Home | History | Annotate | Download | only in vad
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/common_audio/vad/vad_sp.h"
     12 
     13 #include <assert.h>
     14 
     15 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     16 #include "webrtc/common_audio/vad/vad_core.h"
     17 #include "webrtc/typedefs.h"
     18 
     19 // Allpass filter coefficients, upper and lower, in Q13.
     20 // Upper: 0.64, Lower: 0.17.
     21 static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 };  // Q13.
     22 static const int16_t kSmoothingDown = 6553;  // 0.2 in Q15.
     23 static const int16_t kSmoothingUp = 32439;  // 0.99 in Q15.
     24 
     25 // TODO(bjornv): Move this function to vad_filterbank.c.
     26 // Downsampling filter based on splitting filter and allpass functions.
     27 void WebRtcVad_Downsampling(const int16_t* signal_in,
     28                             int16_t* signal_out,
     29                             int32_t* filter_state,
     30                             int in_length) {
     31   int16_t tmp16_1 = 0, tmp16_2 = 0;
     32   int32_t tmp32_1 = filter_state[0];
     33   int32_t tmp32_2 = filter_state[1];
     34   int n = 0;
     35   int half_length = (in_length >> 1);  // Downsampling by 2 gives half length.
     36 
     37   // Filter coefficients in Q13, filter state in Q0.
     38   for (n = 0; n < half_length; n++) {
     39     // All-pass filtering upper branch.
     40     tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
     41         WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14));
     42     *signal_out = tmp16_1;
     43     tmp32_1 = (int32_t) (*signal_in++) -
     44         WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12);
     45 
     46     // All-pass filtering lower branch.
     47     tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
     48         WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14));
     49     *signal_out++ += tmp16_2;
     50     tmp32_2 = (int32_t) (*signal_in++) -
     51         WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12);
     52   }
     53   // Store the filter states.
     54   filter_state[0] = tmp32_1;
     55   filter_state[1] = tmp32_2;
     56 }
     57 
     58 // Inserts |feature_value| into |low_value_vector|, if it is one of the 16
     59 // smallest values the last 100 frames. Then calculates and returns the median
     60 // of the five smallest values.
     61 int16_t WebRtcVad_FindMinimum(VadInstT* self,
     62                               int16_t feature_value,
     63                               int channel) {
     64   int i = 0, j = 0;
     65   int position = -1;
     66   // Offset to beginning of the 16 minimum values in memory.
     67   const int offset = (channel << 4);
     68   int16_t current_median = 1600;
     69   int16_t alpha = 0;
     70   int32_t tmp32 = 0;
     71   // Pointer to memory for the 16 minimum values and the age of each value of
     72   // the |channel|.
     73   int16_t* age = &self->index_vector[offset];
     74   int16_t* smallest_values = &self->low_value_vector[offset];
     75 
     76   assert(channel < kNumChannels);
     77 
     78   // Each value in |smallest_values| is getting 1 loop older. Update |age|, and
     79   // remove old values.
     80   for (i = 0; i < 16; i++) {
     81     if (age[i] != 100) {
     82       age[i]++;
     83     } else {
     84       // Too old value. Remove from memory and shift larger values downwards.
     85       for (j = i; j < 16; j++) {
     86         smallest_values[j] = smallest_values[j + 1];
     87         age[j] = age[j + 1];
     88       }
     89       age[15] = 101;
     90       smallest_values[15] = 10000;
     91     }
     92   }
     93 
     94   // Check if |feature_value| is smaller than any of the values in
     95   // |smallest_values|. If so, find the |position| where to insert the new value
     96   // (|feature_value|).
     97   if (feature_value < smallest_values[7]) {
     98     if (feature_value < smallest_values[3]) {
     99       if (feature_value < smallest_values[1]) {
    100         if (feature_value < smallest_values[0]) {
    101           position = 0;
    102         } else {
    103           position = 1;
    104         }
    105       } else if (feature_value < smallest_values[2]) {
    106         position = 2;
    107       } else {
    108         position = 3;
    109       }
    110     } else if (feature_value < smallest_values[5]) {
    111       if (feature_value < smallest_values[4]) {
    112         position = 4;
    113       } else {
    114         position = 5;
    115       }
    116     } else if (feature_value < smallest_values[6]) {
    117       position = 6;
    118     } else {
    119       position = 7;
    120     }
    121   } else if (feature_value < smallest_values[15]) {
    122     if (feature_value < smallest_values[11]) {
    123       if (feature_value < smallest_values[9]) {
    124         if (feature_value < smallest_values[8]) {
    125           position = 8;
    126         } else {
    127           position = 9;
    128         }
    129       } else if (feature_value < smallest_values[10]) {
    130         position = 10;
    131       } else {
    132         position = 11;
    133       }
    134     } else if (feature_value < smallest_values[13]) {
    135       if (feature_value < smallest_values[12]) {
    136         position = 12;
    137       } else {
    138         position = 13;
    139       }
    140     } else if (feature_value < smallest_values[14]) {
    141       position = 14;
    142     } else {
    143       position = 15;
    144     }
    145   }
    146 
    147   // If we have detected a new small value, insert it at the correct position
    148   // and shift larger values up.
    149   if (position > -1) {
    150     for (i = 15; i > position; i--) {
    151       smallest_values[i] = smallest_values[i - 1];
    152       age[i] = age[i - 1];
    153     }
    154     smallest_values[position] = feature_value;
    155     age[position] = 1;
    156   }
    157 
    158   // Get |current_median|.
    159   if (self->frame_counter > 2) {
    160     current_median = smallest_values[2];
    161   } else if (self->frame_counter > 0) {
    162     current_median = smallest_values[0];
    163   }
    164 
    165   // Smooth the median value.
    166   if (self->frame_counter > 0) {
    167     if (current_median < self->mean_value[channel]) {
    168       alpha = kSmoothingDown;  // 0.2 in Q15.
    169     } else {
    170       alpha = kSmoothingUp;  // 0.99 in Q15.
    171     }
    172   }
    173   tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]);
    174   tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median);
    175   tmp32 += 16384;
    176   self->mean_value[channel] = (int16_t) (tmp32 >> 15);
    177 
    178   return self->mean_value[channel];
    179 }
    180