Home | History | Annotate | Download | only in aec
      1 /*
      2  *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 /*
     12  * The core AEC algorithm, neon version of speed-critical functions.
     13  *
     14  * Based on aec_core_sse2.c.
     15  */
     16 
     17 #include <arm_neon.h>
     18 #include <math.h>
     19 #include <string.h>  // memset
     20 
     21 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     22 #include "webrtc/modules/audio_processing/aec/aec_common.h"
     23 #include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
     24 #include "webrtc/modules/audio_processing/aec/aec_rdft.h"
     25 
     26 enum { kShiftExponentIntoTopMantissa = 8 };
     27 enum { kFloatExponentShift = 23 };
     28 
     29 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
     30   return aRe * bRe - aIm * bIm;
     31 }
     32 
     33 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
     34   return aRe * bIm + aIm * bRe;
     35 }
     36 
     37 static void FilterFarNEON(AecCore* aec, float yf[2][PART_LEN1]) {
     38   int i;
     39   const int num_partitions = aec->num_partitions;
     40   for (i = 0; i < num_partitions; i++) {
     41     int j;
     42     int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
     43     int pos = i * PART_LEN1;
     44     // Check for wrap
     45     if (i + aec->xfBufBlockPos >= num_partitions) {
     46       xPos -= num_partitions * PART_LEN1;
     47     }
     48 
     49     // vectorized code (four at once)
     50     for (j = 0; j + 3 < PART_LEN1; j += 4) {
     51       const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
     52       const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
     53       const float32x4_t wfBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
     54       const float32x4_t wfBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
     55       const float32x4_t yf_re = vld1q_f32(&yf[0][j]);
     56       const float32x4_t yf_im = vld1q_f32(&yf[1][j]);
     57       const float32x4_t a = vmulq_f32(xfBuf_re, wfBuf_re);
     58       const float32x4_t e = vmlsq_f32(a, xfBuf_im, wfBuf_im);
     59       const float32x4_t c = vmulq_f32(xfBuf_re, wfBuf_im);
     60       const float32x4_t f = vmlaq_f32(c, xfBuf_im, wfBuf_re);
     61       const float32x4_t g = vaddq_f32(yf_re, e);
     62       const float32x4_t h = vaddq_f32(yf_im, f);
     63       vst1q_f32(&yf[0][j], g);
     64       vst1q_f32(&yf[1][j], h);
     65     }
     66     // scalar code for the remaining items.
     67     for (; j < PART_LEN1; j++) {
     68       yf[0][j] += MulRe(aec->xfBuf[0][xPos + j],
     69                         aec->xfBuf[1][xPos + j],
     70                         aec->wfBuf[0][pos + j],
     71                         aec->wfBuf[1][pos + j]);
     72       yf[1][j] += MulIm(aec->xfBuf[0][xPos + j],
     73                         aec->xfBuf[1][xPos + j],
     74                         aec->wfBuf[0][pos + j],
     75                         aec->wfBuf[1][pos + j]);
     76     }
     77   }
     78 }
     79 
     80 static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
     81   int i;
     82   float32x4_t x = vrecpeq_f32(b);
     83   // from arm documentation
     84   // The Newton-Raphson iteration:
     85   //     x[n+1] = x[n] * (2 - d * x[n])
     86   // converges to (1/d) if x0 is the result of VRECPE applied to d.
     87   //
     88   // Note: The precision did not improve after 2 iterations.
     89   for (i = 0; i < 2; i++) {
     90     x = vmulq_f32(vrecpsq_f32(b, x), x);
     91   }
     92   // a/b = a*(1/b)
     93   return vmulq_f32(a, x);
     94 }
     95 
     96 static float32x4_t vsqrtq_f32(float32x4_t s) {
     97   int i;
     98   float32x4_t x = vrsqrteq_f32(s);
     99 
    100   // Code to handle sqrt(0).
    101   // If the input to sqrtf() is zero, a zero will be returned.
    102   // If the input to vrsqrteq_f32() is zero, positive infinity is returned.
    103   const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
    104   // check for divide by zero
    105   const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
    106   // zero out the positive infinity results
    107   x = vreinterpretq_f32_u32(vandq_u32(vmvnq_u32(div_by_zero),
    108                                       vreinterpretq_u32_f32(x)));
    109   // from arm documentation
    110   // The Newton-Raphson iteration:
    111   //     x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
    112   // converges to (1/d) if x0 is the result of VRSQRTE applied to d.
    113   //
    114   // Note: The precision did not improve after 2 iterations.
    115   for (i = 0; i < 2; i++) {
    116     x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
    117   }
    118   // sqrt(s) = s * 1/sqrt(s)
    119   return vmulq_f32(s, x);;
    120 }
    121 
    122 static void ScaleErrorSignalNEON(AecCore* aec, float ef[2][PART_LEN1]) {
    123   const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu;
    124   const float error_threshold = aec->extended_filter_enabled ?
    125       kExtendedErrorThreshold : aec->normal_error_threshold;
    126   const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
    127   const float32x4_t kMu = vmovq_n_f32(mu);
    128   const float32x4_t kThresh = vmovq_n_f32(error_threshold);
    129   int i;
    130   // vectorized code (four at once)
    131   for (i = 0; i + 3 < PART_LEN1; i += 4) {
    132     const float32x4_t xPow = vld1q_f32(&aec->xPow[i]);
    133     const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
    134     const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
    135     const float32x4_t xPowPlus = vaddq_f32(xPow, k1e_10f);
    136     float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
    137     float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
    138     const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
    139     const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
    140     const float32x4_t absEf = vsqrtq_f32(ef_sum2);
    141     const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
    142     const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
    143     const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
    144     uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
    145     uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
    146     uint32x4_t ef_re_u32 = vandq_u32(vmvnq_u32(bigger),
    147                                      vreinterpretq_u32_f32(ef_re));
    148     uint32x4_t ef_im_u32 = vandq_u32(vmvnq_u32(bigger),
    149                                      vreinterpretq_u32_f32(ef_im));
    150     ef_re_if = vandq_u32(bigger, ef_re_if);
    151     ef_im_if = vandq_u32(bigger, ef_im_if);
    152     ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
    153     ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
    154     ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
    155     ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
    156     vst1q_f32(&ef[0][i], ef_re);
    157     vst1q_f32(&ef[1][i], ef_im);
    158   }
    159   // scalar code for the remaining items.
    160   for (; i < PART_LEN1; i++) {
    161     float abs_ef;
    162     ef[0][i] /= (aec->xPow[i] + 1e-10f);
    163     ef[1][i] /= (aec->xPow[i] + 1e-10f);
    164     abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
    165 
    166     if (abs_ef > error_threshold) {
    167       abs_ef = error_threshold / (abs_ef + 1e-10f);
    168       ef[0][i] *= abs_ef;
    169       ef[1][i] *= abs_ef;
    170     }
    171 
    172     // Stepsize factor
    173     ef[0][i] *= mu;
    174     ef[1][i] *= mu;
    175   }
    176 }
    177 
    178 static void FilterAdaptationNEON(AecCore* aec,
    179                                  float* fft,
    180                                  float ef[2][PART_LEN1]) {
    181   int i;
    182   const int num_partitions = aec->num_partitions;
    183   for (i = 0; i < num_partitions; i++) {
    184     int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
    185     int pos = i * PART_LEN1;
    186     int j;
    187     // Check for wrap
    188     if (i + aec->xfBufBlockPos >= num_partitions) {
    189       xPos -= num_partitions * PART_LEN1;
    190     }
    191 
    192     // Process the whole array...
    193     for (j = 0; j < PART_LEN; j += 4) {
    194       // Load xfBuf and ef.
    195       const float32x4_t xfBuf_re = vld1q_f32(&aec->xfBuf[0][xPos + j]);
    196       const float32x4_t xfBuf_im = vld1q_f32(&aec->xfBuf[1][xPos + j]);
    197       const float32x4_t ef_re = vld1q_f32(&ef[0][j]);
    198       const float32x4_t ef_im = vld1q_f32(&ef[1][j]);
    199       // Calculate the product of conjugate(xfBuf) by ef.
    200       //   re(conjugate(a) * b) = aRe * bRe + aIm * bIm
    201       //   im(conjugate(a) * b)=  aRe * bIm - aIm * bRe
    202       const float32x4_t a = vmulq_f32(xfBuf_re, ef_re);
    203       const float32x4_t e = vmlaq_f32(a, xfBuf_im, ef_im);
    204       const float32x4_t c = vmulq_f32(xfBuf_re, ef_im);
    205       const float32x4_t f = vmlsq_f32(c, xfBuf_im, ef_re);
    206       // Interleave real and imaginary parts.
    207       const float32x4x2_t g_n_h = vzipq_f32(e, f);
    208       // Store
    209       vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
    210       vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
    211     }
    212     // ... and fixup the first imaginary entry.
    213     fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
    214                    -aec->xfBuf[1][xPos + PART_LEN],
    215                    ef[0][PART_LEN],
    216                    ef[1][PART_LEN]);
    217 
    218     aec_rdft_inverse_128(fft);
    219     memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
    220 
    221     // fft scaling
    222     {
    223       const float scale = 2.0f / PART_LEN2;
    224       const float32x4_t scale_ps = vmovq_n_f32(scale);
    225       for (j = 0; j < PART_LEN; j += 4) {
    226         const float32x4_t fft_ps = vld1q_f32(&fft[j]);
    227         const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
    228         vst1q_f32(&fft[j], fft_scale);
    229       }
    230     }
    231     aec_rdft_forward_128(fft);
    232 
    233     {
    234       const float wt1 = aec->wfBuf[1][pos];
    235       aec->wfBuf[0][pos + PART_LEN] += fft[1];
    236       for (j = 0; j < PART_LEN; j += 4) {
    237         float32x4_t wtBuf_re = vld1q_f32(&aec->wfBuf[0][pos + j]);
    238         float32x4_t wtBuf_im = vld1q_f32(&aec->wfBuf[1][pos + j]);
    239         const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
    240         const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
    241         const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
    242         wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
    243         wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
    244 
    245         vst1q_f32(&aec->wfBuf[0][pos + j], wtBuf_re);
    246         vst1q_f32(&aec->wfBuf[1][pos + j], wtBuf_im);
    247       }
    248       aec->wfBuf[1][pos] = wt1;
    249     }
    250   }
    251 }
    252 
    253 static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
    254   // a^b = exp2(b * log2(a))
    255   //   exp2(x) and log2(x) are calculated using polynomial approximations.
    256   float32x4_t log2_a, b_log2_a, a_exp_b;
    257 
    258   // Calculate log2(x), x = a.
    259   {
    260     // To calculate log2(x), we decompose x like this:
    261     //   x = y * 2^n
    262     //     n is an integer
    263     //     y is in the [1.0, 2.0) range
    264     //
    265     //   log2(x) = log2(y) + n
    266     //     n       can be evaluated by playing with float representation.
    267     //     log2(y) in a small range can be approximated, this code uses an order
    268     //             five polynomial approximation. The coefficients have been
    269     //             estimated with the Remez algorithm and the resulting
    270     //             polynomial has a maximum relative error of 0.00086%.
    271 
    272     // Compute n.
    273     //    This is done by masking the exponent, shifting it into the top bit of
    274     //    the mantissa, putting eight into the biased exponent (to shift/
    275     //    compensate the fact that the exponent has been shifted in the top/
    276     //    fractional part and finally getting rid of the implicit leading one
    277     //    from the mantissa by substracting it out.
    278     const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
    279     const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
    280     const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
    281     const uint32x4_t two_n = vandq_u32(vreinterpretq_u32_f32(a),
    282                                        vec_float_exponent_mask);
    283     const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
    284     const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
    285     const float32x4_t n =
    286         vsubq_f32(vreinterpretq_f32_u32(n_0),
    287                   vreinterpretq_f32_u32(vec_implicit_leading_one));
    288     // Compute y.
    289     const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
    290     const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
    291     const uint32x4_t mantissa = vandq_u32(vreinterpretq_u32_f32(a),
    292                                           vec_mantissa_mask);
    293     const float32x4_t y =
    294         vreinterpretq_f32_u32(vorrq_u32(mantissa,
    295                                         vec_zero_biased_exponent_is_one));
    296     // Approximate log2(y) ~= (y - 1) * pol5(y).
    297     //    pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
    298     const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
    299     const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
    300     const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
    301     const float32x4_t C2 = vdupq_n_f32(2.5988452f);
    302     const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
    303     const float32x4_t C0 = vdupq_n_f32(3.1157899f);
    304     float32x4_t pol5_y = C5;
    305     pol5_y = vmlaq_f32(C4, y, pol5_y);
    306     pol5_y = vmlaq_f32(C3, y, pol5_y);
    307     pol5_y = vmlaq_f32(C2, y, pol5_y);
    308     pol5_y = vmlaq_f32(C1, y, pol5_y);
    309     pol5_y = vmlaq_f32(C0, y, pol5_y);
    310     const float32x4_t y_minus_one =
    311         vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
    312     const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);
    313 
    314     // Combine parts.
    315     log2_a = vaddq_f32(n, log2_y);
    316   }
    317 
    318   // b * log2(a)
    319   b_log2_a = vmulq_f32(b, log2_a);
    320 
    321   // Calculate exp2(x), x = b * log2(a).
    322   {
    323     // To calculate 2^x, we decompose x like this:
    324     //   x = n + y
    325     //     n is an integer, the value of x - 0.5 rounded down, therefore
    326     //     y is in the [0.5, 1.5) range
    327     //
    328     //   2^x = 2^n * 2^y
    329     //     2^n can be evaluated by playing with float representation.
    330     //     2^y in a small range can be approximated, this code uses an order two
    331     //         polynomial approximation. The coefficients have been estimated
    332     //         with the Remez algorithm and the resulting polynomial has a
    333     //         maximum relative error of 0.17%.
    334     // To avoid over/underflow, we reduce the range of input to ]-127, 129].
    335     const float32x4_t max_input = vdupq_n_f32(129.f);
    336     const float32x4_t min_input = vdupq_n_f32(-126.99999f);
    337     const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
    338     const float32x4_t x_max = vmaxq_f32(x_min, min_input);
    339     // Compute n.
    340     const float32x4_t half = vdupq_n_f32(0.5f);
    341     const float32x4_t x_minus_half = vsubq_f32(x_max, half);
    342     const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);
    343 
    344     // Compute 2^n.
    345     const int32x4_t float_exponent_bias = vdupq_n_s32(127);
    346     const int32x4_t two_n_exponent =
    347         vaddq_s32(x_minus_half_floor, float_exponent_bias);
    348     const float32x4_t two_n =
    349         vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
    350     // Compute y.
    351     const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));
    352 
    353     // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
    354     const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
    355     const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
    356     const float32x4_t C0 = vdupq_n_f32(1.0017247f);
    357     float32x4_t exp2_y = C2;
    358     exp2_y = vmlaq_f32(C1, y, exp2_y);
    359     exp2_y = vmlaq_f32(C0, y, exp2_y);
    360 
    361     // Combine parts.
    362     a_exp_b = vmulq_f32(exp2_y, two_n);
    363   }
    364 
    365   return a_exp_b;
    366 }
    367 
    368 static void OverdriveAndSuppressNEON(AecCore* aec,
    369                                      float hNl[PART_LEN1],
    370                                      const float hNlFb,
    371                                      float efw[2][PART_LEN1]) {
    372   int i;
    373   const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
    374   const float32x4_t vec_one = vdupq_n_f32(1.0f);
    375   const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
    376   const float32x4_t vec_overDriveSm = vmovq_n_f32(aec->overDriveSm);
    377 
    378   // vectorized code (four at once)
    379   for (i = 0; i + 3 < PART_LEN1; i += 4) {
    380     // Weight subbands
    381     float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
    382     const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
    383     const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
    384     const float32x4_t vec_weightCurve_hNlFb = vmulq_f32(vec_weightCurve,
    385                                                         vec_hNlFb);
    386     const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
    387     const float32x4_t vec_one_weightCurve_hNl = vmulq_f32(vec_one_weightCurve,
    388                                                           vec_hNl);
    389     const uint32x4_t vec_if0 = vandq_u32(vmvnq_u32(bigger),
    390                                          vreinterpretq_u32_f32(vec_hNl));
    391     const float32x4_t vec_one_weightCurve_add =
    392         vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
    393     const uint32x4_t vec_if1 =
    394         vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));
    395 
    396     vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));
    397 
    398     {
    399       const float32x4_t vec_overDriveCurve =
    400           vld1q_f32(&WebRtcAec_overDriveCurve[i]);
    401       const float32x4_t vec_overDriveSm_overDriveCurve =
    402           vmulq_f32(vec_overDriveSm, vec_overDriveCurve);
    403       vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
    404       vst1q_f32(&hNl[i], vec_hNl);
    405     }
    406 
    407     // Suppress error signal
    408     {
    409       float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
    410       float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
    411       vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
    412       vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);
    413 
    414       // Ooura fft returns incorrect sign on imaginary component. It matters
    415       // here because we are making an additive change with comfort noise.
    416       vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
    417       vst1q_f32(&efw[0][i], vec_efw_re);
    418       vst1q_f32(&efw[1][i], vec_efw_im);
    419     }
    420   }
    421 
    422   // scalar code for the remaining items.
    423   for (; i < PART_LEN1; i++) {
    424     // Weight subbands
    425     if (hNl[i] > hNlFb) {
    426       hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
    427                (1 - WebRtcAec_weightCurve[i]) * hNl[i];
    428     }
    429 
    430     hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
    431 
    432     // Suppress error signal
    433     efw[0][i] *= hNl[i];
    434     efw[1][i] *= hNl[i];
    435 
    436     // Ooura fft returns incorrect sign on imaginary component. It matters
    437     // here because we are making an additive change with comfort noise.
    438     efw[1][i] *= -1;
    439   }
    440 }
    441 
    442 static int PartitionDelay(const AecCore* aec) {
    443   // Measures the energy in each filter partition and returns the partition with
    444   // highest energy.
    445   // TODO(bjornv): Spread computational cost by computing one partition per
    446   // block?
    447   float wfEnMax = 0;
    448   int i;
    449   int delay = 0;
    450 
    451   for (i = 0; i < aec->num_partitions; i++) {
    452     int j;
    453     int pos = i * PART_LEN1;
    454     float wfEn = 0;
    455     float32x4_t vec_wfEn = vdupq_n_f32(0.0f);
    456     // vectorized code (four at once)
    457     for (j = 0; j + 3 < PART_LEN1; j += 4) {
    458       const float32x4_t vec_wfBuf0 = vld1q_f32(&aec->wfBuf[0][pos + j]);
    459       const float32x4_t vec_wfBuf1 = vld1q_f32(&aec->wfBuf[1][pos + j]);
    460       vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0);
    461       vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1);
    462     }
    463     {
    464       float32x2_t vec_total;
    465       // A B C D
    466       vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn));
    467       // A+B C+D
    468       vec_total = vpadd_f32(vec_total, vec_total);
    469       // A+B+C+D A+B+C+D
    470       wfEn = vget_lane_f32(vec_total, 0);
    471     }
    472 
    473     // scalar code for the remaining items.
    474     for (; j < PART_LEN1; j++) {
    475       wfEn += aec->wfBuf[0][pos + j] * aec->wfBuf[0][pos + j] +
    476               aec->wfBuf[1][pos + j] * aec->wfBuf[1][pos + j];
    477     }
    478 
    479     if (wfEn > wfEnMax) {
    480       wfEnMax = wfEn;
    481       delay = i;
    482     }
    483   }
    484   return delay;
    485 }
    486 
    487 // Updates the following smoothed  Power Spectral Densities (PSD):
    488 //  - sd  : near-end
    489 //  - se  : residual echo
    490 //  - sx  : far-end
    491 //  - sde : cross-PSD of near-end and residual echo
    492 //  - sxd : cross-PSD of near-end and far-end
    493 //
    494 // In addition to updating the PSDs, also the filter diverge state is determined
    495 // upon actions are taken.
    496 static void SmoothedPSD(AecCore* aec,
    497                         float efw[2][PART_LEN1],
    498                         float dfw[2][PART_LEN1],
    499                         float xfw[2][PART_LEN1]) {
    500   // Power estimate smoothing coefficients.
    501   const float* ptrGCoh = aec->extended_filter_enabled
    502       ? WebRtcAec_kExtendedSmoothingCoefficients[aec->mult - 1]
    503       : WebRtcAec_kNormalSmoothingCoefficients[aec->mult - 1];
    504   int i;
    505   float sdSum = 0, seSum = 0;
    506   const float32x4_t vec_15 =  vdupq_n_f32(WebRtcAec_kMinFarendPSD);
    507   float32x4_t vec_sdSum = vdupq_n_f32(0.0f);
    508   float32x4_t vec_seSum = vdupq_n_f32(0.0f);
    509 
    510   for (i = 0; i + 3 < PART_LEN1; i += 4) {
    511     const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]);
    512     const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]);
    513     const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]);
    514     const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]);
    515     const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]);
    516     const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]);
    517     float32x4_t vec_sd = vmulq_n_f32(vld1q_f32(&aec->sd[i]), ptrGCoh[0]);
    518     float32x4_t vec_se = vmulq_n_f32(vld1q_f32(&aec->se[i]), ptrGCoh[0]);
    519     float32x4_t vec_sx = vmulq_n_f32(vld1q_f32(&aec->sx[i]), ptrGCoh[0]);
    520     float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0);
    521     float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0);
    522     float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0);
    523 
    524     vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1);
    525     vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1);
    526     vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1);
    527     vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15);
    528     vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]);
    529     vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]);
    530     vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]);
    531 
    532     vst1q_f32(&aec->sd[i], vec_sd);
    533     vst1q_f32(&aec->se[i], vec_se);
    534     vst1q_f32(&aec->sx[i], vec_sx);
    535 
    536     {
    537       float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
    538       float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0);
    539       float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1);
    540       vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]);
    541       vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]);
    542       vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1);
    543       vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0);
    544       vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]);
    545       vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]);
    546       vst2q_f32(&aec->sde[i][0], vec_sde);
    547     }
    548 
    549     {
    550       float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
    551       float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0);
    552       float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1);
    553       vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]);
    554       vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]);
    555       vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1);
    556       vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0);
    557       vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]);
    558       vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]);
    559       vst2q_f32(&aec->sxd[i][0], vec_sxd);
    560     }
    561 
    562     vec_sdSum = vaddq_f32(vec_sdSum, vec_sd);
    563     vec_seSum = vaddq_f32(vec_seSum, vec_se);
    564   }
    565   {
    566     float32x2_t vec_sdSum_total;
    567     float32x2_t vec_seSum_total;
    568     // A B C D
    569     vec_sdSum_total = vpadd_f32(vget_low_f32(vec_sdSum),
    570                                 vget_high_f32(vec_sdSum));
    571     vec_seSum_total = vpadd_f32(vget_low_f32(vec_seSum),
    572                                 vget_high_f32(vec_seSum));
    573     // A+B C+D
    574     vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total);
    575     vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total);
    576     // A+B+C+D A+B+C+D
    577     sdSum = vget_lane_f32(vec_sdSum_total, 0);
    578     seSum = vget_lane_f32(vec_seSum_total, 0);
    579   }
    580 
    581   // scalar code for the remaining items.
    582   for (; i < PART_LEN1; i++) {
    583     aec->sd[i] = ptrGCoh[0] * aec->sd[i] +
    584                  ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
    585     aec->se[i] = ptrGCoh[0] * aec->se[i] +
    586                  ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
    587     // We threshold here to protect against the ill-effects of a zero farend.
    588     // The threshold is not arbitrarily chosen, but balances protection and
    589     // adverse interaction with the algorithm's tuning.
    590     // TODO(bjornv): investigate further why this is so sensitive.
    591     aec->sx[i] =
    592         ptrGCoh[0] * aec->sx[i] +
    593         ptrGCoh[1] * WEBRTC_SPL_MAX(
    594             xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
    595             WebRtcAec_kMinFarendPSD);
    596 
    597     aec->sde[i][0] =
    598         ptrGCoh[0] * aec->sde[i][0] +
    599         ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
    600     aec->sde[i][1] =
    601         ptrGCoh[0] * aec->sde[i][1] +
    602         ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
    603 
    604     aec->sxd[i][0] =
    605         ptrGCoh[0] * aec->sxd[i][0] +
    606         ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
    607     aec->sxd[i][1] =
    608         ptrGCoh[0] * aec->sxd[i][1] +
    609         ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
    610 
    611     sdSum += aec->sd[i];
    612     seSum += aec->se[i];
    613   }
    614 
    615   // Divergent filter safeguard.
    616   aec->divergeState = (aec->divergeState ? 1.05f : 1.0f) * seSum > sdSum;
    617 
    618   if (aec->divergeState)
    619     memcpy(efw, dfw, sizeof(efw[0][0]) * 2 * PART_LEN1);
    620 
    621   // Reset if error is significantly larger than nearend (13 dB).
    622   if (!aec->extended_filter_enabled && seSum > (19.95f * sdSum))
    623     memset(aec->wfBuf, 0, sizeof(aec->wfBuf));
    624 }
    625 
    626 // Window time domain data to be used by the fft.
    627 __inline static void WindowData(float* x_windowed, const float* x) {
    628   int i;
    629   for (i = 0; i < PART_LEN; i += 4) {
    630     const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
    631     const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
    632     const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
    633     // A B C D
    634     float32x4_t vec_sqrtHanning_rev =
    635         vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
    636     // B A D C
    637     vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
    638     // D C B A
    639     vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
    640                                        vget_low_f32(vec_sqrtHanning_rev));
    641     vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
    642     vst1q_f32(&x_windowed[PART_LEN + i],
    643             vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
    644   }
    645 }
    646 
    647 // Puts fft output data into a complex valued array.
    648 __inline static void StoreAsComplex(const float* data,
    649                                     float data_complex[2][PART_LEN1]) {
    650   int i;
    651   for (i = 0; i < PART_LEN; i += 4) {
    652     const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]);
    653     vst1q_f32(&data_complex[0][i], vec_data.val[0]);
    654     vst1q_f32(&data_complex[1][i], vec_data.val[1]);
    655   }
    656   // fix beginning/end values
    657   data_complex[1][0] = 0;
    658   data_complex[1][PART_LEN] = 0;
    659   data_complex[0][0] = data[0];
    660   data_complex[0][PART_LEN] = data[1];
    661 }
    662 
    663 static void SubbandCoherenceNEON(AecCore* aec,
    664                                  float efw[2][PART_LEN1],
    665                                  float xfw[2][PART_LEN1],
    666                                  float* fft,
    667                                  float* cohde,
    668                                  float* cohxd) {
    669   float dfw[2][PART_LEN1];
    670   int i;
    671 
    672   if (aec->delayEstCtr == 0)
    673     aec->delayIdx = PartitionDelay(aec);
    674 
    675   // Use delayed far.
    676   memcpy(xfw,
    677          aec->xfwBuf + aec->delayIdx * PART_LEN1,
    678          sizeof(xfw[0][0]) * 2 * PART_LEN1);
    679 
    680   // Windowed near fft
    681   WindowData(fft, aec->dBuf);
    682   aec_rdft_forward_128(fft);
    683   StoreAsComplex(fft, dfw);
    684 
    685   // Windowed error fft
    686   WindowData(fft, aec->eBuf);
    687   aec_rdft_forward_128(fft);
    688   StoreAsComplex(fft, efw);
    689 
    690   SmoothedPSD(aec, efw, dfw, xfw);
    691 
    692   {
    693     const float32x4_t vec_1eminus10 =  vdupq_n_f32(1e-10f);
    694 
    695     // Subband coherence
    696     for (i = 0; i + 3 < PART_LEN1; i += 4) {
    697       const float32x4_t vec_sd = vld1q_f32(&aec->sd[i]);
    698       const float32x4_t vec_se = vld1q_f32(&aec->se[i]);
    699       const float32x4_t vec_sx = vld1q_f32(&aec->sx[i]);
    700       const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se);
    701       const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx);
    702       float32x4x2_t vec_sde = vld2q_f32(&aec->sde[i][0]);
    703       float32x4x2_t vec_sxd = vld2q_f32(&aec->sxd[i][0]);
    704       float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]);
    705       float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]);
    706       vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]);
    707       vec_cohde = vdivq_f32(vec_cohde, vec_sdse);
    708       vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]);
    709       vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx);
    710 
    711       vst1q_f32(&cohde[i], vec_cohde);
    712       vst1q_f32(&cohxd[i], vec_cohxd);
    713     }
    714   }
    715   // scalar code for the remaining items.
    716   for (; i < PART_LEN1; i++) {
    717     cohde[i] =
    718         (aec->sde[i][0] * aec->sde[i][0] + aec->sde[i][1] * aec->sde[i][1]) /
    719         (aec->sd[i] * aec->se[i] + 1e-10f);
    720     cohxd[i] =
    721         (aec->sxd[i][0] * aec->sxd[i][0] + aec->sxd[i][1] * aec->sxd[i][1]) /
    722         (aec->sx[i] * aec->sd[i] + 1e-10f);
    723   }
    724 }
    725 
    726 void WebRtcAec_InitAec_neon(void) {
    727   WebRtcAec_FilterFar = FilterFarNEON;
    728   WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
    729   WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
    730   WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressNEON;
    731   WebRtcAec_SubbandCoherence = SubbandCoherenceNEON;
    732 }
    733 
    734