Home | History | Annotate | Download | only in test
      1 # 2010 September 25
      2 #
      3 # The author disclaims copyright to this source code.  In place of
      4 # a legal notice, here is a blessing:
      5 #
      6 #    May you do good and not evil.
      7 #    May you find forgiveness for yourself and forgive others.
      8 #    May you share freely, never taking more than you give.
      9 #
     10 #***********************************************************************
     11 #
     12 # This file implements tests to verify that the "testable statements" in 
     13 # the lang_createtable.html document are correct.
     14 #
     15 
     16 set testdir [file dirname $argv0]
     17 source $testdir/tester.tcl
     18 
     19 set ::testprefix e_createtable
     20 
     21 # Test organization:
     22 #
     23 #   e_createtable-0.*: Test that the syntax diagrams are correct.
     24 #
     25 #   e_createtable-1.*: Test statements related to table and database names, 
     26 #       the TEMP and TEMPORARY keywords, and the IF NOT EXISTS clause.
     27 #
     28 #   e_createtable-2.*: Test "CREATE TABLE AS" statements.
     29 #
     30 
     31 proc do_createtable_tests {nm args} {
     32   uplevel do_select_tests [list e_createtable-$nm] $args
     33 }
     34 
     35 
     36 #-------------------------------------------------------------------------
     37 # This command returns a serialized tcl array mapping from the name of
     38 # each attached database to a list of tables in that database. For example,
     39 # if the database schema is created with:
     40 #
     41 #   CREATE TABLE t1(x);
     42 #   CREATE TEMP TABLE t2(x);
     43 #   CREATE TEMP TABLE t3(x);
     44 #
     45 # Then this command returns "main t1 temp {t2 t3}".
     46 #
     47 proc table_list {} {
     48   set res [list]
     49   db eval { pragma database_list } a {
     50     set dbname $a(name)
     51     set master $a(name).sqlite_master
     52     if {$dbname == "temp"} { set master sqlite_temp_master }
     53     lappend res $dbname [
     54       db eval "SELECT DISTINCT tbl_name FROM $master ORDER BY tbl_name"
     55     ]
     56   }
     57   set res
     58 }
     59 
     60 
     61 # EVIDENCE-OF: R-25262-01881 -- syntax diagram type-name
     62 #
     63 do_createtable_tests 0.1.1 -repair {
     64   drop_all_tables
     65 } {
     66   1   "CREATE TABLE t1(c1 one)"                        {}
     67   2   "CREATE TABLE t1(c1 one two)"                    {}
     68   3   "CREATE TABLE t1(c1 one two three)"              {}
     69   4   "CREATE TABLE t1(c1 one two three four)"         {}
     70   5   "CREATE TABLE t1(c1 one two three four(14))"     {}
     71   6   "CREATE TABLE t1(c1 one two three four(14, 22))" {}
     72   7   "CREATE TABLE t1(c1 var(+14, -22.3))"            {}
     73   8   "CREATE TABLE t1(c1 var(1.0e10))"                {}
     74 }
     75 do_createtable_tests 0.1.2 -error {
     76   near "%s": syntax error
     77 } {
     78   1   "CREATE TABLE t1(c1 one(number))"                {number}
     79 }
     80 
     81 
     82 # EVIDENCE-OF: R-18762-12428 -- syntax diagram column-constraint
     83 #
     84 #   Note: Not shown in the syntax diagram is the "NULL" constraint. This
     85 #         is the opposite of "NOT NULL" - it implies that the column may
     86 #         take a NULL value. This is the default anyway, so this type of
     87 #         constraint is rarely used.
     88 #
     89 do_createtable_tests 0.2.1 -repair {
     90   drop_all_tables 
     91   execsql { CREATE TABLE t2(x PRIMARY KEY) }
     92 } {
     93   1.1   "CREATE TABLE t1(c1 text PRIMARY KEY)"                         {}
     94   1.2   "CREATE TABLE t1(c1 text PRIMARY KEY ASC)"                     {}
     95   1.3   "CREATE TABLE t1(c1 text PRIMARY KEY DESC)"                    {}
     96   1.4   "CREATE TABLE t1(c1 text CONSTRAINT cons PRIMARY KEY DESC)"    {}
     97 
     98   2.1   "CREATE TABLE t1(c1 text NOT NULL)"                            {}
     99   2.2   "CREATE TABLE t1(c1 text CONSTRAINT nm NOT NULL)"              {}
    100   2.3   "CREATE TABLE t1(c1 text NULL)"                                {}
    101   2.4   "CREATE TABLE t1(c1 text CONSTRAINT nm NULL)"                  {}
    102 
    103   3.1   "CREATE TABLE t1(c1 text UNIQUE)"                              {}
    104   3.2   "CREATE TABLE t1(c1 text CONSTRAINT un UNIQUE)"                {}
    105 
    106   4.1   "CREATE TABLE t1(c1 text CHECK(c1!=0))"                        {}
    107   4.2   "CREATE TABLE t1(c1 text CONSTRAINT chk CHECK(c1!=0))"         {}
    108 
    109   5.1   "CREATE TABLE t1(c1 text DEFAULT 1)"                           {}
    110   5.2   "CREATE TABLE t1(c1 text DEFAULT -1)"                          {}
    111   5.3   "CREATE TABLE t1(c1 text DEFAULT +1)"                          {}
    112   5.4   "CREATE TABLE t1(c1 text DEFAULT -45.8e22)"                    {}
    113   5.5   "CREATE TABLE t1(c1 text DEFAULT (1+1))"                       {}
    114   5.6   "CREATE TABLE t1(c1 text CONSTRAINT \"1 2\" DEFAULT (1+1))"    {}
    115 
    116   6.1   "CREATE TABLE t1(c1 text COLLATE nocase)"        {}
    117   6.2   "CREATE TABLE t1(c1 text CONSTRAINT 'a x' COLLATE nocase)"     {}
    118 
    119   7.1   "CREATE TABLE t1(c1 REFERENCES t2)"                            {}
    120   7.2   "CREATE TABLE t1(c1 CONSTRAINT abc REFERENCES t2)"             {}
    121 
    122   8.1   {
    123     CREATE TABLE t1(c1 
    124       PRIMARY KEY NOT NULL UNIQUE CHECK(c1 IS 'ten') DEFAULT 123 REFERENCES t1
    125     );
    126   } {}
    127   8.2   {
    128     CREATE TABLE t1(c1 
    129       REFERENCES t1 DEFAULT 123 CHECK(c1 IS 'ten') UNIQUE NOT NULL PRIMARY KEY 
    130     );
    131   } {}
    132 }
    133 
    134 # EVIDENCE-OF: R-17905-31923 -- syntax diagram table-constraint
    135 #
    136 do_createtable_tests 0.3.1 -repair {
    137   drop_all_tables 
    138   execsql { CREATE TABLE t2(x PRIMARY KEY) }
    139 } {
    140   1.1   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1))"                         {}
    141   1.2   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2))"                     {}
    142   1.3   "CREATE TABLE t1(c1, c2, PRIMARY KEY(c1, c2) ON CONFLICT IGNORE)"  {}
    143 
    144   2.1   "CREATE TABLE t1(c1, c2, UNIQUE(c1))"                              {}
    145   2.2   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2))"                          {}
    146   2.3   "CREATE TABLE t1(c1, c2, UNIQUE(c1, c2) ON CONFLICT IGNORE)"       {}
    147 
    148   3.1   "CREATE TABLE t1(c1, c2, CHECK(c1 IS NOT c2))"                     {}
    149 
    150   4.1   "CREATE TABLE t1(c1, c2, FOREIGN KEY(c1) REFERENCES t2)"           {}
    151 }
    152 
    153 # EVIDENCE-OF: R-18765-31171 -- syntax diagram column-def
    154 #
    155 do_createtable_tests 0.4.1 -repair {
    156   drop_all_tables 
    157 } {
    158   1     {CREATE TABLE t1(
    159            col1,
    160            col2 TEXT,
    161            col3 INTEGER UNIQUE,
    162            col4 VARCHAR(10, 10) PRIMARY KEY,
    163            "name with spaces" REFERENCES t1
    164          );
    165         } {}
    166 }
    167 
    168 # EVIDENCE-OF: R-59573-11075 -- syntax diagram create-table-stmt
    169 #
    170 do_createtable_tests 0.5.1 -repair {
    171   drop_all_tables 
    172   execsql { CREATE TABLE t2(a, b, c) }
    173 } {
    174   1     "CREATE TABLE t1(a, b, c)"                                    {}
    175   2     "CREATE TEMP TABLE t1(a, b, c)"                               {}
    176   3     "CREATE TEMPORARY TABLE t1(a, b, c)"                          {}
    177   4     "CREATE TABLE IF NOT EXISTS t1(a, b, c)"                      {}
    178   5     "CREATE TEMP TABLE IF NOT EXISTS t1(a, b, c)"                 {}
    179   6     "CREATE TEMPORARY TABLE IF NOT EXISTS t1(a, b, c)"            {}
    180 
    181   7     "CREATE TABLE main.t1(a, b, c)"                               {}
    182   8     "CREATE TEMP TABLE temp.t1(a, b, c)"                          {}
    183   9     "CREATE TEMPORARY TABLE temp.t1(a, b, c)"                     {}
    184   10    "CREATE TABLE IF NOT EXISTS main.t1(a, b, c)"                 {}
    185   11    "CREATE TEMP TABLE IF NOT EXISTS temp.t1(a, b, c)"            {}
    186   12    "CREATE TEMPORARY TABLE IF NOT EXISTS temp.t1(a, b, c)"       {}
    187 
    188   13    "CREATE TABLE t1 AS SELECT * FROM t2"                         {}
    189   14    "CREATE TEMP TABLE t1 AS SELECT c, b, a FROM t2"              {}
    190   15    "CREATE TABLE t1 AS SELECT count(*), max(b), min(a) FROM t2"  {}
    191 }
    192 
    193 # EVIDENCE-OF: R-32138-02228 -- syntax diagram foreign-key-clause
    194 #
    195 #   1:         Explicit parent-key columns.
    196 #   2:         Implicit child-key columns.
    197 #
    198 #   1:         MATCH FULL
    199 #   2:         MATCH PARTIAL
    200 #   3:         MATCH SIMPLE
    201 #   4:         MATCH STICK
    202 #   5:         
    203 #
    204 #   1:         ON DELETE SET NULL
    205 #   2:         ON DELETE SET DEFAULT
    206 #   3:         ON DELETE CASCADE
    207 #   4:         ON DELETE RESTRICT
    208 #   5:         ON DELETE NO ACTION
    209 #   6:
    210 #
    211 #   1:         ON UPDATE SET NULL
    212 #   2:         ON UPDATE SET DEFAULT
    213 #   3:         ON UPDATE CASCADE
    214 #   4:         ON UPDATE RESTRICT
    215 #   5:         ON UPDATE NO ACTION
    216 #   6:
    217 #
    218 #   1:         NOT DEFERRABLE INITIALLY DEFERRED
    219 #   2:         NOT DEFERRABLE INITIALLY IMMEDIATE
    220 #   3:         NOT DEFERRABLE
    221 #   4:         DEFERRABLE INITIALLY DEFERRED
    222 #   5:         DEFERRABLE INITIALLY IMMEDIATE
    223 #   6:         DEFERRABLE
    224 #   7:         
    225 #
    226 do_createtable_tests 0.6.1 -repair {
    227   drop_all_tables 
    228   execsql { CREATE TABLE t2(x PRIMARY KEY, y) }
    229   execsql { CREATE TABLE t3(i, j, UNIQUE(i, j) ) }
    230 } {
    231   11146 { CREATE TABLE t1(a 
    232     REFERENCES t2(x) MATCH FULL 
    233     ON DELETE SET NULL ON UPDATE RESTRICT DEFERRABLE
    234   )} {}
    235   11412 { CREATE TABLE t1(a 
    236     REFERENCES t2(x) 
    237     ON DELETE RESTRICT ON UPDATE SET NULL MATCH FULL 
    238     NOT DEFERRABLE INITIALLY IMMEDIATE
    239   )} {}
    240   12135 { CREATE TABLE t1(a 
    241     REFERENCES t2(x) MATCH PARTIAL 
    242     ON DELETE SET NULL ON UPDATE CASCADE DEFERRABLE INITIALLY IMMEDIATE
    243   )} {}
    244   12427 { CREATE TABLE t1(a 
    245     REFERENCES t2(x) MATCH PARTIAL 
    246     ON DELETE RESTRICT ON UPDATE SET DEFAULT 
    247   )} {}
    248   12446 { CREATE TABLE t1(a 
    249     REFERENCES t2(x) MATCH PARTIAL 
    250     ON DELETE RESTRICT ON UPDATE RESTRICT DEFERRABLE
    251   )} {}
    252   12522 { CREATE TABLE t1(a 
    253     REFERENCES t2(x) MATCH PARTIAL 
    254     ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY IMMEDIATE
    255   )} {}
    256   13133 { CREATE TABLE t1(a 
    257     REFERENCES t2(x) MATCH SIMPLE 
    258     ON DELETE SET NULL ON UPDATE CASCADE NOT DEFERRABLE
    259   )} {}
    260   13216 { CREATE TABLE t1(a 
    261     REFERENCES t2(x) MATCH SIMPLE 
    262     ON DELETE SET DEFAULT ON UPDATE SET NULL DEFERRABLE
    263   )} {}
    264   13263 { CREATE TABLE t1(a 
    265     REFERENCES t2(x) MATCH SIMPLE 
    266     ON DELETE SET DEFAULT  NOT DEFERRABLE
    267   )} {}
    268   13421 { CREATE TABLE t1(a 
    269     REFERENCES t2(x) MATCH SIMPLE 
    270     ON DELETE RESTRICT ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY DEFERRED
    271   )} {}
    272   13432 { CREATE TABLE t1(a 
    273     REFERENCES t2(x) MATCH SIMPLE 
    274     ON DELETE RESTRICT ON UPDATE CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE
    275   )} {}
    276   13523 { CREATE TABLE t1(a 
    277     REFERENCES t2(x) MATCH SIMPLE 
    278     ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE
    279   )} {}
    280   14336 { CREATE TABLE t1(a 
    281     REFERENCES t2(x) MATCH STICK 
    282     ON DELETE CASCADE ON UPDATE CASCADE DEFERRABLE
    283   )} {}
    284   14611 { CREATE TABLE t1(a 
    285     REFERENCES t2(x) MATCH STICK 
    286     ON UPDATE SET NULL NOT DEFERRABLE INITIALLY DEFERRED
    287   )} {}
    288   15155 { CREATE TABLE t1(a 
    289     REFERENCES t2(x)
    290     ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE INITIALLY IMMEDIATE
    291   )} {}
    292   15453 { CREATE TABLE t1(a 
    293     REFERENCES t2(x) ON DELETE RESTRICT ON UPDATE NO ACTION NOT DEFERRABLE
    294   )} {}
    295   15661 { CREATE TABLE t1(a 
    296     REFERENCES t2(x) NOT DEFERRABLE INITIALLY DEFERRED
    297   )} {}
    298   21115 { CREATE TABLE t1(a 
    299     REFERENCES t2 MATCH FULL 
    300     ON DELETE SET NULL ON UPDATE SET NULL DEFERRABLE INITIALLY IMMEDIATE
    301   )} {}
    302   21123 { CREATE TABLE t1(a 
    303     REFERENCES t2 MATCH FULL 
    304     ON DELETE SET NULL ON UPDATE SET DEFAULT NOT DEFERRABLE
    305   )} {}
    306   21217 { CREATE TABLE t1(a 
    307     REFERENCES t2 MATCH FULL ON DELETE SET DEFAULT ON UPDATE SET NULL 
    308   )} {}
    309   21362 { CREATE TABLE t1(a 
    310     REFERENCES t2 MATCH FULL 
    311     ON DELETE CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE
    312   )} {}
    313   22143 { CREATE TABLE t1(a 
    314     REFERENCES t2 MATCH PARTIAL 
    315     ON DELETE SET NULL ON UPDATE RESTRICT NOT DEFERRABLE
    316   )} {}
    317   22156 { CREATE TABLE t1(a 
    318     REFERENCES t2 MATCH PARTIAL 
    319     ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE
    320   )} {}
    321   22327 { CREATE TABLE t1(a 
    322     REFERENCES t2 MATCH PARTIAL ON DELETE CASCADE ON UPDATE SET DEFAULT 
    323   )} {}
    324   22663 { CREATE TABLE t1(a 
    325     REFERENCES t2 MATCH PARTIAL NOT DEFERRABLE
    326   )} {}
    327   23236 { CREATE TABLE t1(a 
    328     REFERENCES t2 MATCH SIMPLE 
    329     ON DELETE SET DEFAULT ON UPDATE CASCADE DEFERRABLE
    330   )} {}
    331   24155 { CREATE TABLE t1(a 
    332     REFERENCES t2 MATCH STICK 
    333     ON DELETE SET NULL ON UPDATE NO ACTION DEFERRABLE INITIALLY IMMEDIATE
    334   )} {}
    335   24522 { CREATE TABLE t1(a 
    336     REFERENCES t2 MATCH STICK 
    337     ON DELETE NO ACTION ON UPDATE SET DEFAULT NOT DEFERRABLE INITIALLY IMMEDIATE
    338   )} {}
    339   24625 { CREATE TABLE t1(a 
    340     REFERENCES t2 MATCH STICK 
    341     ON UPDATE SET DEFAULT DEFERRABLE INITIALLY IMMEDIATE
    342   )} {}
    343   25454 { CREATE TABLE t1(a 
    344     REFERENCES t2 
    345     ON DELETE RESTRICT ON UPDATE NO ACTION DEFERRABLE INITIALLY DEFERRED
    346   )} {}
    347 }
    348 
    349 #-------------------------------------------------------------------------
    350 # Test cases e_createtable-1.* - test statements related to table and
    351 # database names, the TEMP and TEMPORARY keywords, and the IF NOT EXISTS
    352 # clause.
    353 #
    354 drop_all_tables
    355 forcedelete test.db2 test.db3
    356 
    357 do_execsql_test e_createtable-1.0 {
    358   ATTACH 'test.db2' AS auxa;
    359   ATTACH 'test.db3' AS auxb;
    360 } {}
    361 
    362 # EVIDENCE-OF: R-17899-04554 Table names that begin with "sqlite_" are
    363 # reserved for internal use. It is an error to attempt to create a table
    364 # with a name that starts with "sqlite_".
    365 #
    366 do_createtable_tests 1.1.1 -error {
    367   object name reserved for internal use: %s
    368 } {
    369   1    "CREATE TABLE sqlite_abc(a, b, c)"        sqlite_abc
    370   2    "CREATE TABLE temp.sqlite_helloworld(x)"  sqlite_helloworld
    371   3    {CREATE TABLE auxa."sqlite__"(x, y)}      sqlite__
    372   4    {CREATE TABLE auxb."sqlite_"(z)}          sqlite_
    373   5    {CREATE TABLE "SQLITE_TBL"(z)}            SQLITE_TBL
    374 }
    375 do_createtable_tests 1.1.2 {
    376   1    "CREATE TABLE sqlit_abc(a, b, c)"         {}
    377   2    "CREATE TABLE temp.sqlitehelloworld(x)"   {}
    378   3    {CREATE TABLE auxa."sqlite"(x, y)}        {}
    379   4    {CREATE TABLE auxb."sqlite-"(z)}          {}
    380   5    {CREATE TABLE "SQLITE-TBL"(z)}            {}
    381 }
    382 
    383 
    384 # EVIDENCE-OF: R-10195-31023 If a <database-name> is specified, it
    385 # must be either "main", "temp", or the name of an attached database.
    386 #
    387 # EVIDENCE-OF: R-39822-07822 In this case the new table is created in
    388 # the named database.
    389 #
    390 #   Test cases 1.2.* test the first of the two requirements above. The
    391 #   second is verified by cases 1.3.*.
    392 #
    393 do_createtable_tests 1.2.1 -error {
    394   unknown database %s
    395 } {
    396   1    "CREATE TABLE george.t1(a, b)"            george
    397   2    "CREATE TABLE _.t1(a, b)"                 _
    398 }
    399 do_createtable_tests 1.2.2 {
    400   1    "CREATE TABLE main.abc(a, b, c)"          {}
    401   2    "CREATE TABLE temp.helloworld(x)"         {}
    402   3    {CREATE TABLE auxa."t 1"(x, y)}           {}
    403   4    {CREATE TABLE auxb.xyz(z)}                {}
    404 }
    405 drop_all_tables
    406 do_createtable_tests 1.3 -tclquery {
    407   unset -nocomplain X
    408   array set X [table_list]
    409   list $X(main) $X(temp) $X(auxa) $X(auxb)
    410 } {
    411   1    "CREATE TABLE main.abc(a, b, c)"  {abc {} {} {}}
    412   2    "CREATE TABLE main.t1(a, b, c)"   {{abc t1} {} {} {}}
    413   3    "CREATE TABLE temp.tmp(a, b, c)"  {{abc t1} tmp {} {}}
    414   4    "CREATE TABLE auxb.tbl(x, y)"     {{abc t1} tmp {} tbl}
    415   5    "CREATE TABLE auxb.t1(k, v)"      {{abc t1} tmp {} {t1 tbl}}
    416   6    "CREATE TABLE auxa.next(c, d)"    {{abc t1} tmp next {t1 tbl}}
    417 }
    418 
    419 # EVIDENCE-OF: R-18895-27365 If the "TEMP" or "TEMPORARY" keyword occurs
    420 # between the "CREATE" and "TABLE" then the new table is created in the
    421 # temp database.
    422 #
    423 drop_all_tables
    424 do_createtable_tests 1.4 -tclquery {
    425   unset -nocomplain X
    426   array set X [table_list]
    427   list $X(main) $X(temp) $X(auxa) $X(auxb)
    428 } {
    429   1    "CREATE TEMP TABLE t1(a, b)"      {{} t1 {} {}}
    430   2    "CREATE TEMPORARY TABLE t2(a, b)" {{} {t1 t2} {} {}}
    431 }
    432 
    433 # EVIDENCE-OF: R-49439-47561 It is an error to specify both a
    434 # <database-name> and the TEMP or TEMPORARY keyword, unless the
    435 # <database-name> is "temp".
    436 #
    437 drop_all_tables
    438 do_createtable_tests 1.5.1 -error {
    439   temporary table name must be unqualified
    440 } {
    441   1    "CREATE TEMP TABLE main.t1(a, b)"        {}
    442   2    "CREATE TEMPORARY TABLE auxa.t2(a, b)"   {}
    443   3    "CREATE TEMP TABLE auxb.t3(a, b)"        {}
    444   4    "CREATE TEMPORARY TABLE main.xxx(x)"     {}
    445 }
    446 drop_all_tables
    447 do_createtable_tests 1.5.2 -tclquery {
    448   unset -nocomplain X
    449   array set X [table_list]
    450   list $X(main) $X(temp) $X(auxa) $X(auxb)
    451 } {
    452   1    "CREATE TEMP TABLE temp.t1(a, b)"        {{} t1 {} {}}
    453   2    "CREATE TEMPORARY TABLE temp.t2(a, b)"   {{} {t1 t2} {} {}}
    454   3    "CREATE TEMP TABLE TEMP.t3(a, b)"        {{} {t1 t2 t3} {} {}}
    455   4    "CREATE TEMPORARY TABLE TEMP.xxx(x)"     {{} {t1 t2 t3 xxx} {} {}}
    456 }
    457 
    458 # EVIDENCE-OF: R-00917-09393 If no database name is specified and the
    459 # TEMP keyword is not present then the table is created in the main
    460 # database.
    461 #
    462 drop_all_tables
    463 do_createtable_tests 1.6 -tclquery {
    464   unset -nocomplain X
    465   array set X [table_list]
    466   list $X(main) $X(temp) $X(auxa) $X(auxb)
    467 } {
    468   1    "CREATE TABLE t1(a, b)"   {t1 {} {} {}}
    469   2    "CREATE TABLE t2(a, b)"   {{t1 t2} {} {} {}}
    470   3    "CREATE TABLE t3(a, b)"   {{t1 t2 t3} {} {} {}}
    471   4    "CREATE TABLE xxx(x)"     {{t1 t2 t3 xxx} {} {} {}}
    472 }
    473 
    474 drop_all_tables
    475 do_execsql_test e_createtable-1.7.0 {
    476   CREATE TABLE t1(x, y);
    477   CREATE INDEX i1 ON t1(x);
    478   CREATE VIEW  v1 AS SELECT * FROM t1;
    479 
    480   CREATE TABLE auxa.tbl1(x, y);
    481   CREATE INDEX auxa.idx1 ON tbl1(x);
    482   CREATE VIEW auxa.view1 AS SELECT * FROM tbl1;
    483 } {}
    484 
    485 # EVIDENCE-OF: R-01232-54838 It is usually an error to attempt to create
    486 # a new table in a database that already contains a table, index or view
    487 # of the same name.
    488 #
    489 #   Test cases 1.7.1.* verify that creating a table in a database with a
    490 #   table/index/view of the same name does fail. 1.7.2.* tests that creating
    491 #   a table with the same name as a table/index/view in a different database
    492 #   is Ok.
    493 #
    494 do_createtable_tests 1.7.1 -error { %s } {
    495   1    "CREATE TABLE t1(a, b)"   {{table t1 already exists}}
    496   2    "CREATE TABLE i1(a, b)"   {{there is already an index named i1}}
    497   3    "CREATE TABLE v1(a, b)"   {{table v1 already exists}}
    498   4    "CREATE TABLE auxa.tbl1(a, b)"   {{table tbl1 already exists}}
    499   5    "CREATE TABLE auxa.idx1(a, b)"   {{there is already an index named idx1}}
    500   6    "CREATE TABLE auxa.view1(a, b)"  {{table view1 already exists}}
    501 }
    502 do_createtable_tests 1.7.2 {
    503   1    "CREATE TABLE auxa.t1(a, b)"   {}
    504   2    "CREATE TABLE auxa.i1(a, b)"   {}
    505   3    "CREATE TABLE auxa.v1(a, b)"   {}
    506   4    "CREATE TABLE tbl1(a, b)"      {}
    507   5    "CREATE TABLE idx1(a, b)"      {}
    508   6    "CREATE TABLE view1(a, b)"     {}
    509 }
    510 
    511 # EVIDENCE-OF: R-33917-24086 However, if the "IF NOT EXISTS" clause is
    512 # specified as part of the CREATE TABLE statement and a table or view of
    513 # the same name already exists, the CREATE TABLE command simply has no
    514 # effect (and no error message is returned).
    515 #
    516 drop_all_tables
    517 do_execsql_test e_createtable-1.8.0 {
    518   CREATE TABLE t1(x, y);
    519   CREATE INDEX i1 ON t1(x);
    520   CREATE VIEW  v1 AS SELECT * FROM t1;
    521   CREATE TABLE auxa.tbl1(x, y);
    522   CREATE INDEX auxa.idx1 ON tbl1(x);
    523   CREATE VIEW auxa.view1 AS SELECT * FROM tbl1;
    524 } {}
    525 do_createtable_tests 1.8 {
    526   1    "CREATE TABLE IF NOT EXISTS t1(a, b)"          {}
    527   2    "CREATE TABLE IF NOT EXISTS auxa.tbl1(a, b)"   {}
    528   3    "CREATE TABLE IF NOT EXISTS v1(a, b)"          {}
    529   4    "CREATE TABLE IF NOT EXISTS auxa.view1(a, b)"  {}
    530 }
    531 
    532 # EVIDENCE-OF: R-16465-40078 An error is still returned if the table
    533 # cannot be created because of an existing index, even if the "IF NOT
    534 # EXISTS" clause is specified.
    535 #
    536 do_createtable_tests 1.9 -error { %s } {
    537   1    "CREATE TABLE IF NOT EXISTS i1(a, b)"   
    538        {{there is already an index named i1}}
    539   2    "CREATE TABLE IF NOT EXISTS auxa.idx1(a, b)"   
    540        {{there is already an index named idx1}}
    541 }
    542 
    543 # EVIDENCE-OF: R-05513-33819 It is not an error to create a table that
    544 # has the same name as an existing trigger.
    545 #
    546 drop_all_tables
    547 do_execsql_test e_createtable-1.10.0 {
    548   CREATE TABLE t1(x, y);
    549   CREATE TABLE auxb.t2(x, y);
    550 
    551   CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
    552     SELECT 1;
    553   END;
    554   CREATE TRIGGER auxb.tr2 AFTER INSERT ON t2 BEGIN
    555     SELECT 1;
    556   END;
    557 } {}
    558 do_createtable_tests 1.10 {
    559   1    "CREATE TABLE tr1(a, b)"          {}
    560   2    "CREATE TABLE tr2(a, b)"          {}
    561   3    "CREATE TABLE auxb.tr1(a, b)"     {}
    562   4    "CREATE TABLE auxb.tr2(a, b)"     {}
    563 }
    564 
    565 # EVIDENCE-OF: R-22283-14179 Tables are removed using the DROP TABLE
    566 # statement.
    567 #
    568 drop_all_tables
    569 do_execsql_test e_createtable-1.11.0 {
    570   CREATE TABLE t1(a, b);
    571   CREATE TABLE t2(a, b);
    572   CREATE TABLE auxa.t3(a, b);
    573   CREATE TABLE auxa.t4(a, b);
    574 } {}
    575 
    576 do_execsql_test e_createtable-1.11.1.1 {
    577   SELECT * FROM t1;
    578   SELECT * FROM t2;
    579   SELECT * FROM t3;
    580   SELECT * FROM t4;
    581 } {}
    582 do_execsql_test  e_createtable-1.11.1.2 { DROP TABLE t1 } {}
    583 do_catchsql_test e_createtable-1.11.1.3 { 
    584   SELECT * FROM t1 
    585 } {1 {no such table: t1}}
    586 do_execsql_test  e_createtable-1.11.1.4 { DROP TABLE t3 } {}
    587 do_catchsql_test e_createtable-1.11.1.5 { 
    588   SELECT * FROM t3 
    589 } {1 {no such table: t3}}
    590 
    591 do_execsql_test e_createtable-1.11.2.1 {
    592   SELECT name FROM sqlite_master;
    593   SELECT name FROM auxa.sqlite_master;
    594 } {t2 t4}
    595 do_execsql_test  e_createtable-1.11.2.2 { DROP TABLE t2 } {}
    596 do_execsql_test  e_createtable-1.11.2.3 { DROP TABLE t4 } {}
    597 do_execsql_test e_createtable-1.11.2.4 {
    598   SELECT name FROM sqlite_master;
    599   SELECT name FROM auxa.sqlite_master;
    600 } {}
    601 
    602 #-------------------------------------------------------------------------
    603 # Test cases e_createtable-2.* - test statements related to the CREATE
    604 # TABLE AS ... SELECT statement.
    605 #
    606 
    607 # Three Tcl commands:
    608 #
    609 #   select_column_names SQL
    610 #     The argument must be a SELECT statement. Return a list of the names
    611 #     of the columns of the result-set that would be returned by executing
    612 #     the SELECT.
    613 #
    614 #   table_column_names TBL
    615 #     The argument must be a table name. Return a list of column names, from
    616 #     left to right, for the table.
    617 #
    618 #   table_column_decltypes TBL
    619 #     The argument must be a table name. Return a list of column declared
    620 #     types, from left to right, for the table.
    621 #
    622 proc sci {select cmd} {
    623   set res [list]
    624   set STMT [sqlite3_prepare_v2 db $select -1 dummy]
    625   for {set i 0} {$i < [sqlite3_column_count $STMT]} {incr i} {
    626     lappend res [$cmd $STMT $i]
    627   }
    628   sqlite3_finalize $STMT
    629   set res
    630 }
    631 proc tci {tbl cmd} { sci "SELECT * FROM $tbl" $cmd }
    632 proc select_column_names    {sql} { sci $sql sqlite3_column_name }
    633 proc table_column_names     {tbl} { tci $tbl sqlite3_column_name }
    634 proc table_column_decltypes {tbl} { tci $tbl sqlite3_column_decltype }
    635 
    636 # Create a database schema. This schema is used by tests 2.1.* through 2.3.*.
    637 #
    638 drop_all_tables
    639 do_execsql_test e_createtable-2.0 {
    640   CREATE TABLE t1(a, b, c);
    641   CREATE TABLE t2(d, e, f);
    642   CREATE TABLE t3(g BIGINT, h VARCHAR(10));
    643   CREATE TABLE t4(i BLOB, j ANYOLDATA);
    644   CREATE TABLE t5(k FLOAT, l INTEGER);
    645   CREATE TABLE t6(m DEFAULT 10, n DEFAULT 5, PRIMARY KEY(m, n));
    646   CREATE TABLE t7(x INTEGER PRIMARY KEY);
    647   CREATE TABLE t8(o COLLATE nocase DEFAULT 'abc');
    648   CREATE TABLE t9(p NOT NULL, q DOUBLE CHECK (q!=0), r STRING UNIQUE);
    649 } {}
    650 
    651 # EVIDENCE-OF: R-64828-59568 The table has the same number of columns as
    652 # the rows returned by the SELECT statement. The name of each column is
    653 # the same as the name of the corresponding column in the result set of
    654 # the SELECT statement.
    655 #
    656 do_createtable_tests 2.1 -tclquery {
    657   table_column_names x1
    658 } -repair {
    659   catchsql { DROP TABLE x1 }
    660 } {
    661   1    "CREATE TABLE x1 AS SELECT * FROM t1"                     {a b c}
    662   2    "CREATE TABLE x1 AS SELECT c, b, a FROM t1"               {c b a}
    663   3    "CREATE TABLE x1 AS SELECT * FROM t1, t2"                 {a b c d e f}
    664   4    "CREATE TABLE x1 AS SELECT count(*) FROM t1"              {count(*)}
    665   5    "CREATE TABLE x1 AS SELECT count(a) AS a, max(b) FROM t1" {a max(b)}
    666 }
    667 
    668 # EVIDENCE-OF: R-37111-22855 The declared type of each column is
    669 # determined by the expression affinity of the corresponding expression
    670 # in the result set of the SELECT statement, as follows: Expression
    671 # Affinity Column Declared Type TEXT "TEXT" NUMERIC "NUM" INTEGER "INT"
    672 # REAL "REAL" NONE "" (empty string)
    673 #
    674 do_createtable_tests 2.2 -tclquery {
    675   table_column_decltypes x1
    676 } -repair {
    677   catchsql { DROP TABLE x1 }
    678 } {
    679   1    "CREATE TABLE x1 AS SELECT a FROM t1"     {""}
    680   2    "CREATE TABLE x1 AS SELECT * FROM t3"     {INT TEXT}
    681   3    "CREATE TABLE x1 AS SELECT * FROM t4"     {"" NUM}
    682   4    "CREATE TABLE x1 AS SELECT * FROM t5"     {REAL INT}
    683 }
    684 
    685 # EVIDENCE-OF: R-16667-09772 A table created using CREATE TABLE AS has
    686 # no PRIMARY KEY and no constraints of any kind. The default value of
    687 # each column is NULL. The default collation sequence for each column of
    688 # the new table is BINARY.
    689 #
    690 #   The following tests create tables based on SELECT statements that read
    691 #   from tables that have primary keys, constraints and explicit default 
    692 #   collation sequences. None of this is transfered to the definition of
    693 #   the new table as stored in the sqlite_master table.
    694 #
    695 #   Tests 2.3.2.* show that the default value of each column is NULL.
    696 #
    697 do_createtable_tests 2.3.1 -query {
    698   SELECT sql FROM sqlite_master ORDER BY rowid DESC LIMIT 1
    699 } {
    700   1    "CREATE TABLE x1 AS SELECT * FROM t6" {{CREATE TABLE x1(m,n)}}
    701   2    "CREATE TABLE x2 AS SELECT * FROM t7" {{CREATE TABLE x2(x INT)}}
    702   3    "CREATE TABLE x3 AS SELECT * FROM t8" {{CREATE TABLE x3(o)}}
    703   4    "CREATE TABLE x4 AS SELECT * FROM t9" {{CREATE TABLE x4(p,q REAL,r NUM)}}
    704 }
    705 do_execsql_test e_createtable-2.3.2.1 {
    706   INSERT INTO x1 DEFAULT VALUES;
    707   INSERT INTO x2 DEFAULT VALUES;
    708   INSERT INTO x3 DEFAULT VALUES;
    709   INSERT INTO x4 DEFAULT VALUES;
    710 } {}
    711 db nullvalue null
    712 do_execsql_test e_createtable-2.3.2.2 { SELECT * FROM x1 } {null null}
    713 do_execsql_test e_createtable-2.3.2.3 { SELECT * FROM x2 } {null}
    714 do_execsql_test e_createtable-2.3.2.4 { SELECT * FROM x3 } {null}
    715 do_execsql_test e_createtable-2.3.2.5 { SELECT * FROM x4 } {null null null}
    716 db nullvalue {}
    717 
    718 drop_all_tables
    719 do_execsql_test e_createtable-2.4.0 {
    720   CREATE TABLE t1(x, y);
    721   INSERT INTO t1 VALUES('i',   'one');
    722   INSERT INTO t1 VALUES('ii',  'two');
    723   INSERT INTO t1 VALUES('iii', 'three');
    724 } {}
    725 
    726 # EVIDENCE-OF: R-24153-28352 Tables created using CREATE TABLE AS are
    727 # initially populated with the rows of data returned by the SELECT
    728 # statement.
    729 #
    730 # EVIDENCE-OF: R-08224-30249 Rows are assigned contiguously ascending
    731 # rowid values, starting with 1, in the order that they are returned by
    732 # the SELECT statement.
    733 #
    734 #   Each test case below is specified as the name of a table to create
    735 #   using "CREATE TABLE ... AS SELECT ..." and a SELECT statement to use in
    736 #   creating it. The table is created. 
    737 #
    738 #   Test cases 2.4.*.1 check that after it has been created, the data in the
    739 #   table is the same as the data returned by the SELECT statement executed as
    740 #   a standalone command, verifying the first testable statement above.
    741 #
    742 #   Test cases 2.4.*.2 check that the rowids were allocated contiguously
    743 #   as required by the second testable statement above. That the rowids
    744 #   from the contiguous block were allocated to rows in the order rows are
    745 #   returned by the SELECT statement is verified by 2.4.*.1.
    746 #
    747 # EVIDENCE-OF: R-32365-09043 A "CREATE TABLE ... AS SELECT" statement
    748 # creates and populates a database table based on the results of a
    749 # SELECT statement.
    750 #
    751 #   The above is also considered to be tested by the following. It is
    752 #   clear that tables are being created and populated by the command in
    753 #   question.
    754 #
    755 foreach {tn tbl select} {
    756   1   x1   "SELECT * FROM t1"
    757   2   x2   "SELECT * FROM t1 ORDER BY x DESC"
    758   3   x3   "SELECT * FROM t1 ORDER BY x ASC"
    759 } {
    760   # Create the table using a "CREATE TABLE ... AS SELECT ..." command.
    761   execsql [subst {CREATE TABLE $tbl AS $select}]
    762 
    763   # Check that the rows inserted into the table, sorted in ascending rowid
    764   # order, match those returned by executing the SELECT statement as a
    765   # standalone command.
    766   do_execsql_test e_createtable-2.4.$tn.1 [subst {
    767     SELECT * FROM $tbl ORDER BY rowid;
    768   }] [execsql $select]
    769 
    770   # Check that the rowids in the new table are a contiguous block starting
    771   # with rowid 1. Note that this will fail if SELECT statement $select 
    772   # returns 0 rows (as max(rowid) will be NULL).
    773   do_execsql_test e_createtable-2.4.$tn.2 [subst {
    774     SELECT min(rowid), count(rowid)==max(rowid) FROM $tbl
    775   }] {1 1}
    776 }
    777 
    778 #--------------------------------------------------------------------------
    779 # Test cases for column defintions in CREATE TABLE statements that do not
    780 # use a SELECT statement. Not including data constraints. In other words,
    781 # tests for the specification of:
    782 #
    783 #   * declared types,
    784 #   * default values, and
    785 #   * default collation sequences.
    786 #
    787 
    788 # EVIDENCE-OF: R-27219-49057 Unlike most SQL databases, SQLite does not
    789 # restrict the type of data that may be inserted into a column based on
    790 # the columns declared type.
    791 #
    792 #   Test this by creating a few tables with varied declared types, then
    793 #   inserting various different types of values into them.
    794 #
    795 drop_all_tables
    796 do_execsql_test e_createtable-3.1.0 {
    797   CREATE TABLE t1(x VARCHAR(10), y INTEGER, z DOUBLE);
    798   CREATE TABLE t2(a DATETIME, b STRING, c REAL);
    799   CREATE TABLE t3(o, t);
    800 } {}
    801 
    802 # value type -> declared column type
    803 # ----------------------------------
    804 # integer    -> VARCHAR(10)
    805 # string     -> INTEGER
    806 # blob       -> DOUBLE
    807 #
    808 do_execsql_test e_createtable-3.1.1 {
    809   INSERT INTO t1 VALUES(14, 'quite a lengthy string', X'555655');
    810   SELECT * FROM t1;
    811 } {14 {quite a lengthy string} UVU}
    812 
    813 # string     -> DATETIME
    814 # integer    -> STRING
    815 # time       -> REAL
    816 #
    817 do_execsql_test e_createtable-3.1.2 {
    818   INSERT INTO t2 VALUES('not a datetime', 13, '12:41:59');
    819   SELECT * FROM t2;
    820 } {{not a datetime} 13 12:41:59}
    821 
    822 # EVIDENCE-OF: R-10565-09557 The declared type of a column is used to
    823 # determine the affinity of the column only.
    824 #
    825 #     Affinities are tested in more detail elsewhere (see document
    826 #     datatype3.html). Here, just test that affinity transformations
    827 #     consistent with the expected affinity of each column (based on
    828 #     the declared type) appear to take place.
    829 #
    830 # Affinities of t1 (test cases 3.2.1.*): TEXT, INTEGER, REAL
    831 # Affinities of t2 (test cases 3.2.2.*): NUMERIC, NUMERIC, REAL
    832 # Affinities of t3 (test cases 3.2.3.*): NONE, NONE
    833 #
    834 do_execsql_test e_createtable-3.2.0 { DELETE FROM t1; DELETE FROM t2; } {}
    835 
    836 do_createtable_tests 3.2.1 -query {
    837   SELECT quote(x), quote(y), quote(z) FROM t1 ORDER BY rowid DESC LIMIT 1;
    838 } {
    839   1   "INSERT INTO t1 VALUES(15,   '22.0', '14')"   {'15' 22 14.0}
    840   2   "INSERT INTO t1 VALUES(22.0, 22.0, 22.0)"     {'22.0' 22 22.0}
    841 }
    842 do_createtable_tests 3.2.2 -query {
    843   SELECT quote(a), quote(b), quote(c) FROM t2 ORDER BY rowid DESC LIMIT 1;
    844 } {
    845   1   "INSERT INTO t2 VALUES(15,   '22.0', '14')"   {15   22  14.0}
    846   2   "INSERT INTO t2 VALUES(22.0, 22.0, 22.0)"     {22   22  22.0}
    847 }
    848 do_createtable_tests 3.2.3 -query {
    849   SELECT quote(o), quote(t) FROM t3 ORDER BY rowid DESC LIMIT 1;
    850 } {
    851   1   "INSERT INTO t3 VALUES('15', '22.0')"         {'15' '22.0'}
    852   2   "INSERT INTO t3 VALUES(15, 22.0)"             {15 22.0}
    853 }
    854 
    855 # EVIDENCE-OF: R-42316-09582 If there is no explicit DEFAULT clause
    856 # attached to a column definition, then the default value of the column
    857 # is NULL.
    858 #
    859 #     None of the columns in table t1 have an explicit DEFAULT clause.
    860 #     So testing that the default value of all columns in table t1 is
    861 #     NULL serves to verify the above.
    862 #     
    863 do_createtable_tests 3.2.3 -query {
    864   SELECT quote(x), quote(y), quote(z) FROM t1
    865 } -repair {
    866   execsql { DELETE FROM t1 }
    867 } {
    868   1   "INSERT INTO t1(x, y) VALUES('abc', 'xyz')"   {'abc' 'xyz' NULL}
    869   2   "INSERT INTO t1(x, z) VALUES('abc', 'xyz')"   {'abc' NULL 'xyz'}
    870   3   "INSERT INTO t1 DEFAULT VALUES"               {NULL NULL NULL}
    871 }
    872 
    873 # EVIDENCE-OF: R-62940-43005 An explicit DEFAULT clause may specify that
    874 # the default value is NULL, a string constant, a blob constant, a
    875 # signed-number, or any constant expression enclosed in parentheses. An
    876 # explicit default value may also be one of the special case-independent
    877 # keywords CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.
    878 #
    879 do_execsql_test e_createtable-3.3.1 {
    880   CREATE TABLE t4(
    881     a DEFAULT NULL,
    882     b DEFAULT 'string constant',
    883     c DEFAULT X'424C4F42',
    884     d DEFAULT 1,
    885     e DEFAULT -1,
    886     f DEFAULT 3.14,
    887     g DEFAULT -3.14,
    888     h DEFAULT ( substr('abcd', 0, 2) || 'cd' ),
    889     i DEFAULT CURRENT_TIME,
    890     j DEFAULT CURRENT_DATE,
    891     k DEFAULT CURRENT_TIMESTAMP
    892   );
    893 } {}
    894 
    895 # EVIDENCE-OF: R-10288-43169 For the purposes of the DEFAULT clause, an
    896 # expression is considered constant provided that it does not contain
    897 # any sub-queries or string constants enclosed in double quotes.
    898 #
    899 do_createtable_tests 3.4.1 -error {
    900   default value of column [x] is not constant
    901 } {
    902   1   {CREATE TABLE t5(x DEFAULT ( (SELECT 1) ))}  {}
    903   2   {CREATE TABLE t5(x DEFAULT ( "abc" ))}  {}
    904   3   {CREATE TABLE t5(x DEFAULT ( 1 IN (SELECT 1) ))}  {}
    905   4   {CREATE TABLE t5(x DEFAULT ( EXISTS (SELECT 1) ))}  {}
    906 }
    907 do_createtable_tests 3.4.2 -repair {
    908   catchsql { DROP TABLE t5 }
    909 } {
    910   1   {CREATE TABLE t5(x DEFAULT ( 'abc' ))}  {}
    911   2   {CREATE TABLE t5(x DEFAULT ( 1 IN (1, 2, 3) ))}  {}
    912 }
    913 
    914 # EVIDENCE-OF: R-18814-23501 Each time a row is inserted into the table
    915 # by an INSERT statement that does not provide explicit values for all
    916 # table columns the values stored in the new row are determined by their
    917 # default values
    918 #
    919 #     Verify this with some assert statements for which all, some and no
    920 #     columns lack explicit values.
    921 #
    922 set sqlite_current_time 1000000000
    923 do_createtable_tests 3.5 -query {
    924   SELECT quote(a), quote(b), quote(c), quote(d), quote(e), quote(f), 
    925          quote(g), quote(h), quote(i), quote(j), quote(k)
    926   FROM t4 ORDER BY rowid DESC LIMIT 1;
    927 } {
    928   1 "INSERT INTO t4 DEFAULT VALUES" {
    929     NULL {'string constant'} X'424C4F42' 1 -1 3.14 -3.14 
    930     'acd' '01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}
    931   }
    932 
    933   2 "INSERT INTO t4(a, b, c) VALUES(1, 2, 3)" {
    934     1 2 3 1 -1 3.14 -3.14 'acd' '01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}
    935   }
    936 
    937   3 "INSERT INTO t4(k, j, i) VALUES(1, 2, 3)" {
    938     NULL {'string constant'} X'424C4F42' 1 -1 3.14 -3.14 'acd' 3 2 1
    939   }
    940 
    941   4 "INSERT INTO t4(a,b,c,d,e,f,g,h,i,j,k) VALUES(1,2,3,4,5,6,7,8,9,10,11)" {
    942     1 2 3 4 5 6 7 8 9 10 11
    943   }
    944 }
    945 
    946 # EVIDENCE-OF: R-12572-62501 If the default value of the column is a
    947 # constant NULL, text, blob or signed-number value, then that value is
    948 # used directly in the new row.
    949 #
    950 do_execsql_test e_createtable-3.6.1 {
    951   CREATE TABLE t5(
    952     a DEFAULT NULL,  
    953     b DEFAULT 'text value',  
    954     c DEFAULT X'424C4F42',
    955     d DEFAULT -45678.6,
    956     e DEFAULT 394507
    957   );
    958 } {}
    959 do_execsql_test e_createtable-3.6.2 {
    960   INSERT INTO t5 DEFAULT VALUES;
    961   SELECT quote(a), quote(b), quote(c), quote(d), quote(e) FROM t5;
    962 } {NULL {'text value'} X'424C4F42' -45678.6 394507}
    963 
    964 # EVIDENCE-OF: R-60616-50251 If the default value of a column is an
    965 # expression in parentheses, then the expression is evaluated once for
    966 # each row inserted and the results used in the new row.
    967 #
    968 #   Test case 3.6.4 demonstrates that the expression is evaluated 
    969 #   separately for each row if the INSERT is an "INSERT INTO ... SELECT ..."
    970 #   command.
    971 #
    972 set ::nextint 0
    973 proc nextint {} { incr ::nextint }
    974 db func nextint nextint
    975 
    976 do_execsql_test e_createtable-3.7.1 {
    977   CREATE TABLE t6(a DEFAULT ( nextint() ), b DEFAULT ( nextint() ));
    978 } {}
    979 do_execsql_test e_createtable-3.7.2 {
    980   INSERT INTO t6 DEFAULT VALUES;
    981   SELECT quote(a), quote(b) FROM t6;
    982 } {1 2}
    983 do_execsql_test e_createtable-3.7.3 {
    984   INSERT INTO t6(a) VALUES('X');
    985   SELECT quote(a), quote(b) FROM t6;
    986 } {1 2 'X' 3}
    987 do_execsql_test e_createtable-3.7.4 {
    988   INSERT INTO t6(a) SELECT a FROM t6;
    989   SELECT quote(a), quote(b) FROM t6;
    990 } {1 2 'X' 3 1 4 'X' 5}
    991 
    992 # EVIDENCE-OF: R-18683-56219 If the default value of a column is
    993 # CURRENT_TIME, CURRENT_DATE or CURRENT_DATETIME, then the value used in
    994 # the new row is a text representation of the current UTC date and/or
    995 # time.
    996 #
    997 #     This is difficult to test literally without knowing what time the 
    998 #     user will run the tests. Instead, we test that the three cases
    999 #     above set the value to the current date and/or time according to
   1000 #     the xCurrentTime() method of the VFS. Which is usually the same
   1001 #     as UTC. In this case, however, we instrument it to always return
   1002 #     a time equivalent to "2001-09-09 01:46:40 UTC".
   1003 #
   1004 set sqlite_current_time 1000000000
   1005 do_execsql_test e_createtable-3.8.1 {
   1006   CREATE TABLE t7(
   1007     a DEFAULT CURRENT_TIME, 
   1008     b DEFAULT CURRENT_DATE, 
   1009     c DEFAULT CURRENT_TIMESTAMP
   1010   );
   1011 } {}
   1012 do_execsql_test e_createtable-3.8.2 {
   1013   INSERT INTO t7 DEFAULT VALUES;
   1014   SELECT quote(a), quote(b), quote(c) FROM t7;
   1015 } {'01:46:40' '2001-09-09' {'2001-09-09 01:46:40'}}
   1016 
   1017 
   1018 # EVIDENCE-OF: R-62327-53843 For CURRENT_TIME, the format of the value
   1019 # is "HH:MM:SS".
   1020 #
   1021 # EVIDENCE-OF: R-03775-43471 For CURRENT_DATE, "YYYY-MM-DD".
   1022 #
   1023 # EVIDENCE-OF: R-07677-44926 The format for CURRENT_TIMESTAMP is
   1024 # "YYYY-MM-DD HH:MM:SS".
   1025 #
   1026 #     The three above are demonstrated by tests 1, 2 and 3 below. 
   1027 #     Respectively.
   1028 #
   1029 do_createtable_tests 3.8.3 -query {
   1030   SELECT a, b, c FROM t7 ORDER BY rowid DESC LIMIT 1;
   1031 } {
   1032   1 "INSERT INTO t7(b, c) VALUES('x', 'y')" {01:46:40 x y}
   1033   2 "INSERT INTO t7(c, a) VALUES('x', 'y')" {y 2001-09-09 x}
   1034   3 "INSERT INTO t7(a, b) VALUES('x', 'y')" {x y {2001-09-09 01:46:40}}
   1035 }
   1036 
   1037 # EVIDENCE-OF: R-55061-47754 The COLLATE clause specifies the name of a
   1038 # collating sequence to use as the default collation sequence for the
   1039 # column.
   1040 #
   1041 # EVIDENCE-OF: R-40275-54363 If no COLLATE clause is specified, the
   1042 # default collation sequence is BINARY.
   1043 #
   1044 do_execsql_test e_createtable-3-9.1 {
   1045   CREATE TABLE t8(a COLLATE nocase, b COLLATE rtrim, c COLLATE binary, d);
   1046   INSERT INTO t8 VALUES('abc',   'abc',   'abc',   'abc');
   1047   INSERT INTO t8 VALUES('abc  ', 'abc  ', 'abc  ', 'abc  ');
   1048   INSERT INTO t8 VALUES('ABC  ', 'ABC  ', 'ABC  ', 'ABC  ');
   1049   INSERT INTO t8 VALUES('ABC',   'ABC',   'ABC',   'ABC');
   1050 } {}
   1051 do_createtable_tests 3.9 {
   1052   2    "SELECT a FROM t8 ORDER BY a, rowid"    {abc ABC {abc  } {ABC  }}
   1053   3    "SELECT b FROM t8 ORDER BY b, rowid"    {{ABC  } ABC abc {abc  }}
   1054   4    "SELECT c FROM t8 ORDER BY c, rowid"    {ABC {ABC  } abc {abc  }}
   1055   5    "SELECT d FROM t8 ORDER BY d, rowid"    {ABC {ABC  } abc {abc  }}
   1056 }
   1057 
   1058 # EVIDENCE-OF: R-25473-20557 The number of columns in a table is limited
   1059 # by the SQLITE_MAX_COLUMN compile-time parameter.
   1060 #
   1061 proc columns {n} {
   1062   set res [list]
   1063   for {set i 0} {$i < $n} {incr i} { lappend res "c$i" }
   1064   join $res ", "
   1065 }
   1066 do_execsql_test e_createtable-3.10.1 [subst {
   1067   CREATE TABLE t9([columns $::SQLITE_MAX_COLUMN]);
   1068 }] {}
   1069 do_catchsql_test e_createtable-3.10.2 [subst {
   1070   CREATE TABLE t10([columns [expr $::SQLITE_MAX_COLUMN+1]]);
   1071 }] {1 {too many columns on t10}}
   1072 
   1073 # EVIDENCE-OF: R-27775-64721 Both of these limits can be lowered at
   1074 # runtime using the sqlite3_limit() C/C++ interface.
   1075 #
   1076 #   A 30,000 byte blob consumes 30,003 bytes of record space. A record 
   1077 #   that contains 3 such blobs consumes (30,000*3)+1 bytes of space. Tests
   1078 #   3.11.4 and 3.11.5, which verify that SQLITE_MAX_LENGTH may be lowered
   1079 #   at runtime, are based on this calculation.
   1080 #
   1081 sqlite3_limit db SQLITE_LIMIT_COLUMN 500
   1082 do_execsql_test e_createtable-3.11.1 [subst {
   1083   CREATE TABLE t10([columns 500]);
   1084 }] {}
   1085 do_catchsql_test e_createtable-3.11.2 [subst {
   1086   CREATE TABLE t11([columns 501]);
   1087 }] {1 {too many columns on t11}}
   1088 
   1089 # Check that it is not possible to raise the column limit above its 
   1090 # default compile time value.
   1091 #
   1092 sqlite3_limit db SQLITE_LIMIT_COLUMN [expr $::SQLITE_MAX_COLUMN+2]
   1093 do_catchsql_test e_createtable-3.11.3 [subst {
   1094   CREATE TABLE t11([columns [expr $::SQLITE_MAX_COLUMN+1]]);
   1095 }] {1 {too many columns on t11}}
   1096 
   1097 sqlite3_limit db SQLITE_LIMIT_LENGTH 90010
   1098 do_execsql_test e_createtable-3.11.4 {
   1099   CREATE TABLE t12(a, b, c);
   1100   INSERT INTO t12 VALUES(randomblob(30000),randomblob(30000),randomblob(30000));
   1101 } {}
   1102 do_catchsql_test e_createtable-3.11.5 {
   1103   INSERT INTO t12 VALUES(randomblob(30001),randomblob(30000),randomblob(30000));
   1104 } {1 {string or blob too big}}
   1105 
   1106 #-------------------------------------------------------------------------
   1107 # Tests for statements regarding constraints (PRIMARY KEY, UNIQUE, NOT 
   1108 # NULL and CHECK constraints).
   1109 #
   1110 
   1111 # EVIDENCE-OF: R-52382-54248 Each table in SQLite may have at most one
   1112 # PRIMARY KEY.
   1113 # 
   1114 # EVIDENCE-OF: R-18080-47271 If there is more than one PRIMARY KEY
   1115 # clause in a single CREATE TABLE statement, it is an error.
   1116 #
   1117 #     To test the two above, show that zero primary keys is Ok, one primary
   1118 #     key is Ok, and two or more primary keys is an error.
   1119 #
   1120 drop_all_tables
   1121 do_createtable_tests 4.1.1 {
   1122   1    "CREATE TABLE t1(a, b, c)"                                        {}
   1123   2    "CREATE TABLE t2(a PRIMARY KEY, b, c)"                            {}
   1124   3    "CREATE TABLE t3(a, b, c, PRIMARY KEY(a))"                        {}
   1125   4    "CREATE TABLE t4(a, b, c, PRIMARY KEY(c,b,a))"                    {}
   1126 }
   1127 do_createtable_tests 4.1.2 -error {
   1128   table "t5" has more than one primary key
   1129 } {
   1130   1    "CREATE TABLE t5(a PRIMARY KEY, b PRIMARY KEY, c)"                {}
   1131   2    "CREATE TABLE t5(a, b PRIMARY KEY, c, PRIMARY KEY(a))"            {}
   1132   3    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b PRIMARY KEY, c)"        {}
   1133   4    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(b, c))" {}
   1134   5    "CREATE TABLE t5(a PRIMARY KEY, b, c, PRIMARY KEY(a))"            {}
   1135   6    "CREATE TABLE t5(a INTEGER PRIMARY KEY, b, c, PRIMARY KEY(a))"    {}
   1136 }
   1137 
   1138 proc table_pk {tbl} { 
   1139   set pk [list]
   1140   db eval "pragma table_info($tbl)" a {
   1141     if {$a(pk)} { lappend pk $a(name) }
   1142   }
   1143   set pk
   1144 }
   1145 
   1146 # EVIDENCE-OF: R-41411-18837 If the keywords PRIMARY KEY are added to a
   1147 # column definition, then the primary key for the table consists of that
   1148 # single column.
   1149 #
   1150 #     The above is tested by 4.2.1.*
   1151 #
   1152 # EVIDENCE-OF: R-31775-48204 Or, if a PRIMARY KEY clause is specified as
   1153 # a table-constraint, then the primary key of the table consists of the
   1154 # list of columns specified as part of the PRIMARY KEY clause.
   1155 #
   1156 #     The above is tested by 4.2.2.*
   1157 #
   1158 do_createtable_tests 4.2 -repair {
   1159   catchsql { DROP TABLE t5 }
   1160 } -tclquery {
   1161   table_pk t5
   1162 } {
   1163   1.1    "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)"       {b}
   1164   1.2    "CREATE TABLE t5(a PRIMARY KEY, b, c)"               {a}
   1165 
   1166   2.1    "CREATE TABLE t5(a, b, c, PRIMARY KEY(a))"           {a}
   1167   2.2    "CREATE TABLE t5(a, b, c, PRIMARY KEY(c,b,a))"       {a b c}
   1168   2.3    "CREATE TABLE t5(a, b INTEGER PRIMARY KEY, c)"       {b}
   1169 }
   1170 
   1171 # EVIDENCE-OF: R-33986-09410 Each row in a table with a primary key must
   1172 # feature a unique combination of values in its primary key columns.
   1173 #
   1174 # EVIDENCE-OF: R-39102-06737 If an INSERT or UPDATE statement attempts
   1175 # to modify the table content so that two or more rows feature identical
   1176 # primary key values, it is a constraint violation.
   1177 #
   1178 drop_all_tables
   1179 do_execsql_test 4.3.0 {
   1180   CREATE TABLE t1(x PRIMARY KEY, y);
   1181   INSERT INTO t1 VALUES(0,          'zero');
   1182   INSERT INTO t1 VALUES(45.5,       'one');
   1183   INSERT INTO t1 VALUES('brambles', 'two');
   1184   INSERT INTO t1 VALUES(X'ABCDEF',  'three');
   1185 
   1186   CREATE TABLE t2(x, y, PRIMARY KEY(x, y));
   1187   INSERT INTO t2 VALUES(0,          'zero');
   1188   INSERT INTO t2 VALUES(45.5,       'one');
   1189   INSERT INTO t2 VALUES('brambles', 'two');
   1190   INSERT INTO t2 VALUES(X'ABCDEF',  'three');
   1191 } {}
   1192 
   1193 do_createtable_tests 4.3.1 -error { %s not unique } {
   1194   1    "INSERT INTO t1 VALUES(0, 0)"                 {"column x is"}
   1195   2    "INSERT INTO t1 VALUES(45.5, 'abc')"          {"column x is"}
   1196   3    "INSERT INTO t1 VALUES(0.0, 'abc')"           {"column x is"}
   1197   4    "INSERT INTO t1 VALUES('brambles', 'abc')"    {"column x is"}
   1198   5    "INSERT INTO t1 VALUES(X'ABCDEF', 'abc')"     {"column x is"}
   1199 
   1200   6    "INSERT INTO t2 VALUES(0, 'zero')"            {"columns x, y are"}
   1201   7    "INSERT INTO t2 VALUES(45.5, 'one')"          {"columns x, y are"}
   1202   8    "INSERT INTO t2 VALUES(0.0, 'zero')"          {"columns x, y are"}
   1203   9    "INSERT INTO t2 VALUES('brambles', 'two')"    {"columns x, y are"}
   1204   10   "INSERT INTO t2 VALUES(X'ABCDEF', 'three')"   {"columns x, y are"}
   1205 }
   1206 do_createtable_tests 4.3.2 {
   1207   1    "INSERT INTO t1 VALUES(-1, 0)"                {}
   1208   2    "INSERT INTO t1 VALUES(45.2, 'abc')"          {}
   1209   3    "INSERT INTO t1 VALUES(0.01, 'abc')"          {}
   1210   4    "INSERT INTO t1 VALUES('bramble', 'abc')"     {}
   1211   5    "INSERT INTO t1 VALUES(X'ABCDEE', 'abc')"     {}
   1212 
   1213   6    "INSERT INTO t2 VALUES(0, 0)"                 {}
   1214   7    "INSERT INTO t2 VALUES(45.5, 'abc')"          {}
   1215   8    "INSERT INTO t2 VALUES(0.0, 'abc')"           {}
   1216   9    "INSERT INTO t2 VALUES('brambles', 'abc')"    {}
   1217   10   "INSERT INTO t2 VALUES(X'ABCDEF', 'abc')"     {}
   1218 }
   1219 do_createtable_tests 4.3.3 -error { %s not unique } {
   1220   1    "UPDATE t1 SET x=0           WHERE y='two'"    {"column x is"}
   1221   2    "UPDATE t1 SET x='brambles'  WHERE y='three'"  {"column x is"}
   1222   3    "UPDATE t1 SET x=45.5        WHERE y='zero'"   {"column x is"}
   1223   4    "UPDATE t1 SET x=X'ABCDEF'   WHERE y='one'"    {"column x is"}
   1224   5    "UPDATE t1 SET x=0.0         WHERE y='three'"  {"column x is"}
   1225 
   1226   6    "UPDATE t2 SET x=0, y='zero' WHERE y='two'"    {"columns x, y are"}
   1227   7    "UPDATE t2 SET x='brambles', y='two' WHERE y='three'"  
   1228        {"columns x, y are"}
   1229   8    "UPDATE t2 SET x=45.5, y='one' WHERE y='zero'" {"columns x, y are"}
   1230   9    "UPDATE t2 SET x=X'ABCDEF', y='three' WHERE y='one'" 
   1231        {"columns x, y are"}
   1232   10   "UPDATE t2 SET x=0.0, y='zero'        WHERE y='three'"  
   1233        {"columns x, y are"}
   1234 }
   1235 
   1236 
   1237 # EVIDENCE-OF: R-52572-02078 For the purposes of determining the
   1238 # uniqueness of primary key values, NULL values are considered distinct
   1239 # from all other values, including other NULLs.
   1240 #
   1241 do_createtable_tests 4.4 {
   1242   1    "INSERT INTO t1 VALUES(NULL, 0)"              {}
   1243   2    "INSERT INTO t1 VALUES(NULL, 0)"              {}
   1244   3    "INSERT INTO t1 VALUES(NULL, 0)"              {}
   1245 
   1246   4    "INSERT INTO t2 VALUES(NULL, 'zero')"         {}
   1247   5    "INSERT INTO t2 VALUES(NULL, 'one')"          {}
   1248   6    "INSERT INTO t2 VALUES(NULL, 'two')"          {}
   1249   7    "INSERT INTO t2 VALUES(NULL, 'three')"        {}
   1250 
   1251   8    "INSERT INTO t2 VALUES(0, NULL)"              {}
   1252   9    "INSERT INTO t2 VALUES(45.5, NULL)"           {}
   1253   10   "INSERT INTO t2 VALUES(0.0, NULL)"            {}
   1254   11   "INSERT INTO t2 VALUES('brambles', NULL)"     {}
   1255   12   "INSERT INTO t2 VALUES(X'ABCDEF', NULL)"      {}
   1256 
   1257   13   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
   1258   14   "INSERT INTO t2 VALUES(NULL, NULL)"           {}
   1259 }
   1260 
   1261 # EVIDENCE-OF: R-61866-38053 Unless the column is an INTEGER PRIMARY KEY
   1262 # SQLite allows NULL values in a PRIMARY KEY column.
   1263 #
   1264 #     If the column is an integer primary key, attempting to insert a NULL
   1265 #     into the column triggers the auto-increment behaviour. Attempting
   1266 #     to use UPDATE to set an ipk column to a NULL value is an error.
   1267 #
   1268 do_createtable_tests 4.5.1 {
   1269   1    "SELECT count(*) FROM t1 WHERE x IS NULL"                   3
   1270   2    "SELECT count(*) FROM t2 WHERE x IS NULL"                   6
   1271   3    "SELECT count(*) FROM t2 WHERE y IS NULL"                   7
   1272   4    "SELECT count(*) FROM t2 WHERE x IS NULL AND y IS NULL"     2
   1273 }
   1274 do_execsql_test 4.5.2 {
   1275   CREATE TABLE t3(s, u INTEGER PRIMARY KEY, v);
   1276   INSERT INTO t3 VALUES(1, NULL, 2);
   1277   INSERT INTO t3 VALUES('x', NULL, 'y');
   1278   SELECT u FROM t3;
   1279 } {1 2}
   1280 do_catchsql_test 4.5.3 {
   1281   INSERT INTO t3 VALUES(2, 5, 3);
   1282   UPDATE t3 SET u = NULL WHERE s = 2;
   1283 } {1 {datatype mismatch}}
   1284 
   1285 # EVIDENCE-OF: R-00227-21080 A UNIQUE constraint is similar to a PRIMARY
   1286 # KEY constraint, except that a single table may have any number of
   1287 # UNIQUE constraints.
   1288 #
   1289 drop_all_tables
   1290 do_createtable_tests 4.6 {
   1291   1    "CREATE TABLE t1(a UNIQUE, b UNIQUE)"                       {}
   1292   2    "CREATE TABLE t2(a UNIQUE, b, c, UNIQUE(c, b))"             {}
   1293   3    "CREATE TABLE t3(a, b, c, UNIQUE(a), UNIQUE(b), UNIQUE(c))" {}
   1294   4    "CREATE TABLE t4(a, b, c, UNIQUE(a, b, c))"                 {}
   1295 }
   1296 
   1297 # EVIDENCE-OF: R-55240-58877 For each UNIQUE constraint on the table,
   1298 # each row must feature a unique combination of values in the columns
   1299 # identified by the UNIQUE constraint.
   1300 #
   1301 # EVIDENCE-OF: R-47733-51480 If an INSERT or UPDATE statement attempts
   1302 # to modify the table content so that two or more rows feature identical
   1303 # values in a set of columns that are subject to a UNIQUE constraint, it
   1304 # is a constraint violation.
   1305 #
   1306 do_execsql_test 4.7.0 {
   1307   INSERT INTO t1 VALUES(1, 2);
   1308   INSERT INTO t1 VALUES(4.3, 5.5);
   1309   INSERT INTO t1 VALUES('reveal', 'variableness');
   1310   INSERT INTO t1 VALUES(X'123456', X'654321');
   1311 
   1312   INSERT INTO t4 VALUES('xyx', 1, 1);
   1313   INSERT INTO t4 VALUES('xyx', 2, 1);
   1314   INSERT INTO t4 VALUES('uvw', 1, 1);
   1315 }
   1316 do_createtable_tests 4.7.1 -error { %s not unique } {
   1317   1    "INSERT INTO t1 VALUES(1, 'one')"             {{column a is}}
   1318   2    "INSERT INTO t1 VALUES(4.3, 'two')"           {{column a is}}
   1319   3    "INSERT INTO t1 VALUES('reveal', 'three')"    {{column a is}}
   1320   4    "INSERT INTO t1 VALUES(X'123456', 'four')"    {{column a is}}
   1321 
   1322   5    "UPDATE t1 SET a = 1 WHERE rowid=2"           {{column a is}}
   1323   6    "UPDATE t1 SET a = 4.3 WHERE rowid=3"         {{column a is}}
   1324   7    "UPDATE t1 SET a = 'reveal' WHERE rowid=4"    {{column a is}}
   1325   8    "UPDATE t1 SET a = X'123456' WHERE rowid=1"   {{column a is}}
   1326 
   1327   9    "INSERT INTO t4 VALUES('xyx', 1, 1)"          {{columns a, b, c are}}
   1328   10   "INSERT INTO t4 VALUES('xyx', 2, 1)"          {{columns a, b, c are}}
   1329   11   "INSERT INTO t4 VALUES('uvw', 1, 1)"          {{columns a, b, c are}}
   1330 
   1331   12   "UPDATE t4 SET a='xyx' WHERE rowid=3"         {{columns a, b, c are}}
   1332   13   "UPDATE t4 SET b=1 WHERE rowid=2"             {{columns a, b, c are}}
   1333   14   "UPDATE t4 SET a=0, b=0, c=0"                 {{columns a, b, c are}}
   1334 }
   1335 
   1336 # EVIDENCE-OF: R-21289-11559 As with PRIMARY KEY constraints, for the
   1337 # purposes of UNIQUE constraints NULL values are considered distinct
   1338 # from all other values (including other NULLs).
   1339 #
   1340 do_createtable_tests 4.8 {
   1341   1    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
   1342   2    "INSERT INTO t1 VALUES(NULL, NULL)"           {}
   1343   3    "UPDATE t1 SET a = NULL"                      {}
   1344   4    "UPDATE t1 SET b = NULL"                      {}
   1345 
   1346   5    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
   1347   6    "INSERT INTO t4 VALUES(NULL, NULL, NULL)"     {}
   1348   7    "UPDATE t4 SET a = NULL"                      {}
   1349   8    "UPDATE t4 SET b = NULL"                      {}
   1350   9    "UPDATE t4 SET c = NULL"                      {}
   1351 }
   1352 
   1353 # EVIDENCE-OF: R-26983-26377 INTEGER PRIMARY KEY columns aside, both
   1354 # UNIQUE and PRIMARY KEY constraints are implemented by creating an
   1355 # index in the database (in the same way as a "CREATE UNIQUE INDEX"
   1356 # statement would).
   1357 do_createtable_tests 4.9 -repair drop_all_tables -query {
   1358   SELECT count(*) FROM sqlite_master WHERE type='index'
   1359 } {
   1360   1    "CREATE TABLE t1(a TEXT PRIMARY KEY, b)"              1
   1361   2    "CREATE TABLE t1(a INTEGER PRIMARY KEY, b)"           0
   1362   3    "CREATE TABLE t1(a TEXT UNIQUE, b)"                   1
   1363   4    "CREATE TABLE t1(a PRIMARY KEY, b TEXT UNIQUE)"       2
   1364   5    "CREATE TABLE t1(a PRIMARY KEY, b, c, UNIQUE(c, b))"  2
   1365 }
   1366 
   1367 # EVIDENCE-OF: R-02252-33116 Such an index is used like any other index
   1368 # in the database to optimize queries.
   1369 #
   1370 do_execsql_test 4.10.0 {
   1371   CREATE TABLE t1(a, b PRIMARY KEY);
   1372   CREATE TABLE t2(a, b, c, UNIQUE(b, c));
   1373 }
   1374 do_createtable_tests 4.10 {
   1375   1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
   1376        {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?) (~1 rows)}}
   1377 
   1378   2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
   1379        {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1 (~1000000 rows)}}
   1380 
   1381   3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
   1382        {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?) (~2 rows)}}
   1383 }
   1384 
   1385 # EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
   1386 # column definition or specified as a table constraint. In practice it
   1387 # makes no difference.
   1388 #
   1389 #   All the tests that deal with CHECK constraints below (4.11.* and 
   1390 #   4.12.*) are run once for a table with the check constraint attached
   1391 #   to a column definition, and once with a table where the check 
   1392 #   condition is specified as a table constraint.
   1393 #
   1394 # EVIDENCE-OF: R-55435-14303 Each time a new row is inserted into the
   1395 # table or an existing row is updated, the expression associated with
   1396 # each CHECK constraint is evaluated and cast to a NUMERIC value in the
   1397 # same way as a CAST expression. If the result is zero (integer value 0
   1398 # or real value 0.0), then a constraint violation has occurred.
   1399 #
   1400 drop_all_tables
   1401 do_execsql_test 4.11 {
   1402   CREATE TABLE x1(a TEXT, b INTEGER CHECK( b>0 ));
   1403   CREATE TABLE t1(a TEXT, b INTEGER, CHECK( b>0 ));
   1404   INSERT INTO x1 VALUES('x', 'xx');
   1405   INSERT INTO x1 VALUES('y', 'yy');
   1406   INSERT INTO t1 SELECT * FROM x1;
   1407 
   1408   CREATE TABLE x2(a CHECK( a||b ), b);
   1409   CREATE TABLE t2(a, b, CHECK( a||b ));
   1410   INSERT INTO x2 VALUES(1, 'xx');
   1411   INSERT INTO x2 VALUES(1, 'yy');
   1412   INSERT INTO t2 SELECT * FROM x2;
   1413 }
   1414 
   1415 do_createtable_tests 4.11 -error {constraint failed} {
   1416   1a    "INSERT INTO x1 VALUES('one', 0)"       {}
   1417   1b    "INSERT INTO t1 VALUES('one', -4.0)"    {}
   1418 
   1419   2a    "INSERT INTO x2 VALUES('abc', 1)"       {}
   1420   2b    "INSERT INTO t2 VALUES('abc', 1)"       {}
   1421 
   1422   3a    "INSERT INTO x2 VALUES(0, 'abc')"       {}
   1423   3b    "INSERT INTO t2 VALUES(0, 'abc')"       {}
   1424 
   1425   4a    "UPDATE t1 SET b=-1 WHERE rowid=1"      {}
   1426   4b    "UPDATE x1 SET b=-1 WHERE rowid=1"      {}
   1427 
   1428   4a    "UPDATE x2 SET a='' WHERE rowid=1"      {}
   1429   4b    "UPDATE t2 SET a='' WHERE rowid=1"      {}
   1430 }
   1431 
   1432 # EVIDENCE-OF: R-34109-39108 If the CHECK expression evaluates to NULL,
   1433 # or any other non-zero value, it is not a constraint violation.
   1434 #
   1435 do_createtable_tests 4.12 {
   1436   1a    "INSERT INTO x1 VALUES('one', NULL)"    {}
   1437   1b    "INSERT INTO t1 VALUES('one', NULL)"    {}
   1438 
   1439   2a    "INSERT INTO x1 VALUES('one', 2)"    {}
   1440   2b    "INSERT INTO t1 VALUES('one', 2)"    {}
   1441 
   1442   3a    "INSERT INTO x2 VALUES(1, 'abc')"       {}
   1443   3b    "INSERT INTO t2 VALUES(1, 'abc')"       {}
   1444 }
   1445 
   1446 # EVIDENCE-OF: R-02060-64547 A NOT NULL constraint may only be attached
   1447 # to a column definition, not specified as a table constraint.
   1448 #
   1449 drop_all_tables
   1450 do_createtable_tests 4.13.1 {
   1451   1     "CREATE TABLE t1(a NOT NULL, b)"                               {}
   1452   2     "CREATE TABLE t2(a PRIMARY KEY NOT NULL, b)"                   {}
   1453   3     "CREATE TABLE t3(a NOT NULL, b NOT NULL, c NOT NULL UNIQUE)"   {}
   1454 }
   1455 do_createtable_tests 4.13.2 -error {
   1456   near "NOT": syntax error
   1457 } {
   1458   1     "CREATE TABLE t4(a, b, NOT NULL(a))"                   {}
   1459   2     "CREATE TABLE t4(a PRIMARY KEY, b, NOT NULL(a))"       {}
   1460   3     "CREATE TABLE t4(a, b, c UNIQUE, NOT NULL(a, b, c))"   {}
   1461 }
   1462 
   1463 # EVIDENCE-OF: R-31795-57643 a NOT NULL constraint dictates that the
   1464 # associated column may not contain a NULL value. Attempting to set the
   1465 # column value to NULL when inserting a new row or updating an existing
   1466 # one causes a constraint violation.
   1467 #
   1468 #     These tests use the tables created by 4.13.
   1469 #
   1470 do_execsql_test 4.14.0 {
   1471   INSERT INTO t1 VALUES('x', 'y');
   1472   INSERT INTO t1 VALUES('z', NULL);
   1473 
   1474   INSERT INTO t2 VALUES('x', 'y');
   1475   INSERT INTO t2 VALUES('z', NULL);
   1476 
   1477   INSERT INTO t3 VALUES('x', 'y', 'z');
   1478   INSERT INTO t3 VALUES(1, 2, 3);
   1479 }
   1480 do_createtable_tests 4.14 -error {
   1481   %s may not be NULL
   1482 } {
   1483   1    "INSERT INTO t1 VALUES(NULL, 'a')"         {t1.a}
   1484   2    "INSERT INTO t2 VALUES(NULL, 'b')"         {t2.a}
   1485   3    "INSERT INTO t3 VALUES('c', 'd', NULL)"    {t3.c}
   1486   4    "INSERT INTO t3 VALUES('e', NULL, 'f')"    {t3.b}
   1487   5    "INSERT INTO t3 VALUES(NULL, 'g', 'h')"    {t3.a}
   1488 }
   1489 
   1490 # EVIDENCE-OF: R-42511-39459 PRIMARY KEY, UNIQUE and NOT NULL
   1491 # constraints may be explicitly assigned a default conflict resolution
   1492 # algorithm by including a conflict-clause in their definitions.
   1493 #
   1494 #     Conflict clauses: ABORT, ROLLBACK, IGNORE, FAIL, REPLACE
   1495 #
   1496 #     Test cases 4.15.*, 4.16.* and 4.17.* focus on PRIMARY KEY, NOT NULL
   1497 #     and UNIQUE constraints, respectively.
   1498 #
   1499 drop_all_tables
   1500 do_execsql_test 4.15.0 {
   1501   CREATE TABLE t1_ab(a PRIMARY KEY ON CONFLICT ABORT, b);
   1502   CREATE TABLE t1_ro(a PRIMARY KEY ON CONFLICT ROLLBACK, b);
   1503   CREATE TABLE t1_ig(a PRIMARY KEY ON CONFLICT IGNORE, b);
   1504   CREATE TABLE t1_fa(a PRIMARY KEY ON CONFLICT FAIL, b);
   1505   CREATE TABLE t1_re(a PRIMARY KEY ON CONFLICT REPLACE, b);
   1506   CREATE TABLE t1_xx(a PRIMARY KEY, b);
   1507 
   1508   INSERT INTO t1_ab VALUES(1, 'one');
   1509   INSERT INTO t1_ab VALUES(2, 'two');
   1510   INSERT INTO t1_ro SELECT * FROM t1_ab;
   1511   INSERT INTO t1_ig SELECT * FROM t1_ab;
   1512   INSERT INTO t1_fa SELECT * FROM t1_ab;
   1513   INSERT INTO t1_re SELECT * FROM t1_ab;
   1514   INSERT INTO t1_xx SELECT * FROM t1_ab;
   1515 
   1516   CREATE TABLE t2_ab(a, b NOT NULL ON CONFLICT ABORT);
   1517   CREATE TABLE t2_ro(a, b NOT NULL ON CONFLICT ROLLBACK);
   1518   CREATE TABLE t2_ig(a, b NOT NULL ON CONFLICT IGNORE);
   1519   CREATE TABLE t2_fa(a, b NOT NULL ON CONFLICT FAIL);
   1520   CREATE TABLE t2_re(a, b NOT NULL ON CONFLICT REPLACE);
   1521   CREATE TABLE t2_xx(a, b NOT NULL);
   1522 
   1523   INSERT INTO t2_ab VALUES(1, 'one');
   1524   INSERT INTO t2_ab VALUES(2, 'two');
   1525   INSERT INTO t2_ro SELECT * FROM t2_ab;
   1526   INSERT INTO t2_ig SELECT * FROM t2_ab;
   1527   INSERT INTO t2_fa SELECT * FROM t2_ab;
   1528   INSERT INTO t2_re SELECT * FROM t2_ab;
   1529   INSERT INTO t2_xx SELECT * FROM t2_ab;
   1530 
   1531   CREATE TABLE t3_ab(a, b, UNIQUE(a, b) ON CONFLICT ABORT);
   1532   CREATE TABLE t3_ro(a, b, UNIQUE(a, b) ON CONFLICT ROLLBACK);
   1533   CREATE TABLE t3_ig(a, b, UNIQUE(a, b) ON CONFLICT IGNORE);
   1534   CREATE TABLE t3_fa(a, b, UNIQUE(a, b) ON CONFLICT FAIL);
   1535   CREATE TABLE t3_re(a, b, UNIQUE(a, b) ON CONFLICT REPLACE);
   1536   CREATE TABLE t3_xx(a, b, UNIQUE(a, b));
   1537 
   1538   INSERT INTO t3_ab VALUES(1, 'one');
   1539   INSERT INTO t3_ab VALUES(2, 'two');
   1540   INSERT INTO t3_ro SELECT * FROM t3_ab;
   1541   INSERT INTO t3_ig SELECT * FROM t3_ab;
   1542   INSERT INTO t3_fa SELECT * FROM t3_ab;
   1543   INSERT INTO t3_re SELECT * FROM t3_ab;
   1544   INSERT INTO t3_xx SELECT * FROM t3_ab;
   1545 }
   1546 
   1547 foreach {tn tbl res ac data} {
   1548   1   t1_ab    {1 {column a is not unique}} 0 {1 one 2 two 3 three}
   1549   2   t1_ro    {1 {column a is not unique}} 1 {1 one 2 two}
   1550   3   t1_fa    {1 {column a is not unique}} 0 {1 one 2 two 3 three 4 string}
   1551   4   t1_ig    {0 {}} 0 {1 one 2 two 3 three 4 string 6 string}
   1552   5   t1_re    {0 {}} 0 {1 one 2 two 4 string 3 string 6 string}
   1553   6   t1_xx    {1 {column a is not unique}} 0 {1 one 2 two 3 three}
   1554 } {
   1555   catchsql COMMIT
   1556   do_execsql_test  4.15.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
   1557 
   1558   do_catchsql_test 4.15.$tn.2 " 
   1559     INSERT INTO $tbl SELECT ((a%2)*a+3), 'string' FROM $tbl;
   1560   " $res
   1561 
   1562   do_test e_createtable-4.15.$tn.3 { sqlite3_get_autocommit db } $ac
   1563   do_execsql_test 4.15.$tn.4 "SELECT * FROM $tbl" $data
   1564 }
   1565 foreach {tn tbl res ac data} {
   1566   1   t2_ab    {1 {t2_ab.b may not be NULL}} 0 {1 one 2 two 3 three}
   1567   2   t2_ro    {1 {t2_ro.b may not be NULL}} 1 {1 one 2 two}
   1568   3   t2_fa    {1 {t2_fa.b may not be NULL}} 0 {1 one 2 two 3 three 4 xx}
   1569   4   t2_ig    {0 {}} 0 {1 one 2 two 3 three 4 xx 6 xx}
   1570   5   t2_re    {1 {t2_re.b may not be NULL}} 0 {1 one 2 two 3 three}
   1571   6   t2_xx    {1 {t2_xx.b may not be NULL}} 0 {1 one 2 two 3 three}
   1572 } {
   1573   catchsql COMMIT
   1574   do_execsql_test  4.16.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
   1575 
   1576   do_catchsql_test 4.16.$tn.2 " 
   1577     INSERT INTO $tbl SELECT a+3, CASE a WHEN 2 THEN NULL ELSE 'xx' END FROM $tbl
   1578   " $res
   1579 
   1580   do_test e_createtable-4.16.$tn.3 { sqlite3_get_autocommit db } $ac
   1581   do_execsql_test 4.16.$tn.4 "SELECT * FROM $tbl" $data
   1582 }
   1583 foreach {tn tbl res ac data} {
   1584   1   t3_ab    {1 {columns a, b are not unique}} 0 {1 one 2 two 3 three}
   1585   2   t3_ro    {1 {columns a, b are not unique}} 1 {1 one 2 two}
   1586   3   t3_fa    {1 {columns a, b are not unique}} 0 {1 one 2 two 3 three 4 three}
   1587   4   t3_ig    {0 {}} 0 {1 one 2 two 3 three 4 three 6 three}
   1588   5   t3_re    {0 {}} 0 {1 one 2 two 4 three 3 three 6 three}
   1589   6   t3_xx    {1 {columns a, b are not unique}} 0 {1 one 2 two 3 three}
   1590 } {
   1591   catchsql COMMIT
   1592   do_execsql_test  4.17.$tn.1 "BEGIN; INSERT INTO $tbl VALUES(3, 'three')"
   1593 
   1594   do_catchsql_test 4.17.$tn.2 " 
   1595     INSERT INTO $tbl SELECT ((a%2)*a+3), 'three' FROM $tbl
   1596   " $res
   1597 
   1598   do_test e_createtable-4.17.$tn.3 { sqlite3_get_autocommit db } $ac
   1599   do_execsql_test 4.17.$tn.4 "SELECT * FROM $tbl" $data
   1600 }
   1601 catchsql COMMIT
   1602 
   1603 # EVIDENCE-OF: R-12645-39772 Or, if a constraint definition does not
   1604 # include a conflict-clause or it is a CHECK constraint, the default
   1605 # conflict resolution algorithm is ABORT.
   1606 #
   1607 #     The first half of the above is tested along with explicit ON 
   1608 #     CONFLICT clauses above (specifically, the tests involving t1_xx, t2_xx
   1609 #     and t3_xx). The following just tests that the default conflict
   1610 #     handling for CHECK constraints is ABORT.
   1611 #
   1612 do_execsql_test 4.18.1 {
   1613   CREATE TABLE t4(a, b CHECK (b!=10));
   1614   INSERT INTO t4 VALUES(1, 2);
   1615   INSERT INTO t4 VALUES(3, 4);
   1616 }
   1617 do_execsql_test  4.18.2 { BEGIN; INSERT INTO t4 VALUES(5, 6) }
   1618 do_catchsql_test 4.18.3 { 
   1619   INSERT INTO t4 SELECT a+4, b+4 FROM t4
   1620 } {1 {constraint failed}}
   1621 do_test e_createtable-4.18.4 { sqlite3_get_autocommit db } 0
   1622 do_execsql_test 4.18.5 { SELECT * FROM t4 } {1 2 3 4 5 6}
   1623 
   1624 # EVIDENCE-OF: R-19114-56113 Different constraints within the same table
   1625 # may have different default conflict resolution algorithms.
   1626 #
   1627 do_execsql_test 4.19.0 {
   1628   CREATE TABLE t5(a NOT NULL ON CONFLICT IGNORE, b NOT NULL ON CONFLICT ABORT);
   1629 }
   1630 do_catchsql_test 4.19.1 { INSERT INTO t5 VALUES(NULL, 'not null') } {0 {}}
   1631 do_execsql_test  4.19.2 { SELECT * FROM t5 } {}
   1632 do_catchsql_test 4.19.3 { INSERT INTO t5 VALUES('not null', NULL) } \
   1633   {1 {t5.b may not be NULL}}
   1634 do_execsql_test  4.19.4 { SELECT * FROM t5 } {}
   1635 
   1636 #------------------------------------------------------------------------
   1637 # Tests for INTEGER PRIMARY KEY and rowid related statements.
   1638 #
   1639 
   1640 # EVIDENCE-OF: R-52584-04009 The rowid value can be accessed using one
   1641 # of the special case-independent names "rowid", "oid", or "_rowid_" in
   1642 # place of a column name.
   1643 #
   1644 drop_all_tables
   1645 do_execsql_test 5.1.0 {
   1646   CREATE TABLE t1(x, y);
   1647   INSERT INTO t1 VALUES('one', 'first');
   1648   INSERT INTO t1 VALUES('two', 'second');
   1649   INSERT INTO t1 VALUES('three', 'third');
   1650 }
   1651 do_createtable_tests 5.1 {
   1652   1   "SELECT rowid FROM t1"        {1 2 3}
   1653   2   "SELECT oid FROM t1"          {1 2 3}
   1654   3   "SELECT _rowid_ FROM t1"      {1 2 3}
   1655   4   "SELECT ROWID FROM t1"        {1 2 3}
   1656   5   "SELECT OID FROM t1"          {1 2 3}
   1657   6   "SELECT _ROWID_ FROM t1"      {1 2 3}
   1658   7   "SELECT RoWiD FROM t1"        {1 2 3}
   1659   8   "SELECT OiD FROM t1"          {1 2 3}
   1660   9   "SELECT _RoWiD_ FROM t1"      {1 2 3}
   1661 }
   1662 
   1663 # EVIDENCE-OF: R-26501-17306 If a table contains a user defined column
   1664 # named "rowid", "oid" or "_rowid_", then that name always refers the
   1665 # explicitly declared column and cannot be used to retrieve the integer
   1666 # rowid value.
   1667 #
   1668 do_execsql_test 5.2.0 {
   1669   CREATE TABLE t2(oid, b);
   1670   CREATE TABLE t3(a, _rowid_);
   1671   CREATE TABLE t4(a, b, rowid);
   1672 
   1673   INSERT INTO t2 VALUES('one', 'two');
   1674   INSERT INTO t2 VALUES('three', 'four');
   1675 
   1676   INSERT INTO t3 VALUES('five', 'six');
   1677   INSERT INTO t3 VALUES('seven', 'eight');
   1678 
   1679   INSERT INTO t4 VALUES('nine', 'ten', 'eleven');
   1680   INSERT INTO t4 VALUES('twelve', 'thirteen', 'fourteen');
   1681 }
   1682 do_createtable_tests 5.2 {
   1683   1   "SELECT oid, rowid, _rowid_ FROM t2"   {one 1 1      three 2 2}
   1684   2   "SELECT oid, rowid, _rowid_ FROM t3"   {1 1 six      2 2 eight} 
   1685   3   "SELECT oid, rowid, _rowid_ FROM t4"   {1 eleven 1   2 fourteen 2}
   1686 }
   1687 
   1688 
   1689 # Argument $tbl is the name of a table in the database. Argument $col is
   1690 # the name of one of the tables columns. Return 1 if $col is an alias for
   1691 # the rowid, or 0 otherwise.
   1692 #
   1693 proc is_integer_primary_key {tbl col} {
   1694   lindex [db eval [subst {
   1695     DELETE FROM $tbl;
   1696     INSERT INTO $tbl ($col) VALUES(0);
   1697     SELECT (rowid==$col) FROM $tbl;
   1698     DELETE FROM $tbl;
   1699   }]] 0
   1700 }
   1701 
   1702 # EVIDENCE-OF: R-53738-31673 With one exception, if a table has a
   1703 # primary key that consists of a single column, and the declared type of
   1704 # that column is "INTEGER" in any mixture of upper and lower case, then
   1705 # the column becomes an alias for the rowid.
   1706 #
   1707 # EVIDENCE-OF: R-45951-08347 if the declaration of a column with
   1708 # declared type "INTEGER" includes an "PRIMARY KEY DESC" clause, it does
   1709 # not become an alias for the rowid and is not classified as an integer
   1710 # primary key.
   1711 #
   1712 do_createtable_tests 5.3 -tclquery { 
   1713   is_integer_primary_key t5 pk
   1714 } -repair {
   1715   catchsql { DROP TABLE t5 }
   1716 } {
   1717   1   "CREATE TABLE t5(pk integer primary key)"                         1
   1718   2   "CREATE TABLE t5(pk integer, primary key(pk))"                    1
   1719   3   "CREATE TABLE t5(pk integer, v integer, primary key(pk))"         1
   1720   4   "CREATE TABLE t5(pk integer, v integer, primary key(pk, v))"      0
   1721   5   "CREATE TABLE t5(pk int, v integer, primary key(pk, v))"          0
   1722   6   "CREATE TABLE t5(pk int, v integer, primary key(pk))"             0
   1723   7   "CREATE TABLE t5(pk int primary key, v integer)"                  0
   1724   8   "CREATE TABLE t5(pk inTEger primary key)"                         1
   1725   9   "CREATE TABLE t5(pk inteGEr, primary key(pk))"                    1
   1726   10  "CREATE TABLE t5(pk INTEGER, v integer, primary key(pk))"         1
   1727 }
   1728 
   1729 # EVIDENCE-OF: R-41444-49665 Other integer type names like "INT" or
   1730 # "BIGINT" or "SHORT INTEGER" or "UNSIGNED INTEGER" causes the primary
   1731 # key column to behave as an ordinary table column with integer affinity
   1732 # and a unique index, not as an alias for the rowid.
   1733 #
   1734 do_execsql_test 5.4.1 {
   1735   CREATE TABLE t6(pk INT primary key);
   1736   CREATE TABLE t7(pk BIGINT primary key);
   1737   CREATE TABLE t8(pk SHORT INTEGER primary key);
   1738   CREATE TABLE t9(pk UNSIGNED INTEGER primary key);
   1739 } 
   1740 do_test e_createtable-5.4.2.1 { is_integer_primary_key t6 pk } 0
   1741 do_test e_createtable-5.4.2.2 { is_integer_primary_key t7 pk } 0
   1742 do_test e_createtable-5.4.2.3 { is_integer_primary_key t8 pk } 0
   1743 do_test e_createtable-5.4.2.4 { is_integer_primary_key t9 pk } 0
   1744 
   1745 do_execsql_test 5.4.3 {
   1746   INSERT INTO t6 VALUES('2.0');
   1747   INSERT INTO t7 VALUES('2.0');
   1748   INSERT INTO t8 VALUES('2.0');
   1749   INSERT INTO t9 VALUES('2.0');
   1750   SELECT typeof(pk), pk FROM t6;
   1751   SELECT typeof(pk), pk FROM t7;
   1752   SELECT typeof(pk), pk FROM t8;
   1753   SELECT typeof(pk), pk FROM t9;
   1754 } {integer 2 integer 2 integer 2 integer 2}
   1755 
   1756 do_catchsql_test 5.4.4.1 { 
   1757   INSERT INTO t6 VALUES(2) 
   1758 } {1 {column pk is not unique}}
   1759 do_catchsql_test 5.4.4.2 { 
   1760   INSERT INTO t7 VALUES(2) 
   1761 } {1 {column pk is not unique}}
   1762 do_catchsql_test 5.4.4.3 { 
   1763   INSERT INTO t8 VALUES(2) 
   1764 } {1 {column pk is not unique}}
   1765 do_catchsql_test 5.4.4.4 { 
   1766   INSERT INTO t9 VALUES(2) 
   1767 } {1 {column pk is not unique}}
   1768 
   1769 # EVIDENCE-OF: R-56094-57830 the following three table declarations all
   1770 # cause the column "x" to be an alias for the rowid (an integer primary
   1771 # key): CREATE TABLE t(x INTEGER PRIMARY KEY ASC, y, z); CREATE TABLE
   1772 # t(x INTEGER, y, z, PRIMARY KEY(x ASC)); CREATE TABLE t(x INTEGER, y,
   1773 # z, PRIMARY KEY(x DESC));
   1774 #
   1775 # EVIDENCE-OF: R-20149-25884 the following declaration does not result
   1776 # in "x" being an alias for the rowid: CREATE TABLE t(x INTEGER PRIMARY
   1777 # KEY DESC, y, z);
   1778 #
   1779 do_createtable_tests 5 -tclquery { 
   1780   is_integer_primary_key t x
   1781 } -repair {
   1782   catchsql { DROP TABLE t }
   1783 } {
   1784   5.1    "CREATE TABLE t(x INTEGER PRIMARY KEY ASC, y, z)"      1
   1785   5.2    "CREATE TABLE t(x INTEGER, y, z, PRIMARY KEY(x ASC))"  1
   1786   5.3    "CREATE TABLE t(x INTEGER, y, z, PRIMARY KEY(x DESC))" 1
   1787   6.1    "CREATE TABLE t(x INTEGER PRIMARY KEY DESC, y, z)"     0
   1788 }
   1789 
   1790 # EVIDENCE-OF: R-03733-29734 Rowid values may be modified using an
   1791 # UPDATE statement in the same way as any other column value can, either
   1792 # using one of the built-in aliases ("rowid", "oid" or "_rowid_") or by
   1793 # using an alias created by an integer primary key.
   1794 #
   1795 do_execsql_test 5.7.0 {
   1796   CREATE TABLE t10(a, b);
   1797   INSERT INTO t10 VALUES('ten', 10);
   1798 
   1799   CREATE TABLE t11(a, b INTEGER PRIMARY KEY);
   1800   INSERT INTO t11 VALUES('ten', 10);
   1801 }
   1802 do_createtable_tests 5.7.1 -query { 
   1803   SELECT rowid, _rowid_, oid FROM t10;
   1804 } {
   1805   1    "UPDATE t10 SET rowid = 5"   {5 5 5}
   1806   2    "UPDATE t10 SET _rowid_ = 6" {6 6 6}
   1807   3    "UPDATE t10 SET oid = 7"     {7 7 7}
   1808 }
   1809 do_createtable_tests 5.7.2 -query { 
   1810   SELECT rowid, _rowid_, oid, b FROM t11;
   1811 } {
   1812   1    "UPDATE t11 SET rowid = 5"   {5 5 5 5}
   1813   2    "UPDATE t11 SET _rowid_ = 6" {6 6 6 6}
   1814   3    "UPDATE t11 SET oid = 7"     {7 7 7 7}
   1815   4    "UPDATE t11 SET b = 8"       {8 8 8 8}
   1816 }
   1817 
   1818 # EVIDENCE-OF: R-58706-14229 Similarly, an INSERT statement may provide
   1819 # a value to use as the rowid for each row inserted.
   1820 #
   1821 do_createtable_tests 5.8.1 -query { 
   1822   SELECT rowid, _rowid_, oid FROM t10;
   1823 } -repair { 
   1824   execsql { DELETE FROM t10 } 
   1825 } {
   1826   1    "INSERT INTO t10(oid) VALUES(15)"           {15 15 15}
   1827   2    "INSERT INTO t10(rowid) VALUES(16)"         {16 16 16}
   1828   3    "INSERT INTO t10(_rowid_) VALUES(17)"       {17 17 17}
   1829   4    "INSERT INTO t10(a, b, oid) VALUES(1,2,3)"  {3 3 3}
   1830 }
   1831 do_createtable_tests 5.8.2 -query { 
   1832   SELECT rowid, _rowid_, oid, b FROM t11;
   1833 } -repair { 
   1834   execsql { DELETE FROM t11 } 
   1835 } {
   1836   1    "INSERT INTO t11(oid) VALUES(15)"           {15 15 15 15}
   1837   2    "INSERT INTO t11(rowid) VALUES(16)"         {16 16 16 16}
   1838   3    "INSERT INTO t11(_rowid_) VALUES(17)"       {17 17 17 17}
   1839   4    "INSERT INTO t11(a, b) VALUES(1,2)"         {2 2 2 2}
   1840 }
   1841 
   1842 # EVIDENCE-OF: R-32326-44592 Unlike normal SQLite columns, an integer
   1843 # primary key or rowid column must contain integer values. Integer
   1844 # primary key or rowid columns are not able to hold floating point
   1845 # values, strings, BLOBs, or NULLs.
   1846 #
   1847 #     This is considered by the tests for the following 3 statements,
   1848 #     which show that:
   1849 #
   1850 #       1. Attempts to UPDATE a rowid column to a non-integer value fail,
   1851 #       2. Attempts to INSERT a real, string or blob value into a rowid 
   1852 #          column fail, and
   1853 #       3. Attempting to INSERT a NULL value into a rowid column causes the
   1854 #          system to automatically select an integer value to use.
   1855 #
   1856 
   1857 
   1858 # EVIDENCE-OF: R-64224-62578 If an UPDATE statement attempts to set an
   1859 # integer primary key or rowid column to a NULL or blob value, or to a
   1860 # string or real value that cannot be losslessly converted to an
   1861 # integer, a "datatype mismatch" error occurs and the statement is
   1862 # aborted.
   1863 #
   1864 drop_all_tables
   1865 do_execsql_test 5.9.0 {
   1866   CREATE TABLE t12(x INTEGER PRIMARY KEY, y);
   1867   INSERT INTO t12 VALUES(5, 'five');
   1868 }
   1869 do_createtable_tests 5.9.1 -query { SELECT typeof(x), x FROM t12 } {
   1870   1   "UPDATE t12 SET x = 4"       {integer 4}
   1871   2   "UPDATE t12 SET x = 10.0"    {integer 10}
   1872   3   "UPDATE t12 SET x = '12.0'"  {integer 12}
   1873   4   "UPDATE t12 SET x = '-15.0'" {integer -15}
   1874 }
   1875 do_createtable_tests 5.9.2 -error {
   1876   datatype mismatch
   1877 } {
   1878   1   "UPDATE t12 SET x = 4.1"         {}
   1879   2   "UPDATE t12 SET x = 'hello'"     {}
   1880   3   "UPDATE t12 SET x = NULL"        {}
   1881   4   "UPDATE t12 SET x = X'ABCD'"     {}
   1882   5   "UPDATE t12 SET x = X'3900'"     {}
   1883   6   "UPDATE t12 SET x = X'39'"       {}
   1884 }
   1885 
   1886 # EVIDENCE-OF: R-05734-13629 If an INSERT statement attempts to insert a
   1887 # blob value, or a string or real value that cannot be losslessly
   1888 # converted to an integer into an integer primary key or rowid column, a
   1889 # "datatype mismatch" error occurs and the statement is aborted.
   1890 #
   1891 do_execsql_test 5.10.0 { DELETE FROM t12 }
   1892 do_createtable_tests 5.10.1 -error { 
   1893   datatype mismatch
   1894 } {
   1895   1   "INSERT INTO t12(x) VALUES(4.1)"     {}
   1896   2   "INSERT INTO t12(x) VALUES('hello')" {}
   1897   3   "INSERT INTO t12(x) VALUES(X'ABCD')" {}
   1898   4   "INSERT INTO t12(x) VALUES(X'3900')" {}
   1899   5   "INSERT INTO t12(x) VALUES(X'39')"   {}
   1900 }
   1901 do_createtable_tests 5.10.2 -query { 
   1902   SELECT typeof(x), x FROM t12 
   1903 } -repair {
   1904   execsql { DELETE FROM t12 }
   1905 } {
   1906   1   "INSERT INTO t12(x) VALUES(4)"       {integer 4}
   1907   2   "INSERT INTO t12(x) VALUES(10.0)"    {integer 10}
   1908   3   "INSERT INTO t12(x) VALUES('12.0')"  {integer 12}
   1909   4   "INSERT INTO t12(x) VALUES('4e3')"   {integer 4000}
   1910   5   "INSERT INTO t12(x) VALUES('-14.0')" {integer -14}
   1911 }
   1912 
   1913 # EVIDENCE-OF: R-07986-46024 If an INSERT statement attempts to insert a
   1914 # NULL value into a rowid or integer primary key column, the system
   1915 # chooses an integer value to use as the rowid automatically.
   1916 #
   1917 do_execsql_test 5.11.0 { DELETE FROM t12 }
   1918 do_createtable_tests 5.11 -query { 
   1919   SELECT typeof(x), x FROM t12 WHERE y IS (SELECT max(y) FROM t12)
   1920 } {
   1921   1   "INSERT INTO t12 DEFAULT VALUES"                {integer 1}
   1922   2   "INSERT INTO t12(y)   VALUES(5)"                {integer 2}
   1923   3   "INSERT INTO t12(x,y) VALUES(NULL, 10)"         {integer 3}
   1924   4   "INSERT INTO t12(x,y) SELECT NULL, 15 FROM t12" 
   1925       {integer 4 integer 5 integer 6}
   1926   5   "INSERT INTO t12(y) SELECT 20 FROM t12 LIMIT 3"
   1927       {integer 7 integer 8 integer 9}
   1928 }
   1929 
   1930 finish_test
   1931