Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/arm64/lithium-codegen-arm64.h"
      8 #include "src/arm64/lithium-gap-resolver-arm64.h"
      9 #include "src/base/bits.h"
     10 #include "src/code-factory.h"
     11 #include "src/code-stubs.h"
     12 #include "src/hydrogen-osr.h"
     13 #include "src/ic/ic.h"
     14 #include "src/ic/stub-cache.h"
     15 
     16 namespace v8 {
     17 namespace internal {
     18 
     19 
     20 class SafepointGenerator FINAL : public CallWrapper {
     21  public:
     22   SafepointGenerator(LCodeGen* codegen,
     23                      LPointerMap* pointers,
     24                      Safepoint::DeoptMode mode)
     25       : codegen_(codegen),
     26         pointers_(pointers),
     27         deopt_mode_(mode) { }
     28   virtual ~SafepointGenerator() { }
     29 
     30   virtual void BeforeCall(int call_size) const { }
     31 
     32   virtual void AfterCall() const {
     33     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     34   }
     35 
     36  private:
     37   LCodeGen* codegen_;
     38   LPointerMap* pointers_;
     39   Safepoint::DeoptMode deopt_mode_;
     40 };
     41 
     42 
     43 #define __ masm()->
     44 
     45 // Emit code to branch if the given condition holds.
     46 // The code generated here doesn't modify the flags and they must have
     47 // been set by some prior instructions.
     48 //
     49 // The EmitInverted function simply inverts the condition.
     50 class BranchOnCondition : public BranchGenerator {
     51  public:
     52   BranchOnCondition(LCodeGen* codegen, Condition cond)
     53     : BranchGenerator(codegen),
     54       cond_(cond) { }
     55 
     56   virtual void Emit(Label* label) const {
     57     __ B(cond_, label);
     58   }
     59 
     60   virtual void EmitInverted(Label* label) const {
     61     if (cond_ != al) {
     62       __ B(NegateCondition(cond_), label);
     63     }
     64   }
     65 
     66  private:
     67   Condition cond_;
     68 };
     69 
     70 
     71 // Emit code to compare lhs and rhs and branch if the condition holds.
     72 // This uses MacroAssembler's CompareAndBranch function so it will handle
     73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
     74 //
     75 // EmitInverted still compares the two operands but inverts the condition.
     76 class CompareAndBranch : public BranchGenerator {
     77  public:
     78   CompareAndBranch(LCodeGen* codegen,
     79                    Condition cond,
     80                    const Register& lhs,
     81                    const Operand& rhs)
     82     : BranchGenerator(codegen),
     83       cond_(cond),
     84       lhs_(lhs),
     85       rhs_(rhs) { }
     86 
     87   virtual void Emit(Label* label) const {
     88     __ CompareAndBranch(lhs_, rhs_, cond_, label);
     89   }
     90 
     91   virtual void EmitInverted(Label* label) const {
     92     __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
     93   }
     94 
     95  private:
     96   Condition cond_;
     97   const Register& lhs_;
     98   const Operand& rhs_;
     99 };
    100 
    101 
    102 // Test the input with the given mask and branch if the condition holds.
    103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
    104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
    105 // conversion to Tbz/Tbnz when possible.
    106 class TestAndBranch : public BranchGenerator {
    107  public:
    108   TestAndBranch(LCodeGen* codegen,
    109                 Condition cond,
    110                 const Register& value,
    111                 uint64_t mask)
    112     : BranchGenerator(codegen),
    113       cond_(cond),
    114       value_(value),
    115       mask_(mask) { }
    116 
    117   virtual void Emit(Label* label) const {
    118     switch (cond_) {
    119       case eq:
    120         __ TestAndBranchIfAllClear(value_, mask_, label);
    121         break;
    122       case ne:
    123         __ TestAndBranchIfAnySet(value_, mask_, label);
    124         break;
    125       default:
    126         __ Tst(value_, mask_);
    127         __ B(cond_, label);
    128     }
    129   }
    130 
    131   virtual void EmitInverted(Label* label) const {
    132     // The inverse of "all clear" is "any set" and vice versa.
    133     switch (cond_) {
    134       case eq:
    135         __ TestAndBranchIfAnySet(value_, mask_, label);
    136         break;
    137       case ne:
    138         __ TestAndBranchIfAllClear(value_, mask_, label);
    139         break;
    140       default:
    141         __ Tst(value_, mask_);
    142         __ B(NegateCondition(cond_), label);
    143     }
    144   }
    145 
    146  private:
    147   Condition cond_;
    148   const Register& value_;
    149   uint64_t mask_;
    150 };
    151 
    152 
    153 // Test the input and branch if it is non-zero and not a NaN.
    154 class BranchIfNonZeroNumber : public BranchGenerator {
    155  public:
    156   BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
    157                         const FPRegister& scratch)
    158     : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
    159 
    160   virtual void Emit(Label* label) const {
    161     __ Fabs(scratch_, value_);
    162     // Compare with 0.0. Because scratch_ is positive, the result can be one of
    163     // nZCv (equal), nzCv (greater) or nzCV (unordered).
    164     __ Fcmp(scratch_, 0.0);
    165     __ B(gt, label);
    166   }
    167 
    168   virtual void EmitInverted(Label* label) const {
    169     __ Fabs(scratch_, value_);
    170     __ Fcmp(scratch_, 0.0);
    171     __ B(le, label);
    172   }
    173 
    174  private:
    175   const FPRegister& value_;
    176   const FPRegister& scratch_;
    177 };
    178 
    179 
    180 // Test the input and branch if it is a heap number.
    181 class BranchIfHeapNumber : public BranchGenerator {
    182  public:
    183   BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
    184       : BranchGenerator(codegen), value_(value) { }
    185 
    186   virtual void Emit(Label* label) const {
    187     __ JumpIfHeapNumber(value_, label);
    188   }
    189 
    190   virtual void EmitInverted(Label* label) const {
    191     __ JumpIfNotHeapNumber(value_, label);
    192   }
    193 
    194  private:
    195   const Register& value_;
    196 };
    197 
    198 
    199 // Test the input and branch if it is the specified root value.
    200 class BranchIfRoot : public BranchGenerator {
    201  public:
    202   BranchIfRoot(LCodeGen* codegen, const Register& value,
    203                Heap::RootListIndex index)
    204       : BranchGenerator(codegen), value_(value), index_(index) { }
    205 
    206   virtual void Emit(Label* label) const {
    207     __ JumpIfRoot(value_, index_, label);
    208   }
    209 
    210   virtual void EmitInverted(Label* label) const {
    211     __ JumpIfNotRoot(value_, index_, label);
    212   }
    213 
    214  private:
    215   const Register& value_;
    216   const Heap::RootListIndex index_;
    217 };
    218 
    219 
    220 void LCodeGen::WriteTranslation(LEnvironment* environment,
    221                                 Translation* translation) {
    222   if (environment == NULL) return;
    223 
    224   // The translation includes one command per value in the environment.
    225   int translation_size = environment->translation_size();
    226   // The output frame height does not include the parameters.
    227   int height = translation_size - environment->parameter_count();
    228 
    229   WriteTranslation(environment->outer(), translation);
    230   bool has_closure_id = !info()->closure().is_null() &&
    231       !info()->closure().is_identical_to(environment->closure());
    232   int closure_id = has_closure_id
    233       ? DefineDeoptimizationLiteral(environment->closure())
    234       : Translation::kSelfLiteralId;
    235 
    236   switch (environment->frame_type()) {
    237     case JS_FUNCTION:
    238       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
    239       break;
    240     case JS_CONSTRUCT:
    241       translation->BeginConstructStubFrame(closure_id, translation_size);
    242       break;
    243     case JS_GETTER:
    244       DCHECK(translation_size == 1);
    245       DCHECK(height == 0);
    246       translation->BeginGetterStubFrame(closure_id);
    247       break;
    248     case JS_SETTER:
    249       DCHECK(translation_size == 2);
    250       DCHECK(height == 0);
    251       translation->BeginSetterStubFrame(closure_id);
    252       break;
    253     case STUB:
    254       translation->BeginCompiledStubFrame();
    255       break;
    256     case ARGUMENTS_ADAPTOR:
    257       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
    258       break;
    259     default:
    260       UNREACHABLE();
    261   }
    262 
    263   int object_index = 0;
    264   int dematerialized_index = 0;
    265   for (int i = 0; i < translation_size; ++i) {
    266     LOperand* value = environment->values()->at(i);
    267 
    268     AddToTranslation(environment,
    269                      translation,
    270                      value,
    271                      environment->HasTaggedValueAt(i),
    272                      environment->HasUint32ValueAt(i),
    273                      &object_index,
    274                      &dematerialized_index);
    275   }
    276 }
    277 
    278 
    279 void LCodeGen::AddToTranslation(LEnvironment* environment,
    280                                 Translation* translation,
    281                                 LOperand* op,
    282                                 bool is_tagged,
    283                                 bool is_uint32,
    284                                 int* object_index_pointer,
    285                                 int* dematerialized_index_pointer) {
    286   if (op == LEnvironment::materialization_marker()) {
    287     int object_index = (*object_index_pointer)++;
    288     if (environment->ObjectIsDuplicateAt(object_index)) {
    289       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    290       translation->DuplicateObject(dupe_of);
    291       return;
    292     }
    293     int object_length = environment->ObjectLengthAt(object_index);
    294     if (environment->ObjectIsArgumentsAt(object_index)) {
    295       translation->BeginArgumentsObject(object_length);
    296     } else {
    297       translation->BeginCapturedObject(object_length);
    298     }
    299     int dematerialized_index = *dematerialized_index_pointer;
    300     int env_offset = environment->translation_size() + dematerialized_index;
    301     *dematerialized_index_pointer += object_length;
    302     for (int i = 0; i < object_length; ++i) {
    303       LOperand* value = environment->values()->at(env_offset + i);
    304       AddToTranslation(environment,
    305                        translation,
    306                        value,
    307                        environment->HasTaggedValueAt(env_offset + i),
    308                        environment->HasUint32ValueAt(env_offset + i),
    309                        object_index_pointer,
    310                        dematerialized_index_pointer);
    311     }
    312     return;
    313   }
    314 
    315   if (op->IsStackSlot()) {
    316     if (is_tagged) {
    317       translation->StoreStackSlot(op->index());
    318     } else if (is_uint32) {
    319       translation->StoreUint32StackSlot(op->index());
    320     } else {
    321       translation->StoreInt32StackSlot(op->index());
    322     }
    323   } else if (op->IsDoubleStackSlot()) {
    324     translation->StoreDoubleStackSlot(op->index());
    325   } else if (op->IsRegister()) {
    326     Register reg = ToRegister(op);
    327     if (is_tagged) {
    328       translation->StoreRegister(reg);
    329     } else if (is_uint32) {
    330       translation->StoreUint32Register(reg);
    331     } else {
    332       translation->StoreInt32Register(reg);
    333     }
    334   } else if (op->IsDoubleRegister()) {
    335     DoubleRegister reg = ToDoubleRegister(op);
    336     translation->StoreDoubleRegister(reg);
    337   } else if (op->IsConstantOperand()) {
    338     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    339     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    340     translation->StoreLiteral(src_index);
    341   } else {
    342     UNREACHABLE();
    343   }
    344 }
    345 
    346 
    347 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
    348   int result = deoptimization_literals_.length();
    349   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
    350     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
    351   }
    352   deoptimization_literals_.Add(literal, zone());
    353   return result;
    354 }
    355 
    356 
    357 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
    358                                                     Safepoint::DeoptMode mode) {
    359   environment->set_has_been_used();
    360   if (!environment->HasBeenRegistered()) {
    361     int frame_count = 0;
    362     int jsframe_count = 0;
    363     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    364       ++frame_count;
    365       if (e->frame_type() == JS_FUNCTION) {
    366         ++jsframe_count;
    367       }
    368     }
    369     Translation translation(&translations_, frame_count, jsframe_count, zone());
    370     WriteTranslation(environment, &translation);
    371     int deoptimization_index = deoptimizations_.length();
    372     int pc_offset = masm()->pc_offset();
    373     environment->Register(deoptimization_index,
    374                           translation.index(),
    375                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    376     deoptimizations_.Add(environment, zone());
    377   }
    378 }
    379 
    380 
    381 void LCodeGen::CallCode(Handle<Code> code,
    382                         RelocInfo::Mode mode,
    383                         LInstruction* instr) {
    384   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    385 }
    386 
    387 
    388 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    389                                RelocInfo::Mode mode,
    390                                LInstruction* instr,
    391                                SafepointMode safepoint_mode) {
    392   DCHECK(instr != NULL);
    393 
    394   Assembler::BlockPoolsScope scope(masm_);
    395   __ Call(code, mode);
    396   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    397 
    398   if ((code->kind() == Code::BINARY_OP_IC) ||
    399       (code->kind() == Code::COMPARE_IC)) {
    400     // Signal that we don't inline smi code before these stubs in the
    401     // optimizing code generator.
    402     InlineSmiCheckInfo::EmitNotInlined(masm());
    403   }
    404 }
    405 
    406 
    407 void LCodeGen::DoCallFunction(LCallFunction* instr) {
    408   DCHECK(ToRegister(instr->context()).is(cp));
    409   DCHECK(ToRegister(instr->function()).Is(x1));
    410   DCHECK(ToRegister(instr->result()).Is(x0));
    411 
    412   int arity = instr->arity();
    413   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
    414   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
    415   after_push_argument_ = false;
    416 }
    417 
    418 
    419 void LCodeGen::DoCallNew(LCallNew* instr) {
    420   DCHECK(ToRegister(instr->context()).is(cp));
    421   DCHECK(instr->IsMarkedAsCall());
    422   DCHECK(ToRegister(instr->constructor()).is(x1));
    423 
    424   __ Mov(x0, instr->arity());
    425   // No cell in x2 for construct type feedback in optimized code.
    426   __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
    427 
    428   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
    429   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    430   after_push_argument_ = false;
    431 
    432   DCHECK(ToRegister(instr->result()).is(x0));
    433 }
    434 
    435 
    436 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
    437   DCHECK(instr->IsMarkedAsCall());
    438   DCHECK(ToRegister(instr->context()).is(cp));
    439   DCHECK(ToRegister(instr->constructor()).is(x1));
    440 
    441   __ Mov(x0, Operand(instr->arity()));
    442   __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
    443 
    444   ElementsKind kind = instr->hydrogen()->elements_kind();
    445   AllocationSiteOverrideMode override_mode =
    446       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
    447           ? DISABLE_ALLOCATION_SITES
    448           : DONT_OVERRIDE;
    449 
    450   if (instr->arity() == 0) {
    451     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
    452     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    453   } else if (instr->arity() == 1) {
    454     Label done;
    455     if (IsFastPackedElementsKind(kind)) {
    456       Label packed_case;
    457 
    458       // We might need to create a holey array; look at the first argument.
    459       __ Peek(x10, 0);
    460       __ Cbz(x10, &packed_case);
    461 
    462       ElementsKind holey_kind = GetHoleyElementsKind(kind);
    463       ArraySingleArgumentConstructorStub stub(isolate(),
    464                                               holey_kind,
    465                                               override_mode);
    466       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    467       __ B(&done);
    468       __ Bind(&packed_case);
    469     }
    470 
    471     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
    472     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    473     __ Bind(&done);
    474   } else {
    475     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
    476     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
    477   }
    478   after_push_argument_ = false;
    479 
    480   DCHECK(ToRegister(instr->result()).is(x0));
    481 }
    482 
    483 
    484 void LCodeGen::CallRuntime(const Runtime::Function* function,
    485                            int num_arguments,
    486                            LInstruction* instr,
    487                            SaveFPRegsMode save_doubles) {
    488   DCHECK(instr != NULL);
    489 
    490   __ CallRuntime(function, num_arguments, save_doubles);
    491 
    492   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    493 }
    494 
    495 
    496 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    497   if (context->IsRegister()) {
    498     __ Mov(cp, ToRegister(context));
    499   } else if (context->IsStackSlot()) {
    500     __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
    501   } else if (context->IsConstantOperand()) {
    502     HConstant* constant =
    503         chunk_->LookupConstant(LConstantOperand::cast(context));
    504     __ LoadHeapObject(cp,
    505                       Handle<HeapObject>::cast(constant->handle(isolate())));
    506   } else {
    507     UNREACHABLE();
    508   }
    509 }
    510 
    511 
    512 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    513                                        int argc,
    514                                        LInstruction* instr,
    515                                        LOperand* context) {
    516   LoadContextFromDeferred(context);
    517   __ CallRuntimeSaveDoubles(id);
    518   RecordSafepointWithRegisters(
    519       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    520 }
    521 
    522 
    523 void LCodeGen::RecordAndWritePosition(int position) {
    524   if (position == RelocInfo::kNoPosition) return;
    525   masm()->positions_recorder()->RecordPosition(position);
    526   masm()->positions_recorder()->WriteRecordedPositions();
    527 }
    528 
    529 
    530 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
    531                                             SafepointMode safepoint_mode) {
    532   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    533     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    534   } else {
    535     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    536     RecordSafepointWithRegisters(
    537         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
    538   }
    539 }
    540 
    541 
    542 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    543                                Safepoint::Kind kind,
    544                                int arguments,
    545                                Safepoint::DeoptMode deopt_mode) {
    546   DCHECK(expected_safepoint_kind_ == kind);
    547 
    548   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    549   Safepoint safepoint = safepoints_.DefineSafepoint(
    550       masm(), kind, arguments, deopt_mode);
    551 
    552   for (int i = 0; i < operands->length(); i++) {
    553     LOperand* pointer = operands->at(i);
    554     if (pointer->IsStackSlot()) {
    555       safepoint.DefinePointerSlot(pointer->index(), zone());
    556     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    557       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    558     }
    559   }
    560 
    561   if (kind & Safepoint::kWithRegisters) {
    562     // Register cp always contains a pointer to the context.
    563     safepoint.DefinePointerRegister(cp, zone());
    564   }
    565 }
    566 
    567 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    568                                Safepoint::DeoptMode deopt_mode) {
    569   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
    570 }
    571 
    572 
    573 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
    574   LPointerMap empty_pointers(zone());
    575   RecordSafepoint(&empty_pointers, deopt_mode);
    576 }
    577 
    578 
    579 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
    580                                             int arguments,
    581                                             Safepoint::DeoptMode deopt_mode) {
    582   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
    583 }
    584 
    585 
    586 bool LCodeGen::GenerateCode() {
    587   LPhase phase("Z_Code generation", chunk());
    588   DCHECK(is_unused());
    589   status_ = GENERATING;
    590 
    591   // Open a frame scope to indicate that there is a frame on the stack.  The
    592   // NONE indicates that the scope shouldn't actually generate code to set up
    593   // the frame (that is done in GeneratePrologue).
    594   FrameScope frame_scope(masm_, StackFrame::NONE);
    595 
    596   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
    597          GenerateJumpTable() && GenerateSafepointTable();
    598 }
    599 
    600 
    601 void LCodeGen::SaveCallerDoubles() {
    602   DCHECK(info()->saves_caller_doubles());
    603   DCHECK(NeedsEagerFrame());
    604   Comment(";;; Save clobbered callee double registers");
    605   BitVector* doubles = chunk()->allocated_double_registers();
    606   BitVector::Iterator iterator(doubles);
    607   int count = 0;
    608   while (!iterator.Done()) {
    609     // TODO(all): Is this supposed to save just the callee-saved doubles? It
    610     // looks like it's saving all of them.
    611     FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
    612     __ Poke(value, count * kDoubleSize);
    613     iterator.Advance();
    614     count++;
    615   }
    616 }
    617 
    618 
    619 void LCodeGen::RestoreCallerDoubles() {
    620   DCHECK(info()->saves_caller_doubles());
    621   DCHECK(NeedsEagerFrame());
    622   Comment(";;; Restore clobbered callee double registers");
    623   BitVector* doubles = chunk()->allocated_double_registers();
    624   BitVector::Iterator iterator(doubles);
    625   int count = 0;
    626   while (!iterator.Done()) {
    627     // TODO(all): Is this supposed to restore just the callee-saved doubles? It
    628     // looks like it's restoring all of them.
    629     FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
    630     __ Peek(value, count * kDoubleSize);
    631     iterator.Advance();
    632     count++;
    633   }
    634 }
    635 
    636 
    637 bool LCodeGen::GeneratePrologue() {
    638   DCHECK(is_generating());
    639 
    640   if (info()->IsOptimizing()) {
    641     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    642 
    643     // TODO(all): Add support for stop_t FLAG in DEBUG mode.
    644 
    645     // Sloppy mode functions and builtins need to replace the receiver with the
    646     // global proxy when called as functions (without an explicit receiver
    647     // object).
    648     if (info_->this_has_uses() &&
    649         info_->strict_mode() == SLOPPY &&
    650         !info_->is_native()) {
    651       Label ok;
    652       int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
    653       __ Peek(x10, receiver_offset);
    654       __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
    655 
    656       __ Ldr(x10, GlobalObjectMemOperand());
    657       __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
    658       __ Poke(x10, receiver_offset);
    659 
    660       __ Bind(&ok);
    661     }
    662   }
    663 
    664   DCHECK(__ StackPointer().Is(jssp));
    665   info()->set_prologue_offset(masm_->pc_offset());
    666   if (NeedsEagerFrame()) {
    667     if (info()->IsStub()) {
    668       __ StubPrologue();
    669     } else {
    670       __ Prologue(info()->IsCodePreAgingActive());
    671     }
    672     frame_is_built_ = true;
    673     info_->AddNoFrameRange(0, masm_->pc_offset());
    674   }
    675 
    676   // Reserve space for the stack slots needed by the code.
    677   int slots = GetStackSlotCount();
    678   if (slots > 0) {
    679     __ Claim(slots, kPointerSize);
    680   }
    681 
    682   if (info()->saves_caller_doubles()) {
    683     SaveCallerDoubles();
    684   }
    685 
    686   // Allocate a local context if needed.
    687   int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    688   if (heap_slots > 0) {
    689     Comment(";;; Allocate local context");
    690     bool need_write_barrier = true;
    691     // Argument to NewContext is the function, which is in x1.
    692     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    693       FastNewContextStub stub(isolate(), heap_slots);
    694       __ CallStub(&stub);
    695       // Result of FastNewContextStub is always in new space.
    696       need_write_barrier = false;
    697     } else {
    698       __ Push(x1);
    699       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    700     }
    701     RecordSafepoint(Safepoint::kNoLazyDeopt);
    702     // Context is returned in x0. It replaces the context passed to us. It's
    703     // saved in the stack and kept live in cp.
    704     __ Mov(cp, x0);
    705     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
    706     // Copy any necessary parameters into the context.
    707     int num_parameters = scope()->num_parameters();
    708     for (int i = 0; i < num_parameters; i++) {
    709       Variable* var = scope()->parameter(i);
    710       if (var->IsContextSlot()) {
    711         Register value = x0;
    712         Register scratch = x3;
    713 
    714         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    715             (num_parameters - 1 - i) * kPointerSize;
    716         // Load parameter from stack.
    717         __ Ldr(value, MemOperand(fp, parameter_offset));
    718         // Store it in the context.
    719         MemOperand target = ContextMemOperand(cp, var->index());
    720         __ Str(value, target);
    721         // Update the write barrier. This clobbers value and scratch.
    722         if (need_write_barrier) {
    723           __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
    724                                     GetLinkRegisterState(), kSaveFPRegs);
    725         } else if (FLAG_debug_code) {
    726           Label done;
    727           __ JumpIfInNewSpace(cp, &done);
    728           __ Abort(kExpectedNewSpaceObject);
    729           __ bind(&done);
    730         }
    731       }
    732     }
    733     Comment(";;; End allocate local context");
    734   }
    735 
    736   // Trace the call.
    737   if (FLAG_trace && info()->IsOptimizing()) {
    738     // We have not executed any compiled code yet, so cp still holds the
    739     // incoming context.
    740     __ CallRuntime(Runtime::kTraceEnter, 0);
    741   }
    742 
    743   return !is_aborted();
    744 }
    745 
    746 
    747 void LCodeGen::GenerateOsrPrologue() {
    748   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    749   // are none, at the OSR entrypoint instruction.
    750   if (osr_pc_offset_ >= 0) return;
    751 
    752   osr_pc_offset_ = masm()->pc_offset();
    753 
    754   // Adjust the frame size, subsuming the unoptimized frame into the
    755   // optimized frame.
    756   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    757   DCHECK(slots >= 0);
    758   __ Claim(slots);
    759 }
    760 
    761 
    762 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    763   if (instr->IsCall()) {
    764     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    765   }
    766   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    767     safepoints_.BumpLastLazySafepointIndex();
    768   }
    769 }
    770 
    771 
    772 bool LCodeGen::GenerateDeferredCode() {
    773   DCHECK(is_generating());
    774   if (deferred_.length() > 0) {
    775     for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
    776       LDeferredCode* code = deferred_[i];
    777 
    778       HValue* value =
    779           instructions_->at(code->instruction_index())->hydrogen_value();
    780       RecordAndWritePosition(
    781           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    782 
    783       Comment(";;; <@%d,#%d> "
    784               "-------------------- Deferred %s --------------------",
    785               code->instruction_index(),
    786               code->instr()->hydrogen_value()->id(),
    787               code->instr()->Mnemonic());
    788 
    789       __ Bind(code->entry());
    790 
    791       if (NeedsDeferredFrame()) {
    792         Comment(";;; Build frame");
    793         DCHECK(!frame_is_built_);
    794         DCHECK(info()->IsStub());
    795         frame_is_built_ = true;
    796         __ Push(lr, fp, cp);
    797         __ Mov(fp, Smi::FromInt(StackFrame::STUB));
    798         __ Push(fp);
    799         __ Add(fp, __ StackPointer(),
    800                StandardFrameConstants::kFixedFrameSizeFromFp);
    801         Comment(";;; Deferred code");
    802       }
    803 
    804       code->Generate();
    805 
    806       if (NeedsDeferredFrame()) {
    807         Comment(";;; Destroy frame");
    808         DCHECK(frame_is_built_);
    809         __ Pop(xzr, cp, fp, lr);
    810         frame_is_built_ = false;
    811       }
    812 
    813       __ B(code->exit());
    814     }
    815   }
    816 
    817   // Force constant pool emission at the end of the deferred code to make
    818   // sure that no constant pools are emitted after deferred code because
    819   // deferred code generation is the last step which generates code. The two
    820   // following steps will only output data used by crakshaft.
    821   masm()->CheckConstPool(true, false);
    822 
    823   return !is_aborted();
    824 }
    825 
    826 
    827 bool LCodeGen::GenerateJumpTable() {
    828   Label needs_frame, restore_caller_doubles, call_deopt_entry;
    829 
    830   if (jump_table_.length() > 0) {
    831     Comment(";;; -------------------- Jump table --------------------");
    832     Address base = jump_table_[0]->address;
    833 
    834     UseScratchRegisterScope temps(masm());
    835     Register entry_offset = temps.AcquireX();
    836 
    837     int length = jump_table_.length();
    838     for (int i = 0; i < length; i++) {
    839       Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
    840       __ Bind(&table_entry->label);
    841 
    842       Address entry = table_entry->address;
    843       DeoptComment(table_entry->reason);
    844 
    845       // Second-level deopt table entries are contiguous and small, so instead
    846       // of loading the full, absolute address of each one, load the base
    847       // address and add an immediate offset.
    848       __ Mov(entry_offset, entry - base);
    849 
    850       // The last entry can fall through into `call_deopt_entry`, avoiding a
    851       // branch.
    852       bool last_entry = (i + 1) == length;
    853 
    854       if (table_entry->needs_frame) {
    855         DCHECK(!info()->saves_caller_doubles());
    856         if (!needs_frame.is_bound()) {
    857           // This variant of deopt can only be used with stubs. Since we don't
    858           // have a function pointer to install in the stack frame that we're
    859           // building, install a special marker there instead.
    860           DCHECK(info()->IsStub());
    861 
    862           UseScratchRegisterScope temps(masm());
    863           Register stub_marker = temps.AcquireX();
    864           __ Bind(&needs_frame);
    865           __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
    866           __ Push(lr, fp, cp, stub_marker);
    867           __ Add(fp, __ StackPointer(), 2 * kPointerSize);
    868           if (!last_entry) __ B(&call_deopt_entry);
    869         } else {
    870           // Reuse the existing needs_frame code.
    871           __ B(&needs_frame);
    872         }
    873       } else if (info()->saves_caller_doubles()) {
    874         DCHECK(info()->IsStub());
    875         if (!restore_caller_doubles.is_bound()) {
    876           __ Bind(&restore_caller_doubles);
    877           RestoreCallerDoubles();
    878           if (!last_entry) __ B(&call_deopt_entry);
    879         } else {
    880           // Reuse the existing restore_caller_doubles code.
    881           __ B(&restore_caller_doubles);
    882         }
    883       } else {
    884         // There is nothing special to do, so just continue to the second-level
    885         // table.
    886         if (!last_entry) __ B(&call_deopt_entry);
    887       }
    888 
    889       masm()->CheckConstPool(false, last_entry);
    890     }
    891 
    892     // Generate common code for calling the second-level deopt table.
    893     Register deopt_entry = temps.AcquireX();
    894     __ Bind(&call_deopt_entry);
    895     __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
    896                                 RelocInfo::RUNTIME_ENTRY));
    897     __ Add(deopt_entry, deopt_entry, entry_offset);
    898     __ Call(deopt_entry);
    899   }
    900 
    901   // Force constant pool emission at the end of the deopt jump table to make
    902   // sure that no constant pools are emitted after.
    903   masm()->CheckConstPool(true, false);
    904 
    905   // The deoptimization jump table is the last part of the instruction
    906   // sequence. Mark the generated code as done unless we bailed out.
    907   if (!is_aborted()) status_ = DONE;
    908   return !is_aborted();
    909 }
    910 
    911 
    912 bool LCodeGen::GenerateSafepointTable() {
    913   DCHECK(is_done());
    914   // We do not know how much data will be emitted for the safepoint table, so
    915   // force emission of the veneer pool.
    916   masm()->CheckVeneerPool(true, true);
    917   safepoints_.Emit(masm(), GetStackSlotCount());
    918   return !is_aborted();
    919 }
    920 
    921 
    922 void LCodeGen::FinishCode(Handle<Code> code) {
    923   DCHECK(is_done());
    924   code->set_stack_slots(GetStackSlotCount());
    925   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
    926   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
    927   PopulateDeoptimizationData(code);
    928 }
    929 
    930 
    931 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
    932   int length = deoptimizations_.length();
    933   if (length == 0) return;
    934 
    935   Handle<DeoptimizationInputData> data =
    936       DeoptimizationInputData::New(isolate(), length, TENURED);
    937 
    938   Handle<ByteArray> translations =
    939       translations_.CreateByteArray(isolate()->factory());
    940   data->SetTranslationByteArray(*translations);
    941   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
    942   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
    943   if (info_->IsOptimizing()) {
    944     // Reference to shared function info does not change between phases.
    945     AllowDeferredHandleDereference allow_handle_dereference;
    946     data->SetSharedFunctionInfo(*info_->shared_info());
    947   } else {
    948     data->SetSharedFunctionInfo(Smi::FromInt(0));
    949   }
    950 
    951   Handle<FixedArray> literals =
    952       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
    953   { AllowDeferredHandleDereference copy_handles;
    954     for (int i = 0; i < deoptimization_literals_.length(); i++) {
    955       literals->set(i, *deoptimization_literals_[i]);
    956     }
    957     data->SetLiteralArray(*literals);
    958   }
    959 
    960   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
    961   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
    962 
    963   // Populate the deoptimization entries.
    964   for (int i = 0; i < length; i++) {
    965     LEnvironment* env = deoptimizations_[i];
    966     data->SetAstId(i, env->ast_id());
    967     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
    968     data->SetArgumentsStackHeight(i,
    969                                   Smi::FromInt(env->arguments_stack_height()));
    970     data->SetPc(i, Smi::FromInt(env->pc_offset()));
    971   }
    972 
    973   code->set_deoptimization_data(*data);
    974 }
    975 
    976 
    977 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
    978   DCHECK(deoptimization_literals_.length() == 0);
    979 
    980   const ZoneList<Handle<JSFunction> >* inlined_closures =
    981       chunk()->inlined_closures();
    982 
    983   for (int i = 0, length = inlined_closures->length(); i < length; i++) {
    984     DefineDeoptimizationLiteral(inlined_closures->at(i));
    985   }
    986 
    987   inlined_function_count_ = deoptimization_literals_.length();
    988 }
    989 
    990 
    991 void LCodeGen::DeoptimizeBranch(
    992     LInstruction* instr, const char* detail, BranchType branch_type,
    993     Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) {
    994   LEnvironment* environment = instr->environment();
    995   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    996   Deoptimizer::BailoutType bailout_type =
    997     info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
    998 
    999   if (override_bailout_type != NULL) {
   1000     bailout_type = *override_bailout_type;
   1001   }
   1002 
   1003   DCHECK(environment->HasBeenRegistered());
   1004   DCHECK(info()->IsOptimizing() || info()->IsStub());
   1005   int id = environment->deoptimization_index();
   1006   Address entry =
   1007       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
   1008 
   1009   if (entry == NULL) {
   1010     Abort(kBailoutWasNotPrepared);
   1011   }
   1012 
   1013   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
   1014     Label not_zero;
   1015     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
   1016 
   1017     __ Push(x0, x1, x2);
   1018     __ Mrs(x2, NZCV);
   1019     __ Mov(x0, count);
   1020     __ Ldr(w1, MemOperand(x0));
   1021     __ Subs(x1, x1, 1);
   1022     __ B(gt, &not_zero);
   1023     __ Mov(w1, FLAG_deopt_every_n_times);
   1024     __ Str(w1, MemOperand(x0));
   1025     __ Pop(x2, x1, x0);
   1026     DCHECK(frame_is_built_);
   1027     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
   1028     __ Unreachable();
   1029 
   1030     __ Bind(&not_zero);
   1031     __ Str(w1, MemOperand(x0));
   1032     __ Msr(NZCV, x2);
   1033     __ Pop(x2, x1, x0);
   1034   }
   1035 
   1036   if (info()->ShouldTrapOnDeopt()) {
   1037     Label dont_trap;
   1038     __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
   1039     __ Debug("trap_on_deopt", __LINE__, BREAK);
   1040     __ Bind(&dont_trap);
   1041   }
   1042 
   1043   Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
   1044                              instr->Mnemonic(), detail);
   1045   DCHECK(info()->IsStub() || frame_is_built_);
   1046   // Go through jump table if we need to build frame, or restore caller doubles.
   1047   if (branch_type == always &&
   1048       frame_is_built_ && !info()->saves_caller_doubles()) {
   1049     DeoptComment(reason);
   1050     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
   1051   } else {
   1052     Deoptimizer::JumpTableEntry* table_entry =
   1053         new (zone()) Deoptimizer::JumpTableEntry(entry, reason, bailout_type,
   1054                                                  !frame_is_built_);
   1055     // We often have several deopts to the same entry, reuse the last
   1056     // jump entry if this is the case.
   1057     if (jump_table_.is_empty() ||
   1058         !table_entry->IsEquivalentTo(*jump_table_.last())) {
   1059       jump_table_.Add(table_entry, zone());
   1060     }
   1061     __ B(&jump_table_.last()->label, branch_type, reg, bit);
   1062   }
   1063 }
   1064 
   1065 
   1066 void LCodeGen::Deoptimize(LInstruction* instr,
   1067                           Deoptimizer::BailoutType* override_bailout_type,
   1068                           const char* detail) {
   1069   DeoptimizeBranch(instr, detail, always, NoReg, -1, override_bailout_type);
   1070 }
   1071 
   1072 
   1073 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
   1074                             const char* detail) {
   1075   DeoptimizeBranch(instr, detail, static_cast<BranchType>(cond));
   1076 }
   1077 
   1078 
   1079 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
   1080                                 const char* detail) {
   1081   DeoptimizeBranch(instr, detail, reg_zero, rt);
   1082 }
   1083 
   1084 
   1085 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
   1086                                    const char* detail) {
   1087   DeoptimizeBranch(instr, detail, reg_not_zero, rt);
   1088 }
   1089 
   1090 
   1091 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
   1092                                     const char* detail) {
   1093   int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
   1094   DeoptimizeIfBitSet(rt, sign_bit, instr, detail);
   1095 }
   1096 
   1097 
   1098 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
   1099                                const char* detail) {
   1100   DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, detail);
   1101 }
   1102 
   1103 
   1104 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
   1105                                   const char* detail) {
   1106   DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, detail);
   1107 }
   1108 
   1109 
   1110 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
   1111                                 LInstruction* instr, const char* detail) {
   1112   __ CompareRoot(rt, index);
   1113   DeoptimizeIf(eq, instr, detail);
   1114 }
   1115 
   1116 
   1117 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
   1118                                    LInstruction* instr, const char* detail) {
   1119   __ CompareRoot(rt, index);
   1120   DeoptimizeIf(ne, instr, detail);
   1121 }
   1122 
   1123 
   1124 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
   1125                                      const char* detail) {
   1126   __ TestForMinusZero(input);
   1127   DeoptimizeIf(vs, instr, detail);
   1128 }
   1129 
   1130 
   1131 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
   1132   __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
   1133   DeoptimizeIf(ne, instr, "not heap number");
   1134 }
   1135 
   1136 
   1137 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
   1138                                   const char* detail) {
   1139   DeoptimizeBranch(instr, detail, reg_bit_set, rt, bit);
   1140 }
   1141 
   1142 
   1143 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
   1144                                     const char* detail) {
   1145   DeoptimizeBranch(instr, detail, reg_bit_clear, rt, bit);
   1146 }
   1147 
   1148 
   1149 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   1150   if (!info()->IsStub()) {
   1151     // Ensure that we have enough space after the previous lazy-bailout
   1152     // instruction for patching the code here.
   1153     intptr_t current_pc = masm()->pc_offset();
   1154 
   1155     if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
   1156       ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   1157       DCHECK((padding_size % kInstructionSize) == 0);
   1158       InstructionAccurateScope instruction_accurate(
   1159           masm(), padding_size / kInstructionSize);
   1160 
   1161       while (padding_size > 0) {
   1162         __ nop();
   1163         padding_size -= kInstructionSize;
   1164       }
   1165     }
   1166   }
   1167   last_lazy_deopt_pc_ = masm()->pc_offset();
   1168 }
   1169 
   1170 
   1171 Register LCodeGen::ToRegister(LOperand* op) const {
   1172   // TODO(all): support zero register results, as ToRegister32.
   1173   DCHECK((op != NULL) && op->IsRegister());
   1174   return Register::FromAllocationIndex(op->index());
   1175 }
   1176 
   1177 
   1178 Register LCodeGen::ToRegister32(LOperand* op) const {
   1179   DCHECK(op != NULL);
   1180   if (op->IsConstantOperand()) {
   1181     // If this is a constant operand, the result must be the zero register.
   1182     DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
   1183     return wzr;
   1184   } else {
   1185     return ToRegister(op).W();
   1186   }
   1187 }
   1188 
   1189 
   1190 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
   1191   HConstant* constant = chunk_->LookupConstant(op);
   1192   return Smi::FromInt(constant->Integer32Value());
   1193 }
   1194 
   1195 
   1196 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
   1197   DCHECK((op != NULL) && op->IsDoubleRegister());
   1198   return DoubleRegister::FromAllocationIndex(op->index());
   1199 }
   1200 
   1201 
   1202 Operand LCodeGen::ToOperand(LOperand* op) {
   1203   DCHECK(op != NULL);
   1204   if (op->IsConstantOperand()) {
   1205     LConstantOperand* const_op = LConstantOperand::cast(op);
   1206     HConstant* constant = chunk()->LookupConstant(const_op);
   1207     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1208     if (r.IsSmi()) {
   1209       DCHECK(constant->HasSmiValue());
   1210       return Operand(Smi::FromInt(constant->Integer32Value()));
   1211     } else if (r.IsInteger32()) {
   1212       DCHECK(constant->HasInteger32Value());
   1213       return Operand(constant->Integer32Value());
   1214     } else if (r.IsDouble()) {
   1215       Abort(kToOperandUnsupportedDoubleImmediate);
   1216     }
   1217     DCHECK(r.IsTagged());
   1218     return Operand(constant->handle(isolate()));
   1219   } else if (op->IsRegister()) {
   1220     return Operand(ToRegister(op));
   1221   } else if (op->IsDoubleRegister()) {
   1222     Abort(kToOperandIsDoubleRegisterUnimplemented);
   1223     return Operand(0);
   1224   }
   1225   // Stack slots not implemented, use ToMemOperand instead.
   1226   UNREACHABLE();
   1227   return Operand(0);
   1228 }
   1229 
   1230 
   1231 Operand LCodeGen::ToOperand32(LOperand* op) {
   1232   DCHECK(op != NULL);
   1233   if (op->IsRegister()) {
   1234     return Operand(ToRegister32(op));
   1235   } else if (op->IsConstantOperand()) {
   1236     LConstantOperand* const_op = LConstantOperand::cast(op);
   1237     HConstant* constant = chunk()->LookupConstant(const_op);
   1238     Representation r = chunk_->LookupLiteralRepresentation(const_op);
   1239     if (r.IsInteger32()) {
   1240       return Operand(constant->Integer32Value());
   1241     } else {
   1242       // Other constants not implemented.
   1243       Abort(kToOperand32UnsupportedImmediate);
   1244     }
   1245   }
   1246   // Other cases are not implemented.
   1247   UNREACHABLE();
   1248   return Operand(0);
   1249 }
   1250 
   1251 
   1252 static int64_t ArgumentsOffsetWithoutFrame(int index) {
   1253   DCHECK(index < 0);
   1254   return -(index + 1) * kPointerSize;
   1255 }
   1256 
   1257 
   1258 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
   1259   DCHECK(op != NULL);
   1260   DCHECK(!op->IsRegister());
   1261   DCHECK(!op->IsDoubleRegister());
   1262   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
   1263   if (NeedsEagerFrame()) {
   1264     int fp_offset = StackSlotOffset(op->index());
   1265     if (op->index() >= 0) {
   1266       // Loads and stores have a bigger reach in positive offset than negative.
   1267       // When the load or the store can't be done in one instruction via fp
   1268       // (too big negative offset), we try to access via jssp (positive offset).
   1269       // We can reference a stack slot from jssp only if jssp references the end
   1270       // of the stack slots. It's not the case when:
   1271       //  - stack_mode != kCanUseStackPointer: this is the case when a deferred
   1272       //     code saved the registers.
   1273       //  - after_push_argument_: arguments has been pushed for a call.
   1274       //  - inlined_arguments_: inlined arguments have been pushed once. All the
   1275       //     remainder of the function cannot trust jssp any longer.
   1276       //  - saves_caller_doubles: some double registers have been pushed, jssp
   1277       //     references the end of the double registers and not the end of the
   1278       //     stack slots.
   1279       // Also, if the offset from fp is small enough to make a load/store in
   1280       // one instruction, we use a fp access.
   1281       if ((stack_mode == kCanUseStackPointer) && !after_push_argument_ &&
   1282           !inlined_arguments_ && !is_int9(fp_offset) &&
   1283           !info()->saves_caller_doubles()) {
   1284         int jssp_offset =
   1285             (GetStackSlotCount() - op->index() - 1) * kPointerSize;
   1286         return MemOperand(masm()->StackPointer(), jssp_offset);
   1287       }
   1288     }
   1289     return MemOperand(fp, fp_offset);
   1290   } else {
   1291     // Retrieve parameter without eager stack-frame relative to the
   1292     // stack-pointer.
   1293     return MemOperand(masm()->StackPointer(),
   1294                       ArgumentsOffsetWithoutFrame(op->index()));
   1295   }
   1296 }
   1297 
   1298 
   1299 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
   1300   HConstant* constant = chunk_->LookupConstant(op);
   1301   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
   1302   return constant->handle(isolate());
   1303 }
   1304 
   1305 
   1306 template <class LI>
   1307 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
   1308   if (shift_info->shift() == NO_SHIFT) {
   1309     return ToOperand32(right);
   1310   } else {
   1311     return Operand(
   1312         ToRegister32(right),
   1313         shift_info->shift(),
   1314         JSShiftAmountFromLConstant(shift_info->shift_amount()));
   1315   }
   1316 }
   1317 
   1318 
   1319 bool LCodeGen::IsSmi(LConstantOperand* op) const {
   1320   return chunk_->LookupLiteralRepresentation(op).IsSmi();
   1321 }
   1322 
   1323 
   1324 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
   1325   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
   1326 }
   1327 
   1328 
   1329 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
   1330   HConstant* constant = chunk_->LookupConstant(op);
   1331   return constant->Integer32Value();
   1332 }
   1333 
   1334 
   1335 double LCodeGen::ToDouble(LConstantOperand* op) const {
   1336   HConstant* constant = chunk_->LookupConstant(op);
   1337   DCHECK(constant->HasDoubleValue());
   1338   return constant->DoubleValue();
   1339 }
   1340 
   1341 
   1342 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   1343   Condition cond = nv;
   1344   switch (op) {
   1345     case Token::EQ:
   1346     case Token::EQ_STRICT:
   1347       cond = eq;
   1348       break;
   1349     case Token::NE:
   1350     case Token::NE_STRICT:
   1351       cond = ne;
   1352       break;
   1353     case Token::LT:
   1354       cond = is_unsigned ? lo : lt;
   1355       break;
   1356     case Token::GT:
   1357       cond = is_unsigned ? hi : gt;
   1358       break;
   1359     case Token::LTE:
   1360       cond = is_unsigned ? ls : le;
   1361       break;
   1362     case Token::GTE:
   1363       cond = is_unsigned ? hs : ge;
   1364       break;
   1365     case Token::IN:
   1366     case Token::INSTANCEOF:
   1367     default:
   1368       UNREACHABLE();
   1369   }
   1370   return cond;
   1371 }
   1372 
   1373 
   1374 template<class InstrType>
   1375 void LCodeGen::EmitBranchGeneric(InstrType instr,
   1376                                  const BranchGenerator& branch) {
   1377   int left_block = instr->TrueDestination(chunk_);
   1378   int right_block = instr->FalseDestination(chunk_);
   1379 
   1380   int next_block = GetNextEmittedBlock();
   1381 
   1382   if (right_block == left_block) {
   1383     EmitGoto(left_block);
   1384   } else if (left_block == next_block) {
   1385     branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
   1386   } else {
   1387     branch.Emit(chunk_->GetAssemblyLabel(left_block));
   1388     if (right_block != next_block) {
   1389       __ B(chunk_->GetAssemblyLabel(right_block));
   1390     }
   1391   }
   1392 }
   1393 
   1394 
   1395 template<class InstrType>
   1396 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
   1397   DCHECK((condition != al) && (condition != nv));
   1398   BranchOnCondition branch(this, condition);
   1399   EmitBranchGeneric(instr, branch);
   1400 }
   1401 
   1402 
   1403 template<class InstrType>
   1404 void LCodeGen::EmitCompareAndBranch(InstrType instr,
   1405                                     Condition condition,
   1406                                     const Register& lhs,
   1407                                     const Operand& rhs) {
   1408   DCHECK((condition != al) && (condition != nv));
   1409   CompareAndBranch branch(this, condition, lhs, rhs);
   1410   EmitBranchGeneric(instr, branch);
   1411 }
   1412 
   1413 
   1414 template<class InstrType>
   1415 void LCodeGen::EmitTestAndBranch(InstrType instr,
   1416                                  Condition condition,
   1417                                  const Register& value,
   1418                                  uint64_t mask) {
   1419   DCHECK((condition != al) && (condition != nv));
   1420   TestAndBranch branch(this, condition, value, mask);
   1421   EmitBranchGeneric(instr, branch);
   1422 }
   1423 
   1424 
   1425 template<class InstrType>
   1426 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
   1427                                          const FPRegister& value,
   1428                                          const FPRegister& scratch) {
   1429   BranchIfNonZeroNumber branch(this, value, scratch);
   1430   EmitBranchGeneric(instr, branch);
   1431 }
   1432 
   1433 
   1434 template<class InstrType>
   1435 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
   1436                                       const Register& value) {
   1437   BranchIfHeapNumber branch(this, value);
   1438   EmitBranchGeneric(instr, branch);
   1439 }
   1440 
   1441 
   1442 template<class InstrType>
   1443 void LCodeGen::EmitBranchIfRoot(InstrType instr,
   1444                                 const Register& value,
   1445                                 Heap::RootListIndex index) {
   1446   BranchIfRoot branch(this, value, index);
   1447   EmitBranchGeneric(instr, branch);
   1448 }
   1449 
   1450 
   1451 void LCodeGen::DoGap(LGap* gap) {
   1452   for (int i = LGap::FIRST_INNER_POSITION;
   1453        i <= LGap::LAST_INNER_POSITION;
   1454        i++) {
   1455     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1456     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1457     if (move != NULL) {
   1458       resolver_.Resolve(move);
   1459     }
   1460   }
   1461 }
   1462 
   1463 
   1464 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   1465   Register arguments = ToRegister(instr->arguments());
   1466   Register result = ToRegister(instr->result());
   1467 
   1468   // The pointer to the arguments array come from DoArgumentsElements.
   1469   // It does not point directly to the arguments and there is an offest of
   1470   // two words that we must take into account when accessing an argument.
   1471   // Subtracting the index from length accounts for one, so we add one more.
   1472 
   1473   if (instr->length()->IsConstantOperand() &&
   1474       instr->index()->IsConstantOperand()) {
   1475     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1476     int length = ToInteger32(LConstantOperand::cast(instr->length()));
   1477     int offset = ((length - index) + 1) * kPointerSize;
   1478     __ Ldr(result, MemOperand(arguments, offset));
   1479   } else if (instr->index()->IsConstantOperand()) {
   1480     Register length = ToRegister32(instr->length());
   1481     int index = ToInteger32(LConstantOperand::cast(instr->index()));
   1482     int loc = index - 1;
   1483     if (loc != 0) {
   1484       __ Sub(result.W(), length, loc);
   1485       __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1486     } else {
   1487       __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
   1488     }
   1489   } else {
   1490     Register length = ToRegister32(instr->length());
   1491     Operand index = ToOperand32(instr->index());
   1492     __ Sub(result.W(), length, index);
   1493     __ Add(result.W(), result.W(), 1);
   1494     __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
   1495   }
   1496 }
   1497 
   1498 
   1499 void LCodeGen::DoAddE(LAddE* instr) {
   1500   Register result = ToRegister(instr->result());
   1501   Register left = ToRegister(instr->left());
   1502   Operand right = (instr->right()->IsConstantOperand())
   1503       ? ToInteger32(LConstantOperand::cast(instr->right()))
   1504       : Operand(ToRegister32(instr->right()), SXTW);
   1505 
   1506   DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
   1507   __ Add(result, left, right);
   1508 }
   1509 
   1510 
   1511 void LCodeGen::DoAddI(LAddI* instr) {
   1512   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1513   Register result = ToRegister32(instr->result());
   1514   Register left = ToRegister32(instr->left());
   1515   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   1516 
   1517   if (can_overflow) {
   1518     __ Adds(result, left, right);
   1519     DeoptimizeIf(vs, instr);
   1520   } else {
   1521     __ Add(result, left, right);
   1522   }
   1523 }
   1524 
   1525 
   1526 void LCodeGen::DoAddS(LAddS* instr) {
   1527   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1528   Register result = ToRegister(instr->result());
   1529   Register left = ToRegister(instr->left());
   1530   Operand right = ToOperand(instr->right());
   1531   if (can_overflow) {
   1532     __ Adds(result, left, right);
   1533     DeoptimizeIf(vs, instr);
   1534   } else {
   1535     __ Add(result, left, right);
   1536   }
   1537 }
   1538 
   1539 
   1540 void LCodeGen::DoAllocate(LAllocate* instr) {
   1541   class DeferredAllocate: public LDeferredCode {
   1542    public:
   1543     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
   1544         : LDeferredCode(codegen), instr_(instr) { }
   1545     virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
   1546     virtual LInstruction* instr() { return instr_; }
   1547    private:
   1548     LAllocate* instr_;
   1549   };
   1550 
   1551   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
   1552 
   1553   Register result = ToRegister(instr->result());
   1554   Register temp1 = ToRegister(instr->temp1());
   1555   Register temp2 = ToRegister(instr->temp2());
   1556 
   1557   // Allocate memory for the object.
   1558   AllocationFlags flags = TAG_OBJECT;
   1559   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   1560     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   1561   }
   1562 
   1563   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   1564     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   1565     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1566     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
   1567   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   1568     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1569     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
   1570   }
   1571 
   1572   if (instr->size()->IsConstantOperand()) {
   1573     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1574     if (size <= Page::kMaxRegularHeapObjectSize) {
   1575       __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
   1576     } else {
   1577       __ B(deferred->entry());
   1578     }
   1579   } else {
   1580     Register size = ToRegister32(instr->size());
   1581     __ Sxtw(size.X(), size);
   1582     __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
   1583   }
   1584 
   1585   __ Bind(deferred->exit());
   1586 
   1587   if (instr->hydrogen()->MustPrefillWithFiller()) {
   1588     Register filler_count = temp1;
   1589     Register filler = temp2;
   1590     Register untagged_result = ToRegister(instr->temp3());
   1591 
   1592     if (instr->size()->IsConstantOperand()) {
   1593       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   1594       __ Mov(filler_count, size / kPointerSize);
   1595     } else {
   1596       __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
   1597     }
   1598 
   1599     __ Sub(untagged_result, result, kHeapObjectTag);
   1600     __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
   1601     __ FillFields(untagged_result, filler_count, filler);
   1602   } else {
   1603     DCHECK(instr->temp3() == NULL);
   1604   }
   1605 }
   1606 
   1607 
   1608 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   1609   // TODO(3095996): Get rid of this. For now, we need to make the
   1610   // result register contain a valid pointer because it is already
   1611   // contained in the register pointer map.
   1612   __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
   1613 
   1614   PushSafepointRegistersScope scope(this);
   1615   // We're in a SafepointRegistersScope so we can use any scratch registers.
   1616   Register size = x0;
   1617   if (instr->size()->IsConstantOperand()) {
   1618     __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
   1619   } else {
   1620     __ SmiTag(size, ToRegister32(instr->size()).X());
   1621   }
   1622   int flags = AllocateDoubleAlignFlag::encode(
   1623       instr->hydrogen()->MustAllocateDoubleAligned());
   1624   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   1625     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   1626     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1627     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
   1628   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   1629     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   1630     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
   1631   } else {
   1632     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   1633   }
   1634   __ Mov(x10, Smi::FromInt(flags));
   1635   __ Push(size, x10);
   1636 
   1637   CallRuntimeFromDeferred(
   1638       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   1639   __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
   1640 }
   1641 
   1642 
   1643 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   1644   Register receiver = ToRegister(instr->receiver());
   1645   Register function = ToRegister(instr->function());
   1646   Register length = ToRegister32(instr->length());
   1647 
   1648   Register elements = ToRegister(instr->elements());
   1649   Register scratch = x5;
   1650   DCHECK(receiver.Is(x0));  // Used for parameter count.
   1651   DCHECK(function.Is(x1));  // Required by InvokeFunction.
   1652   DCHECK(ToRegister(instr->result()).Is(x0));
   1653   DCHECK(instr->IsMarkedAsCall());
   1654 
   1655   // Copy the arguments to this function possibly from the
   1656   // adaptor frame below it.
   1657   const uint32_t kArgumentsLimit = 1 * KB;
   1658   __ Cmp(length, kArgumentsLimit);
   1659   DeoptimizeIf(hi, instr);
   1660 
   1661   // Push the receiver and use the register to keep the original
   1662   // number of arguments.
   1663   __ Push(receiver);
   1664   Register argc = receiver;
   1665   receiver = NoReg;
   1666   __ Sxtw(argc, length);
   1667   // The arguments are at a one pointer size offset from elements.
   1668   __ Add(elements, elements, 1 * kPointerSize);
   1669 
   1670   // Loop through the arguments pushing them onto the execution
   1671   // stack.
   1672   Label invoke, loop;
   1673   // length is a small non-negative integer, due to the test above.
   1674   __ Cbz(length, &invoke);
   1675   __ Bind(&loop);
   1676   __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
   1677   __ Push(scratch);
   1678   __ Subs(length, length, 1);
   1679   __ B(ne, &loop);
   1680 
   1681   __ Bind(&invoke);
   1682   DCHECK(instr->HasPointerMap());
   1683   LPointerMap* pointers = instr->pointer_map();
   1684   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
   1685   // The number of arguments is stored in argc (receiver) which is x0, as
   1686   // expected by InvokeFunction.
   1687   ParameterCount actual(argc);
   1688   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
   1689 }
   1690 
   1691 
   1692 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   1693   // We push some arguments and they will be pop in an other block. We can't
   1694   // trust that jssp references the end of the stack slots until the end of
   1695   // the function.
   1696   inlined_arguments_ = true;
   1697   Register result = ToRegister(instr->result());
   1698 
   1699   if (instr->hydrogen()->from_inlined()) {
   1700     // When we are inside an inlined function, the arguments are the last things
   1701     // that have been pushed on the stack. Therefore the arguments array can be
   1702     // accessed directly from jssp.
   1703     // However in the normal case, it is accessed via fp but there are two words
   1704     // on the stack between fp and the arguments (the saved lr and fp) and the
   1705     // LAccessArgumentsAt implementation take that into account.
   1706     // In the inlined case we need to subtract the size of 2 words to jssp to
   1707     // get a pointer which will work well with LAccessArgumentsAt.
   1708     DCHECK(masm()->StackPointer().Is(jssp));
   1709     __ Sub(result, jssp, 2 * kPointerSize);
   1710   } else {
   1711     DCHECK(instr->temp() != NULL);
   1712     Register previous_fp = ToRegister(instr->temp());
   1713 
   1714     __ Ldr(previous_fp,
   1715            MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1716     __ Ldr(result,
   1717            MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
   1718     __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   1719     __ Csel(result, fp, previous_fp, ne);
   1720   }
   1721 }
   1722 
   1723 
   1724 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   1725   Register elements = ToRegister(instr->elements());
   1726   Register result = ToRegister32(instr->result());
   1727   Label done;
   1728 
   1729   // If no arguments adaptor frame the number of arguments is fixed.
   1730   __ Cmp(fp, elements);
   1731   __ Mov(result, scope()->num_parameters());
   1732   __ B(eq, &done);
   1733 
   1734   // Arguments adaptor frame present. Get argument length from there.
   1735   __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1736   __ Ldr(result,
   1737          UntagSmiMemOperand(result.X(),
   1738                             ArgumentsAdaptorFrameConstants::kLengthOffset));
   1739 
   1740   // Argument length is in result register.
   1741   __ Bind(&done);
   1742 }
   1743 
   1744 
   1745 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1746   DoubleRegister left = ToDoubleRegister(instr->left());
   1747   DoubleRegister right = ToDoubleRegister(instr->right());
   1748   DoubleRegister result = ToDoubleRegister(instr->result());
   1749 
   1750   switch (instr->op()) {
   1751     case Token::ADD: __ Fadd(result, left, right); break;
   1752     case Token::SUB: __ Fsub(result, left, right); break;
   1753     case Token::MUL: __ Fmul(result, left, right); break;
   1754     case Token::DIV: __ Fdiv(result, left, right); break;
   1755     case Token::MOD: {
   1756       // The ECMA-262 remainder operator is the remainder from a truncating
   1757       // (round-towards-zero) division. Note that this differs from IEEE-754.
   1758       //
   1759       // TODO(jbramley): See if it's possible to do this inline, rather than by
   1760       // calling a helper function. With frintz (to produce the intermediate
   1761       // quotient) and fmsub (to calculate the remainder without loss of
   1762       // precision), it should be possible. However, we would need support for
   1763       // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
   1764       // support that yet.
   1765       DCHECK(left.Is(d0));
   1766       DCHECK(right.Is(d1));
   1767       __ CallCFunction(
   1768           ExternalReference::mod_two_doubles_operation(isolate()),
   1769           0, 2);
   1770       DCHECK(result.Is(d0));
   1771       break;
   1772     }
   1773     default:
   1774       UNREACHABLE();
   1775       break;
   1776   }
   1777 }
   1778 
   1779 
   1780 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   1781   DCHECK(ToRegister(instr->context()).is(cp));
   1782   DCHECK(ToRegister(instr->left()).is(x1));
   1783   DCHECK(ToRegister(instr->right()).is(x0));
   1784   DCHECK(ToRegister(instr->result()).is(x0));
   1785 
   1786   Handle<Code> code =
   1787       CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
   1788   CallCode(code, RelocInfo::CODE_TARGET, instr);
   1789 }
   1790 
   1791 
   1792 void LCodeGen::DoBitI(LBitI* instr) {
   1793   Register result = ToRegister32(instr->result());
   1794   Register left = ToRegister32(instr->left());
   1795   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   1796 
   1797   switch (instr->op()) {
   1798     case Token::BIT_AND: __ And(result, left, right); break;
   1799     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1800     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1801     default:
   1802       UNREACHABLE();
   1803       break;
   1804   }
   1805 }
   1806 
   1807 
   1808 void LCodeGen::DoBitS(LBitS* instr) {
   1809   Register result = ToRegister(instr->result());
   1810   Register left = ToRegister(instr->left());
   1811   Operand right = ToOperand(instr->right());
   1812 
   1813   switch (instr->op()) {
   1814     case Token::BIT_AND: __ And(result, left, right); break;
   1815     case Token::BIT_OR:  __ Orr(result, left, right); break;
   1816     case Token::BIT_XOR: __ Eor(result, left, right); break;
   1817     default:
   1818       UNREACHABLE();
   1819       break;
   1820   }
   1821 }
   1822 
   1823 
   1824 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
   1825   Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
   1826   DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
   1827   DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
   1828   if (instr->index()->IsConstantOperand()) {
   1829     Operand index = ToOperand32(instr->index());
   1830     Register length = ToRegister32(instr->length());
   1831     __ Cmp(length, index);
   1832     cond = CommuteCondition(cond);
   1833   } else {
   1834     Register index = ToRegister32(instr->index());
   1835     Operand length = ToOperand32(instr->length());
   1836     __ Cmp(index, length);
   1837   }
   1838   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   1839     __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
   1840   } else {
   1841     DeoptimizeIf(cond, instr);
   1842   }
   1843 }
   1844 
   1845 
   1846 void LCodeGen::DoBranch(LBranch* instr) {
   1847   Representation r = instr->hydrogen()->value()->representation();
   1848   Label* true_label = instr->TrueLabel(chunk_);
   1849   Label* false_label = instr->FalseLabel(chunk_);
   1850 
   1851   if (r.IsInteger32()) {
   1852     DCHECK(!info()->IsStub());
   1853     EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
   1854   } else if (r.IsSmi()) {
   1855     DCHECK(!info()->IsStub());
   1856     STATIC_ASSERT(kSmiTag == 0);
   1857     EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
   1858   } else if (r.IsDouble()) {
   1859     DoubleRegister value = ToDoubleRegister(instr->value());
   1860     // Test the double value. Zero and NaN are false.
   1861     EmitBranchIfNonZeroNumber(instr, value, double_scratch());
   1862   } else {
   1863     DCHECK(r.IsTagged());
   1864     Register value = ToRegister(instr->value());
   1865     HType type = instr->hydrogen()->value()->type();
   1866 
   1867     if (type.IsBoolean()) {
   1868       DCHECK(!info()->IsStub());
   1869       __ CompareRoot(value, Heap::kTrueValueRootIndex);
   1870       EmitBranch(instr, eq);
   1871     } else if (type.IsSmi()) {
   1872       DCHECK(!info()->IsStub());
   1873       EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
   1874     } else if (type.IsJSArray()) {
   1875       DCHECK(!info()->IsStub());
   1876       EmitGoto(instr->TrueDestination(chunk()));
   1877     } else if (type.IsHeapNumber()) {
   1878       DCHECK(!info()->IsStub());
   1879       __ Ldr(double_scratch(), FieldMemOperand(value,
   1880                                                HeapNumber::kValueOffset));
   1881       // Test the double value. Zero and NaN are false.
   1882       EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
   1883     } else if (type.IsString()) {
   1884       DCHECK(!info()->IsStub());
   1885       Register temp = ToRegister(instr->temp1());
   1886       __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
   1887       EmitCompareAndBranch(instr, ne, temp, 0);
   1888     } else {
   1889       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
   1890       // Avoid deopts in the case where we've never executed this path before.
   1891       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
   1892 
   1893       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
   1894         // undefined -> false.
   1895         __ JumpIfRoot(
   1896             value, Heap::kUndefinedValueRootIndex, false_label);
   1897       }
   1898 
   1899       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
   1900         // Boolean -> its value.
   1901         __ JumpIfRoot(
   1902             value, Heap::kTrueValueRootIndex, true_label);
   1903         __ JumpIfRoot(
   1904             value, Heap::kFalseValueRootIndex, false_label);
   1905       }
   1906 
   1907       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
   1908         // 'null' -> false.
   1909         __ JumpIfRoot(
   1910             value, Heap::kNullValueRootIndex, false_label);
   1911       }
   1912 
   1913       if (expected.Contains(ToBooleanStub::SMI)) {
   1914         // Smis: 0 -> false, all other -> true.
   1915         DCHECK(Smi::FromInt(0) == 0);
   1916         __ Cbz(value, false_label);
   1917         __ JumpIfSmi(value, true_label);
   1918       } else if (expected.NeedsMap()) {
   1919         // If we need a map later and have a smi, deopt.
   1920         DeoptimizeIfSmi(value, instr);
   1921       }
   1922 
   1923       Register map = NoReg;
   1924       Register scratch = NoReg;
   1925 
   1926       if (expected.NeedsMap()) {
   1927         DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   1928         map = ToRegister(instr->temp1());
   1929         scratch = ToRegister(instr->temp2());
   1930 
   1931         __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   1932 
   1933         if (expected.CanBeUndetectable()) {
   1934           // Undetectable -> false.
   1935           __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   1936           __ TestAndBranchIfAnySet(
   1937               scratch, 1 << Map::kIsUndetectable, false_label);
   1938         }
   1939       }
   1940 
   1941       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
   1942         // spec object -> true.
   1943         __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
   1944         __ B(ge, true_label);
   1945       }
   1946 
   1947       if (expected.Contains(ToBooleanStub::STRING)) {
   1948         // String value -> false iff empty.
   1949         Label not_string;
   1950         __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
   1951         __ B(ge, &not_string);
   1952         __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
   1953         __ Cbz(scratch, false_label);
   1954         __ B(true_label);
   1955         __ Bind(&not_string);
   1956       }
   1957 
   1958       if (expected.Contains(ToBooleanStub::SYMBOL)) {
   1959         // Symbol value -> true.
   1960         __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
   1961         __ B(eq, true_label);
   1962       }
   1963 
   1964       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
   1965         Label not_heap_number;
   1966         __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
   1967 
   1968         __ Ldr(double_scratch(),
   1969                FieldMemOperand(value, HeapNumber::kValueOffset));
   1970         __ Fcmp(double_scratch(), 0.0);
   1971         // If we got a NaN (overflow bit is set), jump to the false branch.
   1972         __ B(vs, false_label);
   1973         __ B(eq, false_label);
   1974         __ B(true_label);
   1975         __ Bind(&not_heap_number);
   1976       }
   1977 
   1978       if (!expected.IsGeneric()) {
   1979         // We've seen something for the first time -> deopt.
   1980         // This can only happen if we are not generic already.
   1981         Deoptimize(instr);
   1982       }
   1983     }
   1984   }
   1985 }
   1986 
   1987 
   1988 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   1989                                  int formal_parameter_count,
   1990                                  int arity,
   1991                                  LInstruction* instr,
   1992                                  Register function_reg) {
   1993   bool dont_adapt_arguments =
   1994       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   1995   bool can_invoke_directly =
   1996       dont_adapt_arguments || formal_parameter_count == arity;
   1997 
   1998   // The function interface relies on the following register assignments.
   1999   DCHECK(function_reg.Is(x1) || function_reg.IsNone());
   2000   Register arity_reg = x0;
   2001 
   2002   LPointerMap* pointers = instr->pointer_map();
   2003 
   2004   // If necessary, load the function object.
   2005   if (function_reg.IsNone()) {
   2006     function_reg = x1;
   2007     __ LoadObject(function_reg, function);
   2008   }
   2009 
   2010   if (FLAG_debug_code) {
   2011     Label is_not_smi;
   2012     // Try to confirm that function_reg (x1) is a tagged pointer.
   2013     __ JumpIfNotSmi(function_reg, &is_not_smi);
   2014     __ Abort(kExpectedFunctionObject);
   2015     __ Bind(&is_not_smi);
   2016   }
   2017 
   2018   if (can_invoke_directly) {
   2019     // Change context.
   2020     __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
   2021 
   2022     // Set the arguments count if adaption is not needed. Assumes that x0 is
   2023     // available to write to at this point.
   2024     if (dont_adapt_arguments) {
   2025       __ Mov(arity_reg, arity);
   2026     }
   2027 
   2028     // Invoke function.
   2029     __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
   2030     __ Call(x10);
   2031 
   2032     // Set up deoptimization.
   2033     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   2034   } else {
   2035     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   2036     ParameterCount count(arity);
   2037     ParameterCount expected(formal_parameter_count);
   2038     __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
   2039   }
   2040 }
   2041 
   2042 
   2043 void LCodeGen::DoTailCallThroughMegamorphicCache(
   2044     LTailCallThroughMegamorphicCache* instr) {
   2045   Register receiver = ToRegister(instr->receiver());
   2046   Register name = ToRegister(instr->name());
   2047   DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
   2048   DCHECK(name.is(LoadDescriptor::NameRegister()));
   2049   DCHECK(receiver.is(x1));
   2050   DCHECK(name.is(x2));
   2051 
   2052   Register scratch = x3;
   2053   Register extra = x4;
   2054   Register extra2 = x5;
   2055   Register extra3 = x6;
   2056 
   2057   // Important for the tail-call.
   2058   bool must_teardown_frame = NeedsEagerFrame();
   2059 
   2060   // The probe will tail call to a handler if found.
   2061   isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(),
   2062                                          must_teardown_frame, receiver, name,
   2063                                          scratch, extra, extra2, extra3);
   2064 
   2065   // Tail call to miss if we ended up here.
   2066   if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL);
   2067   LoadIC::GenerateMiss(masm());
   2068 }
   2069 
   2070 
   2071 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   2072   DCHECK(instr->IsMarkedAsCall());
   2073   DCHECK(ToRegister(instr->result()).Is(x0));
   2074 
   2075   LPointerMap* pointers = instr->pointer_map();
   2076   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   2077 
   2078   if (instr->target()->IsConstantOperand()) {
   2079     LConstantOperand* target = LConstantOperand::cast(instr->target());
   2080     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   2081     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   2082     // TODO(all): on ARM we use a call descriptor to specify a storage mode
   2083     // but on ARM64 we only have one storage mode so it isn't necessary. Check
   2084     // this understanding is correct.
   2085     __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
   2086   } else {
   2087     DCHECK(instr->target()->IsRegister());
   2088     Register target = ToRegister(instr->target());
   2089     generator.BeforeCall(__ CallSize(target));
   2090     __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
   2091     __ Call(target);
   2092   }
   2093   generator.AfterCall();
   2094   after_push_argument_ = false;
   2095 }
   2096 
   2097 
   2098 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
   2099   DCHECK(instr->IsMarkedAsCall());
   2100   DCHECK(ToRegister(instr->function()).is(x1));
   2101 
   2102   if (instr->hydrogen()->pass_argument_count()) {
   2103     __ Mov(x0, Operand(instr->arity()));
   2104   }
   2105 
   2106   // Change context.
   2107   __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
   2108 
   2109   // Load the code entry address
   2110   __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
   2111   __ Call(x10);
   2112 
   2113   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   2114   after_push_argument_ = false;
   2115 }
   2116 
   2117 
   2118 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   2119   CallRuntime(instr->function(), instr->arity(), instr);
   2120   after_push_argument_ = false;
   2121 }
   2122 
   2123 
   2124 void LCodeGen::DoCallStub(LCallStub* instr) {
   2125   DCHECK(ToRegister(instr->context()).is(cp));
   2126   DCHECK(ToRegister(instr->result()).is(x0));
   2127   switch (instr->hydrogen()->major_key()) {
   2128     case CodeStub::RegExpExec: {
   2129       RegExpExecStub stub(isolate());
   2130       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2131       break;
   2132     }
   2133     case CodeStub::SubString: {
   2134       SubStringStub stub(isolate());
   2135       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2136       break;
   2137     }
   2138     case CodeStub::StringCompare: {
   2139       StringCompareStub stub(isolate());
   2140       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2141       break;
   2142     }
   2143     default:
   2144       UNREACHABLE();
   2145   }
   2146   after_push_argument_ = false;
   2147 }
   2148 
   2149 
   2150 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   2151   GenerateOsrPrologue();
   2152 }
   2153 
   2154 
   2155 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   2156   Register temp = ToRegister(instr->temp());
   2157   {
   2158     PushSafepointRegistersScope scope(this);
   2159     __ Push(object);
   2160     __ Mov(cp, 0);
   2161     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   2162     RecordSafepointWithRegisters(
   2163         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   2164     __ StoreToSafepointRegisterSlot(x0, temp);
   2165   }
   2166   DeoptimizeIfSmi(temp, instr);
   2167 }
   2168 
   2169 
   2170 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   2171   class DeferredCheckMaps: public LDeferredCode {
   2172    public:
   2173     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
   2174         : LDeferredCode(codegen), instr_(instr), object_(object) {
   2175       SetExit(check_maps());
   2176     }
   2177     virtual void Generate() {
   2178       codegen()->DoDeferredInstanceMigration(instr_, object_);
   2179     }
   2180     Label* check_maps() { return &check_maps_; }
   2181     virtual LInstruction* instr() { return instr_; }
   2182    private:
   2183     LCheckMaps* instr_;
   2184     Label check_maps_;
   2185     Register object_;
   2186   };
   2187 
   2188   if (instr->hydrogen()->IsStabilityCheck()) {
   2189     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2190     for (int i = 0; i < maps->size(); ++i) {
   2191       AddStabilityDependency(maps->at(i).handle());
   2192     }
   2193     return;
   2194   }
   2195 
   2196   Register object = ToRegister(instr->value());
   2197   Register map_reg = ToRegister(instr->temp());
   2198 
   2199   __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
   2200 
   2201   DeferredCheckMaps* deferred = NULL;
   2202   if (instr->hydrogen()->HasMigrationTarget()) {
   2203     deferred = new(zone()) DeferredCheckMaps(this, instr, object);
   2204     __ Bind(deferred->check_maps());
   2205   }
   2206 
   2207   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   2208   Label success;
   2209   for (int i = 0; i < maps->size() - 1; i++) {
   2210     Handle<Map> map = maps->at(i).handle();
   2211     __ CompareMap(map_reg, map);
   2212     __ B(eq, &success);
   2213   }
   2214   Handle<Map> map = maps->at(maps->size() - 1).handle();
   2215   __ CompareMap(map_reg, map);
   2216 
   2217   // We didn't match a map.
   2218   if (instr->hydrogen()->HasMigrationTarget()) {
   2219     __ B(ne, deferred->entry());
   2220   } else {
   2221     DeoptimizeIf(ne, instr);
   2222   }
   2223 
   2224   __ Bind(&success);
   2225 }
   2226 
   2227 
   2228 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   2229   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2230     DeoptimizeIfSmi(ToRegister(instr->value()), instr);
   2231   }
   2232 }
   2233 
   2234 
   2235 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   2236   Register value = ToRegister(instr->value());
   2237   DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
   2238   DeoptimizeIfNotSmi(value, instr);
   2239 }
   2240 
   2241 
   2242 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   2243   Register input = ToRegister(instr->value());
   2244   Register scratch = ToRegister(instr->temp());
   2245 
   2246   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   2247   __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   2248 
   2249   if (instr->hydrogen()->is_interval_check()) {
   2250     InstanceType first, last;
   2251     instr->hydrogen()->GetCheckInterval(&first, &last);
   2252 
   2253     __ Cmp(scratch, first);
   2254     if (first == last) {
   2255       // If there is only one type in the interval check for equality.
   2256       DeoptimizeIf(ne, instr);
   2257     } else if (last == LAST_TYPE) {
   2258       // We don't need to compare with the higher bound of the interval.
   2259       DeoptimizeIf(lo, instr);
   2260     } else {
   2261       // If we are below the lower bound, set the C flag and clear the Z flag
   2262       // to force a deopt.
   2263       __ Ccmp(scratch, last, CFlag, hs);
   2264       DeoptimizeIf(hi, instr);
   2265     }
   2266   } else {
   2267     uint8_t mask;
   2268     uint8_t tag;
   2269     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   2270 
   2271     if (base::bits::IsPowerOfTwo32(mask)) {
   2272       DCHECK((tag == 0) || (tag == mask));
   2273       if (tag == 0) {
   2274         DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr);
   2275       } else {
   2276         DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr);
   2277       }
   2278     } else {
   2279       if (tag == 0) {
   2280         __ Tst(scratch, mask);
   2281       } else {
   2282         __ And(scratch, scratch, mask);
   2283         __ Cmp(scratch, tag);
   2284       }
   2285       DeoptimizeIf(ne, instr);
   2286     }
   2287   }
   2288 }
   2289 
   2290 
   2291 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   2292   DoubleRegister input = ToDoubleRegister(instr->unclamped());
   2293   Register result = ToRegister32(instr->result());
   2294   __ ClampDoubleToUint8(result, input, double_scratch());
   2295 }
   2296 
   2297 
   2298 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   2299   Register input = ToRegister32(instr->unclamped());
   2300   Register result = ToRegister32(instr->result());
   2301   __ ClampInt32ToUint8(result, input);
   2302 }
   2303 
   2304 
   2305 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   2306   Register input = ToRegister(instr->unclamped());
   2307   Register result = ToRegister32(instr->result());
   2308   Label done;
   2309 
   2310   // Both smi and heap number cases are handled.
   2311   Label is_not_smi;
   2312   __ JumpIfNotSmi(input, &is_not_smi);
   2313   __ SmiUntag(result.X(), input);
   2314   __ ClampInt32ToUint8(result);
   2315   __ B(&done);
   2316 
   2317   __ Bind(&is_not_smi);
   2318 
   2319   // Check for heap number.
   2320   Label is_heap_number;
   2321   __ JumpIfHeapNumber(input, &is_heap_number);
   2322 
   2323   // Check for undefined. Undefined is coverted to zero for clamping conversion.
   2324   DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr);
   2325   __ Mov(result, 0);
   2326   __ B(&done);
   2327 
   2328   // Heap number case.
   2329   __ Bind(&is_heap_number);
   2330   DoubleRegister dbl_scratch = double_scratch();
   2331   DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
   2332   __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
   2333   __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
   2334 
   2335   __ Bind(&done);
   2336 }
   2337 
   2338 
   2339 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   2340   DoubleRegister value_reg = ToDoubleRegister(instr->value());
   2341   Register result_reg = ToRegister(instr->result());
   2342   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   2343     __ Fmov(result_reg, value_reg);
   2344     __ Lsr(result_reg, result_reg, 32);
   2345   } else {
   2346     __ Fmov(result_reg.W(), value_reg.S());
   2347   }
   2348 }
   2349 
   2350 
   2351 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
   2352   Register hi_reg = ToRegister(instr->hi());
   2353   Register lo_reg = ToRegister(instr->lo());
   2354   DoubleRegister result_reg = ToDoubleRegister(instr->result());
   2355 
   2356   // Insert the least significant 32 bits of hi_reg into the most significant
   2357   // 32 bits of lo_reg, and move to a floating point register.
   2358   __ Bfi(lo_reg, hi_reg, 32, 32);
   2359   __ Fmov(result_reg, lo_reg);
   2360 }
   2361 
   2362 
   2363 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2364   Handle<String> class_name = instr->hydrogen()->class_name();
   2365   Label* true_label = instr->TrueLabel(chunk_);
   2366   Label* false_label = instr->FalseLabel(chunk_);
   2367   Register input = ToRegister(instr->value());
   2368   Register scratch1 = ToRegister(instr->temp1());
   2369   Register scratch2 = ToRegister(instr->temp2());
   2370 
   2371   __ JumpIfSmi(input, false_label);
   2372 
   2373   Register map = scratch2;
   2374   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2375     // Assuming the following assertions, we can use the same compares to test
   2376     // for both being a function type and being in the object type range.
   2377     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2378     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2379                   FIRST_SPEC_OBJECT_TYPE + 1);
   2380     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2381                   LAST_SPEC_OBJECT_TYPE - 1);
   2382     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   2383 
   2384     // We expect CompareObjectType to load the object instance type in scratch1.
   2385     __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
   2386     __ B(lt, false_label);
   2387     __ B(eq, true_label);
   2388     __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
   2389     __ B(eq, true_label);
   2390   } else {
   2391     __ IsObjectJSObjectType(input, map, scratch1, false_label);
   2392   }
   2393 
   2394   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2395   // Check if the constructor in the map is a function.
   2396   __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
   2397 
   2398   // Objects with a non-function constructor have class 'Object'.
   2399   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2400     __ JumpIfNotObjectType(
   2401         scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
   2402   } else {
   2403     __ JumpIfNotObjectType(
   2404         scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
   2405   }
   2406 
   2407   // The constructor function is in scratch1. Get its instance class name.
   2408   __ Ldr(scratch1,
   2409          FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
   2410   __ Ldr(scratch1,
   2411          FieldMemOperand(scratch1,
   2412                          SharedFunctionInfo::kInstanceClassNameOffset));
   2413 
   2414   // The class name we are testing against is internalized since it's a literal.
   2415   // The name in the constructor is internalized because of the way the context
   2416   // is booted. This routine isn't expected to work for random API-created
   2417   // classes and it doesn't have to because you can't access it with natives
   2418   // syntax. Since both sides are internalized it is sufficient to use an
   2419   // identity comparison.
   2420   EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
   2421 }
   2422 
   2423 
   2424 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
   2425   DCHECK(instr->hydrogen()->representation().IsDouble());
   2426   FPRegister object = ToDoubleRegister(instr->object());
   2427   Register temp = ToRegister(instr->temp());
   2428 
   2429   // If we don't have a NaN, we don't have the hole, so branch now to avoid the
   2430   // (relatively expensive) hole-NaN check.
   2431   __ Fcmp(object, object);
   2432   __ B(vc, instr->FalseLabel(chunk_));
   2433 
   2434   // We have a NaN, but is it the hole?
   2435   __ Fmov(temp, object);
   2436   EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
   2437 }
   2438 
   2439 
   2440 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
   2441   DCHECK(instr->hydrogen()->representation().IsTagged());
   2442   Register object = ToRegister(instr->object());
   2443 
   2444   EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
   2445 }
   2446 
   2447 
   2448 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2449   Register value = ToRegister(instr->value());
   2450   Register map = ToRegister(instr->temp());
   2451 
   2452   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   2453   EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
   2454 }
   2455 
   2456 
   2457 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
   2458   Representation rep = instr->hydrogen()->value()->representation();
   2459   DCHECK(!rep.IsInteger32());
   2460   Register scratch = ToRegister(instr->temp());
   2461 
   2462   if (rep.IsDouble()) {
   2463     __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
   2464                        instr->TrueLabel(chunk()));
   2465   } else {
   2466     Register value = ToRegister(instr->value());
   2467     __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK);
   2468     __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
   2469     __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
   2470   }
   2471   EmitGoto(instr->FalseDestination(chunk()));
   2472 }
   2473 
   2474 
   2475 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2476   LOperand* left = instr->left();
   2477   LOperand* right = instr->right();
   2478   bool is_unsigned =
   2479       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2480       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2481   Condition cond = TokenToCondition(instr->op(), is_unsigned);
   2482 
   2483   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2484     // We can statically evaluate the comparison.
   2485     double left_val = ToDouble(LConstantOperand::cast(left));
   2486     double right_val = ToDouble(LConstantOperand::cast(right));
   2487     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
   2488         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
   2489     EmitGoto(next_block);
   2490   } else {
   2491     if (instr->is_double()) {
   2492       __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
   2493 
   2494       // If a NaN is involved, i.e. the result is unordered (V set),
   2495       // jump to false block label.
   2496       __ B(vs, instr->FalseLabel(chunk_));
   2497       EmitBranch(instr, cond);
   2498     } else {
   2499       if (instr->hydrogen_value()->representation().IsInteger32()) {
   2500         if (right->IsConstantOperand()) {
   2501           EmitCompareAndBranch(instr, cond, ToRegister32(left),
   2502                                ToOperand32(right));
   2503         } else {
   2504           // Commute the operands and the condition.
   2505           EmitCompareAndBranch(instr, CommuteCondition(cond),
   2506                                ToRegister32(right), ToOperand32(left));
   2507         }
   2508       } else {
   2509         DCHECK(instr->hydrogen_value()->representation().IsSmi());
   2510         if (right->IsConstantOperand()) {
   2511           int32_t value = ToInteger32(LConstantOperand::cast(right));
   2512           EmitCompareAndBranch(instr,
   2513                                cond,
   2514                                ToRegister(left),
   2515                                Operand(Smi::FromInt(value)));
   2516         } else if (left->IsConstantOperand()) {
   2517           // Commute the operands and the condition.
   2518           int32_t value = ToInteger32(LConstantOperand::cast(left));
   2519           EmitCompareAndBranch(instr,
   2520                                CommuteCondition(cond),
   2521                                ToRegister(right),
   2522                                Operand(Smi::FromInt(value)));
   2523         } else {
   2524           EmitCompareAndBranch(instr,
   2525                                cond,
   2526                                ToRegister(left),
   2527                                ToRegister(right));
   2528         }
   2529       }
   2530     }
   2531   }
   2532 }
   2533 
   2534 
   2535 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2536   Register left = ToRegister(instr->left());
   2537   Register right = ToRegister(instr->right());
   2538   EmitCompareAndBranch(instr, eq, left, right);
   2539 }
   2540 
   2541 
   2542 void LCodeGen::DoCmpT(LCmpT* instr) {
   2543   DCHECK(ToRegister(instr->context()).is(cp));
   2544   Token::Value op = instr->op();
   2545   Condition cond = TokenToCondition(op, false);
   2546 
   2547   DCHECK(ToRegister(instr->left()).Is(x1));
   2548   DCHECK(ToRegister(instr->right()).Is(x0));
   2549   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2550   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2551   // Signal that we don't inline smi code before this stub.
   2552   InlineSmiCheckInfo::EmitNotInlined(masm());
   2553 
   2554   // Return true or false depending on CompareIC result.
   2555   // This instruction is marked as call. We can clobber any register.
   2556   DCHECK(instr->IsMarkedAsCall());
   2557   __ LoadTrueFalseRoots(x1, x2);
   2558   __ Cmp(x0, 0);
   2559   __ Csel(ToRegister(instr->result()), x1, x2, cond);
   2560 }
   2561 
   2562 
   2563 void LCodeGen::DoConstantD(LConstantD* instr) {
   2564   DCHECK(instr->result()->IsDoubleRegister());
   2565   DoubleRegister result = ToDoubleRegister(instr->result());
   2566   if (instr->value() == 0) {
   2567     if (copysign(1.0, instr->value()) == 1.0) {
   2568       __ Fmov(result, fp_zero);
   2569     } else {
   2570       __ Fneg(result, fp_zero);
   2571     }
   2572   } else {
   2573     __ Fmov(result, instr->value());
   2574   }
   2575 }
   2576 
   2577 
   2578 void LCodeGen::DoConstantE(LConstantE* instr) {
   2579   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2580 }
   2581 
   2582 
   2583 void LCodeGen::DoConstantI(LConstantI* instr) {
   2584   DCHECK(is_int32(instr->value()));
   2585   // Cast the value here to ensure that the value isn't sign extended by the
   2586   // implicit Operand constructor.
   2587   __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
   2588 }
   2589 
   2590 
   2591 void LCodeGen::DoConstantS(LConstantS* instr) {
   2592   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
   2593 }
   2594 
   2595 
   2596 void LCodeGen::DoConstantT(LConstantT* instr) {
   2597   Handle<Object> object = instr->value(isolate());
   2598   AllowDeferredHandleDereference smi_check;
   2599   __ LoadObject(ToRegister(instr->result()), object);
   2600 }
   2601 
   2602 
   2603 void LCodeGen::DoContext(LContext* instr) {
   2604   // If there is a non-return use, the context must be moved to a register.
   2605   Register result = ToRegister(instr->result());
   2606   if (info()->IsOptimizing()) {
   2607     __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2608   } else {
   2609     // If there is no frame, the context must be in cp.
   2610     DCHECK(result.is(cp));
   2611   }
   2612 }
   2613 
   2614 
   2615 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   2616   Register reg = ToRegister(instr->value());
   2617   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   2618   AllowDeferredHandleDereference smi_check;
   2619   if (isolate()->heap()->InNewSpace(*object)) {
   2620     UseScratchRegisterScope temps(masm());
   2621     Register temp = temps.AcquireX();
   2622     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   2623     __ Mov(temp, Operand(Handle<Object>(cell)));
   2624     __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
   2625     __ Cmp(reg, temp);
   2626   } else {
   2627     __ Cmp(reg, Operand(object));
   2628   }
   2629   DeoptimizeIf(ne, instr);
   2630 }
   2631 
   2632 
   2633 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   2634   last_lazy_deopt_pc_ = masm()->pc_offset();
   2635   DCHECK(instr->HasEnvironment());
   2636   LEnvironment* env = instr->environment();
   2637   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   2638   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   2639 }
   2640 
   2641 
   2642 void LCodeGen::DoDateField(LDateField* instr) {
   2643   Register object = ToRegister(instr->date());
   2644   Register result = ToRegister(instr->result());
   2645   Register temp1 = x10;
   2646   Register temp2 = x11;
   2647   Smi* index = instr->index();
   2648   Label runtime, done;
   2649 
   2650   DCHECK(object.is(result) && object.Is(x0));
   2651   DCHECK(instr->IsMarkedAsCall());
   2652 
   2653   DeoptimizeIfSmi(object, instr);
   2654   __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
   2655   DeoptimizeIf(ne, instr);
   2656 
   2657   if (index->value() == 0) {
   2658     __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
   2659   } else {
   2660     if (index->value() < JSDate::kFirstUncachedField) {
   2661       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   2662       __ Mov(temp1, Operand(stamp));
   2663       __ Ldr(temp1, MemOperand(temp1));
   2664       __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
   2665       __ Cmp(temp1, temp2);
   2666       __ B(ne, &runtime);
   2667       __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
   2668                                              kPointerSize * index->value()));
   2669       __ B(&done);
   2670     }
   2671 
   2672     __ Bind(&runtime);
   2673     __ Mov(x1, Operand(index));
   2674     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   2675   }
   2676 
   2677   __ Bind(&done);
   2678 }
   2679 
   2680 
   2681 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   2682   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   2683   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   2684   // needed return address), even though the implementation of LAZY and EAGER is
   2685   // now identical. When LAZY is eventually completely folded into EAGER, remove
   2686   // the special case below.
   2687   if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
   2688     type = Deoptimizer::LAZY;
   2689   }
   2690 
   2691   Deoptimize(instr, &type, instr->hydrogen()->reason());
   2692 }
   2693 
   2694 
   2695 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   2696   Register dividend = ToRegister32(instr->dividend());
   2697   int32_t divisor = instr->divisor();
   2698   Register result = ToRegister32(instr->result());
   2699   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   2700   DCHECK(!result.is(dividend));
   2701 
   2702   // Check for (0 / -x) that will produce negative zero.
   2703   HDiv* hdiv = instr->hydrogen();
   2704   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2705     DeoptimizeIfZero(dividend, instr);
   2706   }
   2707   // Check for (kMinInt / -1).
   2708   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   2709     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2710     // overflow.
   2711     __ Cmp(dividend, 1);
   2712     DeoptimizeIf(vs, instr);
   2713   }
   2714   // Deoptimize if remainder will not be 0.
   2715   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   2716       divisor != 1 && divisor != -1) {
   2717     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   2718     __ Tst(dividend, mask);
   2719     DeoptimizeIf(ne, instr);
   2720   }
   2721 
   2722   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
   2723     __ Neg(result, dividend);
   2724     return;
   2725   }
   2726   int32_t shift = WhichPowerOf2Abs(divisor);
   2727   if (shift == 0) {
   2728     __ Mov(result, dividend);
   2729   } else if (shift == 1) {
   2730     __ Add(result, dividend, Operand(dividend, LSR, 31));
   2731   } else {
   2732     __ Mov(result, Operand(dividend, ASR, 31));
   2733     __ Add(result, dividend, Operand(result, LSR, 32 - shift));
   2734   }
   2735   if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
   2736   if (divisor < 0) __ Neg(result, result);
   2737 }
   2738 
   2739 
   2740 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   2741   Register dividend = ToRegister32(instr->dividend());
   2742   int32_t divisor = instr->divisor();
   2743   Register result = ToRegister32(instr->result());
   2744   DCHECK(!AreAliased(dividend, result));
   2745 
   2746   if (divisor == 0) {
   2747     Deoptimize(instr);
   2748     return;
   2749   }
   2750 
   2751   // Check for (0 / -x) that will produce negative zero.
   2752   HDiv* hdiv = instr->hydrogen();
   2753   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   2754     DeoptimizeIfZero(dividend, instr);
   2755   }
   2756 
   2757   __ TruncatingDiv(result, dividend, Abs(divisor));
   2758   if (divisor < 0) __ Neg(result, result);
   2759 
   2760   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   2761     Register temp = ToRegister32(instr->temp());
   2762     DCHECK(!AreAliased(dividend, result, temp));
   2763     __ Sxtw(dividend.X(), dividend);
   2764     __ Mov(temp, divisor);
   2765     __ Smsubl(temp.X(), result, temp, dividend.X());
   2766     DeoptimizeIfNotZero(temp, instr);
   2767   }
   2768 }
   2769 
   2770 
   2771 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   2772 void LCodeGen::DoDivI(LDivI* instr) {
   2773   HBinaryOperation* hdiv = instr->hydrogen();
   2774   Register dividend = ToRegister32(instr->dividend());
   2775   Register divisor = ToRegister32(instr->divisor());
   2776   Register result = ToRegister32(instr->result());
   2777 
   2778   // Issue the division first, and then check for any deopt cases whilst the
   2779   // result is computed.
   2780   __ Sdiv(result, dividend, divisor);
   2781 
   2782   if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   2783     DCHECK_EQ(NULL, instr->temp());
   2784     return;
   2785   }
   2786 
   2787   // Check for x / 0.
   2788   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   2789     DeoptimizeIfZero(divisor, instr);
   2790   }
   2791 
   2792   // Check for (0 / -x) as that will produce negative zero.
   2793   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2794     __ Cmp(divisor, 0);
   2795 
   2796     // If the divisor < 0 (mi), compare the dividend, and deopt if it is
   2797     // zero, ie. zero dividend with negative divisor deopts.
   2798     // If the divisor >= 0 (pl, the opposite of mi) set the flags to
   2799     // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
   2800     __ Ccmp(dividend, 0, NoFlag, mi);
   2801     DeoptimizeIf(eq, instr);
   2802   }
   2803 
   2804   // Check for (kMinInt / -1).
   2805   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   2806     // Test dividend for kMinInt by subtracting one (cmp) and checking for
   2807     // overflow.
   2808     __ Cmp(dividend, 1);
   2809     // If overflow is set, ie. dividend = kMinInt, compare the divisor with
   2810     // -1. If overflow is clear, set the flags for condition ne, as the
   2811     // dividend isn't -1, and thus we shouldn't deopt.
   2812     __ Ccmp(divisor, -1, NoFlag, vs);
   2813     DeoptimizeIf(eq, instr);
   2814   }
   2815 
   2816   // Compute remainder and deopt if it's not zero.
   2817   Register remainder = ToRegister32(instr->temp());
   2818   __ Msub(remainder, result, divisor, dividend);
   2819   DeoptimizeIfNotZero(remainder, instr);
   2820 }
   2821 
   2822 
   2823 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
   2824   DoubleRegister input = ToDoubleRegister(instr->value());
   2825   Register result = ToRegister32(instr->result());
   2826 
   2827   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   2828     DeoptimizeIfMinusZero(input, instr);
   2829   }
   2830 
   2831   __ TryRepresentDoubleAsInt32(result, input, double_scratch());
   2832   DeoptimizeIf(ne, instr);
   2833 
   2834   if (instr->tag_result()) {
   2835     __ SmiTag(result.X());
   2836   }
   2837 }
   2838 
   2839 
   2840 void LCodeGen::DoDrop(LDrop* instr) {
   2841   __ Drop(instr->count());
   2842 }
   2843 
   2844 
   2845 void LCodeGen::DoDummy(LDummy* instr) {
   2846   // Nothing to see here, move on!
   2847 }
   2848 
   2849 
   2850 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   2851   // Nothing to see here, move on!
   2852 }
   2853 
   2854 
   2855 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
   2856   DCHECK(ToRegister(instr->context()).is(cp));
   2857   // FunctionLiteral instruction is marked as call, we can trash any register.
   2858   DCHECK(instr->IsMarkedAsCall());
   2859 
   2860   // Use the fast case closure allocation code that allocates in new
   2861   // space for nested functions that don't need literals cloning.
   2862   bool pretenure = instr->hydrogen()->pretenure();
   2863   if (!pretenure && instr->hydrogen()->has_no_literals()) {
   2864     FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
   2865                             instr->hydrogen()->kind());
   2866     __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
   2867     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2868   } else {
   2869     __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
   2870     __ Mov(x1, Operand(pretenure ? factory()->true_value()
   2871                                  : factory()->false_value()));
   2872     __ Push(cp, x2, x1);
   2873     CallRuntime(Runtime::kNewClosure, 3, instr);
   2874   }
   2875 }
   2876 
   2877 
   2878 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   2879   Register map = ToRegister(instr->map());
   2880   Register result = ToRegister(instr->result());
   2881   Label load_cache, done;
   2882 
   2883   __ EnumLengthUntagged(result, map);
   2884   __ Cbnz(result, &load_cache);
   2885 
   2886   __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
   2887   __ B(&done);
   2888 
   2889   __ Bind(&load_cache);
   2890   __ LoadInstanceDescriptors(map, result);
   2891   __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
   2892   __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
   2893   DeoptimizeIfZero(result, instr);
   2894 
   2895   __ Bind(&done);
   2896 }
   2897 
   2898 
   2899 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   2900   Register object = ToRegister(instr->object());
   2901   Register null_value = x5;
   2902 
   2903   DCHECK(instr->IsMarkedAsCall());
   2904   DCHECK(object.Is(x0));
   2905 
   2906   DeoptimizeIfRoot(object, Heap::kUndefinedValueRootIndex, instr);
   2907 
   2908   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
   2909   __ Cmp(object, null_value);
   2910   DeoptimizeIf(eq, instr);
   2911 
   2912   DeoptimizeIfSmi(object, instr);
   2913 
   2914   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   2915   __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
   2916   DeoptimizeIf(le, instr);
   2917 
   2918   Label use_cache, call_runtime;
   2919   __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
   2920 
   2921   __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   2922   __ B(&use_cache);
   2923 
   2924   // Get the set of properties to enumerate.
   2925   __ Bind(&call_runtime);
   2926   __ Push(object);
   2927   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
   2928 
   2929   __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
   2930   DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr);
   2931 
   2932   __ Bind(&use_cache);
   2933 }
   2934 
   2935 
   2936 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2937   Register input = ToRegister(instr->value());
   2938   Register result = ToRegister(instr->result());
   2939 
   2940   __ AssertString(input);
   2941 
   2942   // Assert that we can use a W register load to get the hash.
   2943   DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
   2944   __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
   2945   __ IndexFromHash(result, result);
   2946 }
   2947 
   2948 
   2949 void LCodeGen::EmitGoto(int block) {
   2950   // Do not emit jump if we are emitting a goto to the next block.
   2951   if (!IsNextEmittedBlock(block)) {
   2952     __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2953   }
   2954 }
   2955 
   2956 
   2957 void LCodeGen::DoGoto(LGoto* instr) {
   2958   EmitGoto(instr->block_id());
   2959 }
   2960 
   2961 
   2962 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2963     LHasCachedArrayIndexAndBranch* instr) {
   2964   Register input = ToRegister(instr->value());
   2965   Register temp = ToRegister32(instr->temp());
   2966 
   2967   // Assert that the cache status bits fit in a W register.
   2968   DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
   2969   __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
   2970   __ Tst(temp, String::kContainsCachedArrayIndexMask);
   2971   EmitBranch(instr, eq);
   2972 }
   2973 
   2974 
   2975 // HHasInstanceTypeAndBranch instruction is built with an interval of type
   2976 // to test but is only used in very restricted ways. The only possible kinds
   2977 // of intervals are:
   2978 //  - [ FIRST_TYPE, instr->to() ]
   2979 //  - [ instr->form(), LAST_TYPE ]
   2980 //  - instr->from() == instr->to()
   2981 //
   2982 // These kinds of intervals can be check with only one compare instruction
   2983 // providing the correct value and test condition are used.
   2984 //
   2985 // TestType() will return the value to use in the compare instruction and
   2986 // BranchCondition() will return the condition to use depending on the kind
   2987 // of interval actually specified in the instruction.
   2988 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2989   InstanceType from = instr->from();
   2990   InstanceType to = instr->to();
   2991   if (from == FIRST_TYPE) return to;
   2992   DCHECK((from == to) || (to == LAST_TYPE));
   2993   return from;
   2994 }
   2995 
   2996 
   2997 // See comment above TestType function for what this function does.
   2998 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2999   InstanceType from = instr->from();
   3000   InstanceType to = instr->to();
   3001   if (from == to) return eq;
   3002   if (to == LAST_TYPE) return hs;
   3003   if (from == FIRST_TYPE) return ls;
   3004   UNREACHABLE();
   3005   return eq;
   3006 }
   3007 
   3008 
   3009 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   3010   Register input = ToRegister(instr->value());
   3011   Register scratch = ToRegister(instr->temp());
   3012 
   3013   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   3014     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   3015   }
   3016   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
   3017   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   3018 }
   3019 
   3020 
   3021 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   3022   Register result = ToRegister(instr->result());
   3023   Register base = ToRegister(instr->base_object());
   3024   if (instr->offset()->IsConstantOperand()) {
   3025     __ Add(result, base, ToOperand32(instr->offset()));
   3026   } else {
   3027     __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
   3028   }
   3029 }
   3030 
   3031 
   3032 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
   3033   DCHECK(ToRegister(instr->context()).is(cp));
   3034   // Assert that the arguments are in the registers expected by InstanceofStub.
   3035   DCHECK(ToRegister(instr->left()).Is(InstanceofStub::left()));
   3036   DCHECK(ToRegister(instr->right()).Is(InstanceofStub::right()));
   3037 
   3038   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
   3039   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   3040 
   3041   // InstanceofStub returns a result in x0:
   3042   //   0     => not an instance
   3043   //   smi 1 => instance.
   3044   __ Cmp(x0, 0);
   3045   __ LoadTrueFalseRoots(x0, x1);
   3046   __ Csel(x0, x0, x1, eq);
   3047 }
   3048 
   3049 
   3050 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   3051   class DeferredInstanceOfKnownGlobal: public LDeferredCode {
   3052    public:
   3053     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
   3054                                   LInstanceOfKnownGlobal* instr)
   3055         : LDeferredCode(codegen), instr_(instr) { }
   3056     virtual void Generate() {
   3057       codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
   3058     }
   3059     virtual LInstruction* instr() { return instr_; }
   3060    private:
   3061     LInstanceOfKnownGlobal* instr_;
   3062   };
   3063 
   3064   DeferredInstanceOfKnownGlobal* deferred =
   3065       new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
   3066 
   3067   Label map_check, return_false, cache_miss, done;
   3068   Register object = ToRegister(instr->value());
   3069   Register result = ToRegister(instr->result());
   3070   // x4 is expected in the associated deferred code and stub.
   3071   Register map_check_site = x4;
   3072   Register map = x5;
   3073 
   3074   // This instruction is marked as call. We can clobber any register.
   3075   DCHECK(instr->IsMarkedAsCall());
   3076 
   3077   // We must take into account that object is in x11.
   3078   DCHECK(object.Is(x11));
   3079   Register scratch = x10;
   3080 
   3081   // A Smi is not instance of anything.
   3082   __ JumpIfSmi(object, &return_false);
   3083 
   3084   // This is the inlined call site instanceof cache. The two occurences of the
   3085   // hole value will be patched to the last map/result pair generated by the
   3086   // instanceof stub.
   3087   __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   3088   {
   3089     // Below we use Factory::the_hole_value() on purpose instead of loading from
   3090     // the root array to force relocation and later be able to patch with a
   3091     // custom value.
   3092     InstructionAccurateScope scope(masm(), 5);
   3093     __ bind(&map_check);
   3094     // Will be patched with the cached map.
   3095     Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
   3096     __ ldr(scratch, Immediate(Handle<Object>(cell)));
   3097     __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
   3098     __ cmp(map, scratch);
   3099     __ b(&cache_miss, ne);
   3100     // The address of this instruction is computed relative to the map check
   3101     // above, so check the size of the code generated.
   3102     DCHECK(masm()->InstructionsGeneratedSince(&map_check) == 4);
   3103     // Will be patched with the cached result.
   3104     __ ldr(result, Immediate(factory()->the_hole_value()));
   3105   }
   3106   __ B(&done);
   3107 
   3108   // The inlined call site cache did not match.
   3109   // Check null and string before calling the deferred code.
   3110   __ Bind(&cache_miss);
   3111   // Compute the address of the map check. It must not be clobbered until the
   3112   // InstanceOfStub has used it.
   3113   __ Adr(map_check_site, &map_check);
   3114   // Null is not instance of anything.
   3115   __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
   3116 
   3117   // String values are not instances of anything.
   3118   // Return false if the object is a string. Otherwise, jump to the deferred
   3119   // code.
   3120   // Note that we can't jump directly to deferred code from
   3121   // IsObjectJSStringType, because it uses tbz for the jump and the deferred
   3122   // code can be out of range.
   3123   __ IsObjectJSStringType(object, scratch, NULL, &return_false);
   3124   __ B(deferred->entry());
   3125 
   3126   __ Bind(&return_false);
   3127   __ LoadRoot(result, Heap::kFalseValueRootIndex);
   3128 
   3129   // Here result is either true or false.
   3130   __ Bind(deferred->exit());
   3131   __ Bind(&done);
   3132 }
   3133 
   3134 
   3135 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   3136   Register result = ToRegister(instr->result());
   3137   DCHECK(result.Is(x0));  // InstanceofStub returns its result in x0.
   3138   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
   3139   flags = static_cast<InstanceofStub::Flags>(
   3140       flags | InstanceofStub::kArgsInRegisters);
   3141   flags = static_cast<InstanceofStub::Flags>(
   3142       flags | InstanceofStub::kReturnTrueFalseObject);
   3143   flags = static_cast<InstanceofStub::Flags>(
   3144       flags | InstanceofStub::kCallSiteInlineCheck);
   3145 
   3146   PushSafepointRegistersScope scope(this);
   3147   LoadContextFromDeferred(instr->context());
   3148 
   3149   // Prepare InstanceofStub arguments.
   3150   DCHECK(ToRegister(instr->value()).Is(InstanceofStub::left()));
   3151   __ LoadObject(InstanceofStub::right(), instr->function());
   3152 
   3153   InstanceofStub stub(isolate(), flags);
   3154   CallCodeGeneric(stub.GetCode(),
   3155                   RelocInfo::CODE_TARGET,
   3156                   instr,
   3157                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   3158   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
   3159   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   3160 
   3161   // Put the result value into the result register slot.
   3162   __ StoreToSafepointRegisterSlot(result, result);
   3163 }
   3164 
   3165 
   3166 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   3167   DoGap(instr);
   3168 }
   3169 
   3170 
   3171 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   3172   Register value = ToRegister32(instr->value());
   3173   DoubleRegister result = ToDoubleRegister(instr->result());
   3174   __ Scvtf(result, value);
   3175 }
   3176 
   3177 
   3178 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3179   DCHECK(ToRegister(instr->context()).is(cp));
   3180   // The function is required to be in x1.
   3181   DCHECK(ToRegister(instr->function()).is(x1));
   3182   DCHECK(instr->HasPointerMap());
   3183 
   3184   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
   3185   if (known_function.is_null()) {
   3186     LPointerMap* pointers = instr->pointer_map();
   3187     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3188     ParameterCount count(instr->arity());
   3189     __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
   3190   } else {
   3191     CallKnownFunction(known_function,
   3192                       instr->hydrogen()->formal_parameter_count(),
   3193                       instr->arity(),
   3194                       instr,
   3195                       x1);
   3196   }
   3197   after_push_argument_ = false;
   3198 }
   3199 
   3200 
   3201 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
   3202   Register temp1 = ToRegister(instr->temp1());
   3203   Register temp2 = ToRegister(instr->temp2());
   3204 
   3205   // Get the frame pointer for the calling frame.
   3206   __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3207 
   3208   // Skip the arguments adaptor frame if it exists.
   3209   Label check_frame_marker;
   3210   __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
   3211   __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   3212   __ B(ne, &check_frame_marker);
   3213   __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
   3214 
   3215   // Check the marker in the calling frame.
   3216   __ Bind(&check_frame_marker);
   3217   __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
   3218 
   3219   EmitCompareAndBranch(
   3220       instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
   3221 }
   3222 
   3223 
   3224 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
   3225   Label* is_object = instr->TrueLabel(chunk_);
   3226   Label* is_not_object = instr->FalseLabel(chunk_);
   3227   Register value = ToRegister(instr->value());
   3228   Register map = ToRegister(instr->temp1());
   3229   Register scratch = ToRegister(instr->temp2());
   3230 
   3231   __ JumpIfSmi(value, is_not_object);
   3232   __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
   3233 
   3234   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   3235 
   3236   // Check for undetectable objects.
   3237   __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   3238   __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
   3239 
   3240   // Check that instance type is in object type range.
   3241   __ IsInstanceJSObjectType(map, scratch, NULL);
   3242   // Flags have been updated by IsInstanceJSObjectType. We can now test the
   3243   // flags for "le" condition to check if the object's type is a valid
   3244   // JS object type.
   3245   EmitBranch(instr, le);
   3246 }
   3247 
   3248 
   3249 Condition LCodeGen::EmitIsString(Register input,
   3250                                  Register temp1,
   3251                                  Label* is_not_string,
   3252                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   3253   if (check_needed == INLINE_SMI_CHECK) {
   3254     __ JumpIfSmi(input, is_not_string);
   3255   }
   3256   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
   3257 
   3258   return lt;
   3259 }
   3260 
   3261 
   3262 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   3263   Register val = ToRegister(instr->value());
   3264   Register scratch = ToRegister(instr->temp());
   3265 
   3266   SmiCheck check_needed =
   3267       instr->hydrogen()->value()->type().IsHeapObject()
   3268           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   3269   Condition true_cond =
   3270       EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
   3271 
   3272   EmitBranch(instr, true_cond);
   3273 }
   3274 
   3275 
   3276 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   3277   Register value = ToRegister(instr->value());
   3278   STATIC_ASSERT(kSmiTag == 0);
   3279   EmitTestAndBranch(instr, eq, value, kSmiTagMask);
   3280 }
   3281 
   3282 
   3283 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   3284   Register input = ToRegister(instr->value());
   3285   Register temp = ToRegister(instr->temp());
   3286 
   3287   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   3288     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   3289   }
   3290   __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
   3291   __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
   3292 
   3293   EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
   3294 }
   3295 
   3296 
   3297 static const char* LabelType(LLabel* label) {
   3298   if (label->is_loop_header()) return " (loop header)";
   3299   if (label->is_osr_entry()) return " (OSR entry)";
   3300   return "";
   3301 }
   3302 
   3303 
   3304 void LCodeGen::DoLabel(LLabel* label) {
   3305   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   3306           current_instruction_,
   3307           label->hydrogen_value()->id(),
   3308           label->block_id(),
   3309           LabelType(label));
   3310 
   3311   __ Bind(label->label());
   3312   current_block_ = label->block_id();
   3313   DoGap(label);
   3314 }
   3315 
   3316 
   3317 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   3318   Register context = ToRegister(instr->context());
   3319   Register result = ToRegister(instr->result());
   3320   __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
   3321   if (instr->hydrogen()->RequiresHoleCheck()) {
   3322     if (instr->hydrogen()->DeoptimizesOnHole()) {
   3323       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr);
   3324     } else {
   3325       Label not_the_hole;
   3326       __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
   3327       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   3328       __ Bind(&not_the_hole);
   3329     }
   3330   }
   3331 }
   3332 
   3333 
   3334 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   3335   Register function = ToRegister(instr->function());
   3336   Register result = ToRegister(instr->result());
   3337   Register temp = ToRegister(instr->temp());
   3338 
   3339   // Get the prototype or initial map from the function.
   3340   __ Ldr(result, FieldMemOperand(function,
   3341                                  JSFunction::kPrototypeOrInitialMapOffset));
   3342 
   3343   // Check that the function has a prototype or an initial map.
   3344   DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr);
   3345 
   3346   // If the function does not have an initial map, we're done.
   3347   Label done;
   3348   __ CompareObjectType(result, temp, temp, MAP_TYPE);
   3349   __ B(ne, &done);
   3350 
   3351   // Get the prototype from the initial map.
   3352   __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
   3353 
   3354   // All done.
   3355   __ Bind(&done);
   3356 }
   3357 
   3358 
   3359 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
   3360   Register result = ToRegister(instr->result());
   3361   __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
   3362   __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
   3363   if (instr->hydrogen()->RequiresHoleCheck()) {
   3364     DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr);
   3365   }
   3366 }
   3367 
   3368 
   3369 template <class T>
   3370 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   3371   DCHECK(FLAG_vector_ics);
   3372   Register vector = ToRegister(instr->temp_vector());
   3373   DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister()));
   3374   __ Mov(vector, instr->hydrogen()->feedback_vector());
   3375   // No need to allocate this register.
   3376   DCHECK(VectorLoadICDescriptor::SlotRegister().is(x0));
   3377   __ Mov(VectorLoadICDescriptor::SlotRegister(),
   3378          Smi::FromInt(instr->hydrogen()->slot()));
   3379 }
   3380 
   3381 
   3382 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   3383   DCHECK(ToRegister(instr->context()).is(cp));
   3384   DCHECK(ToRegister(instr->global_object())
   3385              .is(LoadDescriptor::ReceiverRegister()));
   3386   DCHECK(ToRegister(instr->result()).Is(x0));
   3387   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
   3388   if (FLAG_vector_ics) {
   3389     EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   3390   }
   3391   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
   3392   Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code();
   3393   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3394 }
   3395 
   3396 
   3397 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
   3398     Register key,
   3399     Register base,
   3400     Register scratch,
   3401     bool key_is_smi,
   3402     bool key_is_constant,
   3403     int constant_key,
   3404     ElementsKind elements_kind,
   3405     int base_offset) {
   3406   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3407 
   3408   if (key_is_constant) {
   3409     int key_offset = constant_key << element_size_shift;
   3410     return MemOperand(base, key_offset + base_offset);
   3411   }
   3412 
   3413   if (key_is_smi) {
   3414     __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
   3415     return MemOperand(scratch, base_offset);
   3416   }
   3417 
   3418   if (base_offset == 0) {
   3419     return MemOperand(base, key, SXTW, element_size_shift);
   3420   }
   3421 
   3422   DCHECK(!AreAliased(scratch, key));
   3423   __ Add(scratch, base, base_offset);
   3424   return MemOperand(scratch, key, SXTW, element_size_shift);
   3425 }
   3426 
   3427 
   3428 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
   3429   Register ext_ptr = ToRegister(instr->elements());
   3430   Register scratch;
   3431   ElementsKind elements_kind = instr->elements_kind();
   3432 
   3433   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   3434   bool key_is_constant = instr->key()->IsConstantOperand();
   3435   Register key = no_reg;
   3436   int constant_key = 0;
   3437   if (key_is_constant) {
   3438     DCHECK(instr->temp() == NULL);
   3439     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3440     if (constant_key & 0xf0000000) {
   3441       Abort(kArrayIndexConstantValueTooBig);
   3442     }
   3443   } else {
   3444     scratch = ToRegister(instr->temp());
   3445     key = ToRegister(instr->key());
   3446   }
   3447 
   3448   MemOperand mem_op =
   3449       PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   3450                                        key_is_constant, constant_key,
   3451                                        elements_kind,
   3452                                        instr->base_offset());
   3453 
   3454   if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
   3455       (elements_kind == FLOAT32_ELEMENTS)) {
   3456     DoubleRegister result = ToDoubleRegister(instr->result());
   3457     __ Ldr(result.S(), mem_op);
   3458     __ Fcvt(result, result.S());
   3459   } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
   3460              (elements_kind == FLOAT64_ELEMENTS)) {
   3461     DoubleRegister result = ToDoubleRegister(instr->result());
   3462     __ Ldr(result, mem_op);
   3463   } else {
   3464     Register result = ToRegister(instr->result());
   3465 
   3466     switch (elements_kind) {
   3467       case EXTERNAL_INT8_ELEMENTS:
   3468       case INT8_ELEMENTS:
   3469         __ Ldrsb(result, mem_op);
   3470         break;
   3471       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3472       case EXTERNAL_UINT8_ELEMENTS:
   3473       case UINT8_ELEMENTS:
   3474       case UINT8_CLAMPED_ELEMENTS:
   3475         __ Ldrb(result, mem_op);
   3476         break;
   3477       case EXTERNAL_INT16_ELEMENTS:
   3478       case INT16_ELEMENTS:
   3479         __ Ldrsh(result, mem_op);
   3480         break;
   3481       case EXTERNAL_UINT16_ELEMENTS:
   3482       case UINT16_ELEMENTS:
   3483         __ Ldrh(result, mem_op);
   3484         break;
   3485       case EXTERNAL_INT32_ELEMENTS:
   3486       case INT32_ELEMENTS:
   3487         __ Ldrsw(result, mem_op);
   3488         break;
   3489       case EXTERNAL_UINT32_ELEMENTS:
   3490       case UINT32_ELEMENTS:
   3491         __ Ldr(result.W(), mem_op);
   3492         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3493           // Deopt if value > 0x80000000.
   3494           __ Tst(result, 0xFFFFFFFF80000000);
   3495           DeoptimizeIf(ne, instr);
   3496         }
   3497         break;
   3498       case FLOAT32_ELEMENTS:
   3499       case FLOAT64_ELEMENTS:
   3500       case EXTERNAL_FLOAT32_ELEMENTS:
   3501       case EXTERNAL_FLOAT64_ELEMENTS:
   3502       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3503       case FAST_HOLEY_ELEMENTS:
   3504       case FAST_HOLEY_SMI_ELEMENTS:
   3505       case FAST_DOUBLE_ELEMENTS:
   3506       case FAST_ELEMENTS:
   3507       case FAST_SMI_ELEMENTS:
   3508       case DICTIONARY_ELEMENTS:
   3509       case SLOPPY_ARGUMENTS_ELEMENTS:
   3510         UNREACHABLE();
   3511         break;
   3512     }
   3513   }
   3514 }
   3515 
   3516 
   3517 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
   3518                                               Register elements,
   3519                                               Register key,
   3520                                               bool key_is_tagged,
   3521                                               ElementsKind elements_kind,
   3522                                               Representation representation,
   3523                                               int base_offset) {
   3524   STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3525   STATIC_ASSERT(kSmiTag == 0);
   3526   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3527 
   3528   // Even though the HLoad/StoreKeyed instructions force the input
   3529   // representation for the key to be an integer, the input gets replaced during
   3530   // bounds check elimination with the index argument to the bounds check, which
   3531   // can be tagged, so that case must be handled here, too.
   3532   if (key_is_tagged) {
   3533     __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
   3534     if (representation.IsInteger32()) {
   3535       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
   3536       // Read or write only the smi payload in the case of fast smi arrays.
   3537       return UntagSmiMemOperand(base, base_offset);
   3538     } else {
   3539       return MemOperand(base, base_offset);
   3540     }
   3541   } else {
   3542     // Sign extend key because it could be a 32-bit negative value or contain
   3543     // garbage in the top 32-bits. The address computation happens in 64-bit.
   3544     DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
   3545     if (representation.IsInteger32()) {
   3546       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
   3547       // Read or write only the smi payload in the case of fast smi arrays.
   3548       __ Add(base, elements, Operand(key, SXTW, element_size_shift));
   3549       return UntagSmiMemOperand(base, base_offset);
   3550     } else {
   3551       __ Add(base, elements, base_offset);
   3552       return MemOperand(base, key, SXTW, element_size_shift);
   3553     }
   3554   }
   3555 }
   3556 
   3557 
   3558 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
   3559   Register elements = ToRegister(instr->elements());
   3560   DoubleRegister result = ToDoubleRegister(instr->result());
   3561   MemOperand mem_op;
   3562 
   3563   if (instr->key()->IsConstantOperand()) {
   3564     DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
   3565            (instr->temp() == NULL));
   3566 
   3567     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3568     if (constant_key & 0xf0000000) {
   3569       Abort(kArrayIndexConstantValueTooBig);
   3570     }
   3571     int offset = instr->base_offset() + constant_key * kDoubleSize;
   3572     mem_op = MemOperand(elements, offset);
   3573   } else {
   3574     Register load_base = ToRegister(instr->temp());
   3575     Register key = ToRegister(instr->key());
   3576     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3577     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3578                                       instr->hydrogen()->elements_kind(),
   3579                                       instr->hydrogen()->representation(),
   3580                                       instr->base_offset());
   3581   }
   3582 
   3583   __ Ldr(result, mem_op);
   3584 
   3585   if (instr->hydrogen()->RequiresHoleCheck()) {
   3586     Register scratch = ToRegister(instr->temp());
   3587     // Detect the hole NaN by adding one to the integer representation of the
   3588     // result, and checking for overflow.
   3589     STATIC_ASSERT(kHoleNanInt64 == 0x7fffffffffffffff);
   3590     __ Ldr(scratch, mem_op);
   3591     __ Cmn(scratch, 1);
   3592     DeoptimizeIf(vs, instr);
   3593   }
   3594 }
   3595 
   3596 
   3597 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
   3598   Register elements = ToRegister(instr->elements());
   3599   Register result = ToRegister(instr->result());
   3600   MemOperand mem_op;
   3601 
   3602   Representation representation = instr->hydrogen()->representation();
   3603   if (instr->key()->IsConstantOperand()) {
   3604     DCHECK(instr->temp() == NULL);
   3605     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   3606     int offset = instr->base_offset() +
   3607         ToInteger32(const_operand) * kPointerSize;
   3608     if (representation.IsInteger32()) {
   3609       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   3610       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3611       STATIC_ASSERT(kSmiTag == 0);
   3612       mem_op = UntagSmiMemOperand(elements, offset);
   3613     } else {
   3614       mem_op = MemOperand(elements, offset);
   3615     }
   3616   } else {
   3617     Register load_base = ToRegister(instr->temp());
   3618     Register key = ToRegister(instr->key());
   3619     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   3620 
   3621     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
   3622                                       instr->hydrogen()->elements_kind(),
   3623                                       representation, instr->base_offset());
   3624   }
   3625 
   3626   __ Load(result, mem_op, representation);
   3627 
   3628   if (instr->hydrogen()->RequiresHoleCheck()) {
   3629     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3630       DeoptimizeIfNotSmi(result, instr);
   3631     } else {
   3632       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr);
   3633     }
   3634   }
   3635 }
   3636 
   3637 
   3638 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3639   DCHECK(ToRegister(instr->context()).is(cp));
   3640   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3641   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   3642   if (FLAG_vector_ics) {
   3643     EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   3644   }
   3645 
   3646   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
   3647   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3648 
   3649   DCHECK(ToRegister(instr->result()).Is(x0));
   3650 }
   3651 
   3652 
   3653 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   3654   HObjectAccess access = instr->hydrogen()->access();
   3655   int offset = access.offset();
   3656   Register object = ToRegister(instr->object());
   3657 
   3658   if (access.IsExternalMemory()) {
   3659     Register result = ToRegister(instr->result());
   3660     __ Load(result, MemOperand(object, offset), access.representation());
   3661     return;
   3662   }
   3663 
   3664   if (instr->hydrogen()->representation().IsDouble()) {
   3665     FPRegister result = ToDoubleRegister(instr->result());
   3666     __ Ldr(result, FieldMemOperand(object, offset));
   3667     return;
   3668   }
   3669 
   3670   Register result = ToRegister(instr->result());
   3671   Register source;
   3672   if (access.IsInobject()) {
   3673     source = object;
   3674   } else {
   3675     // Load the properties array, using result as a scratch register.
   3676     __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   3677     source = result;
   3678   }
   3679 
   3680   if (access.representation().IsSmi() &&
   3681       instr->hydrogen()->representation().IsInteger32()) {
   3682     // Read int value directly from upper half of the smi.
   3683     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   3684     STATIC_ASSERT(kSmiTag == 0);
   3685     __ Load(result, UntagSmiFieldMemOperand(source, offset),
   3686             Representation::Integer32());
   3687   } else {
   3688     __ Load(result, FieldMemOperand(source, offset), access.representation());
   3689   }
   3690 }
   3691 
   3692 
   3693 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   3694   DCHECK(ToRegister(instr->context()).is(cp));
   3695   // LoadIC expects name and receiver in registers.
   3696   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3697   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
   3698   if (FLAG_vector_ics) {
   3699     EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   3700   }
   3701 
   3702   Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code();
   3703   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3704 
   3705   DCHECK(ToRegister(instr->result()).is(x0));
   3706 }
   3707 
   3708 
   3709 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3710   Register result = ToRegister(instr->result());
   3711   __ LoadRoot(result, instr->index());
   3712 }
   3713 
   3714 
   3715 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
   3716   Register result = ToRegister(instr->result());
   3717   Register map = ToRegister(instr->value());
   3718   __ EnumLengthSmi(result, map);
   3719 }
   3720 
   3721 
   3722 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3723   Representation r = instr->hydrogen()->value()->representation();
   3724   if (r.IsDouble()) {
   3725     DoubleRegister input = ToDoubleRegister(instr->value());
   3726     DoubleRegister result = ToDoubleRegister(instr->result());
   3727     __ Fabs(result, input);
   3728   } else if (r.IsSmi() || r.IsInteger32()) {
   3729     Register input = r.IsSmi() ? ToRegister(instr->value())
   3730                                : ToRegister32(instr->value());
   3731     Register result = r.IsSmi() ? ToRegister(instr->result())
   3732                                 : ToRegister32(instr->result());
   3733     __ Abs(result, input);
   3734     DeoptimizeIf(vs, instr);
   3735   }
   3736 }
   3737 
   3738 
   3739 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
   3740                                        Label* exit,
   3741                                        Label* allocation_entry) {
   3742   // Handle the tricky cases of MathAbsTagged:
   3743   //  - HeapNumber inputs.
   3744   //    - Negative inputs produce a positive result, so a new HeapNumber is
   3745   //      allocated to hold it.
   3746   //    - Positive inputs are returned as-is, since there is no need to allocate
   3747   //      a new HeapNumber for the result.
   3748   //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
   3749   //    a smi. In this case, the inline code sets the result and jumps directly
   3750   //    to the allocation_entry label.
   3751   DCHECK(instr->context() != NULL);
   3752   DCHECK(ToRegister(instr->context()).is(cp));
   3753   Register input = ToRegister(instr->value());
   3754   Register temp1 = ToRegister(instr->temp1());
   3755   Register temp2 = ToRegister(instr->temp2());
   3756   Register result_bits = ToRegister(instr->temp3());
   3757   Register result = ToRegister(instr->result());
   3758 
   3759   Label runtime_allocation;
   3760 
   3761   // Deoptimize if the input is not a HeapNumber.
   3762   DeoptimizeIfNotHeapNumber(input, instr);
   3763 
   3764   // If the argument is positive, we can return it as-is, without any need to
   3765   // allocate a new HeapNumber for the result. We have to do this in integer
   3766   // registers (rather than with fabs) because we need to be able to distinguish
   3767   // the two zeroes.
   3768   __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
   3769   __ Mov(result, input);
   3770   __ Tbz(result_bits, kXSignBit, exit);
   3771 
   3772   // Calculate abs(input) by clearing the sign bit.
   3773   __ Bic(result_bits, result_bits, kXSignMask);
   3774 
   3775   // Allocate a new HeapNumber to hold the result.
   3776   //  result_bits   The bit representation of the (double) result.
   3777   __ Bind(allocation_entry);
   3778   __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
   3779   // The inline (non-deferred) code will store result_bits into result.
   3780   __ B(exit);
   3781 
   3782   __ Bind(&runtime_allocation);
   3783   if (FLAG_debug_code) {
   3784     // Because result is in the pointer map, we need to make sure it has a valid
   3785     // tagged value before we call the runtime. We speculatively set it to the
   3786     // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
   3787     // be valid.
   3788     Label result_ok;
   3789     Register input = ToRegister(instr->value());
   3790     __ JumpIfSmi(result, &result_ok);
   3791     __ Cmp(input, result);
   3792     __ Assert(eq, kUnexpectedValue);
   3793     __ Bind(&result_ok);
   3794   }
   3795 
   3796   { PushSafepointRegistersScope scope(this);
   3797     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
   3798                             instr->context());
   3799     __ StoreToSafepointRegisterSlot(x0, result);
   3800   }
   3801   // The inline (non-deferred) code will store result_bits into result.
   3802 }
   3803 
   3804 
   3805 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
   3806   // Class for deferred case.
   3807   class DeferredMathAbsTagged: public LDeferredCode {
   3808    public:
   3809     DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
   3810         : LDeferredCode(codegen), instr_(instr) { }
   3811     virtual void Generate() {
   3812       codegen()->DoDeferredMathAbsTagged(instr_, exit(),
   3813                                          allocation_entry());
   3814     }
   3815     virtual LInstruction* instr() { return instr_; }
   3816     Label* allocation_entry() { return &allocation; }
   3817    private:
   3818     LMathAbsTagged* instr_;
   3819     Label allocation;
   3820   };
   3821 
   3822   // TODO(jbramley): The early-exit mechanism would skip the new frame handling
   3823   // in GenerateDeferredCode. Tidy this up.
   3824   DCHECK(!NeedsDeferredFrame());
   3825 
   3826   DeferredMathAbsTagged* deferred =
   3827       new(zone()) DeferredMathAbsTagged(this, instr);
   3828 
   3829   DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
   3830          instr->hydrogen()->value()->representation().IsSmi());
   3831   Register input = ToRegister(instr->value());
   3832   Register result_bits = ToRegister(instr->temp3());
   3833   Register result = ToRegister(instr->result());
   3834   Label done;
   3835 
   3836   // Handle smis inline.
   3837   // We can treat smis as 64-bit integers, since the (low-order) tag bits will
   3838   // never get set by the negation. This is therefore the same as the Integer32
   3839   // case in DoMathAbs, except that it operates on 64-bit values.
   3840   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
   3841 
   3842   __ JumpIfNotSmi(input, deferred->entry());
   3843 
   3844   __ Abs(result, input, NULL, &done);
   3845 
   3846   // The result is the magnitude (abs) of the smallest value a smi can
   3847   // represent, encoded as a double.
   3848   __ Mov(result_bits, double_to_rawbits(0x80000000));
   3849   __ B(deferred->allocation_entry());
   3850 
   3851   __ Bind(deferred->exit());
   3852   __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
   3853 
   3854   __ Bind(&done);
   3855 }
   3856 
   3857 
   3858 void LCodeGen::DoMathExp(LMathExp* instr) {
   3859   DoubleRegister input = ToDoubleRegister(instr->value());
   3860   DoubleRegister result = ToDoubleRegister(instr->result());
   3861   DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
   3862   DoubleRegister double_temp2 = double_scratch();
   3863   Register temp1 = ToRegister(instr->temp1());
   3864   Register temp2 = ToRegister(instr->temp2());
   3865   Register temp3 = ToRegister(instr->temp3());
   3866 
   3867   MathExpGenerator::EmitMathExp(masm(), input, result,
   3868                                 double_temp1, double_temp2,
   3869                                 temp1, temp2, temp3);
   3870 }
   3871 
   3872 
   3873 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
   3874   DoubleRegister input = ToDoubleRegister(instr->value());
   3875   DoubleRegister result = ToDoubleRegister(instr->result());
   3876 
   3877   __ Frintm(result, input);
   3878 }
   3879 
   3880 
   3881 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
   3882   DoubleRegister input = ToDoubleRegister(instr->value());
   3883   Register result = ToRegister(instr->result());
   3884 
   3885   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3886     DeoptimizeIfMinusZero(input, instr);
   3887   }
   3888 
   3889   __ Fcvtms(result, input);
   3890 
   3891   // Check that the result fits into a 32-bit integer.
   3892   //  - The result did not overflow.
   3893   __ Cmp(result, Operand(result, SXTW));
   3894   //  - The input was not NaN.
   3895   __ Fccmp(input, input, NoFlag, eq);
   3896   DeoptimizeIf(ne, instr);
   3897 }
   3898 
   3899 
   3900 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   3901   Register dividend = ToRegister32(instr->dividend());
   3902   Register result = ToRegister32(instr->result());
   3903   int32_t divisor = instr->divisor();
   3904 
   3905   // If the divisor is 1, return the dividend.
   3906   if (divisor == 1) {
   3907     __ Mov(result, dividend, kDiscardForSameWReg);
   3908     return;
   3909   }
   3910 
   3911   // If the divisor is positive, things are easy: There can be no deopts and we
   3912   // can simply do an arithmetic right shift.
   3913   int32_t shift = WhichPowerOf2Abs(divisor);
   3914   if (divisor > 1) {
   3915     __ Mov(result, Operand(dividend, ASR, shift));
   3916     return;
   3917   }
   3918 
   3919   // If the divisor is negative, we have to negate and handle edge cases.
   3920   __ Negs(result, dividend);
   3921   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3922     DeoptimizeIf(eq, instr);
   3923   }
   3924 
   3925   // Dividing by -1 is basically negation, unless we overflow.
   3926   if (divisor == -1) {
   3927     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3928       DeoptimizeIf(vs, instr);
   3929     }
   3930     return;
   3931   }
   3932 
   3933   // If the negation could not overflow, simply shifting is OK.
   3934   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   3935     __ Mov(result, Operand(dividend, ASR, shift));
   3936     return;
   3937   }
   3938 
   3939   __ Asr(result, result, shift);
   3940   __ Csel(result, result, kMinInt / divisor, vc);
   3941 }
   3942 
   3943 
   3944 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   3945   Register dividend = ToRegister32(instr->dividend());
   3946   int32_t divisor = instr->divisor();
   3947   Register result = ToRegister32(instr->result());
   3948   DCHECK(!AreAliased(dividend, result));
   3949 
   3950   if (divisor == 0) {
   3951     Deoptimize(instr);
   3952     return;
   3953   }
   3954 
   3955   // Check for (0 / -x) that will produce negative zero.
   3956   HMathFloorOfDiv* hdiv = instr->hydrogen();
   3957   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   3958     DeoptimizeIfZero(dividend, instr);
   3959   }
   3960 
   3961   // Easy case: We need no dynamic check for the dividend and the flooring
   3962   // division is the same as the truncating division.
   3963   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   3964       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   3965     __ TruncatingDiv(result, dividend, Abs(divisor));
   3966     if (divisor < 0) __ Neg(result, result);
   3967     return;
   3968   }
   3969 
   3970   // In the general case we may need to adjust before and after the truncating
   3971   // division to get a flooring division.
   3972   Register temp = ToRegister32(instr->temp());
   3973   DCHECK(!AreAliased(temp, dividend, result));
   3974   Label needs_adjustment, done;
   3975   __ Cmp(dividend, 0);
   3976   __ B(divisor > 0 ? lt : gt, &needs_adjustment);
   3977   __ TruncatingDiv(result, dividend, Abs(divisor));
   3978   if (divisor < 0) __ Neg(result, result);
   3979   __ B(&done);
   3980   __ Bind(&needs_adjustment);
   3981   __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
   3982   __ TruncatingDiv(result, temp, Abs(divisor));
   3983   if (divisor < 0) __ Neg(result, result);
   3984   __ Sub(result, result, Operand(1));
   3985   __ Bind(&done);
   3986 }
   3987 
   3988 
   3989 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   3990 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   3991   Register dividend = ToRegister32(instr->dividend());
   3992   Register divisor = ToRegister32(instr->divisor());
   3993   Register remainder = ToRegister32(instr->temp());
   3994   Register result = ToRegister32(instr->result());
   3995 
   3996   // This can't cause an exception on ARM, so we can speculatively
   3997   // execute it already now.
   3998   __ Sdiv(result, dividend, divisor);
   3999 
   4000   // Check for x / 0.
   4001   DeoptimizeIfZero(divisor, instr);
   4002 
   4003   // Check for (kMinInt / -1).
   4004   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   4005     // The V flag will be set iff dividend == kMinInt.
   4006     __ Cmp(dividend, 1);
   4007     __ Ccmp(divisor, -1, NoFlag, vs);
   4008     DeoptimizeIf(eq, instr);
   4009   }
   4010 
   4011   // Check for (0 / -x) that will produce negative zero.
   4012   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4013     __ Cmp(divisor, 0);
   4014     __ Ccmp(dividend, 0, ZFlag, mi);
   4015     // "divisor" can't be null because the code would have already been
   4016     // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
   4017     // In this case we need to deoptimize to produce a -0.
   4018     DeoptimizeIf(eq, instr);
   4019   }
   4020 
   4021   Label done;
   4022   // If both operands have the same sign then we are done.
   4023   __ Eor(remainder, dividend, divisor);
   4024   __ Tbz(remainder, kWSignBit, &done);
   4025 
   4026   // Check if the result needs to be corrected.
   4027   __ Msub(remainder, result, divisor, dividend);
   4028   __ Cbz(remainder, &done);
   4029   __ Sub(result, result, 1);
   4030 
   4031   __ Bind(&done);
   4032 }
   4033 
   4034 
   4035 void LCodeGen::DoMathLog(LMathLog* instr) {
   4036   DCHECK(instr->IsMarkedAsCall());
   4037   DCHECK(ToDoubleRegister(instr->value()).is(d0));
   4038   __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
   4039                    0, 1);
   4040   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
   4041 }
   4042 
   4043 
   4044 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   4045   Register input = ToRegister32(instr->value());
   4046   Register result = ToRegister32(instr->result());
   4047   __ Clz(result, input);
   4048 }
   4049 
   4050 
   4051 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   4052   DoubleRegister input = ToDoubleRegister(instr->value());
   4053   DoubleRegister result = ToDoubleRegister(instr->result());
   4054   Label done;
   4055 
   4056   // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
   4057   //  Math.pow(-Infinity, 0.5) == +Infinity
   4058   //  Math.pow(-0.0, 0.5) == +0.0
   4059 
   4060   // Catch -infinity inputs first.
   4061   // TODO(jbramley): A constant infinity register would be helpful here.
   4062   __ Fmov(double_scratch(), kFP64NegativeInfinity);
   4063   __ Fcmp(double_scratch(), input);
   4064   __ Fabs(result, input);
   4065   __ B(&done, eq);
   4066 
   4067   // Add +0.0 to convert -0.0 to +0.0.
   4068   __ Fadd(double_scratch(), input, fp_zero);
   4069   __ Fsqrt(result, double_scratch());
   4070 
   4071   __ Bind(&done);
   4072 }
   4073 
   4074 
   4075 void LCodeGen::DoPower(LPower* instr) {
   4076   Representation exponent_type = instr->hydrogen()->right()->representation();
   4077   // Having marked this as a call, we can use any registers.
   4078   // Just make sure that the input/output registers are the expected ones.
   4079   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
   4080   Register integer_exponent = MathPowIntegerDescriptor::exponent();
   4081   DCHECK(!instr->right()->IsDoubleRegister() ||
   4082          ToDoubleRegister(instr->right()).is(d1));
   4083   DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
   4084          ToRegister(instr->right()).is(tagged_exponent));
   4085   DCHECK(!exponent_type.IsInteger32() ||
   4086          ToRegister(instr->right()).is(integer_exponent));
   4087   DCHECK(ToDoubleRegister(instr->left()).is(d0));
   4088   DCHECK(ToDoubleRegister(instr->result()).is(d0));
   4089 
   4090   if (exponent_type.IsSmi()) {
   4091     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   4092     __ CallStub(&stub);
   4093   } else if (exponent_type.IsTagged()) {
   4094     Label no_deopt;
   4095     __ JumpIfSmi(tagged_exponent, &no_deopt);
   4096     DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
   4097     __ Bind(&no_deopt);
   4098     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   4099     __ CallStub(&stub);
   4100   } else if (exponent_type.IsInteger32()) {
   4101     // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
   4102     // supports large integer exponents.
   4103     __ Sxtw(integer_exponent, integer_exponent);
   4104     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   4105     __ CallStub(&stub);
   4106   } else {
   4107     DCHECK(exponent_type.IsDouble());
   4108     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   4109     __ CallStub(&stub);
   4110   }
   4111 }
   4112 
   4113 
   4114 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
   4115   DoubleRegister input = ToDoubleRegister(instr->value());
   4116   DoubleRegister result = ToDoubleRegister(instr->result());
   4117   DoubleRegister scratch_d = double_scratch();
   4118 
   4119   DCHECK(!AreAliased(input, result, scratch_d));
   4120 
   4121   Label done;
   4122 
   4123   __ Frinta(result, input);
   4124   __ Fcmp(input, 0.0);
   4125   __ Fccmp(result, input, ZFlag, lt);
   4126   // The result is correct if the input was in [-0, +infinity], or was a
   4127   // negative integral value.
   4128   __ B(eq, &done);
   4129 
   4130   // Here the input is negative, non integral, with an exponent lower than 52.
   4131   // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
   4132   // case. So we can safely add 0.5.
   4133   __ Fmov(scratch_d, 0.5);
   4134   __ Fadd(result, input, scratch_d);
   4135   __ Frintm(result, result);
   4136   // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
   4137   __ Fabs(result, result);
   4138   __ Fneg(result, result);
   4139 
   4140   __ Bind(&done);
   4141 }
   4142 
   4143 
   4144 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
   4145   DoubleRegister input = ToDoubleRegister(instr->value());
   4146   DoubleRegister temp = ToDoubleRegister(instr->temp1());
   4147   DoubleRegister dot_five = double_scratch();
   4148   Register result = ToRegister(instr->result());
   4149   Label done;
   4150 
   4151   // Math.round() rounds to the nearest integer, with ties going towards
   4152   // +infinity. This does not match any IEEE-754 rounding mode.
   4153   //  - Infinities and NaNs are propagated unchanged, but cause deopts because
   4154   //    they can't be represented as integers.
   4155   //  - The sign of the result is the same as the sign of the input. This means
   4156   //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
   4157   //    result of -0.0.
   4158 
   4159   // Add 0.5 and round towards -infinity.
   4160   __ Fmov(dot_five, 0.5);
   4161   __ Fadd(temp, input, dot_five);
   4162   __ Fcvtms(result, temp);
   4163 
   4164   // The result is correct if:
   4165   //  result is not 0, as the input could be NaN or [-0.5, -0.0].
   4166   //  result is not 1, as 0.499...94 will wrongly map to 1.
   4167   //  result fits in 32 bits.
   4168   __ Cmp(result, Operand(result.W(), SXTW));
   4169   __ Ccmp(result, 1, ZFlag, eq);
   4170   __ B(hi, &done);
   4171 
   4172   // At this point, we have to handle possible inputs of NaN or numbers in the
   4173   // range [-0.5, 1.5[, or numbers larger than 32 bits.
   4174 
   4175   // Deoptimize if the result > 1, as it must be larger than 32 bits.
   4176   __ Cmp(result, 1);
   4177   DeoptimizeIf(hi, instr);
   4178 
   4179   // Deoptimize for negative inputs, which at this point are only numbers in
   4180   // the range [-0.5, -0.0]
   4181   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4182     __ Fmov(result, input);
   4183     DeoptimizeIfNegative(result, instr);
   4184   }
   4185 
   4186   // Deoptimize if the input was NaN.
   4187   __ Fcmp(input, dot_five);
   4188   DeoptimizeIf(vs, instr);
   4189 
   4190   // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
   4191   // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
   4192   // else 0; we avoid dealing with 0.499...94 directly.
   4193   __ Cset(result, ge);
   4194   __ Bind(&done);
   4195 }
   4196 
   4197 
   4198 void LCodeGen::DoMathFround(LMathFround* instr) {
   4199   DoubleRegister input = ToDoubleRegister(instr->value());
   4200   DoubleRegister result = ToDoubleRegister(instr->result());
   4201   __ Fcvt(result.S(), input);
   4202   __ Fcvt(result, result.S());
   4203 }
   4204 
   4205 
   4206 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   4207   DoubleRegister input = ToDoubleRegister(instr->value());
   4208   DoubleRegister result = ToDoubleRegister(instr->result());
   4209   __ Fsqrt(result, input);
   4210 }
   4211 
   4212 
   4213 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   4214   HMathMinMax::Operation op = instr->hydrogen()->operation();
   4215   if (instr->hydrogen()->representation().IsInteger32()) {
   4216     Register result = ToRegister32(instr->result());
   4217     Register left = ToRegister32(instr->left());
   4218     Operand right = ToOperand32(instr->right());
   4219 
   4220     __ Cmp(left, right);
   4221     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   4222   } else if (instr->hydrogen()->representation().IsSmi()) {
   4223     Register result = ToRegister(instr->result());
   4224     Register left = ToRegister(instr->left());
   4225     Operand right = ToOperand(instr->right());
   4226 
   4227     __ Cmp(left, right);
   4228     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
   4229   } else {
   4230     DCHECK(instr->hydrogen()->representation().IsDouble());
   4231     DoubleRegister result = ToDoubleRegister(instr->result());
   4232     DoubleRegister left = ToDoubleRegister(instr->left());
   4233     DoubleRegister right = ToDoubleRegister(instr->right());
   4234 
   4235     if (op == HMathMinMax::kMathMax) {
   4236       __ Fmax(result, left, right);
   4237     } else {
   4238       DCHECK(op == HMathMinMax::kMathMin);
   4239       __ Fmin(result, left, right);
   4240     }
   4241   }
   4242 }
   4243 
   4244 
   4245 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   4246   Register dividend = ToRegister32(instr->dividend());
   4247   int32_t divisor = instr->divisor();
   4248   DCHECK(dividend.is(ToRegister32(instr->result())));
   4249 
   4250   // Theoretically, a variation of the branch-free code for integer division by
   4251   // a power of 2 (calculating the remainder via an additional multiplication
   4252   // (which gets simplified to an 'and') and subtraction) should be faster, and
   4253   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   4254   // indicate that positive dividends are heavily favored, so the branching
   4255   // version performs better.
   4256   HMod* hmod = instr->hydrogen();
   4257   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   4258   Label dividend_is_not_negative, done;
   4259   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   4260     __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
   4261     // Note that this is correct even for kMinInt operands.
   4262     __ Neg(dividend, dividend);
   4263     __ And(dividend, dividend, mask);
   4264     __ Negs(dividend, dividend);
   4265     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4266       DeoptimizeIf(eq, instr);
   4267     }
   4268     __ B(&done);
   4269   }
   4270 
   4271   __ bind(&dividend_is_not_negative);
   4272   __ And(dividend, dividend, mask);
   4273   __ bind(&done);
   4274 }
   4275 
   4276 
   4277 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   4278   Register dividend = ToRegister32(instr->dividend());
   4279   int32_t divisor = instr->divisor();
   4280   Register result = ToRegister32(instr->result());
   4281   Register temp = ToRegister32(instr->temp());
   4282   DCHECK(!AreAliased(dividend, result, temp));
   4283 
   4284   if (divisor == 0) {
   4285     Deoptimize(instr);
   4286     return;
   4287   }
   4288 
   4289   __ TruncatingDiv(result, dividend, Abs(divisor));
   4290   __ Sxtw(dividend.X(), dividend);
   4291   __ Mov(temp, Abs(divisor));
   4292   __ Smsubl(result.X(), result, temp, dividend.X());
   4293 
   4294   // Check for negative zero.
   4295   HMod* hmod = instr->hydrogen();
   4296   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4297     Label remainder_not_zero;
   4298     __ Cbnz(result, &remainder_not_zero);
   4299     DeoptimizeIfNegative(dividend, instr);
   4300     __ bind(&remainder_not_zero);
   4301   }
   4302 }
   4303 
   4304 
   4305 void LCodeGen::DoModI(LModI* instr) {
   4306   Register dividend = ToRegister32(instr->left());
   4307   Register divisor = ToRegister32(instr->right());
   4308   Register result = ToRegister32(instr->result());
   4309 
   4310   Label done;
   4311   // modulo = dividend - quotient * divisor
   4312   __ Sdiv(result, dividend, divisor);
   4313   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
   4314     DeoptimizeIfZero(divisor, instr);
   4315   }
   4316   __ Msub(result, result, divisor, dividend);
   4317   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4318     __ Cbnz(result, &done);
   4319     DeoptimizeIfNegative(dividend, instr);
   4320   }
   4321   __ Bind(&done);
   4322 }
   4323 
   4324 
   4325 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
   4326   DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
   4327   bool is_smi = instr->hydrogen()->representation().IsSmi();
   4328   Register result =
   4329       is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
   4330   Register left =
   4331       is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
   4332   int32_t right = ToInteger32(instr->right());
   4333   DCHECK((right > -kMaxInt) || (right < kMaxInt));
   4334 
   4335   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4336   bool bailout_on_minus_zero =
   4337     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4338 
   4339   if (bailout_on_minus_zero) {
   4340     if (right < 0) {
   4341       // The result is -0 if right is negative and left is zero.
   4342       DeoptimizeIfZero(left, instr);
   4343     } else if (right == 0) {
   4344       // The result is -0 if the right is zero and the left is negative.
   4345       DeoptimizeIfNegative(left, instr);
   4346     }
   4347   }
   4348 
   4349   switch (right) {
   4350     // Cases which can detect overflow.
   4351     case -1:
   4352       if (can_overflow) {
   4353         // Only 0x80000000 can overflow here.
   4354         __ Negs(result, left);
   4355         DeoptimizeIf(vs, instr);
   4356       } else {
   4357         __ Neg(result, left);
   4358       }
   4359       break;
   4360     case 0:
   4361       // This case can never overflow.
   4362       __ Mov(result, 0);
   4363       break;
   4364     case 1:
   4365       // This case can never overflow.
   4366       __ Mov(result, left, kDiscardForSameWReg);
   4367       break;
   4368     case 2:
   4369       if (can_overflow) {
   4370         __ Adds(result, left, left);
   4371         DeoptimizeIf(vs, instr);
   4372       } else {
   4373         __ Add(result, left, left);
   4374       }
   4375       break;
   4376 
   4377     default:
   4378       // Multiplication by constant powers of two (and some related values)
   4379       // can be done efficiently with shifted operands.
   4380       int32_t right_abs = Abs(right);
   4381 
   4382       if (base::bits::IsPowerOfTwo32(right_abs)) {
   4383         int right_log2 = WhichPowerOf2(right_abs);
   4384 
   4385         if (can_overflow) {
   4386           Register scratch = result;
   4387           DCHECK(!AreAliased(scratch, left));
   4388           __ Cls(scratch, left);
   4389           __ Cmp(scratch, right_log2);
   4390           DeoptimizeIf(lt, instr);
   4391         }
   4392 
   4393         if (right >= 0) {
   4394           // result = left << log2(right)
   4395           __ Lsl(result, left, right_log2);
   4396         } else {
   4397           // result = -left << log2(-right)
   4398           if (can_overflow) {
   4399             __ Negs(result, Operand(left, LSL, right_log2));
   4400             DeoptimizeIf(vs, instr);
   4401           } else {
   4402             __ Neg(result, Operand(left, LSL, right_log2));
   4403           }
   4404         }
   4405         return;
   4406       }
   4407 
   4408 
   4409       // For the following cases, we could perform a conservative overflow check
   4410       // with CLS as above. However the few cycles saved are likely not worth
   4411       // the risk of deoptimizing more often than required.
   4412       DCHECK(!can_overflow);
   4413 
   4414       if (right >= 0) {
   4415         if (base::bits::IsPowerOfTwo32(right - 1)) {
   4416           // result = left + left << log2(right - 1)
   4417           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
   4418         } else if (base::bits::IsPowerOfTwo32(right + 1)) {
   4419           // result = -left + left << log2(right + 1)
   4420           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
   4421           __ Neg(result, result);
   4422         } else {
   4423           UNREACHABLE();
   4424         }
   4425       } else {
   4426         if (base::bits::IsPowerOfTwo32(-right + 1)) {
   4427           // result = left - left << log2(-right + 1)
   4428           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
   4429         } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
   4430           // result = -left - left << log2(-right - 1)
   4431           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
   4432           __ Neg(result, result);
   4433         } else {
   4434           UNREACHABLE();
   4435         }
   4436       }
   4437   }
   4438 }
   4439 
   4440 
   4441 void LCodeGen::DoMulI(LMulI* instr) {
   4442   Register result = ToRegister32(instr->result());
   4443   Register left = ToRegister32(instr->left());
   4444   Register right = ToRegister32(instr->right());
   4445 
   4446   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4447   bool bailout_on_minus_zero =
   4448     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4449 
   4450   if (bailout_on_minus_zero && !left.Is(right)) {
   4451     // If one operand is zero and the other is negative, the result is -0.
   4452     //  - Set Z (eq) if either left or right, or both, are 0.
   4453     __ Cmp(left, 0);
   4454     __ Ccmp(right, 0, ZFlag, ne);
   4455     //  - If so (eq), set N (mi) if left + right is negative.
   4456     //  - Otherwise, clear N.
   4457     __ Ccmn(left, right, NoFlag, eq);
   4458     DeoptimizeIf(mi, instr);
   4459   }
   4460 
   4461   if (can_overflow) {
   4462     __ Smull(result.X(), left, right);
   4463     __ Cmp(result.X(), Operand(result, SXTW));
   4464     DeoptimizeIf(ne, instr);
   4465   } else {
   4466     __ Mul(result, left, right);
   4467   }
   4468 }
   4469 
   4470 
   4471 void LCodeGen::DoMulS(LMulS* instr) {
   4472   Register result = ToRegister(instr->result());
   4473   Register left = ToRegister(instr->left());
   4474   Register right = ToRegister(instr->right());
   4475 
   4476   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   4477   bool bailout_on_minus_zero =
   4478     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   4479 
   4480   if (bailout_on_minus_zero && !left.Is(right)) {
   4481     // If one operand is zero and the other is negative, the result is -0.
   4482     //  - Set Z (eq) if either left or right, or both, are 0.
   4483     __ Cmp(left, 0);
   4484     __ Ccmp(right, 0, ZFlag, ne);
   4485     //  - If so (eq), set N (mi) if left + right is negative.
   4486     //  - Otherwise, clear N.
   4487     __ Ccmn(left, right, NoFlag, eq);
   4488     DeoptimizeIf(mi, instr);
   4489   }
   4490 
   4491   STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
   4492   if (can_overflow) {
   4493     __ Smulh(result, left, right);
   4494     __ Cmp(result, Operand(result.W(), SXTW));
   4495     __ SmiTag(result);
   4496     DeoptimizeIf(ne, instr);
   4497   } else {
   4498     if (AreAliased(result, left, right)) {
   4499       // All three registers are the same: half untag the input and then
   4500       // multiply, giving a tagged result.
   4501       STATIC_ASSERT((kSmiShift % 2) == 0);
   4502       __ Asr(result, left, kSmiShift / 2);
   4503       __ Mul(result, result, result);
   4504     } else if (result.Is(left) && !left.Is(right)) {
   4505       // Registers result and left alias, right is distinct: untag left into
   4506       // result, and then multiply by right, giving a tagged result.
   4507       __ SmiUntag(result, left);
   4508       __ Mul(result, result, right);
   4509     } else {
   4510       DCHECK(!left.Is(result));
   4511       // Registers result and right alias, left is distinct, or all registers
   4512       // are distinct: untag right into result, and then multiply by left,
   4513       // giving a tagged result.
   4514       __ SmiUntag(result, right);
   4515       __ Mul(result, left, result);
   4516     }
   4517   }
   4518 }
   4519 
   4520 
   4521 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4522   // TODO(3095996): Get rid of this. For now, we need to make the
   4523   // result register contain a valid pointer because it is already
   4524   // contained in the register pointer map.
   4525   Register result = ToRegister(instr->result());
   4526   __ Mov(result, 0);
   4527 
   4528   PushSafepointRegistersScope scope(this);
   4529   // NumberTagU and NumberTagD use the context from the frame, rather than
   4530   // the environment's HContext or HInlinedContext value.
   4531   // They only call Runtime::kAllocateHeapNumber.
   4532   // The corresponding HChange instructions are added in a phase that does
   4533   // not have easy access to the local context.
   4534   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4535   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4536   RecordSafepointWithRegisters(
   4537       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4538   __ StoreToSafepointRegisterSlot(x0, result);
   4539 }
   4540 
   4541 
   4542 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4543   class DeferredNumberTagD: public LDeferredCode {
   4544    public:
   4545     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4546         : LDeferredCode(codegen), instr_(instr) { }
   4547     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
   4548     virtual LInstruction* instr() { return instr_; }
   4549    private:
   4550     LNumberTagD* instr_;
   4551   };
   4552 
   4553   DoubleRegister input = ToDoubleRegister(instr->value());
   4554   Register result = ToRegister(instr->result());
   4555   Register temp1 = ToRegister(instr->temp1());
   4556   Register temp2 = ToRegister(instr->temp2());
   4557 
   4558   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
   4559   if (FLAG_inline_new) {
   4560     __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
   4561   } else {
   4562     __ B(deferred->entry());
   4563   }
   4564 
   4565   __ Bind(deferred->exit());
   4566   __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
   4567 }
   4568 
   4569 
   4570 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
   4571                                     LOperand* value,
   4572                                     LOperand* temp1,
   4573                                     LOperand* temp2) {
   4574   Label slow, convert_and_store;
   4575   Register src = ToRegister32(value);
   4576   Register dst = ToRegister(instr->result());
   4577   Register scratch1 = ToRegister(temp1);
   4578 
   4579   if (FLAG_inline_new) {
   4580     Register scratch2 = ToRegister(temp2);
   4581     __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
   4582     __ B(&convert_and_store);
   4583   }
   4584 
   4585   // Slow case: call the runtime system to do the number allocation.
   4586   __ Bind(&slow);
   4587   // TODO(3095996): Put a valid pointer value in the stack slot where the result
   4588   // register is stored, as this register is in the pointer map, but contains an
   4589   // integer value.
   4590   __ Mov(dst, 0);
   4591   {
   4592     // Preserve the value of all registers.
   4593     PushSafepointRegistersScope scope(this);
   4594 
   4595     // NumberTagU and NumberTagD use the context from the frame, rather than
   4596     // the environment's HContext or HInlinedContext value.
   4597     // They only call Runtime::kAllocateHeapNumber.
   4598     // The corresponding HChange instructions are added in a phase that does
   4599     // not have easy access to the local context.
   4600     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4601     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4602     RecordSafepointWithRegisters(
   4603       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4604     __ StoreToSafepointRegisterSlot(x0, dst);
   4605   }
   4606 
   4607   // Convert number to floating point and store in the newly allocated heap
   4608   // number.
   4609   __ Bind(&convert_and_store);
   4610   DoubleRegister dbl_scratch = double_scratch();
   4611   __ Ucvtf(dbl_scratch, src);
   4612   __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
   4613 }
   4614 
   4615 
   4616 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4617   class DeferredNumberTagU: public LDeferredCode {
   4618    public:
   4619     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4620         : LDeferredCode(codegen), instr_(instr) { }
   4621     virtual void Generate() {
   4622       codegen()->DoDeferredNumberTagU(instr_,
   4623                                       instr_->value(),
   4624                                       instr_->temp1(),
   4625                                       instr_->temp2());
   4626     }
   4627     virtual LInstruction* instr() { return instr_; }
   4628    private:
   4629     LNumberTagU* instr_;
   4630   };
   4631 
   4632   Register value = ToRegister32(instr->value());
   4633   Register result = ToRegister(instr->result());
   4634 
   4635   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
   4636   __ Cmp(value, Smi::kMaxValue);
   4637   __ B(hi, deferred->entry());
   4638   __ SmiTag(result, value.X());
   4639   __ Bind(deferred->exit());
   4640 }
   4641 
   4642 
   4643 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   4644   Register input = ToRegister(instr->value());
   4645   Register scratch = ToRegister(instr->temp());
   4646   DoubleRegister result = ToDoubleRegister(instr->result());
   4647   bool can_convert_undefined_to_nan =
   4648       instr->hydrogen()->can_convert_undefined_to_nan();
   4649 
   4650   Label done, load_smi;
   4651 
   4652   // Work out what untag mode we're working with.
   4653   HValue* value = instr->hydrogen()->value();
   4654   NumberUntagDMode mode = value->representation().IsSmi()
   4655       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   4656 
   4657   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4658     __ JumpIfSmi(input, &load_smi);
   4659 
   4660     Label convert_undefined;
   4661 
   4662     // Heap number map check.
   4663     if (can_convert_undefined_to_nan) {
   4664       __ JumpIfNotHeapNumber(input, &convert_undefined);
   4665     } else {
   4666       DeoptimizeIfNotHeapNumber(input, instr);
   4667     }
   4668 
   4669     // Load heap number.
   4670     __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
   4671     if (instr->hydrogen()->deoptimize_on_minus_zero()) {
   4672       DeoptimizeIfMinusZero(result, instr);
   4673     }
   4674     __ B(&done);
   4675 
   4676     if (can_convert_undefined_to_nan) {
   4677       __ Bind(&convert_undefined);
   4678       DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr);
   4679 
   4680       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
   4681       __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
   4682       __ B(&done);
   4683     }
   4684 
   4685   } else {
   4686     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   4687     // Fall through to load_smi.
   4688   }
   4689 
   4690   // Smi to double register conversion.
   4691   __ Bind(&load_smi);
   4692   __ SmiUntagToDouble(result, input);
   4693 
   4694   __ Bind(&done);
   4695 }
   4696 
   4697 
   4698 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   4699   // This is a pseudo-instruction that ensures that the environment here is
   4700   // properly registered for deoptimization and records the assembler's PC
   4701   // offset.
   4702   LEnvironment* environment = instr->environment();
   4703 
   4704   // If the environment were already registered, we would have no way of
   4705   // backpatching it with the spill slot operands.
   4706   DCHECK(!environment->HasBeenRegistered());
   4707   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   4708 
   4709   GenerateOsrPrologue();
   4710 }
   4711 
   4712 
   4713 void LCodeGen::DoParameter(LParameter* instr) {
   4714   // Nothing to do.
   4715 }
   4716 
   4717 
   4718 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
   4719   __ PushPreamble(instr->argc(), kPointerSize);
   4720 }
   4721 
   4722 
   4723 void LCodeGen::DoPushArguments(LPushArguments* instr) {
   4724   MacroAssembler::PushPopQueue args(masm());
   4725 
   4726   for (int i = 0; i < instr->ArgumentCount(); ++i) {
   4727     LOperand* arg = instr->argument(i);
   4728     if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
   4729       Abort(kDoPushArgumentNotImplementedForDoubleType);
   4730       return;
   4731     }
   4732     args.Queue(ToRegister(arg));
   4733   }
   4734 
   4735   // The preamble was done by LPreparePushArguments.
   4736   args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
   4737 
   4738   after_push_argument_ = true;
   4739 }
   4740 
   4741 
   4742 void LCodeGen::DoReturn(LReturn* instr) {
   4743   if (FLAG_trace && info()->IsOptimizing()) {
   4744     // Push the return value on the stack as the parameter.
   4745     // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
   4746     // managed by the register allocator and tearing down the frame, it's
   4747     // safe to write to the context register.
   4748     __ Push(x0);
   4749     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4750     __ CallRuntime(Runtime::kTraceExit, 1);
   4751   }
   4752 
   4753   if (info()->saves_caller_doubles()) {
   4754     RestoreCallerDoubles();
   4755   }
   4756 
   4757   int no_frame_start = -1;
   4758   if (NeedsEagerFrame()) {
   4759     Register stack_pointer = masm()->StackPointer();
   4760     __ Mov(stack_pointer, fp);
   4761     no_frame_start = masm_->pc_offset();
   4762     __ Pop(fp, lr);
   4763   }
   4764 
   4765   if (instr->has_constant_parameter_count()) {
   4766     int parameter_count = ToInteger32(instr->constant_parameter_count());
   4767     __ Drop(parameter_count + 1);
   4768   } else {
   4769     Register parameter_count = ToRegister(instr->parameter_count());
   4770     __ DropBySMI(parameter_count);
   4771   }
   4772   __ Ret();
   4773 
   4774   if (no_frame_start != -1) {
   4775     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
   4776   }
   4777 }
   4778 
   4779 
   4780 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
   4781                                            Register temp,
   4782                                            LOperand* index,
   4783                                            String::Encoding encoding) {
   4784   if (index->IsConstantOperand()) {
   4785     int offset = ToInteger32(LConstantOperand::cast(index));
   4786     if (encoding == String::TWO_BYTE_ENCODING) {
   4787       offset *= kUC16Size;
   4788     }
   4789     STATIC_ASSERT(kCharSize == 1);
   4790     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
   4791   }
   4792 
   4793   __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
   4794   if (encoding == String::ONE_BYTE_ENCODING) {
   4795     return MemOperand(temp, ToRegister32(index), SXTW);
   4796   } else {
   4797     STATIC_ASSERT(kUC16Size == 2);
   4798     return MemOperand(temp, ToRegister32(index), SXTW, 1);
   4799   }
   4800 }
   4801 
   4802 
   4803 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   4804   String::Encoding encoding = instr->hydrogen()->encoding();
   4805   Register string = ToRegister(instr->string());
   4806   Register result = ToRegister(instr->result());
   4807   Register temp = ToRegister(instr->temp());
   4808 
   4809   if (FLAG_debug_code) {
   4810     // Even though this lithium instruction comes with a temp register, we
   4811     // can't use it here because we want to use "AtStart" constraints on the
   4812     // inputs and the debug code here needs a scratch register.
   4813     UseScratchRegisterScope temps(masm());
   4814     Register dbg_temp = temps.AcquireX();
   4815 
   4816     __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
   4817     __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
   4818 
   4819     __ And(dbg_temp, dbg_temp,
   4820            Operand(kStringRepresentationMask | kStringEncodingMask));
   4821     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4822     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4823     __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
   4824                              ? one_byte_seq_type : two_byte_seq_type));
   4825     __ Check(eq, kUnexpectedStringType);
   4826   }
   4827 
   4828   MemOperand operand =
   4829       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4830   if (encoding == String::ONE_BYTE_ENCODING) {
   4831     __ Ldrb(result, operand);
   4832   } else {
   4833     __ Ldrh(result, operand);
   4834   }
   4835 }
   4836 
   4837 
   4838 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   4839   String::Encoding encoding = instr->hydrogen()->encoding();
   4840   Register string = ToRegister(instr->string());
   4841   Register value = ToRegister(instr->value());
   4842   Register temp = ToRegister(instr->temp());
   4843 
   4844   if (FLAG_debug_code) {
   4845     DCHECK(ToRegister(instr->context()).is(cp));
   4846     Register index = ToRegister(instr->index());
   4847     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   4848     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   4849     int encoding_mask =
   4850         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   4851         ? one_byte_seq_type : two_byte_seq_type;
   4852     __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
   4853                                  encoding_mask);
   4854   }
   4855   MemOperand operand =
   4856       BuildSeqStringOperand(string, temp, instr->index(), encoding);
   4857   if (encoding == String::ONE_BYTE_ENCODING) {
   4858     __ Strb(value, operand);
   4859   } else {
   4860     __ Strh(value, operand);
   4861   }
   4862 }
   4863 
   4864 
   4865 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4866   HChange* hchange = instr->hydrogen();
   4867   Register input = ToRegister(instr->value());
   4868   Register output = ToRegister(instr->result());
   4869   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4870       hchange->value()->CheckFlag(HValue::kUint32)) {
   4871     DeoptimizeIfNegative(input.W(), instr);
   4872   }
   4873   __ SmiTag(output, input);
   4874 }
   4875 
   4876 
   4877 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4878   Register input = ToRegister(instr->value());
   4879   Register result = ToRegister(instr->result());
   4880   Label done, untag;
   4881 
   4882   if (instr->needs_check()) {
   4883     DeoptimizeIfNotSmi(input, instr);
   4884   }
   4885 
   4886   __ Bind(&untag);
   4887   __ SmiUntag(result, input);
   4888   __ Bind(&done);
   4889 }
   4890 
   4891 
   4892 void LCodeGen::DoShiftI(LShiftI* instr) {
   4893   LOperand* right_op = instr->right();
   4894   Register left = ToRegister32(instr->left());
   4895   Register result = ToRegister32(instr->result());
   4896 
   4897   if (right_op->IsRegister()) {
   4898     Register right = ToRegister32(instr->right());
   4899     switch (instr->op()) {
   4900       case Token::ROR: __ Ror(result, left, right); break;
   4901       case Token::SAR: __ Asr(result, left, right); break;
   4902       case Token::SHL: __ Lsl(result, left, right); break;
   4903       case Token::SHR:
   4904         __ Lsr(result, left, right);
   4905         if (instr->can_deopt()) {
   4906           // If `left >>> right` >= 0x80000000, the result is not representable
   4907           // in a signed 32-bit smi.
   4908           DeoptimizeIfNegative(result, instr);
   4909         }
   4910         break;
   4911       default: UNREACHABLE();
   4912     }
   4913   } else {
   4914     DCHECK(right_op->IsConstantOperand());
   4915     int shift_count = JSShiftAmountFromLConstant(right_op);
   4916     if (shift_count == 0) {
   4917       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4918         DeoptimizeIfNegative(left, instr);
   4919       }
   4920       __ Mov(result, left, kDiscardForSameWReg);
   4921     } else {
   4922       switch (instr->op()) {
   4923         case Token::ROR: __ Ror(result, left, shift_count); break;
   4924         case Token::SAR: __ Asr(result, left, shift_count); break;
   4925         case Token::SHL: __ Lsl(result, left, shift_count); break;
   4926         case Token::SHR: __ Lsr(result, left, shift_count); break;
   4927         default: UNREACHABLE();
   4928       }
   4929     }
   4930   }
   4931 }
   4932 
   4933 
   4934 void LCodeGen::DoShiftS(LShiftS* instr) {
   4935   LOperand* right_op = instr->right();
   4936   Register left = ToRegister(instr->left());
   4937   Register result = ToRegister(instr->result());
   4938 
   4939   if (right_op->IsRegister()) {
   4940     Register right = ToRegister(instr->right());
   4941 
   4942     // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
   4943     // Since we're handling smis in X registers, we have to extract these bits
   4944     // explicitly.
   4945     __ Ubfx(result, right, kSmiShift, 5);
   4946 
   4947     switch (instr->op()) {
   4948       case Token::ROR: {
   4949         // This is the only case that needs a scratch register. To keep things
   4950         // simple for the other cases, borrow a MacroAssembler scratch register.
   4951         UseScratchRegisterScope temps(masm());
   4952         Register temp = temps.AcquireW();
   4953         __ SmiUntag(temp, left);
   4954         __ Ror(result.W(), temp.W(), result.W());
   4955         __ SmiTag(result);
   4956         break;
   4957       }
   4958       case Token::SAR:
   4959         __ Asr(result, left, result);
   4960         __ Bic(result, result, kSmiShiftMask);
   4961         break;
   4962       case Token::SHL:
   4963         __ Lsl(result, left, result);
   4964         break;
   4965       case Token::SHR:
   4966         __ Lsr(result, left, result);
   4967         __ Bic(result, result, kSmiShiftMask);
   4968         if (instr->can_deopt()) {
   4969           // If `left >>> right` >= 0x80000000, the result is not representable
   4970           // in a signed 32-bit smi.
   4971           DeoptimizeIfNegative(result, instr);
   4972         }
   4973         break;
   4974       default: UNREACHABLE();
   4975     }
   4976   } else {
   4977     DCHECK(right_op->IsConstantOperand());
   4978     int shift_count = JSShiftAmountFromLConstant(right_op);
   4979     if (shift_count == 0) {
   4980       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
   4981         DeoptimizeIfNegative(left, instr);
   4982       }
   4983       __ Mov(result, left);
   4984     } else {
   4985       switch (instr->op()) {
   4986         case Token::ROR:
   4987           __ SmiUntag(result, left);
   4988           __ Ror(result.W(), result.W(), shift_count);
   4989           __ SmiTag(result);
   4990           break;
   4991         case Token::SAR:
   4992           __ Asr(result, left, shift_count);
   4993           __ Bic(result, result, kSmiShiftMask);
   4994           break;
   4995         case Token::SHL:
   4996           __ Lsl(result, left, shift_count);
   4997           break;
   4998         case Token::SHR:
   4999           __ Lsr(result, left, shift_count);
   5000           __ Bic(result, result, kSmiShiftMask);
   5001           break;
   5002         default: UNREACHABLE();
   5003       }
   5004     }
   5005   }
   5006 }
   5007 
   5008 
   5009 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   5010   __ Debug("LDebugBreak", 0, BREAK);
   5011 }
   5012 
   5013 
   5014 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   5015   DCHECK(ToRegister(instr->context()).is(cp));
   5016   Register scratch1 = x5;
   5017   Register scratch2 = x6;
   5018   DCHECK(instr->IsMarkedAsCall());
   5019 
   5020   ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
   5021   // TODO(all): if Mov could handle object in new space then it could be used
   5022   // here.
   5023   __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
   5024   __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
   5025   __ Push(cp, scratch1, scratch2);  // The context is the first argument.
   5026   CallRuntime(Runtime::kDeclareGlobals, 3, instr);
   5027 }
   5028 
   5029 
   5030 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5031   PushSafepointRegistersScope scope(this);
   5032   LoadContextFromDeferred(instr->context());
   5033   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   5034   RecordSafepointWithLazyDeopt(
   5035       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5036   DCHECK(instr->HasEnvironment());
   5037   LEnvironment* env = instr->environment();
   5038   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5039 }
   5040 
   5041 
   5042 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5043   class DeferredStackCheck: public LDeferredCode {
   5044    public:
   5045     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   5046         : LDeferredCode(codegen), instr_(instr) { }
   5047     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
   5048     virtual LInstruction* instr() { return instr_; }
   5049    private:
   5050     LStackCheck* instr_;
   5051   };
   5052 
   5053   DCHECK(instr->HasEnvironment());
   5054   LEnvironment* env = instr->environment();
   5055   // There is no LLazyBailout instruction for stack-checks. We have to
   5056   // prepare for lazy deoptimization explicitly here.
   5057   if (instr->hydrogen()->is_function_entry()) {
   5058     // Perform stack overflow check.
   5059     Label done;
   5060     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   5061     __ B(hs, &done);
   5062 
   5063     PredictableCodeSizeScope predictable(masm_,
   5064                                          Assembler::kCallSizeWithRelocation);
   5065     DCHECK(instr->context()->IsRegister());
   5066     DCHECK(ToRegister(instr->context()).is(cp));
   5067     CallCode(isolate()->builtins()->StackCheck(),
   5068              RelocInfo::CODE_TARGET,
   5069              instr);
   5070     __ Bind(&done);
   5071   } else {
   5072     DCHECK(instr->hydrogen()->is_backwards_branch());
   5073     // Perform stack overflow check if this goto needs it before jumping.
   5074     DeferredStackCheck* deferred_stack_check =
   5075         new(zone()) DeferredStackCheck(this, instr);
   5076     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
   5077     __ B(lo, deferred_stack_check->entry());
   5078 
   5079     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5080     __ Bind(instr->done_label());
   5081     deferred_stack_check->SetExit(instr->done_label());
   5082     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5083     // Don't record a deoptimization index for the safepoint here.
   5084     // This will be done explicitly when emitting call and the safepoint in
   5085     // the deferred code.
   5086   }
   5087 }
   5088 
   5089 
   5090 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   5091   Register function = ToRegister(instr->function());
   5092   Register code_object = ToRegister(instr->code_object());
   5093   Register temp = ToRegister(instr->temp());
   5094   __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
   5095   __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
   5096 }
   5097 
   5098 
   5099 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   5100   Register context = ToRegister(instr->context());
   5101   Register value = ToRegister(instr->value());
   5102   Register scratch = ToRegister(instr->temp());
   5103   MemOperand target = ContextMemOperand(context, instr->slot_index());
   5104 
   5105   Label skip_assignment;
   5106 
   5107   if (instr->hydrogen()->RequiresHoleCheck()) {
   5108     __ Ldr(scratch, target);
   5109     if (instr->hydrogen()->DeoptimizesOnHole()) {
   5110       DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr);
   5111     } else {
   5112       __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
   5113     }
   5114   }
   5115 
   5116   __ Str(value, target);
   5117   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5118     SmiCheck check_needed =
   5119         instr->hydrogen()->value()->type().IsHeapObject()
   5120             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   5121     __ RecordWriteContextSlot(context,
   5122                               target.offset(),
   5123                               value,
   5124                               scratch,
   5125                               GetLinkRegisterState(),
   5126                               kSaveFPRegs,
   5127                               EMIT_REMEMBERED_SET,
   5128                               check_needed);
   5129   }
   5130   __ Bind(&skip_assignment);
   5131 }
   5132 
   5133 
   5134 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
   5135   Register value = ToRegister(instr->value());
   5136   Register cell = ToRegister(instr->temp1());
   5137 
   5138   // Load the cell.
   5139   __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
   5140 
   5141   // If the cell we are storing to contains the hole it could have
   5142   // been deleted from the property dictionary. In that case, we need
   5143   // to update the property details in the property dictionary to mark
   5144   // it as no longer deleted. We deoptimize in that case.
   5145   if (instr->hydrogen()->RequiresHoleCheck()) {
   5146     Register payload = ToRegister(instr->temp2());
   5147     __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
   5148     DeoptimizeIfRoot(payload, Heap::kTheHoleValueRootIndex, instr);
   5149   }
   5150 
   5151   // Store the value.
   5152   __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
   5153   // Cells are always rescanned, so no write barrier here.
   5154 }
   5155 
   5156 
   5157 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
   5158   Register ext_ptr = ToRegister(instr->elements());
   5159   Register key = no_reg;
   5160   Register scratch;
   5161   ElementsKind elements_kind = instr->elements_kind();
   5162 
   5163   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
   5164   bool key_is_constant = instr->key()->IsConstantOperand();
   5165   int constant_key = 0;
   5166   if (key_is_constant) {
   5167     DCHECK(instr->temp() == NULL);
   5168     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   5169     if (constant_key & 0xf0000000) {
   5170       Abort(kArrayIndexConstantValueTooBig);
   5171     }
   5172   } else {
   5173     key = ToRegister(instr->key());
   5174     scratch = ToRegister(instr->temp());
   5175   }
   5176 
   5177   MemOperand dst =
   5178     PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
   5179                                      key_is_constant, constant_key,
   5180                                      elements_kind,
   5181                                      instr->base_offset());
   5182 
   5183   if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
   5184       (elements_kind == FLOAT32_ELEMENTS)) {
   5185     DoubleRegister value = ToDoubleRegister(instr->value());
   5186     DoubleRegister dbl_scratch = double_scratch();
   5187     __ Fcvt(dbl_scratch.S(), value);
   5188     __ Str(dbl_scratch.S(), dst);
   5189   } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
   5190              (elements_kind == FLOAT64_ELEMENTS)) {
   5191     DoubleRegister value = ToDoubleRegister(instr->value());
   5192     __ Str(value, dst);
   5193   } else {
   5194     Register value = ToRegister(instr->value());
   5195 
   5196     switch (elements_kind) {
   5197       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   5198       case EXTERNAL_INT8_ELEMENTS:
   5199       case EXTERNAL_UINT8_ELEMENTS:
   5200       case UINT8_ELEMENTS:
   5201       case UINT8_CLAMPED_ELEMENTS:
   5202       case INT8_ELEMENTS:
   5203         __ Strb(value, dst);
   5204         break;
   5205       case EXTERNAL_INT16_ELEMENTS:
   5206       case EXTERNAL_UINT16_ELEMENTS:
   5207       case INT16_ELEMENTS:
   5208       case UINT16_ELEMENTS:
   5209         __ Strh(value, dst);
   5210         break;
   5211       case EXTERNAL_INT32_ELEMENTS:
   5212       case EXTERNAL_UINT32_ELEMENTS:
   5213       case INT32_ELEMENTS:
   5214       case UINT32_ELEMENTS:
   5215         __ Str(value.W(), dst);
   5216         break;
   5217       case FLOAT32_ELEMENTS:
   5218       case FLOAT64_ELEMENTS:
   5219       case EXTERNAL_FLOAT32_ELEMENTS:
   5220       case EXTERNAL_FLOAT64_ELEMENTS:
   5221       case FAST_DOUBLE_ELEMENTS:
   5222       case FAST_ELEMENTS:
   5223       case FAST_SMI_ELEMENTS:
   5224       case FAST_HOLEY_DOUBLE_ELEMENTS:
   5225       case FAST_HOLEY_ELEMENTS:
   5226       case FAST_HOLEY_SMI_ELEMENTS:
   5227       case DICTIONARY_ELEMENTS:
   5228       case SLOPPY_ARGUMENTS_ELEMENTS:
   5229         UNREACHABLE();
   5230         break;
   5231     }
   5232   }
   5233 }
   5234 
   5235 
   5236 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
   5237   Register elements = ToRegister(instr->elements());
   5238   DoubleRegister value = ToDoubleRegister(instr->value());
   5239   MemOperand mem_op;
   5240 
   5241   if (instr->key()->IsConstantOperand()) {
   5242     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   5243     if (constant_key & 0xf0000000) {
   5244       Abort(kArrayIndexConstantValueTooBig);
   5245     }
   5246     int offset = instr->base_offset() + constant_key * kDoubleSize;
   5247     mem_op = MemOperand(elements, offset);
   5248   } else {
   5249     Register store_base = ToRegister(instr->temp());
   5250     Register key = ToRegister(instr->key());
   5251     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   5252     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   5253                                       instr->hydrogen()->elements_kind(),
   5254                                       instr->hydrogen()->representation(),
   5255                                       instr->base_offset());
   5256   }
   5257 
   5258   if (instr->NeedsCanonicalization()) {
   5259     __ CanonicalizeNaN(double_scratch(), value);
   5260     __ Str(double_scratch(), mem_op);
   5261   } else {
   5262     __ Str(value, mem_op);
   5263   }
   5264 }
   5265 
   5266 
   5267 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
   5268   Register value = ToRegister(instr->value());
   5269   Register elements = ToRegister(instr->elements());
   5270   Register scratch = no_reg;
   5271   Register store_base = no_reg;
   5272   Register key = no_reg;
   5273   MemOperand mem_op;
   5274 
   5275   if (!instr->key()->IsConstantOperand() ||
   5276       instr->hydrogen()->NeedsWriteBarrier()) {
   5277     scratch = ToRegister(instr->temp());
   5278   }
   5279 
   5280   Representation representation = instr->hydrogen()->value()->representation();
   5281   if (instr->key()->IsConstantOperand()) {
   5282     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   5283     int offset = instr->base_offset() +
   5284         ToInteger32(const_operand) * kPointerSize;
   5285     store_base = elements;
   5286     if (representation.IsInteger32()) {
   5287       DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   5288       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   5289       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   5290       STATIC_ASSERT(kSmiTag == 0);
   5291       mem_op = UntagSmiMemOperand(store_base, offset);
   5292     } else {
   5293       mem_op = MemOperand(store_base, offset);
   5294     }
   5295   } else {
   5296     store_base = scratch;
   5297     key = ToRegister(instr->key());
   5298     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
   5299 
   5300     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
   5301                                       instr->hydrogen()->elements_kind(),
   5302                                       representation, instr->base_offset());
   5303   }
   5304 
   5305   __ Store(value, mem_op, representation);
   5306 
   5307   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5308     DCHECK(representation.IsTagged());
   5309     // This assignment may cause element_addr to alias store_base.
   5310     Register element_addr = scratch;
   5311     SmiCheck check_needed =
   5312         instr->hydrogen()->value()->type().IsHeapObject()
   5313             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   5314     // Compute address of modified element and store it into key register.
   5315     __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
   5316     __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
   5317                    kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
   5318                    instr->hydrogen()->PointersToHereCheckForValue());
   5319   }
   5320 }
   5321 
   5322 
   5323 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   5324   DCHECK(ToRegister(instr->context()).is(cp));
   5325   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   5326   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   5327   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   5328 
   5329   Handle<Code> ic =
   5330       CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
   5331   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5332 }
   5333 
   5334 
   5335 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   5336   Representation representation = instr->representation();
   5337 
   5338   Register object = ToRegister(instr->object());
   5339   HObjectAccess access = instr->hydrogen()->access();
   5340   int offset = access.offset();
   5341 
   5342   if (access.IsExternalMemory()) {
   5343     DCHECK(!instr->hydrogen()->has_transition());
   5344     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   5345     Register value = ToRegister(instr->value());
   5346     __ Store(value, MemOperand(object, offset), representation);
   5347     return;
   5348   }
   5349 
   5350   __ AssertNotSmi(object);
   5351 
   5352   if (representation.IsDouble()) {
   5353     DCHECK(access.IsInobject());
   5354     DCHECK(!instr->hydrogen()->has_transition());
   5355     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   5356     FPRegister value = ToDoubleRegister(instr->value());
   5357     __ Str(value, FieldMemOperand(object, offset));
   5358     return;
   5359   }
   5360 
   5361   Register value = ToRegister(instr->value());
   5362 
   5363   DCHECK(!representation.IsSmi() ||
   5364          !instr->value()->IsConstantOperand() ||
   5365          IsInteger32Constant(LConstantOperand::cast(instr->value())));
   5366 
   5367   if (instr->hydrogen()->has_transition()) {
   5368     Handle<Map> transition = instr->hydrogen()->transition_map();
   5369     AddDeprecationDependency(transition);
   5370     // Store the new map value.
   5371     Register new_map_value = ToRegister(instr->temp0());
   5372     __ Mov(new_map_value, Operand(transition));
   5373     __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
   5374     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   5375       // Update the write barrier for the map field.
   5376       __ RecordWriteForMap(object,
   5377                            new_map_value,
   5378                            ToRegister(instr->temp1()),
   5379                            GetLinkRegisterState(),
   5380                            kSaveFPRegs);
   5381     }
   5382   }
   5383 
   5384   // Do the store.
   5385   Register destination;
   5386   if (access.IsInobject()) {
   5387     destination = object;
   5388   } else {
   5389     Register temp0 = ToRegister(instr->temp0());
   5390     __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5391     destination = temp0;
   5392   }
   5393 
   5394   if (representation.IsSmi() &&
   5395      instr->hydrogen()->value()->representation().IsInteger32()) {
   5396     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   5397 #ifdef DEBUG
   5398     Register temp0 = ToRegister(instr->temp0());
   5399     __ Ldr(temp0, FieldMemOperand(destination, offset));
   5400     __ AssertSmi(temp0);
   5401     // If destination aliased temp0, restore it to the address calculated
   5402     // earlier.
   5403     if (destination.Is(temp0)) {
   5404       DCHECK(!access.IsInobject());
   5405       __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5406     }
   5407 #endif
   5408     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
   5409     STATIC_ASSERT(kSmiTag == 0);
   5410     __ Store(value, UntagSmiFieldMemOperand(destination, offset),
   5411              Representation::Integer32());
   5412   } else {
   5413     __ Store(value, FieldMemOperand(destination, offset), representation);
   5414   }
   5415   if (instr->hydrogen()->NeedsWriteBarrier()) {
   5416     __ RecordWriteField(destination,
   5417                         offset,
   5418                         value,                        // Clobbered.
   5419                         ToRegister(instr->temp1()),   // Clobbered.
   5420                         GetLinkRegisterState(),
   5421                         kSaveFPRegs,
   5422                         EMIT_REMEMBERED_SET,
   5423                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   5424                         instr->hydrogen()->PointersToHereCheckForValue());
   5425   }
   5426 }
   5427 
   5428 
   5429 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   5430   DCHECK(ToRegister(instr->context()).is(cp));
   5431   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   5432   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   5433 
   5434   __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
   5435   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
   5436   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5437 }
   5438 
   5439 
   5440 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   5441   DCHECK(ToRegister(instr->context()).is(cp));
   5442   DCHECK(ToRegister(instr->left()).Is(x1));
   5443   DCHECK(ToRegister(instr->right()).Is(x0));
   5444   StringAddStub stub(isolate(),
   5445                      instr->hydrogen()->flags(),
   5446                      instr->hydrogen()->pretenure_flag());
   5447   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5448 }
   5449 
   5450 
   5451 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   5452   class DeferredStringCharCodeAt: public LDeferredCode {
   5453    public:
   5454     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
   5455         : LDeferredCode(codegen), instr_(instr) { }
   5456     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
   5457     virtual LInstruction* instr() { return instr_; }
   5458    private:
   5459     LStringCharCodeAt* instr_;
   5460   };
   5461 
   5462   DeferredStringCharCodeAt* deferred =
   5463       new(zone()) DeferredStringCharCodeAt(this, instr);
   5464 
   5465   StringCharLoadGenerator::Generate(masm(),
   5466                                     ToRegister(instr->string()),
   5467                                     ToRegister32(instr->index()),
   5468                                     ToRegister(instr->result()),
   5469                                     deferred->entry());
   5470   __ Bind(deferred->exit());
   5471 }
   5472 
   5473 
   5474 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   5475   Register string = ToRegister(instr->string());
   5476   Register result = ToRegister(instr->result());
   5477 
   5478   // TODO(3095996): Get rid of this. For now, we need to make the
   5479   // result register contain a valid pointer because it is already
   5480   // contained in the register pointer map.
   5481   __ Mov(result, 0);
   5482 
   5483   PushSafepointRegistersScope scope(this);
   5484   __ Push(string);
   5485   // Push the index as a smi. This is safe because of the checks in
   5486   // DoStringCharCodeAt above.
   5487   Register index = ToRegister(instr->index());
   5488   __ SmiTagAndPush(index);
   5489 
   5490   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
   5491                           instr->context());
   5492   __ AssertSmi(x0);
   5493   __ SmiUntag(x0);
   5494   __ StoreToSafepointRegisterSlot(x0, result);
   5495 }
   5496 
   5497 
   5498 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   5499   class DeferredStringCharFromCode: public LDeferredCode {
   5500    public:
   5501     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
   5502         : LDeferredCode(codegen), instr_(instr) { }
   5503     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
   5504     virtual LInstruction* instr() { return instr_; }
   5505    private:
   5506     LStringCharFromCode* instr_;
   5507   };
   5508 
   5509   DeferredStringCharFromCode* deferred =
   5510       new(zone()) DeferredStringCharFromCode(this, instr);
   5511 
   5512   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   5513   Register char_code = ToRegister32(instr->char_code());
   5514   Register result = ToRegister(instr->result());
   5515 
   5516   __ Cmp(char_code, String::kMaxOneByteCharCode);
   5517   __ B(hi, deferred->entry());
   5518   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
   5519   __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
   5520   __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
   5521   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
   5522   __ B(eq, deferred->entry());
   5523   __ Bind(deferred->exit());
   5524 }
   5525 
   5526 
   5527 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   5528   Register char_code = ToRegister(instr->char_code());
   5529   Register result = ToRegister(instr->result());
   5530 
   5531   // TODO(3095996): Get rid of this. For now, we need to make the
   5532   // result register contain a valid pointer because it is already
   5533   // contained in the register pointer map.
   5534   __ Mov(result, 0);
   5535 
   5536   PushSafepointRegistersScope scope(this);
   5537   __ SmiTagAndPush(char_code);
   5538   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
   5539   __ StoreToSafepointRegisterSlot(x0, result);
   5540 }
   5541 
   5542 
   5543 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   5544   DCHECK(ToRegister(instr->context()).is(cp));
   5545   Token::Value op = instr->op();
   5546 
   5547   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   5548   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   5549   InlineSmiCheckInfo::EmitNotInlined(masm());
   5550 
   5551   Condition condition = TokenToCondition(op, false);
   5552 
   5553   EmitCompareAndBranch(instr, condition, x0, 0);
   5554 }
   5555 
   5556 
   5557 void LCodeGen::DoSubI(LSubI* instr) {
   5558   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5559   Register result = ToRegister32(instr->result());
   5560   Register left = ToRegister32(instr->left());
   5561   Operand right = ToShiftedRightOperand32(instr->right(), instr);
   5562 
   5563   if (can_overflow) {
   5564     __ Subs(result, left, right);
   5565     DeoptimizeIf(vs, instr);
   5566   } else {
   5567     __ Sub(result, left, right);
   5568   }
   5569 }
   5570 
   5571 
   5572 void LCodeGen::DoSubS(LSubS* instr) {
   5573   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   5574   Register result = ToRegister(instr->result());
   5575   Register left = ToRegister(instr->left());
   5576   Operand right = ToOperand(instr->right());
   5577   if (can_overflow) {
   5578     __ Subs(result, left, right);
   5579     DeoptimizeIf(vs, instr);
   5580   } else {
   5581     __ Sub(result, left, right);
   5582   }
   5583 }
   5584 
   5585 
   5586 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
   5587                                    LOperand* value,
   5588                                    LOperand* temp1,
   5589                                    LOperand* temp2) {
   5590   Register input = ToRegister(value);
   5591   Register scratch1 = ToRegister(temp1);
   5592   DoubleRegister dbl_scratch1 = double_scratch();
   5593 
   5594   Label done;
   5595 
   5596   if (instr->truncating()) {
   5597     Register output = ToRegister(instr->result());
   5598     Label check_bools;
   5599 
   5600     // If it's not a heap number, jump to undefined check.
   5601     __ JumpIfNotHeapNumber(input, &check_bools);
   5602 
   5603     // A heap number: load value and convert to int32 using truncating function.
   5604     __ TruncateHeapNumberToI(output, input);
   5605     __ B(&done);
   5606 
   5607     __ Bind(&check_bools);
   5608 
   5609     Register true_root = output;
   5610     Register false_root = scratch1;
   5611     __ LoadTrueFalseRoots(true_root, false_root);
   5612     __ Cmp(input, true_root);
   5613     __ Cset(output, eq);
   5614     __ Ccmp(input, false_root, ZFlag, ne);
   5615     __ B(eq, &done);
   5616 
   5617     // Output contains zero, undefined is converted to zero for truncating
   5618     // conversions.
   5619     DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr);
   5620   } else {
   5621     Register output = ToRegister32(instr->result());
   5622     DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
   5623 
   5624     DeoptimizeIfNotHeapNumber(input, instr);
   5625 
   5626     // A heap number: load value and convert to int32 using non-truncating
   5627     // function. If the result is out of range, branch to deoptimize.
   5628     __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
   5629     __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
   5630     DeoptimizeIf(ne, instr, "lost precision or NaN");
   5631 
   5632     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   5633       __ Cmp(output, 0);
   5634       __ B(ne, &done);
   5635       __ Fmov(scratch1, dbl_scratch1);
   5636       DeoptimizeIfNegative(scratch1, instr, "minus zero");
   5637     }
   5638   }
   5639   __ Bind(&done);
   5640 }
   5641 
   5642 
   5643 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   5644   class DeferredTaggedToI: public LDeferredCode {
   5645    public:
   5646     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   5647         : LDeferredCode(codegen), instr_(instr) { }
   5648     virtual void Generate() {
   5649       codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
   5650                                      instr_->temp2());
   5651     }
   5652 
   5653     virtual LInstruction* instr() { return instr_; }
   5654    private:
   5655     LTaggedToI* instr_;
   5656   };
   5657 
   5658   Register input = ToRegister(instr->value());
   5659   Register output = ToRegister(instr->result());
   5660 
   5661   if (instr->hydrogen()->value()->representation().IsSmi()) {
   5662     __ SmiUntag(output, input);
   5663   } else {
   5664     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
   5665 
   5666     __ JumpIfNotSmi(input, deferred->entry());
   5667     __ SmiUntag(output, input);
   5668     __ Bind(deferred->exit());
   5669   }
   5670 }
   5671 
   5672 
   5673 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   5674   Register result = ToRegister(instr->result());
   5675   __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   5676 }
   5677 
   5678 
   5679 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
   5680   DCHECK(ToRegister(instr->value()).Is(x0));
   5681   DCHECK(ToRegister(instr->result()).Is(x0));
   5682   __ Push(x0);
   5683   CallRuntime(Runtime::kToFastProperties, 1, instr);
   5684 }
   5685 
   5686 
   5687 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
   5688   DCHECK(ToRegister(instr->context()).is(cp));
   5689   Label materialized;
   5690   // Registers will be used as follows:
   5691   // x7 = literals array.
   5692   // x1 = regexp literal.
   5693   // x0 = regexp literal clone.
   5694   // x10-x12 are used as temporaries.
   5695   int literal_offset =
   5696       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
   5697   __ LoadObject(x7, instr->hydrogen()->literals());
   5698   __ Ldr(x1, FieldMemOperand(x7, literal_offset));
   5699   __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
   5700 
   5701   // Create regexp literal using runtime function
   5702   // Result will be in x0.
   5703   __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
   5704   __ Mov(x11, Operand(instr->hydrogen()->pattern()));
   5705   __ Mov(x10, Operand(instr->hydrogen()->flags()));
   5706   __ Push(x7, x12, x11, x10);
   5707   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
   5708   __ Mov(x1, x0);
   5709 
   5710   __ Bind(&materialized);
   5711   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   5712   Label allocated, runtime_allocate;
   5713 
   5714   __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
   5715   __ B(&allocated);
   5716 
   5717   __ Bind(&runtime_allocate);
   5718   __ Mov(x0, Smi::FromInt(size));
   5719   __ Push(x1, x0);
   5720   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
   5721   __ Pop(x1);
   5722 
   5723   __ Bind(&allocated);
   5724   // Copy the content into the newly allocated memory.
   5725   __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
   5726 }
   5727 
   5728 
   5729 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   5730   Register object = ToRegister(instr->object());
   5731 
   5732   Handle<Map> from_map = instr->original_map();
   5733   Handle<Map> to_map = instr->transitioned_map();
   5734   ElementsKind from_kind = instr->from_kind();
   5735   ElementsKind to_kind = instr->to_kind();
   5736 
   5737   Label not_applicable;
   5738 
   5739   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
   5740     Register temp1 = ToRegister(instr->temp1());
   5741     Register new_map = ToRegister(instr->temp2());
   5742     __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
   5743     __ Mov(new_map, Operand(to_map));
   5744     __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
   5745     // Write barrier.
   5746     __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
   5747                          kDontSaveFPRegs);
   5748   } else {
   5749     {
   5750       UseScratchRegisterScope temps(masm());
   5751       // Use the temp register only in a restricted scope - the codegen checks
   5752       // that we do not use any register across a call.
   5753       __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
   5754                   DONT_DO_SMI_CHECK);
   5755     }
   5756     DCHECK(object.is(x0));
   5757     DCHECK(ToRegister(instr->context()).is(cp));
   5758     PushSafepointRegistersScope scope(this);
   5759     __ Mov(x1, Operand(to_map));
   5760     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
   5761     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
   5762     __ CallStub(&stub);
   5763     RecordSafepointWithRegisters(
   5764         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   5765   }
   5766   __ Bind(&not_applicable);
   5767 }
   5768 
   5769 
   5770 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   5771   Register object = ToRegister(instr->object());
   5772   Register temp1 = ToRegister(instr->temp1());
   5773   Register temp2 = ToRegister(instr->temp2());
   5774 
   5775   Label no_memento_found;
   5776   __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
   5777   DeoptimizeIf(eq, instr);
   5778   __ Bind(&no_memento_found);
   5779 }
   5780 
   5781 
   5782 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
   5783   DoubleRegister input = ToDoubleRegister(instr->value());
   5784   Register result = ToRegister(instr->result());
   5785   __ TruncateDoubleToI(result, input);
   5786   if (instr->tag_result()) {
   5787     __ SmiTag(result, result);
   5788   }
   5789 }
   5790 
   5791 
   5792 void LCodeGen::DoTypeof(LTypeof* instr) {
   5793   Register input = ToRegister(instr->value());
   5794   __ Push(input);
   5795   CallRuntime(Runtime::kTypeof, 1, instr);
   5796 }
   5797 
   5798 
   5799 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5800   Handle<String> type_name = instr->type_literal();
   5801   Label* true_label = instr->TrueLabel(chunk_);
   5802   Label* false_label = instr->FalseLabel(chunk_);
   5803   Register value = ToRegister(instr->value());
   5804 
   5805   Factory* factory = isolate()->factory();
   5806   if (String::Equals(type_name, factory->number_string())) {
   5807     __ JumpIfSmi(value, true_label);
   5808 
   5809     int true_block = instr->TrueDestination(chunk_);
   5810     int false_block = instr->FalseDestination(chunk_);
   5811     int next_block = GetNextEmittedBlock();
   5812 
   5813     if (true_block == false_block) {
   5814       EmitGoto(true_block);
   5815     } else if (true_block == next_block) {
   5816       __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
   5817     } else {
   5818       __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
   5819       if (false_block != next_block) {
   5820         __ B(chunk_->GetAssemblyLabel(false_block));
   5821       }
   5822     }
   5823 
   5824   } else if (String::Equals(type_name, factory->string_string())) {
   5825     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5826     Register map = ToRegister(instr->temp1());
   5827     Register scratch = ToRegister(instr->temp2());
   5828 
   5829     __ JumpIfSmi(value, false_label);
   5830     __ JumpIfObjectType(
   5831         value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
   5832     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   5833     EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
   5834 
   5835   } else if (String::Equals(type_name, factory->symbol_string())) {
   5836     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5837     Register map = ToRegister(instr->temp1());
   5838     Register scratch = ToRegister(instr->temp2());
   5839 
   5840     __ JumpIfSmi(value, false_label);
   5841     __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
   5842     EmitBranch(instr, eq);
   5843 
   5844   } else if (String::Equals(type_name, factory->boolean_string())) {
   5845     __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
   5846     __ CompareRoot(value, Heap::kFalseValueRootIndex);
   5847     EmitBranch(instr, eq);
   5848 
   5849   } else if (String::Equals(type_name, factory->undefined_string())) {
   5850     DCHECK(instr->temp1() != NULL);
   5851     Register scratch = ToRegister(instr->temp1());
   5852 
   5853     __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
   5854     __ JumpIfSmi(value, false_label);
   5855     // Check for undetectable objects and jump to the true branch in this case.
   5856     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5857     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
   5858     EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
   5859 
   5860   } else if (String::Equals(type_name, factory->function_string())) {
   5861     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   5862     DCHECK(instr->temp1() != NULL);
   5863     Register type = ToRegister(instr->temp1());
   5864 
   5865     __ JumpIfSmi(value, false_label);
   5866     __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
   5867     // HeapObject's type has been loaded into type register by JumpIfObjectType.
   5868     EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
   5869 
   5870   } else if (String::Equals(type_name, factory->object_string())) {
   5871     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
   5872     Register map = ToRegister(instr->temp1());
   5873     Register scratch = ToRegister(instr->temp2());
   5874 
   5875     __ JumpIfSmi(value, false_label);
   5876     __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
   5877     __ JumpIfObjectType(value, map, scratch,
   5878                         FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
   5879     __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   5880     __ B(gt, false_label);
   5881     // Check for undetectable objects => false.
   5882     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
   5883     EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
   5884 
   5885   } else {
   5886     __ B(false_label);
   5887   }
   5888 }
   5889 
   5890 
   5891 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   5892   __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
   5893 }
   5894 
   5895 
   5896 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5897   Register object = ToRegister(instr->value());
   5898   Register map = ToRegister(instr->map());
   5899   Register temp = ToRegister(instr->temp());
   5900   __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
   5901   __ Cmp(map, temp);
   5902   DeoptimizeIf(ne, instr);
   5903 }
   5904 
   5905 
   5906 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   5907   Register receiver = ToRegister(instr->receiver());
   5908   Register function = ToRegister(instr->function());
   5909   Register result = ToRegister(instr->result());
   5910 
   5911   // If the receiver is null or undefined, we have to pass the global object as
   5912   // a receiver to normal functions. Values have to be passed unchanged to
   5913   // builtins and strict-mode functions.
   5914   Label global_object, done, copy_receiver;
   5915 
   5916   if (!instr->hydrogen()->known_function()) {
   5917     __ Ldr(result, FieldMemOperand(function,
   5918                                    JSFunction::kSharedFunctionInfoOffset));
   5919 
   5920     // CompilerHints is an int32 field. See objects.h.
   5921     __ Ldr(result.W(),
   5922            FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
   5923 
   5924     // Do not transform the receiver to object for strict mode functions.
   5925     __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
   5926 
   5927     // Do not transform the receiver to object for builtins.
   5928     __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
   5929   }
   5930 
   5931   // Normal function. Replace undefined or null with global receiver.
   5932   __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
   5933   __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
   5934 
   5935   // Deoptimize if the receiver is not a JS object.
   5936   DeoptimizeIfSmi(receiver, instr);
   5937   __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
   5938   __ B(ge, &copy_receiver);
   5939   Deoptimize(instr);
   5940 
   5941   __ Bind(&global_object);
   5942   __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
   5943   __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
   5944   __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
   5945   __ B(&done);
   5946 
   5947   __ Bind(&copy_receiver);
   5948   __ Mov(result, receiver);
   5949   __ Bind(&done);
   5950 }
   5951 
   5952 
   5953 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5954                                            Register result,
   5955                                            Register object,
   5956                                            Register index) {
   5957   PushSafepointRegistersScope scope(this);
   5958   __ Push(object);
   5959   __ Push(index);
   5960   __ Mov(cp, 0);
   5961   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5962   RecordSafepointWithRegisters(
   5963       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5964   __ StoreToSafepointRegisterSlot(x0, result);
   5965 }
   5966 
   5967 
   5968 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5969   class DeferredLoadMutableDouble FINAL : public LDeferredCode {
   5970    public:
   5971     DeferredLoadMutableDouble(LCodeGen* codegen,
   5972                               LLoadFieldByIndex* instr,
   5973                               Register result,
   5974                               Register object,
   5975                               Register index)
   5976         : LDeferredCode(codegen),
   5977           instr_(instr),
   5978           result_(result),
   5979           object_(object),
   5980           index_(index) {
   5981     }
   5982     virtual void Generate() OVERRIDE {
   5983       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
   5984     }
   5985     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5986    private:
   5987     LLoadFieldByIndex* instr_;
   5988     Register result_;
   5989     Register object_;
   5990     Register index_;
   5991   };
   5992   Register object = ToRegister(instr->object());
   5993   Register index = ToRegister(instr->index());
   5994   Register result = ToRegister(instr->result());
   5995 
   5996   __ AssertSmi(index);
   5997 
   5998   DeferredLoadMutableDouble* deferred;
   5999   deferred = new(zone()) DeferredLoadMutableDouble(
   6000       this, instr, result, object, index);
   6001 
   6002   Label out_of_object, done;
   6003 
   6004   __ TestAndBranchIfAnySet(
   6005       index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
   6006   __ Mov(index, Operand(index, ASR, 1));
   6007 
   6008   __ Cmp(index, Smi::FromInt(0));
   6009   __ B(lt, &out_of_object);
   6010 
   6011   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
   6012   __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   6013   __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
   6014 
   6015   __ B(&done);
   6016 
   6017   __ Bind(&out_of_object);
   6018   __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   6019   // Index is equal to negated out of object property index plus 1.
   6020   __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
   6021   __ Ldr(result, FieldMemOperand(result,
   6022                                  FixedArray::kHeaderSize - kPointerSize));
   6023   __ Bind(deferred->exit());
   6024   __ Bind(&done);
   6025 }
   6026 
   6027 
   6028 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
   6029   Register context = ToRegister(instr->context());
   6030   __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
   6031 }
   6032 
   6033 
   6034 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
   6035   Handle<ScopeInfo> scope_info = instr->scope_info();
   6036   __ Push(scope_info);
   6037   __ Push(ToRegister(instr->function()));
   6038   CallRuntime(Runtime::kPushBlockContext, 2, instr);
   6039   RecordSafepoint(Safepoint::kNoLazyDeopt);
   6040 }
   6041 
   6042 
   6043 
   6044 } }  // namespace v8::internal
   6045