1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/v8.h" 6 7 #include "src/arm64/lithium-codegen-arm64.h" 8 #include "src/arm64/lithium-gap-resolver-arm64.h" 9 #include "src/base/bits.h" 10 #include "src/code-factory.h" 11 #include "src/code-stubs.h" 12 #include "src/hydrogen-osr.h" 13 #include "src/ic/ic.h" 14 #include "src/ic/stub-cache.h" 15 16 namespace v8 { 17 namespace internal { 18 19 20 class SafepointGenerator FINAL : public CallWrapper { 21 public: 22 SafepointGenerator(LCodeGen* codegen, 23 LPointerMap* pointers, 24 Safepoint::DeoptMode mode) 25 : codegen_(codegen), 26 pointers_(pointers), 27 deopt_mode_(mode) { } 28 virtual ~SafepointGenerator() { } 29 30 virtual void BeforeCall(int call_size) const { } 31 32 virtual void AfterCall() const { 33 codegen_->RecordSafepoint(pointers_, deopt_mode_); 34 } 35 36 private: 37 LCodeGen* codegen_; 38 LPointerMap* pointers_; 39 Safepoint::DeoptMode deopt_mode_; 40 }; 41 42 43 #define __ masm()-> 44 45 // Emit code to branch if the given condition holds. 46 // The code generated here doesn't modify the flags and they must have 47 // been set by some prior instructions. 48 // 49 // The EmitInverted function simply inverts the condition. 50 class BranchOnCondition : public BranchGenerator { 51 public: 52 BranchOnCondition(LCodeGen* codegen, Condition cond) 53 : BranchGenerator(codegen), 54 cond_(cond) { } 55 56 virtual void Emit(Label* label) const { 57 __ B(cond_, label); 58 } 59 60 virtual void EmitInverted(Label* label) const { 61 if (cond_ != al) { 62 __ B(NegateCondition(cond_), label); 63 } 64 } 65 66 private: 67 Condition cond_; 68 }; 69 70 71 // Emit code to compare lhs and rhs and branch if the condition holds. 72 // This uses MacroAssembler's CompareAndBranch function so it will handle 73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0. 74 // 75 // EmitInverted still compares the two operands but inverts the condition. 76 class CompareAndBranch : public BranchGenerator { 77 public: 78 CompareAndBranch(LCodeGen* codegen, 79 Condition cond, 80 const Register& lhs, 81 const Operand& rhs) 82 : BranchGenerator(codegen), 83 cond_(cond), 84 lhs_(lhs), 85 rhs_(rhs) { } 86 87 virtual void Emit(Label* label) const { 88 __ CompareAndBranch(lhs_, rhs_, cond_, label); 89 } 90 91 virtual void EmitInverted(Label* label) const { 92 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); 93 } 94 95 private: 96 Condition cond_; 97 const Register& lhs_; 98 const Operand& rhs_; 99 }; 100 101 102 // Test the input with the given mask and branch if the condition holds. 103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's 104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the 105 // conversion to Tbz/Tbnz when possible. 106 class TestAndBranch : public BranchGenerator { 107 public: 108 TestAndBranch(LCodeGen* codegen, 109 Condition cond, 110 const Register& value, 111 uint64_t mask) 112 : BranchGenerator(codegen), 113 cond_(cond), 114 value_(value), 115 mask_(mask) { } 116 117 virtual void Emit(Label* label) const { 118 switch (cond_) { 119 case eq: 120 __ TestAndBranchIfAllClear(value_, mask_, label); 121 break; 122 case ne: 123 __ TestAndBranchIfAnySet(value_, mask_, label); 124 break; 125 default: 126 __ Tst(value_, mask_); 127 __ B(cond_, label); 128 } 129 } 130 131 virtual void EmitInverted(Label* label) const { 132 // The inverse of "all clear" is "any set" and vice versa. 133 switch (cond_) { 134 case eq: 135 __ TestAndBranchIfAnySet(value_, mask_, label); 136 break; 137 case ne: 138 __ TestAndBranchIfAllClear(value_, mask_, label); 139 break; 140 default: 141 __ Tst(value_, mask_); 142 __ B(NegateCondition(cond_), label); 143 } 144 } 145 146 private: 147 Condition cond_; 148 const Register& value_; 149 uint64_t mask_; 150 }; 151 152 153 // Test the input and branch if it is non-zero and not a NaN. 154 class BranchIfNonZeroNumber : public BranchGenerator { 155 public: 156 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, 157 const FPRegister& scratch) 158 : BranchGenerator(codegen), value_(value), scratch_(scratch) { } 159 160 virtual void Emit(Label* label) const { 161 __ Fabs(scratch_, value_); 162 // Compare with 0.0. Because scratch_ is positive, the result can be one of 163 // nZCv (equal), nzCv (greater) or nzCV (unordered). 164 __ Fcmp(scratch_, 0.0); 165 __ B(gt, label); 166 } 167 168 virtual void EmitInverted(Label* label) const { 169 __ Fabs(scratch_, value_); 170 __ Fcmp(scratch_, 0.0); 171 __ B(le, label); 172 } 173 174 private: 175 const FPRegister& value_; 176 const FPRegister& scratch_; 177 }; 178 179 180 // Test the input and branch if it is a heap number. 181 class BranchIfHeapNumber : public BranchGenerator { 182 public: 183 BranchIfHeapNumber(LCodeGen* codegen, const Register& value) 184 : BranchGenerator(codegen), value_(value) { } 185 186 virtual void Emit(Label* label) const { 187 __ JumpIfHeapNumber(value_, label); 188 } 189 190 virtual void EmitInverted(Label* label) const { 191 __ JumpIfNotHeapNumber(value_, label); 192 } 193 194 private: 195 const Register& value_; 196 }; 197 198 199 // Test the input and branch if it is the specified root value. 200 class BranchIfRoot : public BranchGenerator { 201 public: 202 BranchIfRoot(LCodeGen* codegen, const Register& value, 203 Heap::RootListIndex index) 204 : BranchGenerator(codegen), value_(value), index_(index) { } 205 206 virtual void Emit(Label* label) const { 207 __ JumpIfRoot(value_, index_, label); 208 } 209 210 virtual void EmitInverted(Label* label) const { 211 __ JumpIfNotRoot(value_, index_, label); 212 } 213 214 private: 215 const Register& value_; 216 const Heap::RootListIndex index_; 217 }; 218 219 220 void LCodeGen::WriteTranslation(LEnvironment* environment, 221 Translation* translation) { 222 if (environment == NULL) return; 223 224 // The translation includes one command per value in the environment. 225 int translation_size = environment->translation_size(); 226 // The output frame height does not include the parameters. 227 int height = translation_size - environment->parameter_count(); 228 229 WriteTranslation(environment->outer(), translation); 230 bool has_closure_id = !info()->closure().is_null() && 231 !info()->closure().is_identical_to(environment->closure()); 232 int closure_id = has_closure_id 233 ? DefineDeoptimizationLiteral(environment->closure()) 234 : Translation::kSelfLiteralId; 235 236 switch (environment->frame_type()) { 237 case JS_FUNCTION: 238 translation->BeginJSFrame(environment->ast_id(), closure_id, height); 239 break; 240 case JS_CONSTRUCT: 241 translation->BeginConstructStubFrame(closure_id, translation_size); 242 break; 243 case JS_GETTER: 244 DCHECK(translation_size == 1); 245 DCHECK(height == 0); 246 translation->BeginGetterStubFrame(closure_id); 247 break; 248 case JS_SETTER: 249 DCHECK(translation_size == 2); 250 DCHECK(height == 0); 251 translation->BeginSetterStubFrame(closure_id); 252 break; 253 case STUB: 254 translation->BeginCompiledStubFrame(); 255 break; 256 case ARGUMENTS_ADAPTOR: 257 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); 258 break; 259 default: 260 UNREACHABLE(); 261 } 262 263 int object_index = 0; 264 int dematerialized_index = 0; 265 for (int i = 0; i < translation_size; ++i) { 266 LOperand* value = environment->values()->at(i); 267 268 AddToTranslation(environment, 269 translation, 270 value, 271 environment->HasTaggedValueAt(i), 272 environment->HasUint32ValueAt(i), 273 &object_index, 274 &dematerialized_index); 275 } 276 } 277 278 279 void LCodeGen::AddToTranslation(LEnvironment* environment, 280 Translation* translation, 281 LOperand* op, 282 bool is_tagged, 283 bool is_uint32, 284 int* object_index_pointer, 285 int* dematerialized_index_pointer) { 286 if (op == LEnvironment::materialization_marker()) { 287 int object_index = (*object_index_pointer)++; 288 if (environment->ObjectIsDuplicateAt(object_index)) { 289 int dupe_of = environment->ObjectDuplicateOfAt(object_index); 290 translation->DuplicateObject(dupe_of); 291 return; 292 } 293 int object_length = environment->ObjectLengthAt(object_index); 294 if (environment->ObjectIsArgumentsAt(object_index)) { 295 translation->BeginArgumentsObject(object_length); 296 } else { 297 translation->BeginCapturedObject(object_length); 298 } 299 int dematerialized_index = *dematerialized_index_pointer; 300 int env_offset = environment->translation_size() + dematerialized_index; 301 *dematerialized_index_pointer += object_length; 302 for (int i = 0; i < object_length; ++i) { 303 LOperand* value = environment->values()->at(env_offset + i); 304 AddToTranslation(environment, 305 translation, 306 value, 307 environment->HasTaggedValueAt(env_offset + i), 308 environment->HasUint32ValueAt(env_offset + i), 309 object_index_pointer, 310 dematerialized_index_pointer); 311 } 312 return; 313 } 314 315 if (op->IsStackSlot()) { 316 if (is_tagged) { 317 translation->StoreStackSlot(op->index()); 318 } else if (is_uint32) { 319 translation->StoreUint32StackSlot(op->index()); 320 } else { 321 translation->StoreInt32StackSlot(op->index()); 322 } 323 } else if (op->IsDoubleStackSlot()) { 324 translation->StoreDoubleStackSlot(op->index()); 325 } else if (op->IsRegister()) { 326 Register reg = ToRegister(op); 327 if (is_tagged) { 328 translation->StoreRegister(reg); 329 } else if (is_uint32) { 330 translation->StoreUint32Register(reg); 331 } else { 332 translation->StoreInt32Register(reg); 333 } 334 } else if (op->IsDoubleRegister()) { 335 DoubleRegister reg = ToDoubleRegister(op); 336 translation->StoreDoubleRegister(reg); 337 } else if (op->IsConstantOperand()) { 338 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); 339 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); 340 translation->StoreLiteral(src_index); 341 } else { 342 UNREACHABLE(); 343 } 344 } 345 346 347 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { 348 int result = deoptimization_literals_.length(); 349 for (int i = 0; i < deoptimization_literals_.length(); ++i) { 350 if (deoptimization_literals_[i].is_identical_to(literal)) return i; 351 } 352 deoptimization_literals_.Add(literal, zone()); 353 return result; 354 } 355 356 357 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, 358 Safepoint::DeoptMode mode) { 359 environment->set_has_been_used(); 360 if (!environment->HasBeenRegistered()) { 361 int frame_count = 0; 362 int jsframe_count = 0; 363 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { 364 ++frame_count; 365 if (e->frame_type() == JS_FUNCTION) { 366 ++jsframe_count; 367 } 368 } 369 Translation translation(&translations_, frame_count, jsframe_count, zone()); 370 WriteTranslation(environment, &translation); 371 int deoptimization_index = deoptimizations_.length(); 372 int pc_offset = masm()->pc_offset(); 373 environment->Register(deoptimization_index, 374 translation.index(), 375 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); 376 deoptimizations_.Add(environment, zone()); 377 } 378 } 379 380 381 void LCodeGen::CallCode(Handle<Code> code, 382 RelocInfo::Mode mode, 383 LInstruction* instr) { 384 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); 385 } 386 387 388 void LCodeGen::CallCodeGeneric(Handle<Code> code, 389 RelocInfo::Mode mode, 390 LInstruction* instr, 391 SafepointMode safepoint_mode) { 392 DCHECK(instr != NULL); 393 394 Assembler::BlockPoolsScope scope(masm_); 395 __ Call(code, mode); 396 RecordSafepointWithLazyDeopt(instr, safepoint_mode); 397 398 if ((code->kind() == Code::BINARY_OP_IC) || 399 (code->kind() == Code::COMPARE_IC)) { 400 // Signal that we don't inline smi code before these stubs in the 401 // optimizing code generator. 402 InlineSmiCheckInfo::EmitNotInlined(masm()); 403 } 404 } 405 406 407 void LCodeGen::DoCallFunction(LCallFunction* instr) { 408 DCHECK(ToRegister(instr->context()).is(cp)); 409 DCHECK(ToRegister(instr->function()).Is(x1)); 410 DCHECK(ToRegister(instr->result()).Is(x0)); 411 412 int arity = instr->arity(); 413 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags()); 414 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 415 after_push_argument_ = false; 416 } 417 418 419 void LCodeGen::DoCallNew(LCallNew* instr) { 420 DCHECK(ToRegister(instr->context()).is(cp)); 421 DCHECK(instr->IsMarkedAsCall()); 422 DCHECK(ToRegister(instr->constructor()).is(x1)); 423 424 __ Mov(x0, instr->arity()); 425 // No cell in x2 for construct type feedback in optimized code. 426 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); 427 428 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); 429 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 430 after_push_argument_ = false; 431 432 DCHECK(ToRegister(instr->result()).is(x0)); 433 } 434 435 436 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { 437 DCHECK(instr->IsMarkedAsCall()); 438 DCHECK(ToRegister(instr->context()).is(cp)); 439 DCHECK(ToRegister(instr->constructor()).is(x1)); 440 441 __ Mov(x0, Operand(instr->arity())); 442 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); 443 444 ElementsKind kind = instr->hydrogen()->elements_kind(); 445 AllocationSiteOverrideMode override_mode = 446 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) 447 ? DISABLE_ALLOCATION_SITES 448 : DONT_OVERRIDE; 449 450 if (instr->arity() == 0) { 451 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); 452 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 453 } else if (instr->arity() == 1) { 454 Label done; 455 if (IsFastPackedElementsKind(kind)) { 456 Label packed_case; 457 458 // We might need to create a holey array; look at the first argument. 459 __ Peek(x10, 0); 460 __ Cbz(x10, &packed_case); 461 462 ElementsKind holey_kind = GetHoleyElementsKind(kind); 463 ArraySingleArgumentConstructorStub stub(isolate(), 464 holey_kind, 465 override_mode); 466 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 467 __ B(&done); 468 __ Bind(&packed_case); 469 } 470 471 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); 472 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 473 __ Bind(&done); 474 } else { 475 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); 476 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 477 } 478 after_push_argument_ = false; 479 480 DCHECK(ToRegister(instr->result()).is(x0)); 481 } 482 483 484 void LCodeGen::CallRuntime(const Runtime::Function* function, 485 int num_arguments, 486 LInstruction* instr, 487 SaveFPRegsMode save_doubles) { 488 DCHECK(instr != NULL); 489 490 __ CallRuntime(function, num_arguments, save_doubles); 491 492 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 493 } 494 495 496 void LCodeGen::LoadContextFromDeferred(LOperand* context) { 497 if (context->IsRegister()) { 498 __ Mov(cp, ToRegister(context)); 499 } else if (context->IsStackSlot()) { 500 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); 501 } else if (context->IsConstantOperand()) { 502 HConstant* constant = 503 chunk_->LookupConstant(LConstantOperand::cast(context)); 504 __ LoadHeapObject(cp, 505 Handle<HeapObject>::cast(constant->handle(isolate()))); 506 } else { 507 UNREACHABLE(); 508 } 509 } 510 511 512 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, 513 int argc, 514 LInstruction* instr, 515 LOperand* context) { 516 LoadContextFromDeferred(context); 517 __ CallRuntimeSaveDoubles(id); 518 RecordSafepointWithRegisters( 519 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); 520 } 521 522 523 void LCodeGen::RecordAndWritePosition(int position) { 524 if (position == RelocInfo::kNoPosition) return; 525 masm()->positions_recorder()->RecordPosition(position); 526 masm()->positions_recorder()->WriteRecordedPositions(); 527 } 528 529 530 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, 531 SafepointMode safepoint_mode) { 532 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { 533 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); 534 } else { 535 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 536 RecordSafepointWithRegisters( 537 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 538 } 539 } 540 541 542 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 543 Safepoint::Kind kind, 544 int arguments, 545 Safepoint::DeoptMode deopt_mode) { 546 DCHECK(expected_safepoint_kind_ == kind); 547 548 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); 549 Safepoint safepoint = safepoints_.DefineSafepoint( 550 masm(), kind, arguments, deopt_mode); 551 552 for (int i = 0; i < operands->length(); i++) { 553 LOperand* pointer = operands->at(i); 554 if (pointer->IsStackSlot()) { 555 safepoint.DefinePointerSlot(pointer->index(), zone()); 556 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { 557 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); 558 } 559 } 560 561 if (kind & Safepoint::kWithRegisters) { 562 // Register cp always contains a pointer to the context. 563 safepoint.DefinePointerRegister(cp, zone()); 564 } 565 } 566 567 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 568 Safepoint::DeoptMode deopt_mode) { 569 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); 570 } 571 572 573 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { 574 LPointerMap empty_pointers(zone()); 575 RecordSafepoint(&empty_pointers, deopt_mode); 576 } 577 578 579 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, 580 int arguments, 581 Safepoint::DeoptMode deopt_mode) { 582 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); 583 } 584 585 586 bool LCodeGen::GenerateCode() { 587 LPhase phase("Z_Code generation", chunk()); 588 DCHECK(is_unused()); 589 status_ = GENERATING; 590 591 // Open a frame scope to indicate that there is a frame on the stack. The 592 // NONE indicates that the scope shouldn't actually generate code to set up 593 // the frame (that is done in GeneratePrologue). 594 FrameScope frame_scope(masm_, StackFrame::NONE); 595 596 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && 597 GenerateJumpTable() && GenerateSafepointTable(); 598 } 599 600 601 void LCodeGen::SaveCallerDoubles() { 602 DCHECK(info()->saves_caller_doubles()); 603 DCHECK(NeedsEagerFrame()); 604 Comment(";;; Save clobbered callee double registers"); 605 BitVector* doubles = chunk()->allocated_double_registers(); 606 BitVector::Iterator iterator(doubles); 607 int count = 0; 608 while (!iterator.Done()) { 609 // TODO(all): Is this supposed to save just the callee-saved doubles? It 610 // looks like it's saving all of them. 611 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current()); 612 __ Poke(value, count * kDoubleSize); 613 iterator.Advance(); 614 count++; 615 } 616 } 617 618 619 void LCodeGen::RestoreCallerDoubles() { 620 DCHECK(info()->saves_caller_doubles()); 621 DCHECK(NeedsEagerFrame()); 622 Comment(";;; Restore clobbered callee double registers"); 623 BitVector* doubles = chunk()->allocated_double_registers(); 624 BitVector::Iterator iterator(doubles); 625 int count = 0; 626 while (!iterator.Done()) { 627 // TODO(all): Is this supposed to restore just the callee-saved doubles? It 628 // looks like it's restoring all of them. 629 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current()); 630 __ Peek(value, count * kDoubleSize); 631 iterator.Advance(); 632 count++; 633 } 634 } 635 636 637 bool LCodeGen::GeneratePrologue() { 638 DCHECK(is_generating()); 639 640 if (info()->IsOptimizing()) { 641 ProfileEntryHookStub::MaybeCallEntryHook(masm_); 642 643 // TODO(all): Add support for stop_t FLAG in DEBUG mode. 644 645 // Sloppy mode functions and builtins need to replace the receiver with the 646 // global proxy when called as functions (without an explicit receiver 647 // object). 648 if (info_->this_has_uses() && 649 info_->strict_mode() == SLOPPY && 650 !info_->is_native()) { 651 Label ok; 652 int receiver_offset = info_->scope()->num_parameters() * kXRegSize; 653 __ Peek(x10, receiver_offset); 654 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok); 655 656 __ Ldr(x10, GlobalObjectMemOperand()); 657 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset)); 658 __ Poke(x10, receiver_offset); 659 660 __ Bind(&ok); 661 } 662 } 663 664 DCHECK(__ StackPointer().Is(jssp)); 665 info()->set_prologue_offset(masm_->pc_offset()); 666 if (NeedsEagerFrame()) { 667 if (info()->IsStub()) { 668 __ StubPrologue(); 669 } else { 670 __ Prologue(info()->IsCodePreAgingActive()); 671 } 672 frame_is_built_ = true; 673 info_->AddNoFrameRange(0, masm_->pc_offset()); 674 } 675 676 // Reserve space for the stack slots needed by the code. 677 int slots = GetStackSlotCount(); 678 if (slots > 0) { 679 __ Claim(slots, kPointerSize); 680 } 681 682 if (info()->saves_caller_doubles()) { 683 SaveCallerDoubles(); 684 } 685 686 // Allocate a local context if needed. 687 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 688 if (heap_slots > 0) { 689 Comment(";;; Allocate local context"); 690 bool need_write_barrier = true; 691 // Argument to NewContext is the function, which is in x1. 692 if (heap_slots <= FastNewContextStub::kMaximumSlots) { 693 FastNewContextStub stub(isolate(), heap_slots); 694 __ CallStub(&stub); 695 // Result of FastNewContextStub is always in new space. 696 need_write_barrier = false; 697 } else { 698 __ Push(x1); 699 __ CallRuntime(Runtime::kNewFunctionContext, 1); 700 } 701 RecordSafepoint(Safepoint::kNoLazyDeopt); 702 // Context is returned in x0. It replaces the context passed to us. It's 703 // saved in the stack and kept live in cp. 704 __ Mov(cp, x0); 705 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); 706 // Copy any necessary parameters into the context. 707 int num_parameters = scope()->num_parameters(); 708 for (int i = 0; i < num_parameters; i++) { 709 Variable* var = scope()->parameter(i); 710 if (var->IsContextSlot()) { 711 Register value = x0; 712 Register scratch = x3; 713 714 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 715 (num_parameters - 1 - i) * kPointerSize; 716 // Load parameter from stack. 717 __ Ldr(value, MemOperand(fp, parameter_offset)); 718 // Store it in the context. 719 MemOperand target = ContextMemOperand(cp, var->index()); 720 __ Str(value, target); 721 // Update the write barrier. This clobbers value and scratch. 722 if (need_write_barrier) { 723 __ RecordWriteContextSlot(cp, target.offset(), value, scratch, 724 GetLinkRegisterState(), kSaveFPRegs); 725 } else if (FLAG_debug_code) { 726 Label done; 727 __ JumpIfInNewSpace(cp, &done); 728 __ Abort(kExpectedNewSpaceObject); 729 __ bind(&done); 730 } 731 } 732 } 733 Comment(";;; End allocate local context"); 734 } 735 736 // Trace the call. 737 if (FLAG_trace && info()->IsOptimizing()) { 738 // We have not executed any compiled code yet, so cp still holds the 739 // incoming context. 740 __ CallRuntime(Runtime::kTraceEnter, 0); 741 } 742 743 return !is_aborted(); 744 } 745 746 747 void LCodeGen::GenerateOsrPrologue() { 748 // Generate the OSR entry prologue at the first unknown OSR value, or if there 749 // are none, at the OSR entrypoint instruction. 750 if (osr_pc_offset_ >= 0) return; 751 752 osr_pc_offset_ = masm()->pc_offset(); 753 754 // Adjust the frame size, subsuming the unoptimized frame into the 755 // optimized frame. 756 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); 757 DCHECK(slots >= 0); 758 __ Claim(slots); 759 } 760 761 762 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { 763 if (instr->IsCall()) { 764 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 765 } 766 if (!instr->IsLazyBailout() && !instr->IsGap()) { 767 safepoints_.BumpLastLazySafepointIndex(); 768 } 769 } 770 771 772 bool LCodeGen::GenerateDeferredCode() { 773 DCHECK(is_generating()); 774 if (deferred_.length() > 0) { 775 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { 776 LDeferredCode* code = deferred_[i]; 777 778 HValue* value = 779 instructions_->at(code->instruction_index())->hydrogen_value(); 780 RecordAndWritePosition( 781 chunk()->graph()->SourcePositionToScriptPosition(value->position())); 782 783 Comment(";;; <@%d,#%d> " 784 "-------------------- Deferred %s --------------------", 785 code->instruction_index(), 786 code->instr()->hydrogen_value()->id(), 787 code->instr()->Mnemonic()); 788 789 __ Bind(code->entry()); 790 791 if (NeedsDeferredFrame()) { 792 Comment(";;; Build frame"); 793 DCHECK(!frame_is_built_); 794 DCHECK(info()->IsStub()); 795 frame_is_built_ = true; 796 __ Push(lr, fp, cp); 797 __ Mov(fp, Smi::FromInt(StackFrame::STUB)); 798 __ Push(fp); 799 __ Add(fp, __ StackPointer(), 800 StandardFrameConstants::kFixedFrameSizeFromFp); 801 Comment(";;; Deferred code"); 802 } 803 804 code->Generate(); 805 806 if (NeedsDeferredFrame()) { 807 Comment(";;; Destroy frame"); 808 DCHECK(frame_is_built_); 809 __ Pop(xzr, cp, fp, lr); 810 frame_is_built_ = false; 811 } 812 813 __ B(code->exit()); 814 } 815 } 816 817 // Force constant pool emission at the end of the deferred code to make 818 // sure that no constant pools are emitted after deferred code because 819 // deferred code generation is the last step which generates code. The two 820 // following steps will only output data used by crakshaft. 821 masm()->CheckConstPool(true, false); 822 823 return !is_aborted(); 824 } 825 826 827 bool LCodeGen::GenerateJumpTable() { 828 Label needs_frame, restore_caller_doubles, call_deopt_entry; 829 830 if (jump_table_.length() > 0) { 831 Comment(";;; -------------------- Jump table --------------------"); 832 Address base = jump_table_[0]->address; 833 834 UseScratchRegisterScope temps(masm()); 835 Register entry_offset = temps.AcquireX(); 836 837 int length = jump_table_.length(); 838 for (int i = 0; i < length; i++) { 839 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; 840 __ Bind(&table_entry->label); 841 842 Address entry = table_entry->address; 843 DeoptComment(table_entry->reason); 844 845 // Second-level deopt table entries are contiguous and small, so instead 846 // of loading the full, absolute address of each one, load the base 847 // address and add an immediate offset. 848 __ Mov(entry_offset, entry - base); 849 850 // The last entry can fall through into `call_deopt_entry`, avoiding a 851 // branch. 852 bool last_entry = (i + 1) == length; 853 854 if (table_entry->needs_frame) { 855 DCHECK(!info()->saves_caller_doubles()); 856 if (!needs_frame.is_bound()) { 857 // This variant of deopt can only be used with stubs. Since we don't 858 // have a function pointer to install in the stack frame that we're 859 // building, install a special marker there instead. 860 DCHECK(info()->IsStub()); 861 862 UseScratchRegisterScope temps(masm()); 863 Register stub_marker = temps.AcquireX(); 864 __ Bind(&needs_frame); 865 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB)); 866 __ Push(lr, fp, cp, stub_marker); 867 __ Add(fp, __ StackPointer(), 2 * kPointerSize); 868 if (!last_entry) __ B(&call_deopt_entry); 869 } else { 870 // Reuse the existing needs_frame code. 871 __ B(&needs_frame); 872 } 873 } else if (info()->saves_caller_doubles()) { 874 DCHECK(info()->IsStub()); 875 if (!restore_caller_doubles.is_bound()) { 876 __ Bind(&restore_caller_doubles); 877 RestoreCallerDoubles(); 878 if (!last_entry) __ B(&call_deopt_entry); 879 } else { 880 // Reuse the existing restore_caller_doubles code. 881 __ B(&restore_caller_doubles); 882 } 883 } else { 884 // There is nothing special to do, so just continue to the second-level 885 // table. 886 if (!last_entry) __ B(&call_deopt_entry); 887 } 888 889 masm()->CheckConstPool(false, last_entry); 890 } 891 892 // Generate common code for calling the second-level deopt table. 893 Register deopt_entry = temps.AcquireX(); 894 __ Bind(&call_deopt_entry); 895 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base), 896 RelocInfo::RUNTIME_ENTRY)); 897 __ Add(deopt_entry, deopt_entry, entry_offset); 898 __ Call(deopt_entry); 899 } 900 901 // Force constant pool emission at the end of the deopt jump table to make 902 // sure that no constant pools are emitted after. 903 masm()->CheckConstPool(true, false); 904 905 // The deoptimization jump table is the last part of the instruction 906 // sequence. Mark the generated code as done unless we bailed out. 907 if (!is_aborted()) status_ = DONE; 908 return !is_aborted(); 909 } 910 911 912 bool LCodeGen::GenerateSafepointTable() { 913 DCHECK(is_done()); 914 // We do not know how much data will be emitted for the safepoint table, so 915 // force emission of the veneer pool. 916 masm()->CheckVeneerPool(true, true); 917 safepoints_.Emit(masm(), GetStackSlotCount()); 918 return !is_aborted(); 919 } 920 921 922 void LCodeGen::FinishCode(Handle<Code> code) { 923 DCHECK(is_done()); 924 code->set_stack_slots(GetStackSlotCount()); 925 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); 926 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code); 927 PopulateDeoptimizationData(code); 928 } 929 930 931 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { 932 int length = deoptimizations_.length(); 933 if (length == 0) return; 934 935 Handle<DeoptimizationInputData> data = 936 DeoptimizationInputData::New(isolate(), length, TENURED); 937 938 Handle<ByteArray> translations = 939 translations_.CreateByteArray(isolate()->factory()); 940 data->SetTranslationByteArray(*translations); 941 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); 942 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); 943 if (info_->IsOptimizing()) { 944 // Reference to shared function info does not change between phases. 945 AllowDeferredHandleDereference allow_handle_dereference; 946 data->SetSharedFunctionInfo(*info_->shared_info()); 947 } else { 948 data->SetSharedFunctionInfo(Smi::FromInt(0)); 949 } 950 951 Handle<FixedArray> literals = 952 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); 953 { AllowDeferredHandleDereference copy_handles; 954 for (int i = 0; i < deoptimization_literals_.length(); i++) { 955 literals->set(i, *deoptimization_literals_[i]); 956 } 957 data->SetLiteralArray(*literals); 958 } 959 960 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); 961 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); 962 963 // Populate the deoptimization entries. 964 for (int i = 0; i < length; i++) { 965 LEnvironment* env = deoptimizations_[i]; 966 data->SetAstId(i, env->ast_id()); 967 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); 968 data->SetArgumentsStackHeight(i, 969 Smi::FromInt(env->arguments_stack_height())); 970 data->SetPc(i, Smi::FromInt(env->pc_offset())); 971 } 972 973 code->set_deoptimization_data(*data); 974 } 975 976 977 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { 978 DCHECK(deoptimization_literals_.length() == 0); 979 980 const ZoneList<Handle<JSFunction> >* inlined_closures = 981 chunk()->inlined_closures(); 982 983 for (int i = 0, length = inlined_closures->length(); i < length; i++) { 984 DefineDeoptimizationLiteral(inlined_closures->at(i)); 985 } 986 987 inlined_function_count_ = deoptimization_literals_.length(); 988 } 989 990 991 void LCodeGen::DeoptimizeBranch( 992 LInstruction* instr, const char* detail, BranchType branch_type, 993 Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) { 994 LEnvironment* environment = instr->environment(); 995 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 996 Deoptimizer::BailoutType bailout_type = 997 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; 998 999 if (override_bailout_type != NULL) { 1000 bailout_type = *override_bailout_type; 1001 } 1002 1003 DCHECK(environment->HasBeenRegistered()); 1004 DCHECK(info()->IsOptimizing() || info()->IsStub()); 1005 int id = environment->deoptimization_index(); 1006 Address entry = 1007 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); 1008 1009 if (entry == NULL) { 1010 Abort(kBailoutWasNotPrepared); 1011 } 1012 1013 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { 1014 Label not_zero; 1015 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); 1016 1017 __ Push(x0, x1, x2); 1018 __ Mrs(x2, NZCV); 1019 __ Mov(x0, count); 1020 __ Ldr(w1, MemOperand(x0)); 1021 __ Subs(x1, x1, 1); 1022 __ B(gt, ¬_zero); 1023 __ Mov(w1, FLAG_deopt_every_n_times); 1024 __ Str(w1, MemOperand(x0)); 1025 __ Pop(x2, x1, x0); 1026 DCHECK(frame_is_built_); 1027 __ Call(entry, RelocInfo::RUNTIME_ENTRY); 1028 __ Unreachable(); 1029 1030 __ Bind(¬_zero); 1031 __ Str(w1, MemOperand(x0)); 1032 __ Msr(NZCV, x2); 1033 __ Pop(x2, x1, x0); 1034 } 1035 1036 if (info()->ShouldTrapOnDeopt()) { 1037 Label dont_trap; 1038 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); 1039 __ Debug("trap_on_deopt", __LINE__, BREAK); 1040 __ Bind(&dont_trap); 1041 } 1042 1043 Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(), 1044 instr->Mnemonic(), detail); 1045 DCHECK(info()->IsStub() || frame_is_built_); 1046 // Go through jump table if we need to build frame, or restore caller doubles. 1047 if (branch_type == always && 1048 frame_is_built_ && !info()->saves_caller_doubles()) { 1049 DeoptComment(reason); 1050 __ Call(entry, RelocInfo::RUNTIME_ENTRY); 1051 } else { 1052 Deoptimizer::JumpTableEntry* table_entry = 1053 new (zone()) Deoptimizer::JumpTableEntry(entry, reason, bailout_type, 1054 !frame_is_built_); 1055 // We often have several deopts to the same entry, reuse the last 1056 // jump entry if this is the case. 1057 if (jump_table_.is_empty() || 1058 !table_entry->IsEquivalentTo(*jump_table_.last())) { 1059 jump_table_.Add(table_entry, zone()); 1060 } 1061 __ B(&jump_table_.last()->label, branch_type, reg, bit); 1062 } 1063 } 1064 1065 1066 void LCodeGen::Deoptimize(LInstruction* instr, 1067 Deoptimizer::BailoutType* override_bailout_type, 1068 const char* detail) { 1069 DeoptimizeBranch(instr, detail, always, NoReg, -1, override_bailout_type); 1070 } 1071 1072 1073 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, 1074 const char* detail) { 1075 DeoptimizeBranch(instr, detail, static_cast<BranchType>(cond)); 1076 } 1077 1078 1079 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, 1080 const char* detail) { 1081 DeoptimizeBranch(instr, detail, reg_zero, rt); 1082 } 1083 1084 1085 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, 1086 const char* detail) { 1087 DeoptimizeBranch(instr, detail, reg_not_zero, rt); 1088 } 1089 1090 1091 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, 1092 const char* detail) { 1093 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; 1094 DeoptimizeIfBitSet(rt, sign_bit, instr, detail); 1095 } 1096 1097 1098 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, 1099 const char* detail) { 1100 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, detail); 1101 } 1102 1103 1104 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, 1105 const char* detail) { 1106 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, detail); 1107 } 1108 1109 1110 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, 1111 LInstruction* instr, const char* detail) { 1112 __ CompareRoot(rt, index); 1113 DeoptimizeIf(eq, instr, detail); 1114 } 1115 1116 1117 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, 1118 LInstruction* instr, const char* detail) { 1119 __ CompareRoot(rt, index); 1120 DeoptimizeIf(ne, instr, detail); 1121 } 1122 1123 1124 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, 1125 const char* detail) { 1126 __ TestForMinusZero(input); 1127 DeoptimizeIf(vs, instr, detail); 1128 } 1129 1130 1131 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { 1132 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); 1133 DeoptimizeIf(ne, instr, "not heap number"); 1134 } 1135 1136 1137 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, 1138 const char* detail) { 1139 DeoptimizeBranch(instr, detail, reg_bit_set, rt, bit); 1140 } 1141 1142 1143 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, 1144 const char* detail) { 1145 DeoptimizeBranch(instr, detail, reg_bit_clear, rt, bit); 1146 } 1147 1148 1149 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { 1150 if (!info()->IsStub()) { 1151 // Ensure that we have enough space after the previous lazy-bailout 1152 // instruction for patching the code here. 1153 intptr_t current_pc = masm()->pc_offset(); 1154 1155 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { 1156 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; 1157 DCHECK((padding_size % kInstructionSize) == 0); 1158 InstructionAccurateScope instruction_accurate( 1159 masm(), padding_size / kInstructionSize); 1160 1161 while (padding_size > 0) { 1162 __ nop(); 1163 padding_size -= kInstructionSize; 1164 } 1165 } 1166 } 1167 last_lazy_deopt_pc_ = masm()->pc_offset(); 1168 } 1169 1170 1171 Register LCodeGen::ToRegister(LOperand* op) const { 1172 // TODO(all): support zero register results, as ToRegister32. 1173 DCHECK((op != NULL) && op->IsRegister()); 1174 return Register::FromAllocationIndex(op->index()); 1175 } 1176 1177 1178 Register LCodeGen::ToRegister32(LOperand* op) const { 1179 DCHECK(op != NULL); 1180 if (op->IsConstantOperand()) { 1181 // If this is a constant operand, the result must be the zero register. 1182 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); 1183 return wzr; 1184 } else { 1185 return ToRegister(op).W(); 1186 } 1187 } 1188 1189 1190 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { 1191 HConstant* constant = chunk_->LookupConstant(op); 1192 return Smi::FromInt(constant->Integer32Value()); 1193 } 1194 1195 1196 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { 1197 DCHECK((op != NULL) && op->IsDoubleRegister()); 1198 return DoubleRegister::FromAllocationIndex(op->index()); 1199 } 1200 1201 1202 Operand LCodeGen::ToOperand(LOperand* op) { 1203 DCHECK(op != NULL); 1204 if (op->IsConstantOperand()) { 1205 LConstantOperand* const_op = LConstantOperand::cast(op); 1206 HConstant* constant = chunk()->LookupConstant(const_op); 1207 Representation r = chunk_->LookupLiteralRepresentation(const_op); 1208 if (r.IsSmi()) { 1209 DCHECK(constant->HasSmiValue()); 1210 return Operand(Smi::FromInt(constant->Integer32Value())); 1211 } else if (r.IsInteger32()) { 1212 DCHECK(constant->HasInteger32Value()); 1213 return Operand(constant->Integer32Value()); 1214 } else if (r.IsDouble()) { 1215 Abort(kToOperandUnsupportedDoubleImmediate); 1216 } 1217 DCHECK(r.IsTagged()); 1218 return Operand(constant->handle(isolate())); 1219 } else if (op->IsRegister()) { 1220 return Operand(ToRegister(op)); 1221 } else if (op->IsDoubleRegister()) { 1222 Abort(kToOperandIsDoubleRegisterUnimplemented); 1223 return Operand(0); 1224 } 1225 // Stack slots not implemented, use ToMemOperand instead. 1226 UNREACHABLE(); 1227 return Operand(0); 1228 } 1229 1230 1231 Operand LCodeGen::ToOperand32(LOperand* op) { 1232 DCHECK(op != NULL); 1233 if (op->IsRegister()) { 1234 return Operand(ToRegister32(op)); 1235 } else if (op->IsConstantOperand()) { 1236 LConstantOperand* const_op = LConstantOperand::cast(op); 1237 HConstant* constant = chunk()->LookupConstant(const_op); 1238 Representation r = chunk_->LookupLiteralRepresentation(const_op); 1239 if (r.IsInteger32()) { 1240 return Operand(constant->Integer32Value()); 1241 } else { 1242 // Other constants not implemented. 1243 Abort(kToOperand32UnsupportedImmediate); 1244 } 1245 } 1246 // Other cases are not implemented. 1247 UNREACHABLE(); 1248 return Operand(0); 1249 } 1250 1251 1252 static int64_t ArgumentsOffsetWithoutFrame(int index) { 1253 DCHECK(index < 0); 1254 return -(index + 1) * kPointerSize; 1255 } 1256 1257 1258 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { 1259 DCHECK(op != NULL); 1260 DCHECK(!op->IsRegister()); 1261 DCHECK(!op->IsDoubleRegister()); 1262 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); 1263 if (NeedsEagerFrame()) { 1264 int fp_offset = StackSlotOffset(op->index()); 1265 if (op->index() >= 0) { 1266 // Loads and stores have a bigger reach in positive offset than negative. 1267 // When the load or the store can't be done in one instruction via fp 1268 // (too big negative offset), we try to access via jssp (positive offset). 1269 // We can reference a stack slot from jssp only if jssp references the end 1270 // of the stack slots. It's not the case when: 1271 // - stack_mode != kCanUseStackPointer: this is the case when a deferred 1272 // code saved the registers. 1273 // - after_push_argument_: arguments has been pushed for a call. 1274 // - inlined_arguments_: inlined arguments have been pushed once. All the 1275 // remainder of the function cannot trust jssp any longer. 1276 // - saves_caller_doubles: some double registers have been pushed, jssp 1277 // references the end of the double registers and not the end of the 1278 // stack slots. 1279 // Also, if the offset from fp is small enough to make a load/store in 1280 // one instruction, we use a fp access. 1281 if ((stack_mode == kCanUseStackPointer) && !after_push_argument_ && 1282 !inlined_arguments_ && !is_int9(fp_offset) && 1283 !info()->saves_caller_doubles()) { 1284 int jssp_offset = 1285 (GetStackSlotCount() - op->index() - 1) * kPointerSize; 1286 return MemOperand(masm()->StackPointer(), jssp_offset); 1287 } 1288 } 1289 return MemOperand(fp, fp_offset); 1290 } else { 1291 // Retrieve parameter without eager stack-frame relative to the 1292 // stack-pointer. 1293 return MemOperand(masm()->StackPointer(), 1294 ArgumentsOffsetWithoutFrame(op->index())); 1295 } 1296 } 1297 1298 1299 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { 1300 HConstant* constant = chunk_->LookupConstant(op); 1301 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); 1302 return constant->handle(isolate()); 1303 } 1304 1305 1306 template <class LI> 1307 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { 1308 if (shift_info->shift() == NO_SHIFT) { 1309 return ToOperand32(right); 1310 } else { 1311 return Operand( 1312 ToRegister32(right), 1313 shift_info->shift(), 1314 JSShiftAmountFromLConstant(shift_info->shift_amount())); 1315 } 1316 } 1317 1318 1319 bool LCodeGen::IsSmi(LConstantOperand* op) const { 1320 return chunk_->LookupLiteralRepresentation(op).IsSmi(); 1321 } 1322 1323 1324 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { 1325 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); 1326 } 1327 1328 1329 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { 1330 HConstant* constant = chunk_->LookupConstant(op); 1331 return constant->Integer32Value(); 1332 } 1333 1334 1335 double LCodeGen::ToDouble(LConstantOperand* op) const { 1336 HConstant* constant = chunk_->LookupConstant(op); 1337 DCHECK(constant->HasDoubleValue()); 1338 return constant->DoubleValue(); 1339 } 1340 1341 1342 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { 1343 Condition cond = nv; 1344 switch (op) { 1345 case Token::EQ: 1346 case Token::EQ_STRICT: 1347 cond = eq; 1348 break; 1349 case Token::NE: 1350 case Token::NE_STRICT: 1351 cond = ne; 1352 break; 1353 case Token::LT: 1354 cond = is_unsigned ? lo : lt; 1355 break; 1356 case Token::GT: 1357 cond = is_unsigned ? hi : gt; 1358 break; 1359 case Token::LTE: 1360 cond = is_unsigned ? ls : le; 1361 break; 1362 case Token::GTE: 1363 cond = is_unsigned ? hs : ge; 1364 break; 1365 case Token::IN: 1366 case Token::INSTANCEOF: 1367 default: 1368 UNREACHABLE(); 1369 } 1370 return cond; 1371 } 1372 1373 1374 template<class InstrType> 1375 void LCodeGen::EmitBranchGeneric(InstrType instr, 1376 const BranchGenerator& branch) { 1377 int left_block = instr->TrueDestination(chunk_); 1378 int right_block = instr->FalseDestination(chunk_); 1379 1380 int next_block = GetNextEmittedBlock(); 1381 1382 if (right_block == left_block) { 1383 EmitGoto(left_block); 1384 } else if (left_block == next_block) { 1385 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); 1386 } else { 1387 branch.Emit(chunk_->GetAssemblyLabel(left_block)); 1388 if (right_block != next_block) { 1389 __ B(chunk_->GetAssemblyLabel(right_block)); 1390 } 1391 } 1392 } 1393 1394 1395 template<class InstrType> 1396 void LCodeGen::EmitBranch(InstrType instr, Condition condition) { 1397 DCHECK((condition != al) && (condition != nv)); 1398 BranchOnCondition branch(this, condition); 1399 EmitBranchGeneric(instr, branch); 1400 } 1401 1402 1403 template<class InstrType> 1404 void LCodeGen::EmitCompareAndBranch(InstrType instr, 1405 Condition condition, 1406 const Register& lhs, 1407 const Operand& rhs) { 1408 DCHECK((condition != al) && (condition != nv)); 1409 CompareAndBranch branch(this, condition, lhs, rhs); 1410 EmitBranchGeneric(instr, branch); 1411 } 1412 1413 1414 template<class InstrType> 1415 void LCodeGen::EmitTestAndBranch(InstrType instr, 1416 Condition condition, 1417 const Register& value, 1418 uint64_t mask) { 1419 DCHECK((condition != al) && (condition != nv)); 1420 TestAndBranch branch(this, condition, value, mask); 1421 EmitBranchGeneric(instr, branch); 1422 } 1423 1424 1425 template<class InstrType> 1426 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, 1427 const FPRegister& value, 1428 const FPRegister& scratch) { 1429 BranchIfNonZeroNumber branch(this, value, scratch); 1430 EmitBranchGeneric(instr, branch); 1431 } 1432 1433 1434 template<class InstrType> 1435 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, 1436 const Register& value) { 1437 BranchIfHeapNumber branch(this, value); 1438 EmitBranchGeneric(instr, branch); 1439 } 1440 1441 1442 template<class InstrType> 1443 void LCodeGen::EmitBranchIfRoot(InstrType instr, 1444 const Register& value, 1445 Heap::RootListIndex index) { 1446 BranchIfRoot branch(this, value, index); 1447 EmitBranchGeneric(instr, branch); 1448 } 1449 1450 1451 void LCodeGen::DoGap(LGap* gap) { 1452 for (int i = LGap::FIRST_INNER_POSITION; 1453 i <= LGap::LAST_INNER_POSITION; 1454 i++) { 1455 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); 1456 LParallelMove* move = gap->GetParallelMove(inner_pos); 1457 if (move != NULL) { 1458 resolver_.Resolve(move); 1459 } 1460 } 1461 } 1462 1463 1464 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { 1465 Register arguments = ToRegister(instr->arguments()); 1466 Register result = ToRegister(instr->result()); 1467 1468 // The pointer to the arguments array come from DoArgumentsElements. 1469 // It does not point directly to the arguments and there is an offest of 1470 // two words that we must take into account when accessing an argument. 1471 // Subtracting the index from length accounts for one, so we add one more. 1472 1473 if (instr->length()->IsConstantOperand() && 1474 instr->index()->IsConstantOperand()) { 1475 int index = ToInteger32(LConstantOperand::cast(instr->index())); 1476 int length = ToInteger32(LConstantOperand::cast(instr->length())); 1477 int offset = ((length - index) + 1) * kPointerSize; 1478 __ Ldr(result, MemOperand(arguments, offset)); 1479 } else if (instr->index()->IsConstantOperand()) { 1480 Register length = ToRegister32(instr->length()); 1481 int index = ToInteger32(LConstantOperand::cast(instr->index())); 1482 int loc = index - 1; 1483 if (loc != 0) { 1484 __ Sub(result.W(), length, loc); 1485 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); 1486 } else { 1487 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); 1488 } 1489 } else { 1490 Register length = ToRegister32(instr->length()); 1491 Operand index = ToOperand32(instr->index()); 1492 __ Sub(result.W(), length, index); 1493 __ Add(result.W(), result.W(), 1); 1494 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); 1495 } 1496 } 1497 1498 1499 void LCodeGen::DoAddE(LAddE* instr) { 1500 Register result = ToRegister(instr->result()); 1501 Register left = ToRegister(instr->left()); 1502 Operand right = (instr->right()->IsConstantOperand()) 1503 ? ToInteger32(LConstantOperand::cast(instr->right())) 1504 : Operand(ToRegister32(instr->right()), SXTW); 1505 1506 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); 1507 __ Add(result, left, right); 1508 } 1509 1510 1511 void LCodeGen::DoAddI(LAddI* instr) { 1512 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1513 Register result = ToRegister32(instr->result()); 1514 Register left = ToRegister32(instr->left()); 1515 Operand right = ToShiftedRightOperand32(instr->right(), instr); 1516 1517 if (can_overflow) { 1518 __ Adds(result, left, right); 1519 DeoptimizeIf(vs, instr); 1520 } else { 1521 __ Add(result, left, right); 1522 } 1523 } 1524 1525 1526 void LCodeGen::DoAddS(LAddS* instr) { 1527 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1528 Register result = ToRegister(instr->result()); 1529 Register left = ToRegister(instr->left()); 1530 Operand right = ToOperand(instr->right()); 1531 if (can_overflow) { 1532 __ Adds(result, left, right); 1533 DeoptimizeIf(vs, instr); 1534 } else { 1535 __ Add(result, left, right); 1536 } 1537 } 1538 1539 1540 void LCodeGen::DoAllocate(LAllocate* instr) { 1541 class DeferredAllocate: public LDeferredCode { 1542 public: 1543 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) 1544 : LDeferredCode(codegen), instr_(instr) { } 1545 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } 1546 virtual LInstruction* instr() { return instr_; } 1547 private: 1548 LAllocate* instr_; 1549 }; 1550 1551 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); 1552 1553 Register result = ToRegister(instr->result()); 1554 Register temp1 = ToRegister(instr->temp1()); 1555 Register temp2 = ToRegister(instr->temp2()); 1556 1557 // Allocate memory for the object. 1558 AllocationFlags flags = TAG_OBJECT; 1559 if (instr->hydrogen()->MustAllocateDoubleAligned()) { 1560 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); 1561 } 1562 1563 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { 1564 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); 1565 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1566 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE); 1567 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { 1568 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1569 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE); 1570 } 1571 1572 if (instr->size()->IsConstantOperand()) { 1573 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 1574 if (size <= Page::kMaxRegularHeapObjectSize) { 1575 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); 1576 } else { 1577 __ B(deferred->entry()); 1578 } 1579 } else { 1580 Register size = ToRegister32(instr->size()); 1581 __ Sxtw(size.X(), size); 1582 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); 1583 } 1584 1585 __ Bind(deferred->exit()); 1586 1587 if (instr->hydrogen()->MustPrefillWithFiller()) { 1588 Register filler_count = temp1; 1589 Register filler = temp2; 1590 Register untagged_result = ToRegister(instr->temp3()); 1591 1592 if (instr->size()->IsConstantOperand()) { 1593 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 1594 __ Mov(filler_count, size / kPointerSize); 1595 } else { 1596 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2); 1597 } 1598 1599 __ Sub(untagged_result, result, kHeapObjectTag); 1600 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map())); 1601 __ FillFields(untagged_result, filler_count, filler); 1602 } else { 1603 DCHECK(instr->temp3() == NULL); 1604 } 1605 } 1606 1607 1608 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { 1609 // TODO(3095996): Get rid of this. For now, we need to make the 1610 // result register contain a valid pointer because it is already 1611 // contained in the register pointer map. 1612 __ Mov(ToRegister(instr->result()), Smi::FromInt(0)); 1613 1614 PushSafepointRegistersScope scope(this); 1615 // We're in a SafepointRegistersScope so we can use any scratch registers. 1616 Register size = x0; 1617 if (instr->size()->IsConstantOperand()) { 1618 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); 1619 } else { 1620 __ SmiTag(size, ToRegister32(instr->size()).X()); 1621 } 1622 int flags = AllocateDoubleAlignFlag::encode( 1623 instr->hydrogen()->MustAllocateDoubleAligned()); 1624 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { 1625 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); 1626 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1627 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE); 1628 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { 1629 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 1630 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE); 1631 } else { 1632 flags = AllocateTargetSpace::update(flags, NEW_SPACE); 1633 } 1634 __ Mov(x10, Smi::FromInt(flags)); 1635 __ Push(size, x10); 1636 1637 CallRuntimeFromDeferred( 1638 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); 1639 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); 1640 } 1641 1642 1643 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { 1644 Register receiver = ToRegister(instr->receiver()); 1645 Register function = ToRegister(instr->function()); 1646 Register length = ToRegister32(instr->length()); 1647 1648 Register elements = ToRegister(instr->elements()); 1649 Register scratch = x5; 1650 DCHECK(receiver.Is(x0)); // Used for parameter count. 1651 DCHECK(function.Is(x1)); // Required by InvokeFunction. 1652 DCHECK(ToRegister(instr->result()).Is(x0)); 1653 DCHECK(instr->IsMarkedAsCall()); 1654 1655 // Copy the arguments to this function possibly from the 1656 // adaptor frame below it. 1657 const uint32_t kArgumentsLimit = 1 * KB; 1658 __ Cmp(length, kArgumentsLimit); 1659 DeoptimizeIf(hi, instr); 1660 1661 // Push the receiver and use the register to keep the original 1662 // number of arguments. 1663 __ Push(receiver); 1664 Register argc = receiver; 1665 receiver = NoReg; 1666 __ Sxtw(argc, length); 1667 // The arguments are at a one pointer size offset from elements. 1668 __ Add(elements, elements, 1 * kPointerSize); 1669 1670 // Loop through the arguments pushing them onto the execution 1671 // stack. 1672 Label invoke, loop; 1673 // length is a small non-negative integer, due to the test above. 1674 __ Cbz(length, &invoke); 1675 __ Bind(&loop); 1676 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); 1677 __ Push(scratch); 1678 __ Subs(length, length, 1); 1679 __ B(ne, &loop); 1680 1681 __ Bind(&invoke); 1682 DCHECK(instr->HasPointerMap()); 1683 LPointerMap* pointers = instr->pointer_map(); 1684 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); 1685 // The number of arguments is stored in argc (receiver) which is x0, as 1686 // expected by InvokeFunction. 1687 ParameterCount actual(argc); 1688 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); 1689 } 1690 1691 1692 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { 1693 // We push some arguments and they will be pop in an other block. We can't 1694 // trust that jssp references the end of the stack slots until the end of 1695 // the function. 1696 inlined_arguments_ = true; 1697 Register result = ToRegister(instr->result()); 1698 1699 if (instr->hydrogen()->from_inlined()) { 1700 // When we are inside an inlined function, the arguments are the last things 1701 // that have been pushed on the stack. Therefore the arguments array can be 1702 // accessed directly from jssp. 1703 // However in the normal case, it is accessed via fp but there are two words 1704 // on the stack between fp and the arguments (the saved lr and fp) and the 1705 // LAccessArgumentsAt implementation take that into account. 1706 // In the inlined case we need to subtract the size of 2 words to jssp to 1707 // get a pointer which will work well with LAccessArgumentsAt. 1708 DCHECK(masm()->StackPointer().Is(jssp)); 1709 __ Sub(result, jssp, 2 * kPointerSize); 1710 } else { 1711 DCHECK(instr->temp() != NULL); 1712 Register previous_fp = ToRegister(instr->temp()); 1713 1714 __ Ldr(previous_fp, 1715 MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1716 __ Ldr(result, 1717 MemOperand(previous_fp, StandardFrameConstants::kContextOffset)); 1718 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 1719 __ Csel(result, fp, previous_fp, ne); 1720 } 1721 } 1722 1723 1724 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { 1725 Register elements = ToRegister(instr->elements()); 1726 Register result = ToRegister32(instr->result()); 1727 Label done; 1728 1729 // If no arguments adaptor frame the number of arguments is fixed. 1730 __ Cmp(fp, elements); 1731 __ Mov(result, scope()->num_parameters()); 1732 __ B(eq, &done); 1733 1734 // Arguments adaptor frame present. Get argument length from there. 1735 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1736 __ Ldr(result, 1737 UntagSmiMemOperand(result.X(), 1738 ArgumentsAdaptorFrameConstants::kLengthOffset)); 1739 1740 // Argument length is in result register. 1741 __ Bind(&done); 1742 } 1743 1744 1745 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { 1746 DoubleRegister left = ToDoubleRegister(instr->left()); 1747 DoubleRegister right = ToDoubleRegister(instr->right()); 1748 DoubleRegister result = ToDoubleRegister(instr->result()); 1749 1750 switch (instr->op()) { 1751 case Token::ADD: __ Fadd(result, left, right); break; 1752 case Token::SUB: __ Fsub(result, left, right); break; 1753 case Token::MUL: __ Fmul(result, left, right); break; 1754 case Token::DIV: __ Fdiv(result, left, right); break; 1755 case Token::MOD: { 1756 // The ECMA-262 remainder operator is the remainder from a truncating 1757 // (round-towards-zero) division. Note that this differs from IEEE-754. 1758 // 1759 // TODO(jbramley): See if it's possible to do this inline, rather than by 1760 // calling a helper function. With frintz (to produce the intermediate 1761 // quotient) and fmsub (to calculate the remainder without loss of 1762 // precision), it should be possible. However, we would need support for 1763 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't 1764 // support that yet. 1765 DCHECK(left.Is(d0)); 1766 DCHECK(right.Is(d1)); 1767 __ CallCFunction( 1768 ExternalReference::mod_two_doubles_operation(isolate()), 1769 0, 2); 1770 DCHECK(result.Is(d0)); 1771 break; 1772 } 1773 default: 1774 UNREACHABLE(); 1775 break; 1776 } 1777 } 1778 1779 1780 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { 1781 DCHECK(ToRegister(instr->context()).is(cp)); 1782 DCHECK(ToRegister(instr->left()).is(x1)); 1783 DCHECK(ToRegister(instr->right()).is(x0)); 1784 DCHECK(ToRegister(instr->result()).is(x0)); 1785 1786 Handle<Code> code = 1787 CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code(); 1788 CallCode(code, RelocInfo::CODE_TARGET, instr); 1789 } 1790 1791 1792 void LCodeGen::DoBitI(LBitI* instr) { 1793 Register result = ToRegister32(instr->result()); 1794 Register left = ToRegister32(instr->left()); 1795 Operand right = ToShiftedRightOperand32(instr->right(), instr); 1796 1797 switch (instr->op()) { 1798 case Token::BIT_AND: __ And(result, left, right); break; 1799 case Token::BIT_OR: __ Orr(result, left, right); break; 1800 case Token::BIT_XOR: __ Eor(result, left, right); break; 1801 default: 1802 UNREACHABLE(); 1803 break; 1804 } 1805 } 1806 1807 1808 void LCodeGen::DoBitS(LBitS* instr) { 1809 Register result = ToRegister(instr->result()); 1810 Register left = ToRegister(instr->left()); 1811 Operand right = ToOperand(instr->right()); 1812 1813 switch (instr->op()) { 1814 case Token::BIT_AND: __ And(result, left, right); break; 1815 case Token::BIT_OR: __ Orr(result, left, right); break; 1816 case Token::BIT_XOR: __ Eor(result, left, right); break; 1817 default: 1818 UNREACHABLE(); 1819 break; 1820 } 1821 } 1822 1823 1824 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { 1825 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; 1826 DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); 1827 DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); 1828 if (instr->index()->IsConstantOperand()) { 1829 Operand index = ToOperand32(instr->index()); 1830 Register length = ToRegister32(instr->length()); 1831 __ Cmp(length, index); 1832 cond = CommuteCondition(cond); 1833 } else { 1834 Register index = ToRegister32(instr->index()); 1835 Operand length = ToOperand32(instr->length()); 1836 __ Cmp(index, length); 1837 } 1838 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { 1839 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); 1840 } else { 1841 DeoptimizeIf(cond, instr); 1842 } 1843 } 1844 1845 1846 void LCodeGen::DoBranch(LBranch* instr) { 1847 Representation r = instr->hydrogen()->value()->representation(); 1848 Label* true_label = instr->TrueLabel(chunk_); 1849 Label* false_label = instr->FalseLabel(chunk_); 1850 1851 if (r.IsInteger32()) { 1852 DCHECK(!info()->IsStub()); 1853 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); 1854 } else if (r.IsSmi()) { 1855 DCHECK(!info()->IsStub()); 1856 STATIC_ASSERT(kSmiTag == 0); 1857 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); 1858 } else if (r.IsDouble()) { 1859 DoubleRegister value = ToDoubleRegister(instr->value()); 1860 // Test the double value. Zero and NaN are false. 1861 EmitBranchIfNonZeroNumber(instr, value, double_scratch()); 1862 } else { 1863 DCHECK(r.IsTagged()); 1864 Register value = ToRegister(instr->value()); 1865 HType type = instr->hydrogen()->value()->type(); 1866 1867 if (type.IsBoolean()) { 1868 DCHECK(!info()->IsStub()); 1869 __ CompareRoot(value, Heap::kTrueValueRootIndex); 1870 EmitBranch(instr, eq); 1871 } else if (type.IsSmi()) { 1872 DCHECK(!info()->IsStub()); 1873 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0)); 1874 } else if (type.IsJSArray()) { 1875 DCHECK(!info()->IsStub()); 1876 EmitGoto(instr->TrueDestination(chunk())); 1877 } else if (type.IsHeapNumber()) { 1878 DCHECK(!info()->IsStub()); 1879 __ Ldr(double_scratch(), FieldMemOperand(value, 1880 HeapNumber::kValueOffset)); 1881 // Test the double value. Zero and NaN are false. 1882 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); 1883 } else if (type.IsString()) { 1884 DCHECK(!info()->IsStub()); 1885 Register temp = ToRegister(instr->temp1()); 1886 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); 1887 EmitCompareAndBranch(instr, ne, temp, 0); 1888 } else { 1889 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); 1890 // Avoid deopts in the case where we've never executed this path before. 1891 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); 1892 1893 if (expected.Contains(ToBooleanStub::UNDEFINED)) { 1894 // undefined -> false. 1895 __ JumpIfRoot( 1896 value, Heap::kUndefinedValueRootIndex, false_label); 1897 } 1898 1899 if (expected.Contains(ToBooleanStub::BOOLEAN)) { 1900 // Boolean -> its value. 1901 __ JumpIfRoot( 1902 value, Heap::kTrueValueRootIndex, true_label); 1903 __ JumpIfRoot( 1904 value, Heap::kFalseValueRootIndex, false_label); 1905 } 1906 1907 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { 1908 // 'null' -> false. 1909 __ JumpIfRoot( 1910 value, Heap::kNullValueRootIndex, false_label); 1911 } 1912 1913 if (expected.Contains(ToBooleanStub::SMI)) { 1914 // Smis: 0 -> false, all other -> true. 1915 DCHECK(Smi::FromInt(0) == 0); 1916 __ Cbz(value, false_label); 1917 __ JumpIfSmi(value, true_label); 1918 } else if (expected.NeedsMap()) { 1919 // If we need a map later and have a smi, deopt. 1920 DeoptimizeIfSmi(value, instr); 1921 } 1922 1923 Register map = NoReg; 1924 Register scratch = NoReg; 1925 1926 if (expected.NeedsMap()) { 1927 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 1928 map = ToRegister(instr->temp1()); 1929 scratch = ToRegister(instr->temp2()); 1930 1931 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); 1932 1933 if (expected.CanBeUndetectable()) { 1934 // Undetectable -> false. 1935 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 1936 __ TestAndBranchIfAnySet( 1937 scratch, 1 << Map::kIsUndetectable, false_label); 1938 } 1939 } 1940 1941 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { 1942 // spec object -> true. 1943 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE); 1944 __ B(ge, true_label); 1945 } 1946 1947 if (expected.Contains(ToBooleanStub::STRING)) { 1948 // String value -> false iff empty. 1949 Label not_string; 1950 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); 1951 __ B(ge, ¬_string); 1952 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); 1953 __ Cbz(scratch, false_label); 1954 __ B(true_label); 1955 __ Bind(¬_string); 1956 } 1957 1958 if (expected.Contains(ToBooleanStub::SYMBOL)) { 1959 // Symbol value -> true. 1960 __ CompareInstanceType(map, scratch, SYMBOL_TYPE); 1961 __ B(eq, true_label); 1962 } 1963 1964 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { 1965 Label not_heap_number; 1966 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); 1967 1968 __ Ldr(double_scratch(), 1969 FieldMemOperand(value, HeapNumber::kValueOffset)); 1970 __ Fcmp(double_scratch(), 0.0); 1971 // If we got a NaN (overflow bit is set), jump to the false branch. 1972 __ B(vs, false_label); 1973 __ B(eq, false_label); 1974 __ B(true_label); 1975 __ Bind(¬_heap_number); 1976 } 1977 1978 if (!expected.IsGeneric()) { 1979 // We've seen something for the first time -> deopt. 1980 // This can only happen if we are not generic already. 1981 Deoptimize(instr); 1982 } 1983 } 1984 } 1985 } 1986 1987 1988 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, 1989 int formal_parameter_count, 1990 int arity, 1991 LInstruction* instr, 1992 Register function_reg) { 1993 bool dont_adapt_arguments = 1994 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; 1995 bool can_invoke_directly = 1996 dont_adapt_arguments || formal_parameter_count == arity; 1997 1998 // The function interface relies on the following register assignments. 1999 DCHECK(function_reg.Is(x1) || function_reg.IsNone()); 2000 Register arity_reg = x0; 2001 2002 LPointerMap* pointers = instr->pointer_map(); 2003 2004 // If necessary, load the function object. 2005 if (function_reg.IsNone()) { 2006 function_reg = x1; 2007 __ LoadObject(function_reg, function); 2008 } 2009 2010 if (FLAG_debug_code) { 2011 Label is_not_smi; 2012 // Try to confirm that function_reg (x1) is a tagged pointer. 2013 __ JumpIfNotSmi(function_reg, &is_not_smi); 2014 __ Abort(kExpectedFunctionObject); 2015 __ Bind(&is_not_smi); 2016 } 2017 2018 if (can_invoke_directly) { 2019 // Change context. 2020 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); 2021 2022 // Set the arguments count if adaption is not needed. Assumes that x0 is 2023 // available to write to at this point. 2024 if (dont_adapt_arguments) { 2025 __ Mov(arity_reg, arity); 2026 } 2027 2028 // Invoke function. 2029 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); 2030 __ Call(x10); 2031 2032 // Set up deoptimization. 2033 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 2034 } else { 2035 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 2036 ParameterCount count(arity); 2037 ParameterCount expected(formal_parameter_count); 2038 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator); 2039 } 2040 } 2041 2042 2043 void LCodeGen::DoTailCallThroughMegamorphicCache( 2044 LTailCallThroughMegamorphicCache* instr) { 2045 Register receiver = ToRegister(instr->receiver()); 2046 Register name = ToRegister(instr->name()); 2047 DCHECK(receiver.is(LoadDescriptor::ReceiverRegister())); 2048 DCHECK(name.is(LoadDescriptor::NameRegister())); 2049 DCHECK(receiver.is(x1)); 2050 DCHECK(name.is(x2)); 2051 2052 Register scratch = x3; 2053 Register extra = x4; 2054 Register extra2 = x5; 2055 Register extra3 = x6; 2056 2057 // Important for the tail-call. 2058 bool must_teardown_frame = NeedsEagerFrame(); 2059 2060 // The probe will tail call to a handler if found. 2061 isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(), 2062 must_teardown_frame, receiver, name, 2063 scratch, extra, extra2, extra3); 2064 2065 // Tail call to miss if we ended up here. 2066 if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL); 2067 LoadIC::GenerateMiss(masm()); 2068 } 2069 2070 2071 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { 2072 DCHECK(instr->IsMarkedAsCall()); 2073 DCHECK(ToRegister(instr->result()).Is(x0)); 2074 2075 LPointerMap* pointers = instr->pointer_map(); 2076 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 2077 2078 if (instr->target()->IsConstantOperand()) { 2079 LConstantOperand* target = LConstantOperand::cast(instr->target()); 2080 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); 2081 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); 2082 // TODO(all): on ARM we use a call descriptor to specify a storage mode 2083 // but on ARM64 we only have one storage mode so it isn't necessary. Check 2084 // this understanding is correct. 2085 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); 2086 } else { 2087 DCHECK(instr->target()->IsRegister()); 2088 Register target = ToRegister(instr->target()); 2089 generator.BeforeCall(__ CallSize(target)); 2090 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); 2091 __ Call(target); 2092 } 2093 generator.AfterCall(); 2094 after_push_argument_ = false; 2095 } 2096 2097 2098 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { 2099 DCHECK(instr->IsMarkedAsCall()); 2100 DCHECK(ToRegister(instr->function()).is(x1)); 2101 2102 if (instr->hydrogen()->pass_argument_count()) { 2103 __ Mov(x0, Operand(instr->arity())); 2104 } 2105 2106 // Change context. 2107 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); 2108 2109 // Load the code entry address 2110 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); 2111 __ Call(x10); 2112 2113 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 2114 after_push_argument_ = false; 2115 } 2116 2117 2118 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { 2119 CallRuntime(instr->function(), instr->arity(), instr); 2120 after_push_argument_ = false; 2121 } 2122 2123 2124 void LCodeGen::DoCallStub(LCallStub* instr) { 2125 DCHECK(ToRegister(instr->context()).is(cp)); 2126 DCHECK(ToRegister(instr->result()).is(x0)); 2127 switch (instr->hydrogen()->major_key()) { 2128 case CodeStub::RegExpExec: { 2129 RegExpExecStub stub(isolate()); 2130 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2131 break; 2132 } 2133 case CodeStub::SubString: { 2134 SubStringStub stub(isolate()); 2135 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2136 break; 2137 } 2138 case CodeStub::StringCompare: { 2139 StringCompareStub stub(isolate()); 2140 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2141 break; 2142 } 2143 default: 2144 UNREACHABLE(); 2145 } 2146 after_push_argument_ = false; 2147 } 2148 2149 2150 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { 2151 GenerateOsrPrologue(); 2152 } 2153 2154 2155 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { 2156 Register temp = ToRegister(instr->temp()); 2157 { 2158 PushSafepointRegistersScope scope(this); 2159 __ Push(object); 2160 __ Mov(cp, 0); 2161 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); 2162 RecordSafepointWithRegisters( 2163 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); 2164 __ StoreToSafepointRegisterSlot(x0, temp); 2165 } 2166 DeoptimizeIfSmi(temp, instr); 2167 } 2168 2169 2170 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { 2171 class DeferredCheckMaps: public LDeferredCode { 2172 public: 2173 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) 2174 : LDeferredCode(codegen), instr_(instr), object_(object) { 2175 SetExit(check_maps()); 2176 } 2177 virtual void Generate() { 2178 codegen()->DoDeferredInstanceMigration(instr_, object_); 2179 } 2180 Label* check_maps() { return &check_maps_; } 2181 virtual LInstruction* instr() { return instr_; } 2182 private: 2183 LCheckMaps* instr_; 2184 Label check_maps_; 2185 Register object_; 2186 }; 2187 2188 if (instr->hydrogen()->IsStabilityCheck()) { 2189 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 2190 for (int i = 0; i < maps->size(); ++i) { 2191 AddStabilityDependency(maps->at(i).handle()); 2192 } 2193 return; 2194 } 2195 2196 Register object = ToRegister(instr->value()); 2197 Register map_reg = ToRegister(instr->temp()); 2198 2199 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); 2200 2201 DeferredCheckMaps* deferred = NULL; 2202 if (instr->hydrogen()->HasMigrationTarget()) { 2203 deferred = new(zone()) DeferredCheckMaps(this, instr, object); 2204 __ Bind(deferred->check_maps()); 2205 } 2206 2207 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 2208 Label success; 2209 for (int i = 0; i < maps->size() - 1; i++) { 2210 Handle<Map> map = maps->at(i).handle(); 2211 __ CompareMap(map_reg, map); 2212 __ B(eq, &success); 2213 } 2214 Handle<Map> map = maps->at(maps->size() - 1).handle(); 2215 __ CompareMap(map_reg, map); 2216 2217 // We didn't match a map. 2218 if (instr->hydrogen()->HasMigrationTarget()) { 2219 __ B(ne, deferred->entry()); 2220 } else { 2221 DeoptimizeIf(ne, instr); 2222 } 2223 2224 __ Bind(&success); 2225 } 2226 2227 2228 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { 2229 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2230 DeoptimizeIfSmi(ToRegister(instr->value()), instr); 2231 } 2232 } 2233 2234 2235 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { 2236 Register value = ToRegister(instr->value()); 2237 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); 2238 DeoptimizeIfNotSmi(value, instr); 2239 } 2240 2241 2242 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { 2243 Register input = ToRegister(instr->value()); 2244 Register scratch = ToRegister(instr->temp()); 2245 2246 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 2247 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 2248 2249 if (instr->hydrogen()->is_interval_check()) { 2250 InstanceType first, last; 2251 instr->hydrogen()->GetCheckInterval(&first, &last); 2252 2253 __ Cmp(scratch, first); 2254 if (first == last) { 2255 // If there is only one type in the interval check for equality. 2256 DeoptimizeIf(ne, instr); 2257 } else if (last == LAST_TYPE) { 2258 // We don't need to compare with the higher bound of the interval. 2259 DeoptimizeIf(lo, instr); 2260 } else { 2261 // If we are below the lower bound, set the C flag and clear the Z flag 2262 // to force a deopt. 2263 __ Ccmp(scratch, last, CFlag, hs); 2264 DeoptimizeIf(hi, instr); 2265 } 2266 } else { 2267 uint8_t mask; 2268 uint8_t tag; 2269 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); 2270 2271 if (base::bits::IsPowerOfTwo32(mask)) { 2272 DCHECK((tag == 0) || (tag == mask)); 2273 if (tag == 0) { 2274 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr); 2275 } else { 2276 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr); 2277 } 2278 } else { 2279 if (tag == 0) { 2280 __ Tst(scratch, mask); 2281 } else { 2282 __ And(scratch, scratch, mask); 2283 __ Cmp(scratch, tag); 2284 } 2285 DeoptimizeIf(ne, instr); 2286 } 2287 } 2288 } 2289 2290 2291 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { 2292 DoubleRegister input = ToDoubleRegister(instr->unclamped()); 2293 Register result = ToRegister32(instr->result()); 2294 __ ClampDoubleToUint8(result, input, double_scratch()); 2295 } 2296 2297 2298 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { 2299 Register input = ToRegister32(instr->unclamped()); 2300 Register result = ToRegister32(instr->result()); 2301 __ ClampInt32ToUint8(result, input); 2302 } 2303 2304 2305 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { 2306 Register input = ToRegister(instr->unclamped()); 2307 Register result = ToRegister32(instr->result()); 2308 Label done; 2309 2310 // Both smi and heap number cases are handled. 2311 Label is_not_smi; 2312 __ JumpIfNotSmi(input, &is_not_smi); 2313 __ SmiUntag(result.X(), input); 2314 __ ClampInt32ToUint8(result); 2315 __ B(&done); 2316 2317 __ Bind(&is_not_smi); 2318 2319 // Check for heap number. 2320 Label is_heap_number; 2321 __ JumpIfHeapNumber(input, &is_heap_number); 2322 2323 // Check for undefined. Undefined is coverted to zero for clamping conversion. 2324 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr); 2325 __ Mov(result, 0); 2326 __ B(&done); 2327 2328 // Heap number case. 2329 __ Bind(&is_heap_number); 2330 DoubleRegister dbl_scratch = double_scratch(); 2331 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); 2332 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); 2333 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); 2334 2335 __ Bind(&done); 2336 } 2337 2338 2339 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { 2340 DoubleRegister value_reg = ToDoubleRegister(instr->value()); 2341 Register result_reg = ToRegister(instr->result()); 2342 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { 2343 __ Fmov(result_reg, value_reg); 2344 __ Lsr(result_reg, result_reg, 32); 2345 } else { 2346 __ Fmov(result_reg.W(), value_reg.S()); 2347 } 2348 } 2349 2350 2351 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { 2352 Register hi_reg = ToRegister(instr->hi()); 2353 Register lo_reg = ToRegister(instr->lo()); 2354 DoubleRegister result_reg = ToDoubleRegister(instr->result()); 2355 2356 // Insert the least significant 32 bits of hi_reg into the most significant 2357 // 32 bits of lo_reg, and move to a floating point register. 2358 __ Bfi(lo_reg, hi_reg, 32, 32); 2359 __ Fmov(result_reg, lo_reg); 2360 } 2361 2362 2363 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { 2364 Handle<String> class_name = instr->hydrogen()->class_name(); 2365 Label* true_label = instr->TrueLabel(chunk_); 2366 Label* false_label = instr->FalseLabel(chunk_); 2367 Register input = ToRegister(instr->value()); 2368 Register scratch1 = ToRegister(instr->temp1()); 2369 Register scratch2 = ToRegister(instr->temp2()); 2370 2371 __ JumpIfSmi(input, false_label); 2372 2373 Register map = scratch2; 2374 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { 2375 // Assuming the following assertions, we can use the same compares to test 2376 // for both being a function type and being in the object type range. 2377 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 2378 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == 2379 FIRST_SPEC_OBJECT_TYPE + 1); 2380 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == 2381 LAST_SPEC_OBJECT_TYPE - 1); 2382 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); 2383 2384 // We expect CompareObjectType to load the object instance type in scratch1. 2385 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE); 2386 __ B(lt, false_label); 2387 __ B(eq, true_label); 2388 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE); 2389 __ B(eq, true_label); 2390 } else { 2391 __ IsObjectJSObjectType(input, map, scratch1, false_label); 2392 } 2393 2394 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. 2395 // Check if the constructor in the map is a function. 2396 __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset)); 2397 2398 // Objects with a non-function constructor have class 'Object'. 2399 if (String::Equals(class_name, isolate()->factory()->Object_string())) { 2400 __ JumpIfNotObjectType( 2401 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label); 2402 } else { 2403 __ JumpIfNotObjectType( 2404 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label); 2405 } 2406 2407 // The constructor function is in scratch1. Get its instance class name. 2408 __ Ldr(scratch1, 2409 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); 2410 __ Ldr(scratch1, 2411 FieldMemOperand(scratch1, 2412 SharedFunctionInfo::kInstanceClassNameOffset)); 2413 2414 // The class name we are testing against is internalized since it's a literal. 2415 // The name in the constructor is internalized because of the way the context 2416 // is booted. This routine isn't expected to work for random API-created 2417 // classes and it doesn't have to because you can't access it with natives 2418 // syntax. Since both sides are internalized it is sufficient to use an 2419 // identity comparison. 2420 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); 2421 } 2422 2423 2424 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { 2425 DCHECK(instr->hydrogen()->representation().IsDouble()); 2426 FPRegister object = ToDoubleRegister(instr->object()); 2427 Register temp = ToRegister(instr->temp()); 2428 2429 // If we don't have a NaN, we don't have the hole, so branch now to avoid the 2430 // (relatively expensive) hole-NaN check. 2431 __ Fcmp(object, object); 2432 __ B(vc, instr->FalseLabel(chunk_)); 2433 2434 // We have a NaN, but is it the hole? 2435 __ Fmov(temp, object); 2436 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); 2437 } 2438 2439 2440 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { 2441 DCHECK(instr->hydrogen()->representation().IsTagged()); 2442 Register object = ToRegister(instr->object()); 2443 2444 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); 2445 } 2446 2447 2448 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { 2449 Register value = ToRegister(instr->value()); 2450 Register map = ToRegister(instr->temp()); 2451 2452 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); 2453 EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); 2454 } 2455 2456 2457 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { 2458 Representation rep = instr->hydrogen()->value()->representation(); 2459 DCHECK(!rep.IsInteger32()); 2460 Register scratch = ToRegister(instr->temp()); 2461 2462 if (rep.IsDouble()) { 2463 __ JumpIfMinusZero(ToDoubleRegister(instr->value()), 2464 instr->TrueLabel(chunk())); 2465 } else { 2466 Register value = ToRegister(instr->value()); 2467 __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK); 2468 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset)); 2469 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk())); 2470 } 2471 EmitGoto(instr->FalseDestination(chunk())); 2472 } 2473 2474 2475 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { 2476 LOperand* left = instr->left(); 2477 LOperand* right = instr->right(); 2478 bool is_unsigned = 2479 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || 2480 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); 2481 Condition cond = TokenToCondition(instr->op(), is_unsigned); 2482 2483 if (left->IsConstantOperand() && right->IsConstantOperand()) { 2484 // We can statically evaluate the comparison. 2485 double left_val = ToDouble(LConstantOperand::cast(left)); 2486 double right_val = ToDouble(LConstantOperand::cast(right)); 2487 int next_block = EvalComparison(instr->op(), left_val, right_val) ? 2488 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); 2489 EmitGoto(next_block); 2490 } else { 2491 if (instr->is_double()) { 2492 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); 2493 2494 // If a NaN is involved, i.e. the result is unordered (V set), 2495 // jump to false block label. 2496 __ B(vs, instr->FalseLabel(chunk_)); 2497 EmitBranch(instr, cond); 2498 } else { 2499 if (instr->hydrogen_value()->representation().IsInteger32()) { 2500 if (right->IsConstantOperand()) { 2501 EmitCompareAndBranch(instr, cond, ToRegister32(left), 2502 ToOperand32(right)); 2503 } else { 2504 // Commute the operands and the condition. 2505 EmitCompareAndBranch(instr, CommuteCondition(cond), 2506 ToRegister32(right), ToOperand32(left)); 2507 } 2508 } else { 2509 DCHECK(instr->hydrogen_value()->representation().IsSmi()); 2510 if (right->IsConstantOperand()) { 2511 int32_t value = ToInteger32(LConstantOperand::cast(right)); 2512 EmitCompareAndBranch(instr, 2513 cond, 2514 ToRegister(left), 2515 Operand(Smi::FromInt(value))); 2516 } else if (left->IsConstantOperand()) { 2517 // Commute the operands and the condition. 2518 int32_t value = ToInteger32(LConstantOperand::cast(left)); 2519 EmitCompareAndBranch(instr, 2520 CommuteCondition(cond), 2521 ToRegister(right), 2522 Operand(Smi::FromInt(value))); 2523 } else { 2524 EmitCompareAndBranch(instr, 2525 cond, 2526 ToRegister(left), 2527 ToRegister(right)); 2528 } 2529 } 2530 } 2531 } 2532 } 2533 2534 2535 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { 2536 Register left = ToRegister(instr->left()); 2537 Register right = ToRegister(instr->right()); 2538 EmitCompareAndBranch(instr, eq, left, right); 2539 } 2540 2541 2542 void LCodeGen::DoCmpT(LCmpT* instr) { 2543 DCHECK(ToRegister(instr->context()).is(cp)); 2544 Token::Value op = instr->op(); 2545 Condition cond = TokenToCondition(op, false); 2546 2547 DCHECK(ToRegister(instr->left()).Is(x1)); 2548 DCHECK(ToRegister(instr->right()).Is(x0)); 2549 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); 2550 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2551 // Signal that we don't inline smi code before this stub. 2552 InlineSmiCheckInfo::EmitNotInlined(masm()); 2553 2554 // Return true or false depending on CompareIC result. 2555 // This instruction is marked as call. We can clobber any register. 2556 DCHECK(instr->IsMarkedAsCall()); 2557 __ LoadTrueFalseRoots(x1, x2); 2558 __ Cmp(x0, 0); 2559 __ Csel(ToRegister(instr->result()), x1, x2, cond); 2560 } 2561 2562 2563 void LCodeGen::DoConstantD(LConstantD* instr) { 2564 DCHECK(instr->result()->IsDoubleRegister()); 2565 DoubleRegister result = ToDoubleRegister(instr->result()); 2566 if (instr->value() == 0) { 2567 if (copysign(1.0, instr->value()) == 1.0) { 2568 __ Fmov(result, fp_zero); 2569 } else { 2570 __ Fneg(result, fp_zero); 2571 } 2572 } else { 2573 __ Fmov(result, instr->value()); 2574 } 2575 } 2576 2577 2578 void LCodeGen::DoConstantE(LConstantE* instr) { 2579 __ Mov(ToRegister(instr->result()), Operand(instr->value())); 2580 } 2581 2582 2583 void LCodeGen::DoConstantI(LConstantI* instr) { 2584 DCHECK(is_int32(instr->value())); 2585 // Cast the value here to ensure that the value isn't sign extended by the 2586 // implicit Operand constructor. 2587 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value())); 2588 } 2589 2590 2591 void LCodeGen::DoConstantS(LConstantS* instr) { 2592 __ Mov(ToRegister(instr->result()), Operand(instr->value())); 2593 } 2594 2595 2596 void LCodeGen::DoConstantT(LConstantT* instr) { 2597 Handle<Object> object = instr->value(isolate()); 2598 AllowDeferredHandleDereference smi_check; 2599 __ LoadObject(ToRegister(instr->result()), object); 2600 } 2601 2602 2603 void LCodeGen::DoContext(LContext* instr) { 2604 // If there is a non-return use, the context must be moved to a register. 2605 Register result = ToRegister(instr->result()); 2606 if (info()->IsOptimizing()) { 2607 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2608 } else { 2609 // If there is no frame, the context must be in cp. 2610 DCHECK(result.is(cp)); 2611 } 2612 } 2613 2614 2615 void LCodeGen::DoCheckValue(LCheckValue* instr) { 2616 Register reg = ToRegister(instr->value()); 2617 Handle<HeapObject> object = instr->hydrogen()->object().handle(); 2618 AllowDeferredHandleDereference smi_check; 2619 if (isolate()->heap()->InNewSpace(*object)) { 2620 UseScratchRegisterScope temps(masm()); 2621 Register temp = temps.AcquireX(); 2622 Handle<Cell> cell = isolate()->factory()->NewCell(object); 2623 __ Mov(temp, Operand(Handle<Object>(cell))); 2624 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); 2625 __ Cmp(reg, temp); 2626 } else { 2627 __ Cmp(reg, Operand(object)); 2628 } 2629 DeoptimizeIf(ne, instr); 2630 } 2631 2632 2633 void LCodeGen::DoLazyBailout(LLazyBailout* instr) { 2634 last_lazy_deopt_pc_ = masm()->pc_offset(); 2635 DCHECK(instr->HasEnvironment()); 2636 LEnvironment* env = instr->environment(); 2637 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 2638 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 2639 } 2640 2641 2642 void LCodeGen::DoDateField(LDateField* instr) { 2643 Register object = ToRegister(instr->date()); 2644 Register result = ToRegister(instr->result()); 2645 Register temp1 = x10; 2646 Register temp2 = x11; 2647 Smi* index = instr->index(); 2648 Label runtime, done; 2649 2650 DCHECK(object.is(result) && object.Is(x0)); 2651 DCHECK(instr->IsMarkedAsCall()); 2652 2653 DeoptimizeIfSmi(object, instr); 2654 __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE); 2655 DeoptimizeIf(ne, instr); 2656 2657 if (index->value() == 0) { 2658 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); 2659 } else { 2660 if (index->value() < JSDate::kFirstUncachedField) { 2661 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); 2662 __ Mov(temp1, Operand(stamp)); 2663 __ Ldr(temp1, MemOperand(temp1)); 2664 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset)); 2665 __ Cmp(temp1, temp2); 2666 __ B(ne, &runtime); 2667 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset + 2668 kPointerSize * index->value())); 2669 __ B(&done); 2670 } 2671 2672 __ Bind(&runtime); 2673 __ Mov(x1, Operand(index)); 2674 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); 2675 } 2676 2677 __ Bind(&done); 2678 } 2679 2680 2681 void LCodeGen::DoDeoptimize(LDeoptimize* instr) { 2682 Deoptimizer::BailoutType type = instr->hydrogen()->type(); 2683 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the 2684 // needed return address), even though the implementation of LAZY and EAGER is 2685 // now identical. When LAZY is eventually completely folded into EAGER, remove 2686 // the special case below. 2687 if (info()->IsStub() && (type == Deoptimizer::EAGER)) { 2688 type = Deoptimizer::LAZY; 2689 } 2690 2691 Deoptimize(instr, &type, instr->hydrogen()->reason()); 2692 } 2693 2694 2695 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { 2696 Register dividend = ToRegister32(instr->dividend()); 2697 int32_t divisor = instr->divisor(); 2698 Register result = ToRegister32(instr->result()); 2699 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); 2700 DCHECK(!result.is(dividend)); 2701 2702 // Check for (0 / -x) that will produce negative zero. 2703 HDiv* hdiv = instr->hydrogen(); 2704 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 2705 DeoptimizeIfZero(dividend, instr); 2706 } 2707 // Check for (kMinInt / -1). 2708 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { 2709 // Test dividend for kMinInt by subtracting one (cmp) and checking for 2710 // overflow. 2711 __ Cmp(dividend, 1); 2712 DeoptimizeIf(vs, instr); 2713 } 2714 // Deoptimize if remainder will not be 0. 2715 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && 2716 divisor != 1 && divisor != -1) { 2717 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 2718 __ Tst(dividend, mask); 2719 DeoptimizeIf(ne, instr); 2720 } 2721 2722 if (divisor == -1) { // Nice shortcut, not needed for correctness. 2723 __ Neg(result, dividend); 2724 return; 2725 } 2726 int32_t shift = WhichPowerOf2Abs(divisor); 2727 if (shift == 0) { 2728 __ Mov(result, dividend); 2729 } else if (shift == 1) { 2730 __ Add(result, dividend, Operand(dividend, LSR, 31)); 2731 } else { 2732 __ Mov(result, Operand(dividend, ASR, 31)); 2733 __ Add(result, dividend, Operand(result, LSR, 32 - shift)); 2734 } 2735 if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); 2736 if (divisor < 0) __ Neg(result, result); 2737 } 2738 2739 2740 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { 2741 Register dividend = ToRegister32(instr->dividend()); 2742 int32_t divisor = instr->divisor(); 2743 Register result = ToRegister32(instr->result()); 2744 DCHECK(!AreAliased(dividend, result)); 2745 2746 if (divisor == 0) { 2747 Deoptimize(instr); 2748 return; 2749 } 2750 2751 // Check for (0 / -x) that will produce negative zero. 2752 HDiv* hdiv = instr->hydrogen(); 2753 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 2754 DeoptimizeIfZero(dividend, instr); 2755 } 2756 2757 __ TruncatingDiv(result, dividend, Abs(divisor)); 2758 if (divisor < 0) __ Neg(result, result); 2759 2760 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { 2761 Register temp = ToRegister32(instr->temp()); 2762 DCHECK(!AreAliased(dividend, result, temp)); 2763 __ Sxtw(dividend.X(), dividend); 2764 __ Mov(temp, divisor); 2765 __ Smsubl(temp.X(), result, temp, dividend.X()); 2766 DeoptimizeIfNotZero(temp, instr); 2767 } 2768 } 2769 2770 2771 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. 2772 void LCodeGen::DoDivI(LDivI* instr) { 2773 HBinaryOperation* hdiv = instr->hydrogen(); 2774 Register dividend = ToRegister32(instr->dividend()); 2775 Register divisor = ToRegister32(instr->divisor()); 2776 Register result = ToRegister32(instr->result()); 2777 2778 // Issue the division first, and then check for any deopt cases whilst the 2779 // result is computed. 2780 __ Sdiv(result, dividend, divisor); 2781 2782 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { 2783 DCHECK_EQ(NULL, instr->temp()); 2784 return; 2785 } 2786 2787 // Check for x / 0. 2788 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { 2789 DeoptimizeIfZero(divisor, instr); 2790 } 2791 2792 // Check for (0 / -x) as that will produce negative zero. 2793 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { 2794 __ Cmp(divisor, 0); 2795 2796 // If the divisor < 0 (mi), compare the dividend, and deopt if it is 2797 // zero, ie. zero dividend with negative divisor deopts. 2798 // If the divisor >= 0 (pl, the opposite of mi) set the flags to 2799 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. 2800 __ Ccmp(dividend, 0, NoFlag, mi); 2801 DeoptimizeIf(eq, instr); 2802 } 2803 2804 // Check for (kMinInt / -1). 2805 if (hdiv->CheckFlag(HValue::kCanOverflow)) { 2806 // Test dividend for kMinInt by subtracting one (cmp) and checking for 2807 // overflow. 2808 __ Cmp(dividend, 1); 2809 // If overflow is set, ie. dividend = kMinInt, compare the divisor with 2810 // -1. If overflow is clear, set the flags for condition ne, as the 2811 // dividend isn't -1, and thus we shouldn't deopt. 2812 __ Ccmp(divisor, -1, NoFlag, vs); 2813 DeoptimizeIf(eq, instr); 2814 } 2815 2816 // Compute remainder and deopt if it's not zero. 2817 Register remainder = ToRegister32(instr->temp()); 2818 __ Msub(remainder, result, divisor, dividend); 2819 DeoptimizeIfNotZero(remainder, instr); 2820 } 2821 2822 2823 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { 2824 DoubleRegister input = ToDoubleRegister(instr->value()); 2825 Register result = ToRegister32(instr->result()); 2826 2827 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 2828 DeoptimizeIfMinusZero(input, instr); 2829 } 2830 2831 __ TryRepresentDoubleAsInt32(result, input, double_scratch()); 2832 DeoptimizeIf(ne, instr); 2833 2834 if (instr->tag_result()) { 2835 __ SmiTag(result.X()); 2836 } 2837 } 2838 2839 2840 void LCodeGen::DoDrop(LDrop* instr) { 2841 __ Drop(instr->count()); 2842 } 2843 2844 2845 void LCodeGen::DoDummy(LDummy* instr) { 2846 // Nothing to see here, move on! 2847 } 2848 2849 2850 void LCodeGen::DoDummyUse(LDummyUse* instr) { 2851 // Nothing to see here, move on! 2852 } 2853 2854 2855 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { 2856 DCHECK(ToRegister(instr->context()).is(cp)); 2857 // FunctionLiteral instruction is marked as call, we can trash any register. 2858 DCHECK(instr->IsMarkedAsCall()); 2859 2860 // Use the fast case closure allocation code that allocates in new 2861 // space for nested functions that don't need literals cloning. 2862 bool pretenure = instr->hydrogen()->pretenure(); 2863 if (!pretenure && instr->hydrogen()->has_no_literals()) { 2864 FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(), 2865 instr->hydrogen()->kind()); 2866 __ Mov(x2, Operand(instr->hydrogen()->shared_info())); 2867 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2868 } else { 2869 __ Mov(x2, Operand(instr->hydrogen()->shared_info())); 2870 __ Mov(x1, Operand(pretenure ? factory()->true_value() 2871 : factory()->false_value())); 2872 __ Push(cp, x2, x1); 2873 CallRuntime(Runtime::kNewClosure, 3, instr); 2874 } 2875 } 2876 2877 2878 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { 2879 Register map = ToRegister(instr->map()); 2880 Register result = ToRegister(instr->result()); 2881 Label load_cache, done; 2882 2883 __ EnumLengthUntagged(result, map); 2884 __ Cbnz(result, &load_cache); 2885 2886 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); 2887 __ B(&done); 2888 2889 __ Bind(&load_cache); 2890 __ LoadInstanceDescriptors(map, result); 2891 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); 2892 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); 2893 DeoptimizeIfZero(result, instr); 2894 2895 __ Bind(&done); 2896 } 2897 2898 2899 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { 2900 Register object = ToRegister(instr->object()); 2901 Register null_value = x5; 2902 2903 DCHECK(instr->IsMarkedAsCall()); 2904 DCHECK(object.Is(x0)); 2905 2906 DeoptimizeIfRoot(object, Heap::kUndefinedValueRootIndex, instr); 2907 2908 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 2909 __ Cmp(object, null_value); 2910 DeoptimizeIf(eq, instr); 2911 2912 DeoptimizeIfSmi(object, instr); 2913 2914 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 2915 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE); 2916 DeoptimizeIf(le, instr); 2917 2918 Label use_cache, call_runtime; 2919 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime); 2920 2921 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); 2922 __ B(&use_cache); 2923 2924 // Get the set of properties to enumerate. 2925 __ Bind(&call_runtime); 2926 __ Push(object); 2927 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); 2928 2929 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset)); 2930 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr); 2931 2932 __ Bind(&use_cache); 2933 } 2934 2935 2936 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { 2937 Register input = ToRegister(instr->value()); 2938 Register result = ToRegister(instr->result()); 2939 2940 __ AssertString(input); 2941 2942 // Assert that we can use a W register load to get the hash. 2943 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits); 2944 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset)); 2945 __ IndexFromHash(result, result); 2946 } 2947 2948 2949 void LCodeGen::EmitGoto(int block) { 2950 // Do not emit jump if we are emitting a goto to the next block. 2951 if (!IsNextEmittedBlock(block)) { 2952 __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); 2953 } 2954 } 2955 2956 2957 void LCodeGen::DoGoto(LGoto* instr) { 2958 EmitGoto(instr->block_id()); 2959 } 2960 2961 2962 void LCodeGen::DoHasCachedArrayIndexAndBranch( 2963 LHasCachedArrayIndexAndBranch* instr) { 2964 Register input = ToRegister(instr->value()); 2965 Register temp = ToRegister32(instr->temp()); 2966 2967 // Assert that the cache status bits fit in a W register. 2968 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask)); 2969 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset)); 2970 __ Tst(temp, String::kContainsCachedArrayIndexMask); 2971 EmitBranch(instr, eq); 2972 } 2973 2974 2975 // HHasInstanceTypeAndBranch instruction is built with an interval of type 2976 // to test but is only used in very restricted ways. The only possible kinds 2977 // of intervals are: 2978 // - [ FIRST_TYPE, instr->to() ] 2979 // - [ instr->form(), LAST_TYPE ] 2980 // - instr->from() == instr->to() 2981 // 2982 // These kinds of intervals can be check with only one compare instruction 2983 // providing the correct value and test condition are used. 2984 // 2985 // TestType() will return the value to use in the compare instruction and 2986 // BranchCondition() will return the condition to use depending on the kind 2987 // of interval actually specified in the instruction. 2988 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { 2989 InstanceType from = instr->from(); 2990 InstanceType to = instr->to(); 2991 if (from == FIRST_TYPE) return to; 2992 DCHECK((from == to) || (to == LAST_TYPE)); 2993 return from; 2994 } 2995 2996 2997 // See comment above TestType function for what this function does. 2998 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { 2999 InstanceType from = instr->from(); 3000 InstanceType to = instr->to(); 3001 if (from == to) return eq; 3002 if (to == LAST_TYPE) return hs; 3003 if (from == FIRST_TYPE) return ls; 3004 UNREACHABLE(); 3005 return eq; 3006 } 3007 3008 3009 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { 3010 Register input = ToRegister(instr->value()); 3011 Register scratch = ToRegister(instr->temp()); 3012 3013 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 3014 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 3015 } 3016 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); 3017 EmitBranch(instr, BranchCondition(instr->hydrogen())); 3018 } 3019 3020 3021 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { 3022 Register result = ToRegister(instr->result()); 3023 Register base = ToRegister(instr->base_object()); 3024 if (instr->offset()->IsConstantOperand()) { 3025 __ Add(result, base, ToOperand32(instr->offset())); 3026 } else { 3027 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); 3028 } 3029 } 3030 3031 3032 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { 3033 DCHECK(ToRegister(instr->context()).is(cp)); 3034 // Assert that the arguments are in the registers expected by InstanceofStub. 3035 DCHECK(ToRegister(instr->left()).Is(InstanceofStub::left())); 3036 DCHECK(ToRegister(instr->right()).Is(InstanceofStub::right())); 3037 3038 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters); 3039 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 3040 3041 // InstanceofStub returns a result in x0: 3042 // 0 => not an instance 3043 // smi 1 => instance. 3044 __ Cmp(x0, 0); 3045 __ LoadTrueFalseRoots(x0, x1); 3046 __ Csel(x0, x0, x1, eq); 3047 } 3048 3049 3050 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { 3051 class DeferredInstanceOfKnownGlobal: public LDeferredCode { 3052 public: 3053 DeferredInstanceOfKnownGlobal(LCodeGen* codegen, 3054 LInstanceOfKnownGlobal* instr) 3055 : LDeferredCode(codegen), instr_(instr) { } 3056 virtual void Generate() { 3057 codegen()->DoDeferredInstanceOfKnownGlobal(instr_); 3058 } 3059 virtual LInstruction* instr() { return instr_; } 3060 private: 3061 LInstanceOfKnownGlobal* instr_; 3062 }; 3063 3064 DeferredInstanceOfKnownGlobal* deferred = 3065 new(zone()) DeferredInstanceOfKnownGlobal(this, instr); 3066 3067 Label map_check, return_false, cache_miss, done; 3068 Register object = ToRegister(instr->value()); 3069 Register result = ToRegister(instr->result()); 3070 // x4 is expected in the associated deferred code and stub. 3071 Register map_check_site = x4; 3072 Register map = x5; 3073 3074 // This instruction is marked as call. We can clobber any register. 3075 DCHECK(instr->IsMarkedAsCall()); 3076 3077 // We must take into account that object is in x11. 3078 DCHECK(object.Is(x11)); 3079 Register scratch = x10; 3080 3081 // A Smi is not instance of anything. 3082 __ JumpIfSmi(object, &return_false); 3083 3084 // This is the inlined call site instanceof cache. The two occurences of the 3085 // hole value will be patched to the last map/result pair generated by the 3086 // instanceof stub. 3087 __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); 3088 { 3089 // Below we use Factory::the_hole_value() on purpose instead of loading from 3090 // the root array to force relocation and later be able to patch with a 3091 // custom value. 3092 InstructionAccurateScope scope(masm(), 5); 3093 __ bind(&map_check); 3094 // Will be patched with the cached map. 3095 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value()); 3096 __ ldr(scratch, Immediate(Handle<Object>(cell))); 3097 __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); 3098 __ cmp(map, scratch); 3099 __ b(&cache_miss, ne); 3100 // The address of this instruction is computed relative to the map check 3101 // above, so check the size of the code generated. 3102 DCHECK(masm()->InstructionsGeneratedSince(&map_check) == 4); 3103 // Will be patched with the cached result. 3104 __ ldr(result, Immediate(factory()->the_hole_value())); 3105 } 3106 __ B(&done); 3107 3108 // The inlined call site cache did not match. 3109 // Check null and string before calling the deferred code. 3110 __ Bind(&cache_miss); 3111 // Compute the address of the map check. It must not be clobbered until the 3112 // InstanceOfStub has used it. 3113 __ Adr(map_check_site, &map_check); 3114 // Null is not instance of anything. 3115 __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false); 3116 3117 // String values are not instances of anything. 3118 // Return false if the object is a string. Otherwise, jump to the deferred 3119 // code. 3120 // Note that we can't jump directly to deferred code from 3121 // IsObjectJSStringType, because it uses tbz for the jump and the deferred 3122 // code can be out of range. 3123 __ IsObjectJSStringType(object, scratch, NULL, &return_false); 3124 __ B(deferred->entry()); 3125 3126 __ Bind(&return_false); 3127 __ LoadRoot(result, Heap::kFalseValueRootIndex); 3128 3129 // Here result is either true or false. 3130 __ Bind(deferred->exit()); 3131 __ Bind(&done); 3132 } 3133 3134 3135 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { 3136 Register result = ToRegister(instr->result()); 3137 DCHECK(result.Is(x0)); // InstanceofStub returns its result in x0. 3138 InstanceofStub::Flags flags = InstanceofStub::kNoFlags; 3139 flags = static_cast<InstanceofStub::Flags>( 3140 flags | InstanceofStub::kArgsInRegisters); 3141 flags = static_cast<InstanceofStub::Flags>( 3142 flags | InstanceofStub::kReturnTrueFalseObject); 3143 flags = static_cast<InstanceofStub::Flags>( 3144 flags | InstanceofStub::kCallSiteInlineCheck); 3145 3146 PushSafepointRegistersScope scope(this); 3147 LoadContextFromDeferred(instr->context()); 3148 3149 // Prepare InstanceofStub arguments. 3150 DCHECK(ToRegister(instr->value()).Is(InstanceofStub::left())); 3151 __ LoadObject(InstanceofStub::right(), instr->function()); 3152 3153 InstanceofStub stub(isolate(), flags); 3154 CallCodeGeneric(stub.GetCode(), 3155 RelocInfo::CODE_TARGET, 3156 instr, 3157 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 3158 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); 3159 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 3160 3161 // Put the result value into the result register slot. 3162 __ StoreToSafepointRegisterSlot(result, result); 3163 } 3164 3165 3166 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { 3167 DoGap(instr); 3168 } 3169 3170 3171 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { 3172 Register value = ToRegister32(instr->value()); 3173 DoubleRegister result = ToDoubleRegister(instr->result()); 3174 __ Scvtf(result, value); 3175 } 3176 3177 3178 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { 3179 DCHECK(ToRegister(instr->context()).is(cp)); 3180 // The function is required to be in x1. 3181 DCHECK(ToRegister(instr->function()).is(x1)); 3182 DCHECK(instr->HasPointerMap()); 3183 3184 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); 3185 if (known_function.is_null()) { 3186 LPointerMap* pointers = instr->pointer_map(); 3187 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 3188 ParameterCount count(instr->arity()); 3189 __ InvokeFunction(x1, count, CALL_FUNCTION, generator); 3190 } else { 3191 CallKnownFunction(known_function, 3192 instr->hydrogen()->formal_parameter_count(), 3193 instr->arity(), 3194 instr, 3195 x1); 3196 } 3197 after_push_argument_ = false; 3198 } 3199 3200 3201 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { 3202 Register temp1 = ToRegister(instr->temp1()); 3203 Register temp2 = ToRegister(instr->temp2()); 3204 3205 // Get the frame pointer for the calling frame. 3206 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3207 3208 // Skip the arguments adaptor frame if it exists. 3209 Label check_frame_marker; 3210 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); 3211 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 3212 __ B(ne, &check_frame_marker); 3213 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); 3214 3215 // Check the marker in the calling frame. 3216 __ Bind(&check_frame_marker); 3217 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); 3218 3219 EmitCompareAndBranch( 3220 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); 3221 } 3222 3223 3224 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { 3225 Label* is_object = instr->TrueLabel(chunk_); 3226 Label* is_not_object = instr->FalseLabel(chunk_); 3227 Register value = ToRegister(instr->value()); 3228 Register map = ToRegister(instr->temp1()); 3229 Register scratch = ToRegister(instr->temp2()); 3230 3231 __ JumpIfSmi(value, is_not_object); 3232 __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object); 3233 3234 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); 3235 3236 // Check for undetectable objects. 3237 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 3238 __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object); 3239 3240 // Check that instance type is in object type range. 3241 __ IsInstanceJSObjectType(map, scratch, NULL); 3242 // Flags have been updated by IsInstanceJSObjectType. We can now test the 3243 // flags for "le" condition to check if the object's type is a valid 3244 // JS object type. 3245 EmitBranch(instr, le); 3246 } 3247 3248 3249 Condition LCodeGen::EmitIsString(Register input, 3250 Register temp1, 3251 Label* is_not_string, 3252 SmiCheck check_needed = INLINE_SMI_CHECK) { 3253 if (check_needed == INLINE_SMI_CHECK) { 3254 __ JumpIfSmi(input, is_not_string); 3255 } 3256 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); 3257 3258 return lt; 3259 } 3260 3261 3262 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { 3263 Register val = ToRegister(instr->value()); 3264 Register scratch = ToRegister(instr->temp()); 3265 3266 SmiCheck check_needed = 3267 instr->hydrogen()->value()->type().IsHeapObject() 3268 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 3269 Condition true_cond = 3270 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); 3271 3272 EmitBranch(instr, true_cond); 3273 } 3274 3275 3276 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { 3277 Register value = ToRegister(instr->value()); 3278 STATIC_ASSERT(kSmiTag == 0); 3279 EmitTestAndBranch(instr, eq, value, kSmiTagMask); 3280 } 3281 3282 3283 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { 3284 Register input = ToRegister(instr->value()); 3285 Register temp = ToRegister(instr->temp()); 3286 3287 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 3288 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 3289 } 3290 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); 3291 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); 3292 3293 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); 3294 } 3295 3296 3297 static const char* LabelType(LLabel* label) { 3298 if (label->is_loop_header()) return " (loop header)"; 3299 if (label->is_osr_entry()) return " (OSR entry)"; 3300 return ""; 3301 } 3302 3303 3304 void LCodeGen::DoLabel(LLabel* label) { 3305 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", 3306 current_instruction_, 3307 label->hydrogen_value()->id(), 3308 label->block_id(), 3309 LabelType(label)); 3310 3311 __ Bind(label->label()); 3312 current_block_ = label->block_id(); 3313 DoGap(label); 3314 } 3315 3316 3317 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { 3318 Register context = ToRegister(instr->context()); 3319 Register result = ToRegister(instr->result()); 3320 __ Ldr(result, ContextMemOperand(context, instr->slot_index())); 3321 if (instr->hydrogen()->RequiresHoleCheck()) { 3322 if (instr->hydrogen()->DeoptimizesOnHole()) { 3323 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr); 3324 } else { 3325 Label not_the_hole; 3326 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); 3327 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 3328 __ Bind(¬_the_hole); 3329 } 3330 } 3331 } 3332 3333 3334 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { 3335 Register function = ToRegister(instr->function()); 3336 Register result = ToRegister(instr->result()); 3337 Register temp = ToRegister(instr->temp()); 3338 3339 // Get the prototype or initial map from the function. 3340 __ Ldr(result, FieldMemOperand(function, 3341 JSFunction::kPrototypeOrInitialMapOffset)); 3342 3343 // Check that the function has a prototype or an initial map. 3344 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr); 3345 3346 // If the function does not have an initial map, we're done. 3347 Label done; 3348 __ CompareObjectType(result, temp, temp, MAP_TYPE); 3349 __ B(ne, &done); 3350 3351 // Get the prototype from the initial map. 3352 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); 3353 3354 // All done. 3355 __ Bind(&done); 3356 } 3357 3358 3359 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { 3360 Register result = ToRegister(instr->result()); 3361 __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle()))); 3362 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset)); 3363 if (instr->hydrogen()->RequiresHoleCheck()) { 3364 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr); 3365 } 3366 } 3367 3368 3369 template <class T> 3370 void LCodeGen::EmitVectorLoadICRegisters(T* instr) { 3371 DCHECK(FLAG_vector_ics); 3372 Register vector = ToRegister(instr->temp_vector()); 3373 DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister())); 3374 __ Mov(vector, instr->hydrogen()->feedback_vector()); 3375 // No need to allocate this register. 3376 DCHECK(VectorLoadICDescriptor::SlotRegister().is(x0)); 3377 __ Mov(VectorLoadICDescriptor::SlotRegister(), 3378 Smi::FromInt(instr->hydrogen()->slot())); 3379 } 3380 3381 3382 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { 3383 DCHECK(ToRegister(instr->context()).is(cp)); 3384 DCHECK(ToRegister(instr->global_object()) 3385 .is(LoadDescriptor::ReceiverRegister())); 3386 DCHECK(ToRegister(instr->result()).Is(x0)); 3387 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); 3388 if (FLAG_vector_ics) { 3389 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr); 3390 } 3391 ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL; 3392 Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code(); 3393 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3394 } 3395 3396 3397 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( 3398 Register key, 3399 Register base, 3400 Register scratch, 3401 bool key_is_smi, 3402 bool key_is_constant, 3403 int constant_key, 3404 ElementsKind elements_kind, 3405 int base_offset) { 3406 int element_size_shift = ElementsKindToShiftSize(elements_kind); 3407 3408 if (key_is_constant) { 3409 int key_offset = constant_key << element_size_shift; 3410 return MemOperand(base, key_offset + base_offset); 3411 } 3412 3413 if (key_is_smi) { 3414 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); 3415 return MemOperand(scratch, base_offset); 3416 } 3417 3418 if (base_offset == 0) { 3419 return MemOperand(base, key, SXTW, element_size_shift); 3420 } 3421 3422 DCHECK(!AreAliased(scratch, key)); 3423 __ Add(scratch, base, base_offset); 3424 return MemOperand(scratch, key, SXTW, element_size_shift); 3425 } 3426 3427 3428 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { 3429 Register ext_ptr = ToRegister(instr->elements()); 3430 Register scratch; 3431 ElementsKind elements_kind = instr->elements_kind(); 3432 3433 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); 3434 bool key_is_constant = instr->key()->IsConstantOperand(); 3435 Register key = no_reg; 3436 int constant_key = 0; 3437 if (key_is_constant) { 3438 DCHECK(instr->temp() == NULL); 3439 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3440 if (constant_key & 0xf0000000) { 3441 Abort(kArrayIndexConstantValueTooBig); 3442 } 3443 } else { 3444 scratch = ToRegister(instr->temp()); 3445 key = ToRegister(instr->key()); 3446 } 3447 3448 MemOperand mem_op = 3449 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, 3450 key_is_constant, constant_key, 3451 elements_kind, 3452 instr->base_offset()); 3453 3454 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) || 3455 (elements_kind == FLOAT32_ELEMENTS)) { 3456 DoubleRegister result = ToDoubleRegister(instr->result()); 3457 __ Ldr(result.S(), mem_op); 3458 __ Fcvt(result, result.S()); 3459 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) || 3460 (elements_kind == FLOAT64_ELEMENTS)) { 3461 DoubleRegister result = ToDoubleRegister(instr->result()); 3462 __ Ldr(result, mem_op); 3463 } else { 3464 Register result = ToRegister(instr->result()); 3465 3466 switch (elements_kind) { 3467 case EXTERNAL_INT8_ELEMENTS: 3468 case INT8_ELEMENTS: 3469 __ Ldrsb(result, mem_op); 3470 break; 3471 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: 3472 case EXTERNAL_UINT8_ELEMENTS: 3473 case UINT8_ELEMENTS: 3474 case UINT8_CLAMPED_ELEMENTS: 3475 __ Ldrb(result, mem_op); 3476 break; 3477 case EXTERNAL_INT16_ELEMENTS: 3478 case INT16_ELEMENTS: 3479 __ Ldrsh(result, mem_op); 3480 break; 3481 case EXTERNAL_UINT16_ELEMENTS: 3482 case UINT16_ELEMENTS: 3483 __ Ldrh(result, mem_op); 3484 break; 3485 case EXTERNAL_INT32_ELEMENTS: 3486 case INT32_ELEMENTS: 3487 __ Ldrsw(result, mem_op); 3488 break; 3489 case EXTERNAL_UINT32_ELEMENTS: 3490 case UINT32_ELEMENTS: 3491 __ Ldr(result.W(), mem_op); 3492 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { 3493 // Deopt if value > 0x80000000. 3494 __ Tst(result, 0xFFFFFFFF80000000); 3495 DeoptimizeIf(ne, instr); 3496 } 3497 break; 3498 case FLOAT32_ELEMENTS: 3499 case FLOAT64_ELEMENTS: 3500 case EXTERNAL_FLOAT32_ELEMENTS: 3501 case EXTERNAL_FLOAT64_ELEMENTS: 3502 case FAST_HOLEY_DOUBLE_ELEMENTS: 3503 case FAST_HOLEY_ELEMENTS: 3504 case FAST_HOLEY_SMI_ELEMENTS: 3505 case FAST_DOUBLE_ELEMENTS: 3506 case FAST_ELEMENTS: 3507 case FAST_SMI_ELEMENTS: 3508 case DICTIONARY_ELEMENTS: 3509 case SLOPPY_ARGUMENTS_ELEMENTS: 3510 UNREACHABLE(); 3511 break; 3512 } 3513 } 3514 } 3515 3516 3517 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, 3518 Register elements, 3519 Register key, 3520 bool key_is_tagged, 3521 ElementsKind elements_kind, 3522 Representation representation, 3523 int base_offset) { 3524 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3525 STATIC_ASSERT(kSmiTag == 0); 3526 int element_size_shift = ElementsKindToShiftSize(elements_kind); 3527 3528 // Even though the HLoad/StoreKeyed instructions force the input 3529 // representation for the key to be an integer, the input gets replaced during 3530 // bounds check elimination with the index argument to the bounds check, which 3531 // can be tagged, so that case must be handled here, too. 3532 if (key_is_tagged) { 3533 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); 3534 if (representation.IsInteger32()) { 3535 DCHECK(elements_kind == FAST_SMI_ELEMENTS); 3536 // Read or write only the smi payload in the case of fast smi arrays. 3537 return UntagSmiMemOperand(base, base_offset); 3538 } else { 3539 return MemOperand(base, base_offset); 3540 } 3541 } else { 3542 // Sign extend key because it could be a 32-bit negative value or contain 3543 // garbage in the top 32-bits. The address computation happens in 64-bit. 3544 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); 3545 if (representation.IsInteger32()) { 3546 DCHECK(elements_kind == FAST_SMI_ELEMENTS); 3547 // Read or write only the smi payload in the case of fast smi arrays. 3548 __ Add(base, elements, Operand(key, SXTW, element_size_shift)); 3549 return UntagSmiMemOperand(base, base_offset); 3550 } else { 3551 __ Add(base, elements, base_offset); 3552 return MemOperand(base, key, SXTW, element_size_shift); 3553 } 3554 } 3555 } 3556 3557 3558 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { 3559 Register elements = ToRegister(instr->elements()); 3560 DoubleRegister result = ToDoubleRegister(instr->result()); 3561 MemOperand mem_op; 3562 3563 if (instr->key()->IsConstantOperand()) { 3564 DCHECK(instr->hydrogen()->RequiresHoleCheck() || 3565 (instr->temp() == NULL)); 3566 3567 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3568 if (constant_key & 0xf0000000) { 3569 Abort(kArrayIndexConstantValueTooBig); 3570 } 3571 int offset = instr->base_offset() + constant_key * kDoubleSize; 3572 mem_op = MemOperand(elements, offset); 3573 } else { 3574 Register load_base = ToRegister(instr->temp()); 3575 Register key = ToRegister(instr->key()); 3576 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 3577 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, 3578 instr->hydrogen()->elements_kind(), 3579 instr->hydrogen()->representation(), 3580 instr->base_offset()); 3581 } 3582 3583 __ Ldr(result, mem_op); 3584 3585 if (instr->hydrogen()->RequiresHoleCheck()) { 3586 Register scratch = ToRegister(instr->temp()); 3587 // Detect the hole NaN by adding one to the integer representation of the 3588 // result, and checking for overflow. 3589 STATIC_ASSERT(kHoleNanInt64 == 0x7fffffffffffffff); 3590 __ Ldr(scratch, mem_op); 3591 __ Cmn(scratch, 1); 3592 DeoptimizeIf(vs, instr); 3593 } 3594 } 3595 3596 3597 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { 3598 Register elements = ToRegister(instr->elements()); 3599 Register result = ToRegister(instr->result()); 3600 MemOperand mem_op; 3601 3602 Representation representation = instr->hydrogen()->representation(); 3603 if (instr->key()->IsConstantOperand()) { 3604 DCHECK(instr->temp() == NULL); 3605 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 3606 int offset = instr->base_offset() + 3607 ToInteger32(const_operand) * kPointerSize; 3608 if (representation.IsInteger32()) { 3609 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); 3610 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3611 STATIC_ASSERT(kSmiTag == 0); 3612 mem_op = UntagSmiMemOperand(elements, offset); 3613 } else { 3614 mem_op = MemOperand(elements, offset); 3615 } 3616 } else { 3617 Register load_base = ToRegister(instr->temp()); 3618 Register key = ToRegister(instr->key()); 3619 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 3620 3621 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, 3622 instr->hydrogen()->elements_kind(), 3623 representation, instr->base_offset()); 3624 } 3625 3626 __ Load(result, mem_op, representation); 3627 3628 if (instr->hydrogen()->RequiresHoleCheck()) { 3629 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { 3630 DeoptimizeIfNotSmi(result, instr); 3631 } else { 3632 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr); 3633 } 3634 } 3635 } 3636 3637 3638 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { 3639 DCHECK(ToRegister(instr->context()).is(cp)); 3640 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); 3641 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister())); 3642 if (FLAG_vector_ics) { 3643 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr); 3644 } 3645 3646 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code(); 3647 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3648 3649 DCHECK(ToRegister(instr->result()).Is(x0)); 3650 } 3651 3652 3653 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { 3654 HObjectAccess access = instr->hydrogen()->access(); 3655 int offset = access.offset(); 3656 Register object = ToRegister(instr->object()); 3657 3658 if (access.IsExternalMemory()) { 3659 Register result = ToRegister(instr->result()); 3660 __ Load(result, MemOperand(object, offset), access.representation()); 3661 return; 3662 } 3663 3664 if (instr->hydrogen()->representation().IsDouble()) { 3665 FPRegister result = ToDoubleRegister(instr->result()); 3666 __ Ldr(result, FieldMemOperand(object, offset)); 3667 return; 3668 } 3669 3670 Register result = ToRegister(instr->result()); 3671 Register source; 3672 if (access.IsInobject()) { 3673 source = object; 3674 } else { 3675 // Load the properties array, using result as a scratch register. 3676 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 3677 source = result; 3678 } 3679 3680 if (access.representation().IsSmi() && 3681 instr->hydrogen()->representation().IsInteger32()) { 3682 // Read int value directly from upper half of the smi. 3683 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 3684 STATIC_ASSERT(kSmiTag == 0); 3685 __ Load(result, UntagSmiFieldMemOperand(source, offset), 3686 Representation::Integer32()); 3687 } else { 3688 __ Load(result, FieldMemOperand(source, offset), access.representation()); 3689 } 3690 } 3691 3692 3693 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { 3694 DCHECK(ToRegister(instr->context()).is(cp)); 3695 // LoadIC expects name and receiver in registers. 3696 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister())); 3697 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name())); 3698 if (FLAG_vector_ics) { 3699 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr); 3700 } 3701 3702 Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code(); 3703 CallCode(ic, RelocInfo::CODE_TARGET, instr); 3704 3705 DCHECK(ToRegister(instr->result()).is(x0)); 3706 } 3707 3708 3709 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { 3710 Register result = ToRegister(instr->result()); 3711 __ LoadRoot(result, instr->index()); 3712 } 3713 3714 3715 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { 3716 Register result = ToRegister(instr->result()); 3717 Register map = ToRegister(instr->value()); 3718 __ EnumLengthSmi(result, map); 3719 } 3720 3721 3722 void LCodeGen::DoMathAbs(LMathAbs* instr) { 3723 Representation r = instr->hydrogen()->value()->representation(); 3724 if (r.IsDouble()) { 3725 DoubleRegister input = ToDoubleRegister(instr->value()); 3726 DoubleRegister result = ToDoubleRegister(instr->result()); 3727 __ Fabs(result, input); 3728 } else if (r.IsSmi() || r.IsInteger32()) { 3729 Register input = r.IsSmi() ? ToRegister(instr->value()) 3730 : ToRegister32(instr->value()); 3731 Register result = r.IsSmi() ? ToRegister(instr->result()) 3732 : ToRegister32(instr->result()); 3733 __ Abs(result, input); 3734 DeoptimizeIf(vs, instr); 3735 } 3736 } 3737 3738 3739 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, 3740 Label* exit, 3741 Label* allocation_entry) { 3742 // Handle the tricky cases of MathAbsTagged: 3743 // - HeapNumber inputs. 3744 // - Negative inputs produce a positive result, so a new HeapNumber is 3745 // allocated to hold it. 3746 // - Positive inputs are returned as-is, since there is no need to allocate 3747 // a new HeapNumber for the result. 3748 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit 3749 // a smi. In this case, the inline code sets the result and jumps directly 3750 // to the allocation_entry label. 3751 DCHECK(instr->context() != NULL); 3752 DCHECK(ToRegister(instr->context()).is(cp)); 3753 Register input = ToRegister(instr->value()); 3754 Register temp1 = ToRegister(instr->temp1()); 3755 Register temp2 = ToRegister(instr->temp2()); 3756 Register result_bits = ToRegister(instr->temp3()); 3757 Register result = ToRegister(instr->result()); 3758 3759 Label runtime_allocation; 3760 3761 // Deoptimize if the input is not a HeapNumber. 3762 DeoptimizeIfNotHeapNumber(input, instr); 3763 3764 // If the argument is positive, we can return it as-is, without any need to 3765 // allocate a new HeapNumber for the result. We have to do this in integer 3766 // registers (rather than with fabs) because we need to be able to distinguish 3767 // the two zeroes. 3768 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); 3769 __ Mov(result, input); 3770 __ Tbz(result_bits, kXSignBit, exit); 3771 3772 // Calculate abs(input) by clearing the sign bit. 3773 __ Bic(result_bits, result_bits, kXSignMask); 3774 3775 // Allocate a new HeapNumber to hold the result. 3776 // result_bits The bit representation of the (double) result. 3777 __ Bind(allocation_entry); 3778 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); 3779 // The inline (non-deferred) code will store result_bits into result. 3780 __ B(exit); 3781 3782 __ Bind(&runtime_allocation); 3783 if (FLAG_debug_code) { 3784 // Because result is in the pointer map, we need to make sure it has a valid 3785 // tagged value before we call the runtime. We speculatively set it to the 3786 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already 3787 // be valid. 3788 Label result_ok; 3789 Register input = ToRegister(instr->value()); 3790 __ JumpIfSmi(result, &result_ok); 3791 __ Cmp(input, result); 3792 __ Assert(eq, kUnexpectedValue); 3793 __ Bind(&result_ok); 3794 } 3795 3796 { PushSafepointRegistersScope scope(this); 3797 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, 3798 instr->context()); 3799 __ StoreToSafepointRegisterSlot(x0, result); 3800 } 3801 // The inline (non-deferred) code will store result_bits into result. 3802 } 3803 3804 3805 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { 3806 // Class for deferred case. 3807 class DeferredMathAbsTagged: public LDeferredCode { 3808 public: 3809 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) 3810 : LDeferredCode(codegen), instr_(instr) { } 3811 virtual void Generate() { 3812 codegen()->DoDeferredMathAbsTagged(instr_, exit(), 3813 allocation_entry()); 3814 } 3815 virtual LInstruction* instr() { return instr_; } 3816 Label* allocation_entry() { return &allocation; } 3817 private: 3818 LMathAbsTagged* instr_; 3819 Label allocation; 3820 }; 3821 3822 // TODO(jbramley): The early-exit mechanism would skip the new frame handling 3823 // in GenerateDeferredCode. Tidy this up. 3824 DCHECK(!NeedsDeferredFrame()); 3825 3826 DeferredMathAbsTagged* deferred = 3827 new(zone()) DeferredMathAbsTagged(this, instr); 3828 3829 DCHECK(instr->hydrogen()->value()->representation().IsTagged() || 3830 instr->hydrogen()->value()->representation().IsSmi()); 3831 Register input = ToRegister(instr->value()); 3832 Register result_bits = ToRegister(instr->temp3()); 3833 Register result = ToRegister(instr->result()); 3834 Label done; 3835 3836 // Handle smis inline. 3837 // We can treat smis as 64-bit integers, since the (low-order) tag bits will 3838 // never get set by the negation. This is therefore the same as the Integer32 3839 // case in DoMathAbs, except that it operates on 64-bit values. 3840 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); 3841 3842 __ JumpIfNotSmi(input, deferred->entry()); 3843 3844 __ Abs(result, input, NULL, &done); 3845 3846 // The result is the magnitude (abs) of the smallest value a smi can 3847 // represent, encoded as a double. 3848 __ Mov(result_bits, double_to_rawbits(0x80000000)); 3849 __ B(deferred->allocation_entry()); 3850 3851 __ Bind(deferred->exit()); 3852 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); 3853 3854 __ Bind(&done); 3855 } 3856 3857 3858 void LCodeGen::DoMathExp(LMathExp* instr) { 3859 DoubleRegister input = ToDoubleRegister(instr->value()); 3860 DoubleRegister result = ToDoubleRegister(instr->result()); 3861 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1()); 3862 DoubleRegister double_temp2 = double_scratch(); 3863 Register temp1 = ToRegister(instr->temp1()); 3864 Register temp2 = ToRegister(instr->temp2()); 3865 Register temp3 = ToRegister(instr->temp3()); 3866 3867 MathExpGenerator::EmitMathExp(masm(), input, result, 3868 double_temp1, double_temp2, 3869 temp1, temp2, temp3); 3870 } 3871 3872 3873 void LCodeGen::DoMathFloorD(LMathFloorD* instr) { 3874 DoubleRegister input = ToDoubleRegister(instr->value()); 3875 DoubleRegister result = ToDoubleRegister(instr->result()); 3876 3877 __ Frintm(result, input); 3878 } 3879 3880 3881 void LCodeGen::DoMathFloorI(LMathFloorI* instr) { 3882 DoubleRegister input = ToDoubleRegister(instr->value()); 3883 Register result = ToRegister(instr->result()); 3884 3885 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3886 DeoptimizeIfMinusZero(input, instr); 3887 } 3888 3889 __ Fcvtms(result, input); 3890 3891 // Check that the result fits into a 32-bit integer. 3892 // - The result did not overflow. 3893 __ Cmp(result, Operand(result, SXTW)); 3894 // - The input was not NaN. 3895 __ Fccmp(input, input, NoFlag, eq); 3896 DeoptimizeIf(ne, instr); 3897 } 3898 3899 3900 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { 3901 Register dividend = ToRegister32(instr->dividend()); 3902 Register result = ToRegister32(instr->result()); 3903 int32_t divisor = instr->divisor(); 3904 3905 // If the divisor is 1, return the dividend. 3906 if (divisor == 1) { 3907 __ Mov(result, dividend, kDiscardForSameWReg); 3908 return; 3909 } 3910 3911 // If the divisor is positive, things are easy: There can be no deopts and we 3912 // can simply do an arithmetic right shift. 3913 int32_t shift = WhichPowerOf2Abs(divisor); 3914 if (divisor > 1) { 3915 __ Mov(result, Operand(dividend, ASR, shift)); 3916 return; 3917 } 3918 3919 // If the divisor is negative, we have to negate and handle edge cases. 3920 __ Negs(result, dividend); 3921 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3922 DeoptimizeIf(eq, instr); 3923 } 3924 3925 // Dividing by -1 is basically negation, unless we overflow. 3926 if (divisor == -1) { 3927 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 3928 DeoptimizeIf(vs, instr); 3929 } 3930 return; 3931 } 3932 3933 // If the negation could not overflow, simply shifting is OK. 3934 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 3935 __ Mov(result, Operand(dividend, ASR, shift)); 3936 return; 3937 } 3938 3939 __ Asr(result, result, shift); 3940 __ Csel(result, result, kMinInt / divisor, vc); 3941 } 3942 3943 3944 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { 3945 Register dividend = ToRegister32(instr->dividend()); 3946 int32_t divisor = instr->divisor(); 3947 Register result = ToRegister32(instr->result()); 3948 DCHECK(!AreAliased(dividend, result)); 3949 3950 if (divisor == 0) { 3951 Deoptimize(instr); 3952 return; 3953 } 3954 3955 // Check for (0 / -x) that will produce negative zero. 3956 HMathFloorOfDiv* hdiv = instr->hydrogen(); 3957 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 3958 DeoptimizeIfZero(dividend, instr); 3959 } 3960 3961 // Easy case: We need no dynamic check for the dividend and the flooring 3962 // division is the same as the truncating division. 3963 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || 3964 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { 3965 __ TruncatingDiv(result, dividend, Abs(divisor)); 3966 if (divisor < 0) __ Neg(result, result); 3967 return; 3968 } 3969 3970 // In the general case we may need to adjust before and after the truncating 3971 // division to get a flooring division. 3972 Register temp = ToRegister32(instr->temp()); 3973 DCHECK(!AreAliased(temp, dividend, result)); 3974 Label needs_adjustment, done; 3975 __ Cmp(dividend, 0); 3976 __ B(divisor > 0 ? lt : gt, &needs_adjustment); 3977 __ TruncatingDiv(result, dividend, Abs(divisor)); 3978 if (divisor < 0) __ Neg(result, result); 3979 __ B(&done); 3980 __ Bind(&needs_adjustment); 3981 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); 3982 __ TruncatingDiv(result, temp, Abs(divisor)); 3983 if (divisor < 0) __ Neg(result, result); 3984 __ Sub(result, result, Operand(1)); 3985 __ Bind(&done); 3986 } 3987 3988 3989 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. 3990 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { 3991 Register dividend = ToRegister32(instr->dividend()); 3992 Register divisor = ToRegister32(instr->divisor()); 3993 Register remainder = ToRegister32(instr->temp()); 3994 Register result = ToRegister32(instr->result()); 3995 3996 // This can't cause an exception on ARM, so we can speculatively 3997 // execute it already now. 3998 __ Sdiv(result, dividend, divisor); 3999 4000 // Check for x / 0. 4001 DeoptimizeIfZero(divisor, instr); 4002 4003 // Check for (kMinInt / -1). 4004 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { 4005 // The V flag will be set iff dividend == kMinInt. 4006 __ Cmp(dividend, 1); 4007 __ Ccmp(divisor, -1, NoFlag, vs); 4008 DeoptimizeIf(eq, instr); 4009 } 4010 4011 // Check for (0 / -x) that will produce negative zero. 4012 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 4013 __ Cmp(divisor, 0); 4014 __ Ccmp(dividend, 0, ZFlag, mi); 4015 // "divisor" can't be null because the code would have already been 4016 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). 4017 // In this case we need to deoptimize to produce a -0. 4018 DeoptimizeIf(eq, instr); 4019 } 4020 4021 Label done; 4022 // If both operands have the same sign then we are done. 4023 __ Eor(remainder, dividend, divisor); 4024 __ Tbz(remainder, kWSignBit, &done); 4025 4026 // Check if the result needs to be corrected. 4027 __ Msub(remainder, result, divisor, dividend); 4028 __ Cbz(remainder, &done); 4029 __ Sub(result, result, 1); 4030 4031 __ Bind(&done); 4032 } 4033 4034 4035 void LCodeGen::DoMathLog(LMathLog* instr) { 4036 DCHECK(instr->IsMarkedAsCall()); 4037 DCHECK(ToDoubleRegister(instr->value()).is(d0)); 4038 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 4039 0, 1); 4040 DCHECK(ToDoubleRegister(instr->result()).Is(d0)); 4041 } 4042 4043 4044 void LCodeGen::DoMathClz32(LMathClz32* instr) { 4045 Register input = ToRegister32(instr->value()); 4046 Register result = ToRegister32(instr->result()); 4047 __ Clz(result, input); 4048 } 4049 4050 4051 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { 4052 DoubleRegister input = ToDoubleRegister(instr->value()); 4053 DoubleRegister result = ToDoubleRegister(instr->result()); 4054 Label done; 4055 4056 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: 4057 // Math.pow(-Infinity, 0.5) == +Infinity 4058 // Math.pow(-0.0, 0.5) == +0.0 4059 4060 // Catch -infinity inputs first. 4061 // TODO(jbramley): A constant infinity register would be helpful here. 4062 __ Fmov(double_scratch(), kFP64NegativeInfinity); 4063 __ Fcmp(double_scratch(), input); 4064 __ Fabs(result, input); 4065 __ B(&done, eq); 4066 4067 // Add +0.0 to convert -0.0 to +0.0. 4068 __ Fadd(double_scratch(), input, fp_zero); 4069 __ Fsqrt(result, double_scratch()); 4070 4071 __ Bind(&done); 4072 } 4073 4074 4075 void LCodeGen::DoPower(LPower* instr) { 4076 Representation exponent_type = instr->hydrogen()->right()->representation(); 4077 // Having marked this as a call, we can use any registers. 4078 // Just make sure that the input/output registers are the expected ones. 4079 Register tagged_exponent = MathPowTaggedDescriptor::exponent(); 4080 Register integer_exponent = MathPowIntegerDescriptor::exponent(); 4081 DCHECK(!instr->right()->IsDoubleRegister() || 4082 ToDoubleRegister(instr->right()).is(d1)); 4083 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || 4084 ToRegister(instr->right()).is(tagged_exponent)); 4085 DCHECK(!exponent_type.IsInteger32() || 4086 ToRegister(instr->right()).is(integer_exponent)); 4087 DCHECK(ToDoubleRegister(instr->left()).is(d0)); 4088 DCHECK(ToDoubleRegister(instr->result()).is(d0)); 4089 4090 if (exponent_type.IsSmi()) { 4091 MathPowStub stub(isolate(), MathPowStub::TAGGED); 4092 __ CallStub(&stub); 4093 } else if (exponent_type.IsTagged()) { 4094 Label no_deopt; 4095 __ JumpIfSmi(tagged_exponent, &no_deopt); 4096 DeoptimizeIfNotHeapNumber(tagged_exponent, instr); 4097 __ Bind(&no_deopt); 4098 MathPowStub stub(isolate(), MathPowStub::TAGGED); 4099 __ CallStub(&stub); 4100 } else if (exponent_type.IsInteger32()) { 4101 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub 4102 // supports large integer exponents. 4103 __ Sxtw(integer_exponent, integer_exponent); 4104 MathPowStub stub(isolate(), MathPowStub::INTEGER); 4105 __ CallStub(&stub); 4106 } else { 4107 DCHECK(exponent_type.IsDouble()); 4108 MathPowStub stub(isolate(), MathPowStub::DOUBLE); 4109 __ CallStub(&stub); 4110 } 4111 } 4112 4113 4114 void LCodeGen::DoMathRoundD(LMathRoundD* instr) { 4115 DoubleRegister input = ToDoubleRegister(instr->value()); 4116 DoubleRegister result = ToDoubleRegister(instr->result()); 4117 DoubleRegister scratch_d = double_scratch(); 4118 4119 DCHECK(!AreAliased(input, result, scratch_d)); 4120 4121 Label done; 4122 4123 __ Frinta(result, input); 4124 __ Fcmp(input, 0.0); 4125 __ Fccmp(result, input, ZFlag, lt); 4126 // The result is correct if the input was in [-0, +infinity], or was a 4127 // negative integral value. 4128 __ B(eq, &done); 4129 4130 // Here the input is negative, non integral, with an exponent lower than 52. 4131 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) 4132 // case. So we can safely add 0.5. 4133 __ Fmov(scratch_d, 0.5); 4134 __ Fadd(result, input, scratch_d); 4135 __ Frintm(result, result); 4136 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. 4137 __ Fabs(result, result); 4138 __ Fneg(result, result); 4139 4140 __ Bind(&done); 4141 } 4142 4143 4144 void LCodeGen::DoMathRoundI(LMathRoundI* instr) { 4145 DoubleRegister input = ToDoubleRegister(instr->value()); 4146 DoubleRegister temp = ToDoubleRegister(instr->temp1()); 4147 DoubleRegister dot_five = double_scratch(); 4148 Register result = ToRegister(instr->result()); 4149 Label done; 4150 4151 // Math.round() rounds to the nearest integer, with ties going towards 4152 // +infinity. This does not match any IEEE-754 rounding mode. 4153 // - Infinities and NaNs are propagated unchanged, but cause deopts because 4154 // they can't be represented as integers. 4155 // - The sign of the result is the same as the sign of the input. This means 4156 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a 4157 // result of -0.0. 4158 4159 // Add 0.5 and round towards -infinity. 4160 __ Fmov(dot_five, 0.5); 4161 __ Fadd(temp, input, dot_five); 4162 __ Fcvtms(result, temp); 4163 4164 // The result is correct if: 4165 // result is not 0, as the input could be NaN or [-0.5, -0.0]. 4166 // result is not 1, as 0.499...94 will wrongly map to 1. 4167 // result fits in 32 bits. 4168 __ Cmp(result, Operand(result.W(), SXTW)); 4169 __ Ccmp(result, 1, ZFlag, eq); 4170 __ B(hi, &done); 4171 4172 // At this point, we have to handle possible inputs of NaN or numbers in the 4173 // range [-0.5, 1.5[, or numbers larger than 32 bits. 4174 4175 // Deoptimize if the result > 1, as it must be larger than 32 bits. 4176 __ Cmp(result, 1); 4177 DeoptimizeIf(hi, instr); 4178 4179 // Deoptimize for negative inputs, which at this point are only numbers in 4180 // the range [-0.5, -0.0] 4181 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 4182 __ Fmov(result, input); 4183 DeoptimizeIfNegative(result, instr); 4184 } 4185 4186 // Deoptimize if the input was NaN. 4187 __ Fcmp(input, dot_five); 4188 DeoptimizeIf(vs, instr); 4189 4190 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ 4191 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, 4192 // else 0; we avoid dealing with 0.499...94 directly. 4193 __ Cset(result, ge); 4194 __ Bind(&done); 4195 } 4196 4197 4198 void LCodeGen::DoMathFround(LMathFround* instr) { 4199 DoubleRegister input = ToDoubleRegister(instr->value()); 4200 DoubleRegister result = ToDoubleRegister(instr->result()); 4201 __ Fcvt(result.S(), input); 4202 __ Fcvt(result, result.S()); 4203 } 4204 4205 4206 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { 4207 DoubleRegister input = ToDoubleRegister(instr->value()); 4208 DoubleRegister result = ToDoubleRegister(instr->result()); 4209 __ Fsqrt(result, input); 4210 } 4211 4212 4213 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { 4214 HMathMinMax::Operation op = instr->hydrogen()->operation(); 4215 if (instr->hydrogen()->representation().IsInteger32()) { 4216 Register result = ToRegister32(instr->result()); 4217 Register left = ToRegister32(instr->left()); 4218 Operand right = ToOperand32(instr->right()); 4219 4220 __ Cmp(left, right); 4221 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); 4222 } else if (instr->hydrogen()->representation().IsSmi()) { 4223 Register result = ToRegister(instr->result()); 4224 Register left = ToRegister(instr->left()); 4225 Operand right = ToOperand(instr->right()); 4226 4227 __ Cmp(left, right); 4228 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); 4229 } else { 4230 DCHECK(instr->hydrogen()->representation().IsDouble()); 4231 DoubleRegister result = ToDoubleRegister(instr->result()); 4232 DoubleRegister left = ToDoubleRegister(instr->left()); 4233 DoubleRegister right = ToDoubleRegister(instr->right()); 4234 4235 if (op == HMathMinMax::kMathMax) { 4236 __ Fmax(result, left, right); 4237 } else { 4238 DCHECK(op == HMathMinMax::kMathMin); 4239 __ Fmin(result, left, right); 4240 } 4241 } 4242 } 4243 4244 4245 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { 4246 Register dividend = ToRegister32(instr->dividend()); 4247 int32_t divisor = instr->divisor(); 4248 DCHECK(dividend.is(ToRegister32(instr->result()))); 4249 4250 // Theoretically, a variation of the branch-free code for integer division by 4251 // a power of 2 (calculating the remainder via an additional multiplication 4252 // (which gets simplified to an 'and') and subtraction) should be faster, and 4253 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to 4254 // indicate that positive dividends are heavily favored, so the branching 4255 // version performs better. 4256 HMod* hmod = instr->hydrogen(); 4257 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 4258 Label dividend_is_not_negative, done; 4259 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { 4260 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); 4261 // Note that this is correct even for kMinInt operands. 4262 __ Neg(dividend, dividend); 4263 __ And(dividend, dividend, mask); 4264 __ Negs(dividend, dividend); 4265 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 4266 DeoptimizeIf(eq, instr); 4267 } 4268 __ B(&done); 4269 } 4270 4271 __ bind(÷nd_is_not_negative); 4272 __ And(dividend, dividend, mask); 4273 __ bind(&done); 4274 } 4275 4276 4277 void LCodeGen::DoModByConstI(LModByConstI* instr) { 4278 Register dividend = ToRegister32(instr->dividend()); 4279 int32_t divisor = instr->divisor(); 4280 Register result = ToRegister32(instr->result()); 4281 Register temp = ToRegister32(instr->temp()); 4282 DCHECK(!AreAliased(dividend, result, temp)); 4283 4284 if (divisor == 0) { 4285 Deoptimize(instr); 4286 return; 4287 } 4288 4289 __ TruncatingDiv(result, dividend, Abs(divisor)); 4290 __ Sxtw(dividend.X(), dividend); 4291 __ Mov(temp, Abs(divisor)); 4292 __ Smsubl(result.X(), result, temp, dividend.X()); 4293 4294 // Check for negative zero. 4295 HMod* hmod = instr->hydrogen(); 4296 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 4297 Label remainder_not_zero; 4298 __ Cbnz(result, &remainder_not_zero); 4299 DeoptimizeIfNegative(dividend, instr); 4300 __ bind(&remainder_not_zero); 4301 } 4302 } 4303 4304 4305 void LCodeGen::DoModI(LModI* instr) { 4306 Register dividend = ToRegister32(instr->left()); 4307 Register divisor = ToRegister32(instr->right()); 4308 Register result = ToRegister32(instr->result()); 4309 4310 Label done; 4311 // modulo = dividend - quotient * divisor 4312 __ Sdiv(result, dividend, divisor); 4313 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { 4314 DeoptimizeIfZero(divisor, instr); 4315 } 4316 __ Msub(result, result, divisor, dividend); 4317 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 4318 __ Cbnz(result, &done); 4319 DeoptimizeIfNegative(dividend, instr); 4320 } 4321 __ Bind(&done); 4322 } 4323 4324 4325 void LCodeGen::DoMulConstIS(LMulConstIS* instr) { 4326 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); 4327 bool is_smi = instr->hydrogen()->representation().IsSmi(); 4328 Register result = 4329 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); 4330 Register left = 4331 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ; 4332 int32_t right = ToInteger32(instr->right()); 4333 DCHECK((right > -kMaxInt) || (right < kMaxInt)); 4334 4335 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4336 bool bailout_on_minus_zero = 4337 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4338 4339 if (bailout_on_minus_zero) { 4340 if (right < 0) { 4341 // The result is -0 if right is negative and left is zero. 4342 DeoptimizeIfZero(left, instr); 4343 } else if (right == 0) { 4344 // The result is -0 if the right is zero and the left is negative. 4345 DeoptimizeIfNegative(left, instr); 4346 } 4347 } 4348 4349 switch (right) { 4350 // Cases which can detect overflow. 4351 case -1: 4352 if (can_overflow) { 4353 // Only 0x80000000 can overflow here. 4354 __ Negs(result, left); 4355 DeoptimizeIf(vs, instr); 4356 } else { 4357 __ Neg(result, left); 4358 } 4359 break; 4360 case 0: 4361 // This case can never overflow. 4362 __ Mov(result, 0); 4363 break; 4364 case 1: 4365 // This case can never overflow. 4366 __ Mov(result, left, kDiscardForSameWReg); 4367 break; 4368 case 2: 4369 if (can_overflow) { 4370 __ Adds(result, left, left); 4371 DeoptimizeIf(vs, instr); 4372 } else { 4373 __ Add(result, left, left); 4374 } 4375 break; 4376 4377 default: 4378 // Multiplication by constant powers of two (and some related values) 4379 // can be done efficiently with shifted operands. 4380 int32_t right_abs = Abs(right); 4381 4382 if (base::bits::IsPowerOfTwo32(right_abs)) { 4383 int right_log2 = WhichPowerOf2(right_abs); 4384 4385 if (can_overflow) { 4386 Register scratch = result; 4387 DCHECK(!AreAliased(scratch, left)); 4388 __ Cls(scratch, left); 4389 __ Cmp(scratch, right_log2); 4390 DeoptimizeIf(lt, instr); 4391 } 4392 4393 if (right >= 0) { 4394 // result = left << log2(right) 4395 __ Lsl(result, left, right_log2); 4396 } else { 4397 // result = -left << log2(-right) 4398 if (can_overflow) { 4399 __ Negs(result, Operand(left, LSL, right_log2)); 4400 DeoptimizeIf(vs, instr); 4401 } else { 4402 __ Neg(result, Operand(left, LSL, right_log2)); 4403 } 4404 } 4405 return; 4406 } 4407 4408 4409 // For the following cases, we could perform a conservative overflow check 4410 // with CLS as above. However the few cycles saved are likely not worth 4411 // the risk of deoptimizing more often than required. 4412 DCHECK(!can_overflow); 4413 4414 if (right >= 0) { 4415 if (base::bits::IsPowerOfTwo32(right - 1)) { 4416 // result = left + left << log2(right - 1) 4417 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); 4418 } else if (base::bits::IsPowerOfTwo32(right + 1)) { 4419 // result = -left + left << log2(right + 1) 4420 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); 4421 __ Neg(result, result); 4422 } else { 4423 UNREACHABLE(); 4424 } 4425 } else { 4426 if (base::bits::IsPowerOfTwo32(-right + 1)) { 4427 // result = left - left << log2(-right + 1) 4428 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); 4429 } else if (base::bits::IsPowerOfTwo32(-right - 1)) { 4430 // result = -left - left << log2(-right - 1) 4431 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); 4432 __ Neg(result, result); 4433 } else { 4434 UNREACHABLE(); 4435 } 4436 } 4437 } 4438 } 4439 4440 4441 void LCodeGen::DoMulI(LMulI* instr) { 4442 Register result = ToRegister32(instr->result()); 4443 Register left = ToRegister32(instr->left()); 4444 Register right = ToRegister32(instr->right()); 4445 4446 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4447 bool bailout_on_minus_zero = 4448 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4449 4450 if (bailout_on_minus_zero && !left.Is(right)) { 4451 // If one operand is zero and the other is negative, the result is -0. 4452 // - Set Z (eq) if either left or right, or both, are 0. 4453 __ Cmp(left, 0); 4454 __ Ccmp(right, 0, ZFlag, ne); 4455 // - If so (eq), set N (mi) if left + right is negative. 4456 // - Otherwise, clear N. 4457 __ Ccmn(left, right, NoFlag, eq); 4458 DeoptimizeIf(mi, instr); 4459 } 4460 4461 if (can_overflow) { 4462 __ Smull(result.X(), left, right); 4463 __ Cmp(result.X(), Operand(result, SXTW)); 4464 DeoptimizeIf(ne, instr); 4465 } else { 4466 __ Mul(result, left, right); 4467 } 4468 } 4469 4470 4471 void LCodeGen::DoMulS(LMulS* instr) { 4472 Register result = ToRegister(instr->result()); 4473 Register left = ToRegister(instr->left()); 4474 Register right = ToRegister(instr->right()); 4475 4476 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 4477 bool bailout_on_minus_zero = 4478 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 4479 4480 if (bailout_on_minus_zero && !left.Is(right)) { 4481 // If one operand is zero and the other is negative, the result is -0. 4482 // - Set Z (eq) if either left or right, or both, are 0. 4483 __ Cmp(left, 0); 4484 __ Ccmp(right, 0, ZFlag, ne); 4485 // - If so (eq), set N (mi) if left + right is negative. 4486 // - Otherwise, clear N. 4487 __ Ccmn(left, right, NoFlag, eq); 4488 DeoptimizeIf(mi, instr); 4489 } 4490 4491 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); 4492 if (can_overflow) { 4493 __ Smulh(result, left, right); 4494 __ Cmp(result, Operand(result.W(), SXTW)); 4495 __ SmiTag(result); 4496 DeoptimizeIf(ne, instr); 4497 } else { 4498 if (AreAliased(result, left, right)) { 4499 // All three registers are the same: half untag the input and then 4500 // multiply, giving a tagged result. 4501 STATIC_ASSERT((kSmiShift % 2) == 0); 4502 __ Asr(result, left, kSmiShift / 2); 4503 __ Mul(result, result, result); 4504 } else if (result.Is(left) && !left.Is(right)) { 4505 // Registers result and left alias, right is distinct: untag left into 4506 // result, and then multiply by right, giving a tagged result. 4507 __ SmiUntag(result, left); 4508 __ Mul(result, result, right); 4509 } else { 4510 DCHECK(!left.Is(result)); 4511 // Registers result and right alias, left is distinct, or all registers 4512 // are distinct: untag right into result, and then multiply by left, 4513 // giving a tagged result. 4514 __ SmiUntag(result, right); 4515 __ Mul(result, left, result); 4516 } 4517 } 4518 } 4519 4520 4521 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { 4522 // TODO(3095996): Get rid of this. For now, we need to make the 4523 // result register contain a valid pointer because it is already 4524 // contained in the register pointer map. 4525 Register result = ToRegister(instr->result()); 4526 __ Mov(result, 0); 4527 4528 PushSafepointRegistersScope scope(this); 4529 // NumberTagU and NumberTagD use the context from the frame, rather than 4530 // the environment's HContext or HInlinedContext value. 4531 // They only call Runtime::kAllocateHeapNumber. 4532 // The corresponding HChange instructions are added in a phase that does 4533 // not have easy access to the local context. 4534 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4535 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4536 RecordSafepointWithRegisters( 4537 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4538 __ StoreToSafepointRegisterSlot(x0, result); 4539 } 4540 4541 4542 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { 4543 class DeferredNumberTagD: public LDeferredCode { 4544 public: 4545 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) 4546 : LDeferredCode(codegen), instr_(instr) { } 4547 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } 4548 virtual LInstruction* instr() { return instr_; } 4549 private: 4550 LNumberTagD* instr_; 4551 }; 4552 4553 DoubleRegister input = ToDoubleRegister(instr->value()); 4554 Register result = ToRegister(instr->result()); 4555 Register temp1 = ToRegister(instr->temp1()); 4556 Register temp2 = ToRegister(instr->temp2()); 4557 4558 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); 4559 if (FLAG_inline_new) { 4560 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); 4561 } else { 4562 __ B(deferred->entry()); 4563 } 4564 4565 __ Bind(deferred->exit()); 4566 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); 4567 } 4568 4569 4570 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, 4571 LOperand* value, 4572 LOperand* temp1, 4573 LOperand* temp2) { 4574 Label slow, convert_and_store; 4575 Register src = ToRegister32(value); 4576 Register dst = ToRegister(instr->result()); 4577 Register scratch1 = ToRegister(temp1); 4578 4579 if (FLAG_inline_new) { 4580 Register scratch2 = ToRegister(temp2); 4581 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); 4582 __ B(&convert_and_store); 4583 } 4584 4585 // Slow case: call the runtime system to do the number allocation. 4586 __ Bind(&slow); 4587 // TODO(3095996): Put a valid pointer value in the stack slot where the result 4588 // register is stored, as this register is in the pointer map, but contains an 4589 // integer value. 4590 __ Mov(dst, 0); 4591 { 4592 // Preserve the value of all registers. 4593 PushSafepointRegistersScope scope(this); 4594 4595 // NumberTagU and NumberTagD use the context from the frame, rather than 4596 // the environment's HContext or HInlinedContext value. 4597 // They only call Runtime::kAllocateHeapNumber. 4598 // The corresponding HChange instructions are added in a phase that does 4599 // not have easy access to the local context. 4600 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4601 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4602 RecordSafepointWithRegisters( 4603 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4604 __ StoreToSafepointRegisterSlot(x0, dst); 4605 } 4606 4607 // Convert number to floating point and store in the newly allocated heap 4608 // number. 4609 __ Bind(&convert_and_store); 4610 DoubleRegister dbl_scratch = double_scratch(); 4611 __ Ucvtf(dbl_scratch, src); 4612 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); 4613 } 4614 4615 4616 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { 4617 class DeferredNumberTagU: public LDeferredCode { 4618 public: 4619 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) 4620 : LDeferredCode(codegen), instr_(instr) { } 4621 virtual void Generate() { 4622 codegen()->DoDeferredNumberTagU(instr_, 4623 instr_->value(), 4624 instr_->temp1(), 4625 instr_->temp2()); 4626 } 4627 virtual LInstruction* instr() { return instr_; } 4628 private: 4629 LNumberTagU* instr_; 4630 }; 4631 4632 Register value = ToRegister32(instr->value()); 4633 Register result = ToRegister(instr->result()); 4634 4635 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); 4636 __ Cmp(value, Smi::kMaxValue); 4637 __ B(hi, deferred->entry()); 4638 __ SmiTag(result, value.X()); 4639 __ Bind(deferred->exit()); 4640 } 4641 4642 4643 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { 4644 Register input = ToRegister(instr->value()); 4645 Register scratch = ToRegister(instr->temp()); 4646 DoubleRegister result = ToDoubleRegister(instr->result()); 4647 bool can_convert_undefined_to_nan = 4648 instr->hydrogen()->can_convert_undefined_to_nan(); 4649 4650 Label done, load_smi; 4651 4652 // Work out what untag mode we're working with. 4653 HValue* value = instr->hydrogen()->value(); 4654 NumberUntagDMode mode = value->representation().IsSmi() 4655 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; 4656 4657 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { 4658 __ JumpIfSmi(input, &load_smi); 4659 4660 Label convert_undefined; 4661 4662 // Heap number map check. 4663 if (can_convert_undefined_to_nan) { 4664 __ JumpIfNotHeapNumber(input, &convert_undefined); 4665 } else { 4666 DeoptimizeIfNotHeapNumber(input, instr); 4667 } 4668 4669 // Load heap number. 4670 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); 4671 if (instr->hydrogen()->deoptimize_on_minus_zero()) { 4672 DeoptimizeIfMinusZero(result, instr); 4673 } 4674 __ B(&done); 4675 4676 if (can_convert_undefined_to_nan) { 4677 __ Bind(&convert_undefined); 4678 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr); 4679 4680 __ LoadRoot(scratch, Heap::kNanValueRootIndex); 4681 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); 4682 __ B(&done); 4683 } 4684 4685 } else { 4686 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); 4687 // Fall through to load_smi. 4688 } 4689 4690 // Smi to double register conversion. 4691 __ Bind(&load_smi); 4692 __ SmiUntagToDouble(result, input); 4693 4694 __ Bind(&done); 4695 } 4696 4697 4698 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { 4699 // This is a pseudo-instruction that ensures that the environment here is 4700 // properly registered for deoptimization and records the assembler's PC 4701 // offset. 4702 LEnvironment* environment = instr->environment(); 4703 4704 // If the environment were already registered, we would have no way of 4705 // backpatching it with the spill slot operands. 4706 DCHECK(!environment->HasBeenRegistered()); 4707 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 4708 4709 GenerateOsrPrologue(); 4710 } 4711 4712 4713 void LCodeGen::DoParameter(LParameter* instr) { 4714 // Nothing to do. 4715 } 4716 4717 4718 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { 4719 __ PushPreamble(instr->argc(), kPointerSize); 4720 } 4721 4722 4723 void LCodeGen::DoPushArguments(LPushArguments* instr) { 4724 MacroAssembler::PushPopQueue args(masm()); 4725 4726 for (int i = 0; i < instr->ArgumentCount(); ++i) { 4727 LOperand* arg = instr->argument(i); 4728 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { 4729 Abort(kDoPushArgumentNotImplementedForDoubleType); 4730 return; 4731 } 4732 args.Queue(ToRegister(arg)); 4733 } 4734 4735 // The preamble was done by LPreparePushArguments. 4736 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); 4737 4738 after_push_argument_ = true; 4739 } 4740 4741 4742 void LCodeGen::DoReturn(LReturn* instr) { 4743 if (FLAG_trace && info()->IsOptimizing()) { 4744 // Push the return value on the stack as the parameter. 4745 // Runtime::TraceExit returns its parameter in x0. We're leaving the code 4746 // managed by the register allocator and tearing down the frame, it's 4747 // safe to write to the context register. 4748 __ Push(x0); 4749 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4750 __ CallRuntime(Runtime::kTraceExit, 1); 4751 } 4752 4753 if (info()->saves_caller_doubles()) { 4754 RestoreCallerDoubles(); 4755 } 4756 4757 int no_frame_start = -1; 4758 if (NeedsEagerFrame()) { 4759 Register stack_pointer = masm()->StackPointer(); 4760 __ Mov(stack_pointer, fp); 4761 no_frame_start = masm_->pc_offset(); 4762 __ Pop(fp, lr); 4763 } 4764 4765 if (instr->has_constant_parameter_count()) { 4766 int parameter_count = ToInteger32(instr->constant_parameter_count()); 4767 __ Drop(parameter_count + 1); 4768 } else { 4769 Register parameter_count = ToRegister(instr->parameter_count()); 4770 __ DropBySMI(parameter_count); 4771 } 4772 __ Ret(); 4773 4774 if (no_frame_start != -1) { 4775 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); 4776 } 4777 } 4778 4779 4780 MemOperand LCodeGen::BuildSeqStringOperand(Register string, 4781 Register temp, 4782 LOperand* index, 4783 String::Encoding encoding) { 4784 if (index->IsConstantOperand()) { 4785 int offset = ToInteger32(LConstantOperand::cast(index)); 4786 if (encoding == String::TWO_BYTE_ENCODING) { 4787 offset *= kUC16Size; 4788 } 4789 STATIC_ASSERT(kCharSize == 1); 4790 return FieldMemOperand(string, SeqString::kHeaderSize + offset); 4791 } 4792 4793 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); 4794 if (encoding == String::ONE_BYTE_ENCODING) { 4795 return MemOperand(temp, ToRegister32(index), SXTW); 4796 } else { 4797 STATIC_ASSERT(kUC16Size == 2); 4798 return MemOperand(temp, ToRegister32(index), SXTW, 1); 4799 } 4800 } 4801 4802 4803 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { 4804 String::Encoding encoding = instr->hydrogen()->encoding(); 4805 Register string = ToRegister(instr->string()); 4806 Register result = ToRegister(instr->result()); 4807 Register temp = ToRegister(instr->temp()); 4808 4809 if (FLAG_debug_code) { 4810 // Even though this lithium instruction comes with a temp register, we 4811 // can't use it here because we want to use "AtStart" constraints on the 4812 // inputs and the debug code here needs a scratch register. 4813 UseScratchRegisterScope temps(masm()); 4814 Register dbg_temp = temps.AcquireX(); 4815 4816 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); 4817 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); 4818 4819 __ And(dbg_temp, dbg_temp, 4820 Operand(kStringRepresentationMask | kStringEncodingMask)); 4821 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 4822 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 4823 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING 4824 ? one_byte_seq_type : two_byte_seq_type)); 4825 __ Check(eq, kUnexpectedStringType); 4826 } 4827 4828 MemOperand operand = 4829 BuildSeqStringOperand(string, temp, instr->index(), encoding); 4830 if (encoding == String::ONE_BYTE_ENCODING) { 4831 __ Ldrb(result, operand); 4832 } else { 4833 __ Ldrh(result, operand); 4834 } 4835 } 4836 4837 4838 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { 4839 String::Encoding encoding = instr->hydrogen()->encoding(); 4840 Register string = ToRegister(instr->string()); 4841 Register value = ToRegister(instr->value()); 4842 Register temp = ToRegister(instr->temp()); 4843 4844 if (FLAG_debug_code) { 4845 DCHECK(ToRegister(instr->context()).is(cp)); 4846 Register index = ToRegister(instr->index()); 4847 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 4848 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 4849 int encoding_mask = 4850 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING 4851 ? one_byte_seq_type : two_byte_seq_type; 4852 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, 4853 encoding_mask); 4854 } 4855 MemOperand operand = 4856 BuildSeqStringOperand(string, temp, instr->index(), encoding); 4857 if (encoding == String::ONE_BYTE_ENCODING) { 4858 __ Strb(value, operand); 4859 } else { 4860 __ Strh(value, operand); 4861 } 4862 } 4863 4864 4865 void LCodeGen::DoSmiTag(LSmiTag* instr) { 4866 HChange* hchange = instr->hydrogen(); 4867 Register input = ToRegister(instr->value()); 4868 Register output = ToRegister(instr->result()); 4869 if (hchange->CheckFlag(HValue::kCanOverflow) && 4870 hchange->value()->CheckFlag(HValue::kUint32)) { 4871 DeoptimizeIfNegative(input.W(), instr); 4872 } 4873 __ SmiTag(output, input); 4874 } 4875 4876 4877 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { 4878 Register input = ToRegister(instr->value()); 4879 Register result = ToRegister(instr->result()); 4880 Label done, untag; 4881 4882 if (instr->needs_check()) { 4883 DeoptimizeIfNotSmi(input, instr); 4884 } 4885 4886 __ Bind(&untag); 4887 __ SmiUntag(result, input); 4888 __ Bind(&done); 4889 } 4890 4891 4892 void LCodeGen::DoShiftI(LShiftI* instr) { 4893 LOperand* right_op = instr->right(); 4894 Register left = ToRegister32(instr->left()); 4895 Register result = ToRegister32(instr->result()); 4896 4897 if (right_op->IsRegister()) { 4898 Register right = ToRegister32(instr->right()); 4899 switch (instr->op()) { 4900 case Token::ROR: __ Ror(result, left, right); break; 4901 case Token::SAR: __ Asr(result, left, right); break; 4902 case Token::SHL: __ Lsl(result, left, right); break; 4903 case Token::SHR: 4904 __ Lsr(result, left, right); 4905 if (instr->can_deopt()) { 4906 // If `left >>> right` >= 0x80000000, the result is not representable 4907 // in a signed 32-bit smi. 4908 DeoptimizeIfNegative(result, instr); 4909 } 4910 break; 4911 default: UNREACHABLE(); 4912 } 4913 } else { 4914 DCHECK(right_op->IsConstantOperand()); 4915 int shift_count = JSShiftAmountFromLConstant(right_op); 4916 if (shift_count == 0) { 4917 if ((instr->op() == Token::SHR) && instr->can_deopt()) { 4918 DeoptimizeIfNegative(left, instr); 4919 } 4920 __ Mov(result, left, kDiscardForSameWReg); 4921 } else { 4922 switch (instr->op()) { 4923 case Token::ROR: __ Ror(result, left, shift_count); break; 4924 case Token::SAR: __ Asr(result, left, shift_count); break; 4925 case Token::SHL: __ Lsl(result, left, shift_count); break; 4926 case Token::SHR: __ Lsr(result, left, shift_count); break; 4927 default: UNREACHABLE(); 4928 } 4929 } 4930 } 4931 } 4932 4933 4934 void LCodeGen::DoShiftS(LShiftS* instr) { 4935 LOperand* right_op = instr->right(); 4936 Register left = ToRegister(instr->left()); 4937 Register result = ToRegister(instr->result()); 4938 4939 if (right_op->IsRegister()) { 4940 Register right = ToRegister(instr->right()); 4941 4942 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. 4943 // Since we're handling smis in X registers, we have to extract these bits 4944 // explicitly. 4945 __ Ubfx(result, right, kSmiShift, 5); 4946 4947 switch (instr->op()) { 4948 case Token::ROR: { 4949 // This is the only case that needs a scratch register. To keep things 4950 // simple for the other cases, borrow a MacroAssembler scratch register. 4951 UseScratchRegisterScope temps(masm()); 4952 Register temp = temps.AcquireW(); 4953 __ SmiUntag(temp, left); 4954 __ Ror(result.W(), temp.W(), result.W()); 4955 __ SmiTag(result); 4956 break; 4957 } 4958 case Token::SAR: 4959 __ Asr(result, left, result); 4960 __ Bic(result, result, kSmiShiftMask); 4961 break; 4962 case Token::SHL: 4963 __ Lsl(result, left, result); 4964 break; 4965 case Token::SHR: 4966 __ Lsr(result, left, result); 4967 __ Bic(result, result, kSmiShiftMask); 4968 if (instr->can_deopt()) { 4969 // If `left >>> right` >= 0x80000000, the result is not representable 4970 // in a signed 32-bit smi. 4971 DeoptimizeIfNegative(result, instr); 4972 } 4973 break; 4974 default: UNREACHABLE(); 4975 } 4976 } else { 4977 DCHECK(right_op->IsConstantOperand()); 4978 int shift_count = JSShiftAmountFromLConstant(right_op); 4979 if (shift_count == 0) { 4980 if ((instr->op() == Token::SHR) && instr->can_deopt()) { 4981 DeoptimizeIfNegative(left, instr); 4982 } 4983 __ Mov(result, left); 4984 } else { 4985 switch (instr->op()) { 4986 case Token::ROR: 4987 __ SmiUntag(result, left); 4988 __ Ror(result.W(), result.W(), shift_count); 4989 __ SmiTag(result); 4990 break; 4991 case Token::SAR: 4992 __ Asr(result, left, shift_count); 4993 __ Bic(result, result, kSmiShiftMask); 4994 break; 4995 case Token::SHL: 4996 __ Lsl(result, left, shift_count); 4997 break; 4998 case Token::SHR: 4999 __ Lsr(result, left, shift_count); 5000 __ Bic(result, result, kSmiShiftMask); 5001 break; 5002 default: UNREACHABLE(); 5003 } 5004 } 5005 } 5006 } 5007 5008 5009 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { 5010 __ Debug("LDebugBreak", 0, BREAK); 5011 } 5012 5013 5014 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { 5015 DCHECK(ToRegister(instr->context()).is(cp)); 5016 Register scratch1 = x5; 5017 Register scratch2 = x6; 5018 DCHECK(instr->IsMarkedAsCall()); 5019 5020 ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals"); 5021 // TODO(all): if Mov could handle object in new space then it could be used 5022 // here. 5023 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs()); 5024 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); 5025 __ Push(cp, scratch1, scratch2); // The context is the first argument. 5026 CallRuntime(Runtime::kDeclareGlobals, 3, instr); 5027 } 5028 5029 5030 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { 5031 PushSafepointRegistersScope scope(this); 5032 LoadContextFromDeferred(instr->context()); 5033 __ CallRuntimeSaveDoubles(Runtime::kStackGuard); 5034 RecordSafepointWithLazyDeopt( 5035 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 5036 DCHECK(instr->HasEnvironment()); 5037 LEnvironment* env = instr->environment(); 5038 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 5039 } 5040 5041 5042 void LCodeGen::DoStackCheck(LStackCheck* instr) { 5043 class DeferredStackCheck: public LDeferredCode { 5044 public: 5045 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) 5046 : LDeferredCode(codegen), instr_(instr) { } 5047 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } 5048 virtual LInstruction* instr() { return instr_; } 5049 private: 5050 LStackCheck* instr_; 5051 }; 5052 5053 DCHECK(instr->HasEnvironment()); 5054 LEnvironment* env = instr->environment(); 5055 // There is no LLazyBailout instruction for stack-checks. We have to 5056 // prepare for lazy deoptimization explicitly here. 5057 if (instr->hydrogen()->is_function_entry()) { 5058 // Perform stack overflow check. 5059 Label done; 5060 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); 5061 __ B(hs, &done); 5062 5063 PredictableCodeSizeScope predictable(masm_, 5064 Assembler::kCallSizeWithRelocation); 5065 DCHECK(instr->context()->IsRegister()); 5066 DCHECK(ToRegister(instr->context()).is(cp)); 5067 CallCode(isolate()->builtins()->StackCheck(), 5068 RelocInfo::CODE_TARGET, 5069 instr); 5070 __ Bind(&done); 5071 } else { 5072 DCHECK(instr->hydrogen()->is_backwards_branch()); 5073 // Perform stack overflow check if this goto needs it before jumping. 5074 DeferredStackCheck* deferred_stack_check = 5075 new(zone()) DeferredStackCheck(this, instr); 5076 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); 5077 __ B(lo, deferred_stack_check->entry()); 5078 5079 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 5080 __ Bind(instr->done_label()); 5081 deferred_stack_check->SetExit(instr->done_label()); 5082 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 5083 // Don't record a deoptimization index for the safepoint here. 5084 // This will be done explicitly when emitting call and the safepoint in 5085 // the deferred code. 5086 } 5087 } 5088 5089 5090 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { 5091 Register function = ToRegister(instr->function()); 5092 Register code_object = ToRegister(instr->code_object()); 5093 Register temp = ToRegister(instr->temp()); 5094 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); 5095 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); 5096 } 5097 5098 5099 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { 5100 Register context = ToRegister(instr->context()); 5101 Register value = ToRegister(instr->value()); 5102 Register scratch = ToRegister(instr->temp()); 5103 MemOperand target = ContextMemOperand(context, instr->slot_index()); 5104 5105 Label skip_assignment; 5106 5107 if (instr->hydrogen()->RequiresHoleCheck()) { 5108 __ Ldr(scratch, target); 5109 if (instr->hydrogen()->DeoptimizesOnHole()) { 5110 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr); 5111 } else { 5112 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); 5113 } 5114 } 5115 5116 __ Str(value, target); 5117 if (instr->hydrogen()->NeedsWriteBarrier()) { 5118 SmiCheck check_needed = 5119 instr->hydrogen()->value()->type().IsHeapObject() 5120 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 5121 __ RecordWriteContextSlot(context, 5122 target.offset(), 5123 value, 5124 scratch, 5125 GetLinkRegisterState(), 5126 kSaveFPRegs, 5127 EMIT_REMEMBERED_SET, 5128 check_needed); 5129 } 5130 __ Bind(&skip_assignment); 5131 } 5132 5133 5134 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { 5135 Register value = ToRegister(instr->value()); 5136 Register cell = ToRegister(instr->temp1()); 5137 5138 // Load the cell. 5139 __ Mov(cell, Operand(instr->hydrogen()->cell().handle())); 5140 5141 // If the cell we are storing to contains the hole it could have 5142 // been deleted from the property dictionary. In that case, we need 5143 // to update the property details in the property dictionary to mark 5144 // it as no longer deleted. We deoptimize in that case. 5145 if (instr->hydrogen()->RequiresHoleCheck()) { 5146 Register payload = ToRegister(instr->temp2()); 5147 __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset)); 5148 DeoptimizeIfRoot(payload, Heap::kTheHoleValueRootIndex, instr); 5149 } 5150 5151 // Store the value. 5152 __ Str(value, FieldMemOperand(cell, Cell::kValueOffset)); 5153 // Cells are always rescanned, so no write barrier here. 5154 } 5155 5156 5157 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { 5158 Register ext_ptr = ToRegister(instr->elements()); 5159 Register key = no_reg; 5160 Register scratch; 5161 ElementsKind elements_kind = instr->elements_kind(); 5162 5163 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); 5164 bool key_is_constant = instr->key()->IsConstantOperand(); 5165 int constant_key = 0; 5166 if (key_is_constant) { 5167 DCHECK(instr->temp() == NULL); 5168 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 5169 if (constant_key & 0xf0000000) { 5170 Abort(kArrayIndexConstantValueTooBig); 5171 } 5172 } else { 5173 key = ToRegister(instr->key()); 5174 scratch = ToRegister(instr->temp()); 5175 } 5176 5177 MemOperand dst = 5178 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, 5179 key_is_constant, constant_key, 5180 elements_kind, 5181 instr->base_offset()); 5182 5183 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) || 5184 (elements_kind == FLOAT32_ELEMENTS)) { 5185 DoubleRegister value = ToDoubleRegister(instr->value()); 5186 DoubleRegister dbl_scratch = double_scratch(); 5187 __ Fcvt(dbl_scratch.S(), value); 5188 __ Str(dbl_scratch.S(), dst); 5189 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) || 5190 (elements_kind == FLOAT64_ELEMENTS)) { 5191 DoubleRegister value = ToDoubleRegister(instr->value()); 5192 __ Str(value, dst); 5193 } else { 5194 Register value = ToRegister(instr->value()); 5195 5196 switch (elements_kind) { 5197 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: 5198 case EXTERNAL_INT8_ELEMENTS: 5199 case EXTERNAL_UINT8_ELEMENTS: 5200 case UINT8_ELEMENTS: 5201 case UINT8_CLAMPED_ELEMENTS: 5202 case INT8_ELEMENTS: 5203 __ Strb(value, dst); 5204 break; 5205 case EXTERNAL_INT16_ELEMENTS: 5206 case EXTERNAL_UINT16_ELEMENTS: 5207 case INT16_ELEMENTS: 5208 case UINT16_ELEMENTS: 5209 __ Strh(value, dst); 5210 break; 5211 case EXTERNAL_INT32_ELEMENTS: 5212 case EXTERNAL_UINT32_ELEMENTS: 5213 case INT32_ELEMENTS: 5214 case UINT32_ELEMENTS: 5215 __ Str(value.W(), dst); 5216 break; 5217 case FLOAT32_ELEMENTS: 5218 case FLOAT64_ELEMENTS: 5219 case EXTERNAL_FLOAT32_ELEMENTS: 5220 case EXTERNAL_FLOAT64_ELEMENTS: 5221 case FAST_DOUBLE_ELEMENTS: 5222 case FAST_ELEMENTS: 5223 case FAST_SMI_ELEMENTS: 5224 case FAST_HOLEY_DOUBLE_ELEMENTS: 5225 case FAST_HOLEY_ELEMENTS: 5226 case FAST_HOLEY_SMI_ELEMENTS: 5227 case DICTIONARY_ELEMENTS: 5228 case SLOPPY_ARGUMENTS_ELEMENTS: 5229 UNREACHABLE(); 5230 break; 5231 } 5232 } 5233 } 5234 5235 5236 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { 5237 Register elements = ToRegister(instr->elements()); 5238 DoubleRegister value = ToDoubleRegister(instr->value()); 5239 MemOperand mem_op; 5240 5241 if (instr->key()->IsConstantOperand()) { 5242 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 5243 if (constant_key & 0xf0000000) { 5244 Abort(kArrayIndexConstantValueTooBig); 5245 } 5246 int offset = instr->base_offset() + constant_key * kDoubleSize; 5247 mem_op = MemOperand(elements, offset); 5248 } else { 5249 Register store_base = ToRegister(instr->temp()); 5250 Register key = ToRegister(instr->key()); 5251 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 5252 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, 5253 instr->hydrogen()->elements_kind(), 5254 instr->hydrogen()->representation(), 5255 instr->base_offset()); 5256 } 5257 5258 if (instr->NeedsCanonicalization()) { 5259 __ CanonicalizeNaN(double_scratch(), value); 5260 __ Str(double_scratch(), mem_op); 5261 } else { 5262 __ Str(value, mem_op); 5263 } 5264 } 5265 5266 5267 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { 5268 Register value = ToRegister(instr->value()); 5269 Register elements = ToRegister(instr->elements()); 5270 Register scratch = no_reg; 5271 Register store_base = no_reg; 5272 Register key = no_reg; 5273 MemOperand mem_op; 5274 5275 if (!instr->key()->IsConstantOperand() || 5276 instr->hydrogen()->NeedsWriteBarrier()) { 5277 scratch = ToRegister(instr->temp()); 5278 } 5279 5280 Representation representation = instr->hydrogen()->value()->representation(); 5281 if (instr->key()->IsConstantOperand()) { 5282 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 5283 int offset = instr->base_offset() + 5284 ToInteger32(const_operand) * kPointerSize; 5285 store_base = elements; 5286 if (representation.IsInteger32()) { 5287 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); 5288 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); 5289 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 5290 STATIC_ASSERT(kSmiTag == 0); 5291 mem_op = UntagSmiMemOperand(store_base, offset); 5292 } else { 5293 mem_op = MemOperand(store_base, offset); 5294 } 5295 } else { 5296 store_base = scratch; 5297 key = ToRegister(instr->key()); 5298 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); 5299 5300 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, 5301 instr->hydrogen()->elements_kind(), 5302 representation, instr->base_offset()); 5303 } 5304 5305 __ Store(value, mem_op, representation); 5306 5307 if (instr->hydrogen()->NeedsWriteBarrier()) { 5308 DCHECK(representation.IsTagged()); 5309 // This assignment may cause element_addr to alias store_base. 5310 Register element_addr = scratch; 5311 SmiCheck check_needed = 5312 instr->hydrogen()->value()->type().IsHeapObject() 5313 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 5314 // Compute address of modified element and store it into key register. 5315 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); 5316 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), 5317 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, 5318 instr->hydrogen()->PointersToHereCheckForValue()); 5319 } 5320 } 5321 5322 5323 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { 5324 DCHECK(ToRegister(instr->context()).is(cp)); 5325 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); 5326 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister())); 5327 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); 5328 5329 Handle<Code> ic = 5330 CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code(); 5331 CallCode(ic, RelocInfo::CODE_TARGET, instr); 5332 } 5333 5334 5335 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { 5336 Representation representation = instr->representation(); 5337 5338 Register object = ToRegister(instr->object()); 5339 HObjectAccess access = instr->hydrogen()->access(); 5340 int offset = access.offset(); 5341 5342 if (access.IsExternalMemory()) { 5343 DCHECK(!instr->hydrogen()->has_transition()); 5344 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 5345 Register value = ToRegister(instr->value()); 5346 __ Store(value, MemOperand(object, offset), representation); 5347 return; 5348 } 5349 5350 __ AssertNotSmi(object); 5351 5352 if (representation.IsDouble()) { 5353 DCHECK(access.IsInobject()); 5354 DCHECK(!instr->hydrogen()->has_transition()); 5355 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 5356 FPRegister value = ToDoubleRegister(instr->value()); 5357 __ Str(value, FieldMemOperand(object, offset)); 5358 return; 5359 } 5360 5361 Register value = ToRegister(instr->value()); 5362 5363 DCHECK(!representation.IsSmi() || 5364 !instr->value()->IsConstantOperand() || 5365 IsInteger32Constant(LConstantOperand::cast(instr->value()))); 5366 5367 if (instr->hydrogen()->has_transition()) { 5368 Handle<Map> transition = instr->hydrogen()->transition_map(); 5369 AddDeprecationDependency(transition); 5370 // Store the new map value. 5371 Register new_map_value = ToRegister(instr->temp0()); 5372 __ Mov(new_map_value, Operand(transition)); 5373 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); 5374 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { 5375 // Update the write barrier for the map field. 5376 __ RecordWriteForMap(object, 5377 new_map_value, 5378 ToRegister(instr->temp1()), 5379 GetLinkRegisterState(), 5380 kSaveFPRegs); 5381 } 5382 } 5383 5384 // Do the store. 5385 Register destination; 5386 if (access.IsInobject()) { 5387 destination = object; 5388 } else { 5389 Register temp0 = ToRegister(instr->temp0()); 5390 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5391 destination = temp0; 5392 } 5393 5394 if (representation.IsSmi() && 5395 instr->hydrogen()->value()->representation().IsInteger32()) { 5396 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); 5397 #ifdef DEBUG 5398 Register temp0 = ToRegister(instr->temp0()); 5399 __ Ldr(temp0, FieldMemOperand(destination, offset)); 5400 __ AssertSmi(temp0); 5401 // If destination aliased temp0, restore it to the address calculated 5402 // earlier. 5403 if (destination.Is(temp0)) { 5404 DCHECK(!access.IsInobject()); 5405 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); 5406 } 5407 #endif 5408 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits); 5409 STATIC_ASSERT(kSmiTag == 0); 5410 __ Store(value, UntagSmiFieldMemOperand(destination, offset), 5411 Representation::Integer32()); 5412 } else { 5413 __ Store(value, FieldMemOperand(destination, offset), representation); 5414 } 5415 if (instr->hydrogen()->NeedsWriteBarrier()) { 5416 __ RecordWriteField(destination, 5417 offset, 5418 value, // Clobbered. 5419 ToRegister(instr->temp1()), // Clobbered. 5420 GetLinkRegisterState(), 5421 kSaveFPRegs, 5422 EMIT_REMEMBERED_SET, 5423 instr->hydrogen()->SmiCheckForWriteBarrier(), 5424 instr->hydrogen()->PointersToHereCheckForValue()); 5425 } 5426 } 5427 5428 5429 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { 5430 DCHECK(ToRegister(instr->context()).is(cp)); 5431 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister())); 5432 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister())); 5433 5434 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name())); 5435 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode()); 5436 CallCode(ic, RelocInfo::CODE_TARGET, instr); 5437 } 5438 5439 5440 void LCodeGen::DoStringAdd(LStringAdd* instr) { 5441 DCHECK(ToRegister(instr->context()).is(cp)); 5442 DCHECK(ToRegister(instr->left()).Is(x1)); 5443 DCHECK(ToRegister(instr->right()).Is(x0)); 5444 StringAddStub stub(isolate(), 5445 instr->hydrogen()->flags(), 5446 instr->hydrogen()->pretenure_flag()); 5447 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 5448 } 5449 5450 5451 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { 5452 class DeferredStringCharCodeAt: public LDeferredCode { 5453 public: 5454 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) 5455 : LDeferredCode(codegen), instr_(instr) { } 5456 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } 5457 virtual LInstruction* instr() { return instr_; } 5458 private: 5459 LStringCharCodeAt* instr_; 5460 }; 5461 5462 DeferredStringCharCodeAt* deferred = 5463 new(zone()) DeferredStringCharCodeAt(this, instr); 5464 5465 StringCharLoadGenerator::Generate(masm(), 5466 ToRegister(instr->string()), 5467 ToRegister32(instr->index()), 5468 ToRegister(instr->result()), 5469 deferred->entry()); 5470 __ Bind(deferred->exit()); 5471 } 5472 5473 5474 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { 5475 Register string = ToRegister(instr->string()); 5476 Register result = ToRegister(instr->result()); 5477 5478 // TODO(3095996): Get rid of this. For now, we need to make the 5479 // result register contain a valid pointer because it is already 5480 // contained in the register pointer map. 5481 __ Mov(result, 0); 5482 5483 PushSafepointRegistersScope scope(this); 5484 __ Push(string); 5485 // Push the index as a smi. This is safe because of the checks in 5486 // DoStringCharCodeAt above. 5487 Register index = ToRegister(instr->index()); 5488 __ SmiTagAndPush(index); 5489 5490 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, 5491 instr->context()); 5492 __ AssertSmi(x0); 5493 __ SmiUntag(x0); 5494 __ StoreToSafepointRegisterSlot(x0, result); 5495 } 5496 5497 5498 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { 5499 class DeferredStringCharFromCode: public LDeferredCode { 5500 public: 5501 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) 5502 : LDeferredCode(codegen), instr_(instr) { } 5503 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } 5504 virtual LInstruction* instr() { return instr_; } 5505 private: 5506 LStringCharFromCode* instr_; 5507 }; 5508 5509 DeferredStringCharFromCode* deferred = 5510 new(zone()) DeferredStringCharFromCode(this, instr); 5511 5512 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); 5513 Register char_code = ToRegister32(instr->char_code()); 5514 Register result = ToRegister(instr->result()); 5515 5516 __ Cmp(char_code, String::kMaxOneByteCharCode); 5517 __ B(hi, deferred->entry()); 5518 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); 5519 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); 5520 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); 5521 __ CompareRoot(result, Heap::kUndefinedValueRootIndex); 5522 __ B(eq, deferred->entry()); 5523 __ Bind(deferred->exit()); 5524 } 5525 5526 5527 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { 5528 Register char_code = ToRegister(instr->char_code()); 5529 Register result = ToRegister(instr->result()); 5530 5531 // TODO(3095996): Get rid of this. For now, we need to make the 5532 // result register contain a valid pointer because it is already 5533 // contained in the register pointer map. 5534 __ Mov(result, 0); 5535 5536 PushSafepointRegistersScope scope(this); 5537 __ SmiTagAndPush(char_code); 5538 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); 5539 __ StoreToSafepointRegisterSlot(x0, result); 5540 } 5541 5542 5543 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { 5544 DCHECK(ToRegister(instr->context()).is(cp)); 5545 Token::Value op = instr->op(); 5546 5547 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); 5548 CallCode(ic, RelocInfo::CODE_TARGET, instr); 5549 InlineSmiCheckInfo::EmitNotInlined(masm()); 5550 5551 Condition condition = TokenToCondition(op, false); 5552 5553 EmitCompareAndBranch(instr, condition, x0, 0); 5554 } 5555 5556 5557 void LCodeGen::DoSubI(LSubI* instr) { 5558 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 5559 Register result = ToRegister32(instr->result()); 5560 Register left = ToRegister32(instr->left()); 5561 Operand right = ToShiftedRightOperand32(instr->right(), instr); 5562 5563 if (can_overflow) { 5564 __ Subs(result, left, right); 5565 DeoptimizeIf(vs, instr); 5566 } else { 5567 __ Sub(result, left, right); 5568 } 5569 } 5570 5571 5572 void LCodeGen::DoSubS(LSubS* instr) { 5573 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 5574 Register result = ToRegister(instr->result()); 5575 Register left = ToRegister(instr->left()); 5576 Operand right = ToOperand(instr->right()); 5577 if (can_overflow) { 5578 __ Subs(result, left, right); 5579 DeoptimizeIf(vs, instr); 5580 } else { 5581 __ Sub(result, left, right); 5582 } 5583 } 5584 5585 5586 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, 5587 LOperand* value, 5588 LOperand* temp1, 5589 LOperand* temp2) { 5590 Register input = ToRegister(value); 5591 Register scratch1 = ToRegister(temp1); 5592 DoubleRegister dbl_scratch1 = double_scratch(); 5593 5594 Label done; 5595 5596 if (instr->truncating()) { 5597 Register output = ToRegister(instr->result()); 5598 Label check_bools; 5599 5600 // If it's not a heap number, jump to undefined check. 5601 __ JumpIfNotHeapNumber(input, &check_bools); 5602 5603 // A heap number: load value and convert to int32 using truncating function. 5604 __ TruncateHeapNumberToI(output, input); 5605 __ B(&done); 5606 5607 __ Bind(&check_bools); 5608 5609 Register true_root = output; 5610 Register false_root = scratch1; 5611 __ LoadTrueFalseRoots(true_root, false_root); 5612 __ Cmp(input, true_root); 5613 __ Cset(output, eq); 5614 __ Ccmp(input, false_root, ZFlag, ne); 5615 __ B(eq, &done); 5616 5617 // Output contains zero, undefined is converted to zero for truncating 5618 // conversions. 5619 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr); 5620 } else { 5621 Register output = ToRegister32(instr->result()); 5622 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); 5623 5624 DeoptimizeIfNotHeapNumber(input, instr); 5625 5626 // A heap number: load value and convert to int32 using non-truncating 5627 // function. If the result is out of range, branch to deoptimize. 5628 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); 5629 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); 5630 DeoptimizeIf(ne, instr, "lost precision or NaN"); 5631 5632 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 5633 __ Cmp(output, 0); 5634 __ B(ne, &done); 5635 __ Fmov(scratch1, dbl_scratch1); 5636 DeoptimizeIfNegative(scratch1, instr, "minus zero"); 5637 } 5638 } 5639 __ Bind(&done); 5640 } 5641 5642 5643 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { 5644 class DeferredTaggedToI: public LDeferredCode { 5645 public: 5646 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) 5647 : LDeferredCode(codegen), instr_(instr) { } 5648 virtual void Generate() { 5649 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), 5650 instr_->temp2()); 5651 } 5652 5653 virtual LInstruction* instr() { return instr_; } 5654 private: 5655 LTaggedToI* instr_; 5656 }; 5657 5658 Register input = ToRegister(instr->value()); 5659 Register output = ToRegister(instr->result()); 5660 5661 if (instr->hydrogen()->value()->representation().IsSmi()) { 5662 __ SmiUntag(output, input); 5663 } else { 5664 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); 5665 5666 __ JumpIfNotSmi(input, deferred->entry()); 5667 __ SmiUntag(output, input); 5668 __ Bind(deferred->exit()); 5669 } 5670 } 5671 5672 5673 void LCodeGen::DoThisFunction(LThisFunction* instr) { 5674 Register result = ToRegister(instr->result()); 5675 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 5676 } 5677 5678 5679 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { 5680 DCHECK(ToRegister(instr->value()).Is(x0)); 5681 DCHECK(ToRegister(instr->result()).Is(x0)); 5682 __ Push(x0); 5683 CallRuntime(Runtime::kToFastProperties, 1, instr); 5684 } 5685 5686 5687 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { 5688 DCHECK(ToRegister(instr->context()).is(cp)); 5689 Label materialized; 5690 // Registers will be used as follows: 5691 // x7 = literals array. 5692 // x1 = regexp literal. 5693 // x0 = regexp literal clone. 5694 // x10-x12 are used as temporaries. 5695 int literal_offset = 5696 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); 5697 __ LoadObject(x7, instr->hydrogen()->literals()); 5698 __ Ldr(x1, FieldMemOperand(x7, literal_offset)); 5699 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized); 5700 5701 // Create regexp literal using runtime function 5702 // Result will be in x0. 5703 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); 5704 __ Mov(x11, Operand(instr->hydrogen()->pattern())); 5705 __ Mov(x10, Operand(instr->hydrogen()->flags())); 5706 __ Push(x7, x12, x11, x10); 5707 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); 5708 __ Mov(x1, x0); 5709 5710 __ Bind(&materialized); 5711 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; 5712 Label allocated, runtime_allocate; 5713 5714 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT); 5715 __ B(&allocated); 5716 5717 __ Bind(&runtime_allocate); 5718 __ Mov(x0, Smi::FromInt(size)); 5719 __ Push(x1, x0); 5720 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); 5721 __ Pop(x1); 5722 5723 __ Bind(&allocated); 5724 // Copy the content into the newly allocated memory. 5725 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize); 5726 } 5727 5728 5729 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { 5730 Register object = ToRegister(instr->object()); 5731 5732 Handle<Map> from_map = instr->original_map(); 5733 Handle<Map> to_map = instr->transitioned_map(); 5734 ElementsKind from_kind = instr->from_kind(); 5735 ElementsKind to_kind = instr->to_kind(); 5736 5737 Label not_applicable; 5738 5739 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { 5740 Register temp1 = ToRegister(instr->temp1()); 5741 Register new_map = ToRegister(instr->temp2()); 5742 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); 5743 __ Mov(new_map, Operand(to_map)); 5744 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); 5745 // Write barrier. 5746 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), 5747 kDontSaveFPRegs); 5748 } else { 5749 { 5750 UseScratchRegisterScope temps(masm()); 5751 // Use the temp register only in a restricted scope - the codegen checks 5752 // that we do not use any register across a call. 5753 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, 5754 DONT_DO_SMI_CHECK); 5755 } 5756 DCHECK(object.is(x0)); 5757 DCHECK(ToRegister(instr->context()).is(cp)); 5758 PushSafepointRegistersScope scope(this); 5759 __ Mov(x1, Operand(to_map)); 5760 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; 5761 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); 5762 __ CallStub(&stub); 5763 RecordSafepointWithRegisters( 5764 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 5765 } 5766 __ Bind(¬_applicable); 5767 } 5768 5769 5770 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { 5771 Register object = ToRegister(instr->object()); 5772 Register temp1 = ToRegister(instr->temp1()); 5773 Register temp2 = ToRegister(instr->temp2()); 5774 5775 Label no_memento_found; 5776 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); 5777 DeoptimizeIf(eq, instr); 5778 __ Bind(&no_memento_found); 5779 } 5780 5781 5782 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { 5783 DoubleRegister input = ToDoubleRegister(instr->value()); 5784 Register result = ToRegister(instr->result()); 5785 __ TruncateDoubleToI(result, input); 5786 if (instr->tag_result()) { 5787 __ SmiTag(result, result); 5788 } 5789 } 5790 5791 5792 void LCodeGen::DoTypeof(LTypeof* instr) { 5793 Register input = ToRegister(instr->value()); 5794 __ Push(input); 5795 CallRuntime(Runtime::kTypeof, 1, instr); 5796 } 5797 5798 5799 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { 5800 Handle<String> type_name = instr->type_literal(); 5801 Label* true_label = instr->TrueLabel(chunk_); 5802 Label* false_label = instr->FalseLabel(chunk_); 5803 Register value = ToRegister(instr->value()); 5804 5805 Factory* factory = isolate()->factory(); 5806 if (String::Equals(type_name, factory->number_string())) { 5807 __ JumpIfSmi(value, true_label); 5808 5809 int true_block = instr->TrueDestination(chunk_); 5810 int false_block = instr->FalseDestination(chunk_); 5811 int next_block = GetNextEmittedBlock(); 5812 5813 if (true_block == false_block) { 5814 EmitGoto(true_block); 5815 } else if (true_block == next_block) { 5816 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); 5817 } else { 5818 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); 5819 if (false_block != next_block) { 5820 __ B(chunk_->GetAssemblyLabel(false_block)); 5821 } 5822 } 5823 5824 } else if (String::Equals(type_name, factory->string_string())) { 5825 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5826 Register map = ToRegister(instr->temp1()); 5827 Register scratch = ToRegister(instr->temp2()); 5828 5829 __ JumpIfSmi(value, false_label); 5830 __ JumpIfObjectType( 5831 value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge); 5832 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 5833 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable); 5834 5835 } else if (String::Equals(type_name, factory->symbol_string())) { 5836 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5837 Register map = ToRegister(instr->temp1()); 5838 Register scratch = ToRegister(instr->temp2()); 5839 5840 __ JumpIfSmi(value, false_label); 5841 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); 5842 EmitBranch(instr, eq); 5843 5844 } else if (String::Equals(type_name, factory->boolean_string())) { 5845 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); 5846 __ CompareRoot(value, Heap::kFalseValueRootIndex); 5847 EmitBranch(instr, eq); 5848 5849 } else if (String::Equals(type_name, factory->undefined_string())) { 5850 DCHECK(instr->temp1() != NULL); 5851 Register scratch = ToRegister(instr->temp1()); 5852 5853 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label); 5854 __ JumpIfSmi(value, false_label); 5855 // Check for undetectable objects and jump to the true branch in this case. 5856 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); 5857 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 5858 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); 5859 5860 } else if (String::Equals(type_name, factory->function_string())) { 5861 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 5862 DCHECK(instr->temp1() != NULL); 5863 Register type = ToRegister(instr->temp1()); 5864 5865 __ JumpIfSmi(value, false_label); 5866 __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label); 5867 // HeapObject's type has been loaded into type register by JumpIfObjectType. 5868 EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE); 5869 5870 } else if (String::Equals(type_name, factory->object_string())) { 5871 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); 5872 Register map = ToRegister(instr->temp1()); 5873 Register scratch = ToRegister(instr->temp2()); 5874 5875 __ JumpIfSmi(value, false_label); 5876 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); 5877 __ JumpIfObjectType(value, map, scratch, 5878 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt); 5879 __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); 5880 __ B(gt, false_label); 5881 // Check for undetectable objects => false. 5882 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 5883 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable); 5884 5885 } else { 5886 __ B(false_label); 5887 } 5888 } 5889 5890 5891 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { 5892 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); 5893 } 5894 5895 5896 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { 5897 Register object = ToRegister(instr->value()); 5898 Register map = ToRegister(instr->map()); 5899 Register temp = ToRegister(instr->temp()); 5900 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); 5901 __ Cmp(map, temp); 5902 DeoptimizeIf(ne, instr); 5903 } 5904 5905 5906 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { 5907 Register receiver = ToRegister(instr->receiver()); 5908 Register function = ToRegister(instr->function()); 5909 Register result = ToRegister(instr->result()); 5910 5911 // If the receiver is null or undefined, we have to pass the global object as 5912 // a receiver to normal functions. Values have to be passed unchanged to 5913 // builtins and strict-mode functions. 5914 Label global_object, done, copy_receiver; 5915 5916 if (!instr->hydrogen()->known_function()) { 5917 __ Ldr(result, FieldMemOperand(function, 5918 JSFunction::kSharedFunctionInfoOffset)); 5919 5920 // CompilerHints is an int32 field. See objects.h. 5921 __ Ldr(result.W(), 5922 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); 5923 5924 // Do not transform the receiver to object for strict mode functions. 5925 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); 5926 5927 // Do not transform the receiver to object for builtins. 5928 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); 5929 } 5930 5931 // Normal function. Replace undefined or null with global receiver. 5932 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); 5933 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); 5934 5935 // Deoptimize if the receiver is not a JS object. 5936 DeoptimizeIfSmi(receiver, instr); 5937 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE); 5938 __ B(ge, ©_receiver); 5939 Deoptimize(instr); 5940 5941 __ Bind(&global_object); 5942 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); 5943 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX)); 5944 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset)); 5945 __ B(&done); 5946 5947 __ Bind(©_receiver); 5948 __ Mov(result, receiver); 5949 __ Bind(&done); 5950 } 5951 5952 5953 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, 5954 Register result, 5955 Register object, 5956 Register index) { 5957 PushSafepointRegistersScope scope(this); 5958 __ Push(object); 5959 __ Push(index); 5960 __ Mov(cp, 0); 5961 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); 5962 RecordSafepointWithRegisters( 5963 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); 5964 __ StoreToSafepointRegisterSlot(x0, result); 5965 } 5966 5967 5968 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { 5969 class DeferredLoadMutableDouble FINAL : public LDeferredCode { 5970 public: 5971 DeferredLoadMutableDouble(LCodeGen* codegen, 5972 LLoadFieldByIndex* instr, 5973 Register result, 5974 Register object, 5975 Register index) 5976 : LDeferredCode(codegen), 5977 instr_(instr), 5978 result_(result), 5979 object_(object), 5980 index_(index) { 5981 } 5982 virtual void Generate() OVERRIDE { 5983 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); 5984 } 5985 virtual LInstruction* instr() OVERRIDE { return instr_; } 5986 private: 5987 LLoadFieldByIndex* instr_; 5988 Register result_; 5989 Register object_; 5990 Register index_; 5991 }; 5992 Register object = ToRegister(instr->object()); 5993 Register index = ToRegister(instr->index()); 5994 Register result = ToRegister(instr->result()); 5995 5996 __ AssertSmi(index); 5997 5998 DeferredLoadMutableDouble* deferred; 5999 deferred = new(zone()) DeferredLoadMutableDouble( 6000 this, instr, result, object, index); 6001 6002 Label out_of_object, done; 6003 6004 __ TestAndBranchIfAnySet( 6005 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry()); 6006 __ Mov(index, Operand(index, ASR, 1)); 6007 6008 __ Cmp(index, Smi::FromInt(0)); 6009 __ B(lt, &out_of_object); 6010 6011 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); 6012 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); 6013 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); 6014 6015 __ B(&done); 6016 6017 __ Bind(&out_of_object); 6018 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 6019 // Index is equal to negated out of object property index plus 1. 6020 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); 6021 __ Ldr(result, FieldMemOperand(result, 6022 FixedArray::kHeaderSize - kPointerSize)); 6023 __ Bind(deferred->exit()); 6024 __ Bind(&done); 6025 } 6026 6027 6028 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { 6029 Register context = ToRegister(instr->context()); 6030 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); 6031 } 6032 6033 6034 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { 6035 Handle<ScopeInfo> scope_info = instr->scope_info(); 6036 __ Push(scope_info); 6037 __ Push(ToRegister(instr->function())); 6038 CallRuntime(Runtime::kPushBlockContext, 2, instr); 6039 RecordSafepoint(Safepoint::kNoLazyDeopt); 6040 } 6041 6042 6043 6044 } } // namespace v8::internal 6045