 
    194 /* Like mgt0 above except we are looking for a value of m which is
    195 ** exactly 1
    196 */
    197 static int m_eq_1(const char *z){
    198   while( isVowel(z) ){ z++; }
    199   if( *z==0 ) return 0;
    200   while( isConsonant(z) ){ z++; }
    201   if( *z==0 ) return 0;
    202   while( isVowel(z) ){ z++; }
    203   if( *z==0 ) return 1;
    204   while( isConsonant(z) ){ z++; }
    205   return *z==0;
    206 }
    207 
    208 /* Like mgt0 above except we are looking for a value of m>1 instead
    209 ** or m>0
    210 */
    211 static int m_gt_1(const char *z){
    212   while( isVowel(z) ){ z++; }
    213   if( *z==0 ) return 0;
    214   while( isConsonant(z) ){ z++; }
    215   if( *z==0 ) return 0;
    216   while( isVowel(z) ){ z++; }
    217   if( *z==0 ) return 0;
    218   while( isConsonant(z) ){ z++; }
    219   return *z!=0;
    220 }
    221 
    222 /*
    223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
    224 */
    225 static int hasVowel(const char *z){
    226   while( isConsonant(z) ){ z++; }
    227   return *z!=0;
    228 }
    229 
    230 /*
    231 ** Return TRUE if the word ends in a double consonant.
    232 **
    233 ** The text is reversed here. So we are really looking at
    234 ** the first two characters of z[].
    235 */
    236 static int doubleConsonant(const char *z){
    237   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
    238 }
    239 
    240 /*
    241 ** Return TRUE if the word ends with three letters which
    242 ** are consonant-vowel-consonent and where the final consonant
    243 ** is not 'w', 'x', or 'y'.
    244 **
    245 ** The word is reversed here.  So we are really checking the
    246 ** first three letters and the first one cannot be in [wxy].
    247 */
    248 static int star_oh(const char *z){
    249   return
    250     z[0]!=0 && isConsonant(z) &&
    251     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
    252     z[1]!=0 && isVowel(z+1) &&
    253     z[2]!=0 && isConsonant(z+2);
    254 }
    255 
    256 /*
    257 ** If the word ends with zFrom and xCond() is true for the stem
    258 ** of the word that preceeds the zFrom ending, then change the
    259 ** ending to zTo.
    260 **
    261 ** The input word *pz and zFrom are both in reverse order.  zTo
    262 ** is in normal order.
    263 **
    264 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
    265 ** match.  Not that TRUE is returned even if xCond() fails and
    266 ** no substitution occurs.
    267 */
    268 static int stem(
    269   char **pz,             /* The word being stemmed (Reversed) */
    270   const char *zFrom,     /* If the ending matches this... (Reversed) */
    271   const char *zTo,       /* ... change the ending to this (not reversed) */
    272   int (*xCond)(const char*)   /* Condition that must be true */
    273 ){
    274   char *z = *pz;
    275   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
    276   if( *zFrom!=0 ) return 0;
    277   if( xCond && !xCond(z) ) return 1;
    278   while( *zTo ){
    279     *(--z) = *(zTo++);
    280   }
    281   *pz = z;
    282   return 1;
    283 }
    284 
    285 /*
    286 ** This is the fallback stemmer used when the porter stemmer is
    287 ** inappropriate.  The input word is copied into the output with
    288 ** US-ASCII case folding.  If the input word is too long (more
    289 ** than 20 bytes if it contains no digits or more than 6 bytes if
    290 ** it contains digits) then word is truncated to 20 or 6 bytes
    291 ** by taking 10 or 3 bytes from the beginning and end.
    292 */
    293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
    294   int i, mx, j;
    295   int hasDigit = 0;
    296   for(i=0; i<nIn; i++){
    297     int c = zIn[i];
    298     if( c>='A' && c<='Z' ){
    299       zOut[i] = c - 'A' + 'a';
    300     }else{
    301       if( c>='0' && c<='9' ) hasDigit = 1;
    302       zOut[i] = c;
    303     }
    304   }
    305   mx = hasDigit ? 3 : 10;
    306   if( nIn>mx*2 ){
    307     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
    308       zOut[j] = zOut[i];
    309     }
    310     i = j;
    311   }
    312   zOut[i] = 0;
    313   *pnOut = i;
    314 }
    315 
    316 
    317 /*
    318 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
    319 ** zOut is at least big enough to hold nIn bytes.  Write the actual
    320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
    321 **
    322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
    323 ** are converted to lower case.  Upper-case UTF characters are
    324 ** unchanged.
    325 **
    326 ** Words that are longer than about 20 bytes are stemmed by retaining
    327 ** a few bytes from the beginning and the end of the word.  If the
    328 ** word contains digits, 3 bytes are taken from the beginning and
    329 ** 3 bytes from the end.  For long words without digits, 10 bytes
    330 ** are taken from each end.  US-ASCII case folding still applies.
    331 **
    332 ** If the input word contains not digits but does characters not
    333 ** in [a-zA-Z] then no stemming is attempted and this routine just
    334 ** copies the input into the input into the output with US-ASCII
    335 ** case folding.
    336 **
    337 ** Stemming never increases the length of the word.  So there is
    338 ** no chance of overflowing the zOut buffer.
    339 */
    340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
    341   int i, j, c;
    342   char zReverse[28];
    343   char *z, *z2;
    344   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
    345     /* The word is too big or too small for the porter stemmer.
    346     ** Fallback to the copy stemmer */
    347     copy_stemmer(zIn, nIn, zOut, pnOut);
    348     return;
    349   }
    350   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
    351     c = zIn[i];
    352     if( c>='A' && c<='Z' ){
    353       zReverse[j] = c + 'a' - 'A';
    354     }else if( c>='a' && c<='z' ){
    355       zReverse[j] = c;
    356     }else{
    357       /* The use of a character not in [a-zA-Z] means that we fallback
    358       ** to the copy stemmer */
    359       copy_stemmer(zIn, nIn, zOut, pnOut);
    360       return;
    361     }
    362   }
    363   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
    364   z = &zReverse[j+1];
    365 
    366 
    367   /* Step 1a */
    368   if( z[0]=='s' ){
    369     if(
    370      !stem(&z, "sess", "ss", 0) &&
    371      !stem(&z, "sei", "i", 0)  &&
    372      !stem(&z, "ss", "ss", 0)
    373     ){
    374       z++;
    375     }
    376   }
    377 
    378   /* Step 1b */
    379   z2 = z;
    380   if( stem(&z, "dee", "ee", m_gt_0) ){
    381     /* Do nothing.  The work was all in the test */
    382   }else if(
    383      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
    384       && z!=z2
    385   ){
    386      if( stem(&z, "ta", "ate", 0) ||
    387          stem(&z, "lb", "ble", 0) ||
    388          stem(&z, "zi", "ize", 0) ){
    389        /* Do nothing.  The work was all in the test */
    390      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
    391        z++;
    392      }else if( m_eq_1(z) && star_oh(z) ){
    393        *(--z) = 'e';
    394      }
    395   }
    396 
    397   /* Step 1c */
    398   if( z[0]=='y' && hasVowel(z+1) ){
    399     z[0] = 'i';
    400   }
    401 
    402   /* Step 2 */
    403   switch( z[1] ){
    404    case 'a':
    405      stem(&z, "lanoita", "ate", m_gt_0) ||
    406      stem(&z, "lanoit", "tion", m_gt_0);
    407      break;
    408    case 'c':
    409      stem(&z, "icne", "ence", m_gt_0) ||
    410      stem(&z, "icna", "ance", m_gt_0);
    411      break;
    412    case 'e':
    413      stem(&z, "rezi", "ize", m_gt_0);
    414      break;
    415    case 'g':
    416      stem(&z, "igol", "log", m_gt_0);
    417      break;
    418    case 'l':
    419      stem(&z, "ilb", "ble", m_gt_0) ||
    420      stem(&z, "illa", "al", m_gt_0) ||
    421      stem(&z, "iltne", "ent", m_gt_0) ||
    422      stem(&z, "ile", "e", m_gt_0) ||
    423      stem(&z, "ilsuo", "ous", m_gt_0);
    424      break;
    425    case 'o':
    426      stem(&z, "noitazi", "ize", m_gt_0) ||
    427      stem(&z, "noita", "ate", m_gt_0) ||
    428      stem(&z, "rota", "ate", m_gt_0);
    429      break;
    430    case 's':
    431      stem(&z, "msila", "al", m_gt_0) ||
    432      stem(&z, "ssenevi", "ive", m_gt_0) ||
    433      stem(&z, "ssenluf", "ful", m_gt_0) ||
    434      stem(&z, "ssensuo", "ous", m_gt_0);
    435      break;
    436    case 't':
    437      stem(&z, "itila", "al", m_gt_0) ||
    438      stem(&z, "itivi", "ive", m_gt_0) ||
    439      stem(&z, "itilib", "ble", m_gt_0);
    440      break;
    441   }
    442 
    443   /* Step 3 */
    444   switch( z[0] ){
    445    case 'e':
    446      stem(&z, "etaci", "ic", m_gt_0) ||
    447      stem(&z, "evita", "", m_gt_0)   ||
    448      stem(&z, "ezila", "al", m_gt_0);
    449      break;
    450    case 'i':
    451      stem(&z, "itici", "ic", m_gt_0);
    452      break;
    453    case 'l':
    454      stem(&z, "laci", "ic", m_gt_0) ||
    455      stem(&z, "luf", "", m_gt_0);
    456      break;
    457    case 's':
    458      stem(&z, "ssen", "", m_gt_0);
    459      break;
    460   }
    461 
    462   /* Step 4 */
    463   switch( z[1] ){
    464    case 'a':
    465      if( z[0]=='l' && m_gt_1(z+2) ){
    466        z += 2;
    467      }
    468      break;
    469    case 'c':
    470      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
    471        z += 4;
    472      }
    473      break;
    474    case 'e':
    475      if( z[0]=='r' && m_gt_1(z+2) ){
    476        z += 2;
    477      }
    478      break;
    479    case 'i':
    480      if( z[0]=='c' && m_gt_1(z+2) ){
    481        z += 2;
    482      }
    483      break;
    484    case 'l':
    485      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
    486        z += 4;
    487      }
    488      break;
    489    case 'n':
    490      if( z[0]=='t' ){
    491        if( z[2]=='a' ){
    492          if( m_gt_1(z+3) ){
    493            z += 3;
    494          }
    495        }else if( z[2]=='e' ){
    496          stem(&z, "tneme", "", m_gt_1) ||
    497          stem(&z, "tnem", "", m_gt_1) ||
    498          stem(&z, "tne", "", m_gt_1);
    499        }
    500      }
    501      break;
    502    case 'o':
    503      if( z[0]=='u' ){
    504        if( m_gt_1(z+2) ){
    505          z += 2;
    506        }
    507      }else if( z[3]=='s' || z[3]=='t' ){
    508        stem(&z, "noi", "", m_gt_1);
    509      }
    510      break;
    511    case 's':
    512      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
    513        z += 3;
    514      }
    515      break;
    516    case 't':
    517      stem(&z, "eta", "", m_gt_1) ||
    518      stem(&z, "iti", "", m_gt_1);
    519      break;
    520    case 'u':
    521      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
    522        z += 3;
    523      }
    524      break;
    525    case 'v':
    526    case 'z':
    527      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
    528        z += 3;
    529      }
    530      break;
    531   }
    532 
    533   /* Step 5a */
    534   if( z[0]=='e' ){
    535     if( m_gt_1(z+1) ){
    536       z++;
    537     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
    538       z++;
    539     }
    540   }
    541 
    542   /* Step 5b */
    543   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
    544     z++;
    545   }
    546 
    547   /* z[] is now the stemmed word in reverse order.  Flip it back
    548   ** around into forward order and return.
    549   */
    550   *pnOut = i = strlen(z);
    551   zOut[i] = 0;
    552   while( *z ){
    553     zOut[--i] = *(z++);
    554   }
    555 }
    556 
    557 /*
    558 ** Characters that can be part of a token.  We assume any character
    559 ** whose value is greater than 0x80 (any UTF character) can be
    560 ** part of a token.  In other words, delimiters all must have
    561 ** values of 0x7f or lower.
    562 */
    563 static const char isIdChar[] = {
    564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
    565     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
    566     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
    567     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
    568     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
    569     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
    570 };
    571 #define idChar(C)  (((ch=C)&0x80)!=0 || (ch>0x2f && isIdChar[ch-0x30]))
    572 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !isIdChar[ch-0x30]))
    573 
    574 /*
    575 ** Extract the next token from a tokenization cursor.  The cursor must
    576 ** have been opened by a prior call to porterOpen().
    577 */
    578 static int porterNext(
    579   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
    580   const char **pzToken,               /* OUT: *pzToken is the token text */
    581   int *pnBytes,                       /* OUT: Number of bytes in token */
    582   int *piStartOffset,                 /* OUT: Starting offset of token */
    583   int *piEndOffset,                   /* OUT: Ending offset of token */
    584   int *piPosition                     /* OUT: Position integer of token */
    585 ){
    586   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
    587   const char *z = c->zInput;
    588 
    589   while( c->iOffset<c->nInput ){
    590     int iStartOffset, ch;
    591 
    592     /* Scan past delimiter characters */
    593     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
    594       c->iOffset++;
    595     }
    596 
    597     /* Count non-delimiter characters. */
    598     iStartOffset = c->iOffset;
    599     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
    600       c->iOffset++;
    601     }
    602 
    603     if( c->iOffset>iStartOffset ){
    604       int n = c->iOffset-iStartOffset;
    605       if( n>c->nAllocated ){
    606         c->nAllocated = n+20;
    607         c->zToken = realloc(c->zToken, c->nAllocated);
    608         if( c->zToken==NULL ) return SQLITE_NOMEM;
    609       }
    610       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
    611       *pzToken = c->zToken;
    612       *piStartOffset = iStartOffset;
    613       *piEndOffset = c->iOffset;
    614       *piPosition = c->iToken++;
    615       return SQLITE_OK;
    616     }
    617   }
    618   return SQLITE_DONE;
    619 }
    620 
    621 /*
    622 ** The set of routines that implement the porter-stemmer tokenizer
    623 */
    624 static const sqlite3_tokenizer_module porterTokenizerModule = {
    625   0,
    626   porterCreate,
    627   porterDestroy,
    628   porterOpen,
    629   porterClose,
    630   porterNext,
    631 };
    632 
    633 /*
    634 ** Allocate a new porter tokenizer.  Return a pointer to the new
    635 ** tokenizer in *ppModule
    636 */
    637 void sqlite3Fts1PorterTokenizerModule(
    638   sqlite3_tokenizer_module const**ppModule
    639 ){
    640   *ppModule = &porterTokenizerModule;
    641 }
    642 
    643 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */
    644