Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2008 December 3
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 **
     13 ** This module implements an object we call a "RowSet".
     14 **
     15 ** The RowSet object is a collection of rowids.  Rowids
     16 ** are inserted into the RowSet in an arbitrary order.  Inserts
     17 ** can be intermixed with tests to see if a given rowid has been
     18 ** previously inserted into the RowSet.
     19 **
     20 ** After all inserts are finished, it is possible to extract the
     21 ** elements of the RowSet in sorted order.  Once this extraction
     22 ** process has started, no new elements may be inserted.
     23 **
     24 ** Hence, the primitive operations for a RowSet are:
     25 **
     26 **    CREATE
     27 **    INSERT
     28 **    TEST
     29 **    SMALLEST
     30 **    DESTROY
     31 **
     32 ** The CREATE and DESTROY primitives are the constructor and destructor,
     33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
     34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
     35 ** extracts the least value from the RowSet.
     36 **
     37 ** The INSERT primitive might allocate additional memory.  Memory is
     38 ** allocated in chunks so most INSERTs do no allocation.  There is an
     39 ** upper bound on the size of allocated memory.  No memory is freed
     40 ** until DESTROY.
     41 **
     42 ** The TEST primitive includes a "batch" number.  The TEST primitive
     43 ** will only see elements that were inserted before the last change
     44 ** in the batch number.  In other words, if an INSERT occurs between
     45 ** two TESTs where the TESTs have the same batch nubmer, then the
     46 ** value added by the INSERT will not be visible to the second TEST.
     47 ** The initial batch number is zero, so if the very first TEST contains
     48 ** a non-zero batch number, it will see all prior INSERTs.
     49 **
     50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
     51 ** that is attempted.
     52 **
     53 ** The cost of an INSERT is roughly constant.  (Sometime new memory
     54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
     55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
     56 ** The cost of a TEST using the same batch number is O(logN).  The cost
     57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
     58 ** primitives are constant time.  The cost of DESTROY is O(N).
     59 **
     60 ** There is an added cost of O(N) when switching between TEST and
     61 ** SMALLEST primitives.
     62 */
     63 #include "sqliteInt.h"
     64 
     65 
     66 /*
     67 ** Target size for allocation chunks.
     68 */
     69 #define ROWSET_ALLOCATION_SIZE 1024
     70 
     71 /*
     72 ** The number of rowset entries per allocation chunk.
     73 */
     74 #define ROWSET_ENTRY_PER_CHUNK  \
     75                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
     76 
     77 /*
     78 ** Each entry in a RowSet is an instance of the following object.
     79 */
     80 struct RowSetEntry {
     81   i64 v;                        /* ROWID value for this entry */
     82   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
     83   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
     84 };
     85 
     86 /*
     87 ** RowSetEntry objects are allocated in large chunks (instances of the
     88 ** following structure) to reduce memory allocation overhead.  The
     89 ** chunks are kept on a linked list so that they can be deallocated
     90 ** when the RowSet is destroyed.
     91 */
     92 struct RowSetChunk {
     93   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
     94   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
     95 };
     96 
     97 /*
     98 ** A RowSet in an instance of the following structure.
     99 **
    100 ** A typedef of this structure if found in sqliteInt.h.
    101 */
    102 struct RowSet {
    103   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
    104   sqlite3 *db;                   /* The database connection */
    105   struct RowSetEntry *pEntry;    /* List of entries using pRight */
    106   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
    107   struct RowSetEntry *pFresh;    /* Source of new entry objects */
    108   struct RowSetEntry *pTree;     /* Binary tree of entries */
    109   u16 nFresh;                    /* Number of objects on pFresh */
    110   u8 isSorted;                   /* True if pEntry is sorted */
    111   u8 iBatch;                     /* Current insert batch */
    112 };
    113 
    114 /*
    115 ** Turn bulk memory into a RowSet object.  N bytes of memory
    116 ** are available at pSpace.  The db pointer is used as a memory context
    117 ** for any subsequent allocations that need to occur.
    118 ** Return a pointer to the new RowSet object.
    119 **
    120 ** It must be the case that N is sufficient to make a Rowset.  If not
    121 ** an assertion fault occurs.
    122 **
    123 ** If N is larger than the minimum, use the surplus as an initial
    124 ** allocation of entries available to be filled.
    125 */
    126 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
    127   RowSet *p;
    128   assert( N >= ROUND8(sizeof(*p)) );
    129   p = pSpace;
    130   p->pChunk = 0;
    131   p->db = db;
    132   p->pEntry = 0;
    133   p->pLast = 0;
    134   p->pTree = 0;
    135   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
    136   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
    137   p->isSorted = 1;
    138   p->iBatch = 0;
    139   return p;
    140 }
    141 
    142 /*
    143 ** Deallocate all chunks from a RowSet.  This frees all memory that
    144 ** the RowSet has allocated over its lifetime.  This routine is
    145 ** the destructor for the RowSet.
    146 */
    147 void sqlite3RowSetClear(RowSet *p){
    148   struct RowSetChunk *pChunk, *pNextChunk;
    149   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
    150     pNextChunk = pChunk->pNextChunk;
    151     sqlite3DbFree(p->db, pChunk);
    152   }
    153   p->pChunk = 0;
    154   p->nFresh = 0;
    155   p->pEntry = 0;
    156   p->pLast = 0;
    157   p->pTree = 0;
    158   p->isSorted = 1;
    159 }
    160 
    161 /*
    162 ** Insert a new value into a RowSet.
    163 **
    164 ** The mallocFailed flag of the database connection is set if a
    165 ** memory allocation fails.
    166 */
    167 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
    168   struct RowSetEntry *pEntry;  /* The new entry */
    169   struct RowSetEntry *pLast;   /* The last prior entry */
    170   assert( p!=0 );
    171   if( p->nFresh==0 ){
    172     struct RowSetChunk *pNew;
    173     pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    174     if( pNew==0 ){
    175       return;
    176     }
    177     pNew->pNextChunk = p->pChunk;
    178     p->pChunk = pNew;
    179     p->pFresh = pNew->aEntry;
    180     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
    181   }
    182   pEntry = p->pFresh++;
    183   p->nFresh--;
    184   pEntry->v = rowid;
    185   pEntry->pRight = 0;
    186   pLast = p->pLast;
    187   if( pLast ){
    188     if( p->isSorted && rowid<=pLast->v ){
    189       p->isSorted = 0;
    190     }
    191     pLast->pRight = pEntry;
    192   }else{
    193     assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
    194     p->pEntry = pEntry;
    195   }
    196   p->pLast = pEntry;
    197 }
    198 
    199 /*
    200 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
    201 **
    202 ** The input lists are connected via pRight pointers and are
    203 ** assumed to each already be in sorted order.
    204 */
    205 static struct RowSetEntry *rowSetMerge(
    206   struct RowSetEntry *pA,    /* First sorted list to be merged */
    207   struct RowSetEntry *pB     /* Second sorted list to be merged */
    208 ){
    209   struct RowSetEntry head;
    210   struct RowSetEntry *pTail;
    211 
    212   pTail = &head;
    213   while( pA && pB ){
    214     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
    215     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
    216     if( pA->v<pB->v ){
    217       pTail->pRight = pA;
    218       pA = pA->pRight;
    219       pTail = pTail->pRight;
    220     }else if( pB->v<pA->v ){
    221       pTail->pRight = pB;
    222       pB = pB->pRight;
    223       pTail = pTail->pRight;
    224     }else{
    225       pA = pA->pRight;
    226     }
    227   }
    228   if( pA ){
    229     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
    230     pTail->pRight = pA;
    231   }else{
    232     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
    233     pTail->pRight = pB;
    234   }
    235   return head.pRight;
    236 }
    237 
    238 /*
    239 ** Sort all elements on the pEntry list of the RowSet into ascending order.
    240 */
    241 static void rowSetSort(RowSet *p){
    242   unsigned int i;
    243   struct RowSetEntry *pEntry;
    244   struct RowSetEntry *aBucket[40];
    245 
    246   assert( p->isSorted==0 );
    247   memset(aBucket, 0, sizeof(aBucket));
    248   while( p->pEntry ){
    249     pEntry = p->pEntry;
    250     p->pEntry = pEntry->pRight;
    251     pEntry->pRight = 0;
    252     for(i=0; aBucket[i]; i++){
    253       pEntry = rowSetMerge(aBucket[i], pEntry);
    254       aBucket[i] = 0;
    255     }
    256     aBucket[i] = pEntry;
    257   }
    258   pEntry = 0;
    259   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
    260     pEntry = rowSetMerge(pEntry, aBucket[i]);
    261   }
    262   p->pEntry = pEntry;
    263   p->pLast = 0;
    264   p->isSorted = 1;
    265 }
    266 
    267 
    268 /*
    269 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
    270 ** Convert this tree into a linked list connected by the pRight pointers
    271 ** and return pointers to the first and last elements of the new list.
    272 */
    273 static void rowSetTreeToList(
    274   struct RowSetEntry *pIn,         /* Root of the input tree */
    275   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
    276   struct RowSetEntry **ppLast      /* Write tail of the output list here */
    277 ){
    278   assert( pIn!=0 );
    279   if( pIn->pLeft ){
    280     struct RowSetEntry *p;
    281     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
    282     p->pRight = pIn;
    283   }else{
    284     *ppFirst = pIn;
    285   }
    286   if( pIn->pRight ){
    287     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
    288   }else{
    289     *ppLast = pIn;
    290   }
    291   assert( (*ppLast)->pRight==0 );
    292 }
    293 
    294 
    295 /*
    296 ** Convert a sorted list of elements (connected by pRight) into a binary
    297 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
    298 ** node taken from the head of *ppList.  A depth of 2 means a tree with
    299 ** three nodes.  And so forth.
    300 **
    301 ** Use as many entries from the input list as required and update the
    302 ** *ppList to point to the unused elements of the list.  If the input
    303 ** list contains too few elements, then construct an incomplete tree
    304 ** and leave *ppList set to NULL.
    305 **
    306 ** Return a pointer to the root of the constructed binary tree.
    307 */
    308 static struct RowSetEntry *rowSetNDeepTree(
    309   struct RowSetEntry **ppList,
    310   int iDepth
    311 ){
    312   struct RowSetEntry *p;         /* Root of the new tree */
    313   struct RowSetEntry *pLeft;     /* Left subtree */
    314   if( *ppList==0 ){
    315     return 0;
    316   }
    317   if( iDepth==1 ){
    318     p = *ppList;
    319     *ppList = p->pRight;
    320     p->pLeft = p->pRight = 0;
    321     return p;
    322   }
    323   pLeft = rowSetNDeepTree(ppList, iDepth-1);
    324   p = *ppList;
    325   if( p==0 ){
    326     return pLeft;
    327   }
    328   p->pLeft = pLeft;
    329   *ppList = p->pRight;
    330   p->pRight = rowSetNDeepTree(ppList, iDepth-1);
    331   return p;
    332 }
    333 
    334 /*
    335 ** Convert a sorted list of elements into a binary tree. Make the tree
    336 ** as deep as it needs to be in order to contain the entire list.
    337 */
    338 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
    339   int iDepth;           /* Depth of the tree so far */
    340   struct RowSetEntry *p;       /* Current tree root */
    341   struct RowSetEntry *pLeft;   /* Left subtree */
    342 
    343   assert( pList!=0 );
    344   p = pList;
    345   pList = p->pRight;
    346   p->pLeft = p->pRight = 0;
    347   for(iDepth=1; pList; iDepth++){
    348     pLeft = p;
    349     p = pList;
    350     pList = p->pRight;
    351     p->pLeft = pLeft;
    352     p->pRight = rowSetNDeepTree(&pList, iDepth);
    353   }
    354   return p;
    355 }
    356 
    357 /*
    358 ** Convert the list in p->pEntry into a sorted list if it is not
    359 ** sorted already.  If there is a binary tree on p->pTree, then
    360 ** convert it into a list too and merge it into the p->pEntry list.
    361 */
    362 static void rowSetToList(RowSet *p){
    363   if( !p->isSorted ){
    364     rowSetSort(p);
    365   }
    366   if( p->pTree ){
    367     struct RowSetEntry *pHead, *pTail;
    368     rowSetTreeToList(p->pTree, &pHead, &pTail);
    369     p->pTree = 0;
    370     p->pEntry = rowSetMerge(p->pEntry, pHead);
    371   }
    372 }
    373 
    374 /*
    375 ** Extract the smallest element from the RowSet.
    376 ** Write the element into *pRowid.  Return 1 on success.  Return
    377 ** 0 if the RowSet is already empty.
    378 **
    379 ** After this routine has been called, the sqlite3RowSetInsert()
    380 ** routine may not be called again.
    381 */
    382 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
    383   rowSetToList(p);
    384   if( p->pEntry ){
    385     *pRowid = p->pEntry->v;
    386     p->pEntry = p->pEntry->pRight;
    387     if( p->pEntry==0 ){
    388       sqlite3RowSetClear(p);
    389     }
    390     return 1;
    391   }else{
    392     return 0;
    393   }
    394 }
    395 
    396 /*
    397 ** Check to see if element iRowid was inserted into the the rowset as
    398 ** part of any insert batch prior to iBatch.  Return 1 or 0.
    399 */
    400 int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
    401   struct RowSetEntry *p;
    402   if( iBatch!=pRowSet->iBatch ){
    403     if( pRowSet->pEntry ){
    404       rowSetToList(pRowSet);
    405       pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
    406       pRowSet->pEntry = 0;
    407       pRowSet->pLast = 0;
    408     }
    409     pRowSet->iBatch = iBatch;
    410   }
    411   p = pRowSet->pTree;
    412   while( p ){
    413     if( p->v<iRowid ){
    414       p = p->pRight;
    415     }else if( p->v>iRowid ){
    416       p = p->pLeft;
    417     }else{
    418       return 1;
    419     }
    420   }
    421   return 0;
    422 }
    423