1 // Copyright (c) 1994-2006 Sun Microsystems Inc. 2 // All Rights Reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // - Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // 11 // - Redistribution in binary form must reproduce the above copyright 12 // notice, this list of conditions and the following disclaimer in the 13 // documentation and/or other materials provided with the distribution. 14 // 15 // - Neither the name of Sun Microsystems or the names of contributors may 16 // be used to endorse or promote products derived from this software without 17 // specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // The original source code covered by the above license above has been 32 // modified significantly by Google Inc. 33 // Copyright 2012 the V8 project authors. All rights reserved. 34 35 #include "src/assembler.h" 36 37 #include <cmath> 38 #include "src/api.h" 39 #include "src/base/cpu.h" 40 #include "src/base/lazy-instance.h" 41 #include "src/base/platform/platform.h" 42 #include "src/builtins.h" 43 #include "src/codegen.h" 44 #include "src/counters.h" 45 #include "src/cpu-profiler.h" 46 #include "src/debug.h" 47 #include "src/deoptimizer.h" 48 #include "src/execution.h" 49 #include "src/ic/ic.h" 50 #include "src/ic/stub-cache.h" 51 #include "src/isolate-inl.h" 52 #include "src/jsregexp.h" 53 #include "src/regexp-macro-assembler.h" 54 #include "src/regexp-stack.h" 55 #include "src/runtime.h" 56 #include "src/serialize.h" 57 #include "src/token.h" 58 59 #if V8_TARGET_ARCH_IA32 60 #include "src/ia32/assembler-ia32-inl.h" // NOLINT 61 #elif V8_TARGET_ARCH_X64 62 #include "src/x64/assembler-x64-inl.h" // NOLINT 63 #elif V8_TARGET_ARCH_ARM64 64 #include "src/arm64/assembler-arm64-inl.h" // NOLINT 65 #elif V8_TARGET_ARCH_ARM 66 #include "src/arm/assembler-arm-inl.h" // NOLINT 67 #elif V8_TARGET_ARCH_MIPS 68 #include "src/mips/assembler-mips-inl.h" // NOLINT 69 #elif V8_TARGET_ARCH_MIPS64 70 #include "src/mips64/assembler-mips64-inl.h" // NOLINT 71 #elif V8_TARGET_ARCH_X87 72 #include "src/x87/assembler-x87-inl.h" // NOLINT 73 #else 74 #error "Unknown architecture." 75 #endif 76 77 // Include native regexp-macro-assembler. 78 #ifndef V8_INTERPRETED_REGEXP 79 #if V8_TARGET_ARCH_IA32 80 #include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT 81 #elif V8_TARGET_ARCH_X64 82 #include "src/x64/regexp-macro-assembler-x64.h" // NOLINT 83 #elif V8_TARGET_ARCH_ARM64 84 #include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT 85 #elif V8_TARGET_ARCH_ARM 86 #include "src/arm/regexp-macro-assembler-arm.h" // NOLINT 87 #elif V8_TARGET_ARCH_MIPS 88 #include "src/mips/regexp-macro-assembler-mips.h" // NOLINT 89 #elif V8_TARGET_ARCH_MIPS64 90 #include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT 91 #elif V8_TARGET_ARCH_X87 92 #include "src/x87/regexp-macro-assembler-x87.h" // NOLINT 93 #else // Unknown architecture. 94 #error "Unknown architecture." 95 #endif // Target architecture. 96 #endif // V8_INTERPRETED_REGEXP 97 98 namespace v8 { 99 namespace internal { 100 101 // ----------------------------------------------------------------------------- 102 // Common double constants. 103 104 struct DoubleConstant BASE_EMBEDDED { 105 double min_int; 106 double one_half; 107 double minus_one_half; 108 double negative_infinity; 109 double canonical_non_hole_nan; 110 double the_hole_nan; 111 double uint32_bias; 112 }; 113 114 static DoubleConstant double_constants; 115 116 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; 117 118 static bool math_exp_data_initialized = false; 119 static base::Mutex* math_exp_data_mutex = NULL; 120 static double* math_exp_constants_array = NULL; 121 static double* math_exp_log_table_array = NULL; 122 123 // ----------------------------------------------------------------------------- 124 // Implementation of AssemblerBase 125 126 AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size) 127 : isolate_(isolate), 128 jit_cookie_(0), 129 enabled_cpu_features_(0), 130 emit_debug_code_(FLAG_debug_code), 131 predictable_code_size_(false), 132 // We may use the assembler without an isolate. 133 serializer_enabled_(isolate && isolate->serializer_enabled()) { 134 if (FLAG_mask_constants_with_cookie && isolate != NULL) { 135 jit_cookie_ = isolate->random_number_generator()->NextInt(); 136 } 137 own_buffer_ = buffer == NULL; 138 if (buffer_size == 0) buffer_size = kMinimalBufferSize; 139 DCHECK(buffer_size > 0); 140 if (own_buffer_) buffer = NewArray<byte>(buffer_size); 141 buffer_ = static_cast<byte*>(buffer); 142 buffer_size_ = buffer_size; 143 144 pc_ = buffer_; 145 } 146 147 148 AssemblerBase::~AssemblerBase() { 149 if (own_buffer_) DeleteArray(buffer_); 150 } 151 152 153 // ----------------------------------------------------------------------------- 154 // Implementation of PredictableCodeSizeScope 155 156 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler, 157 int expected_size) 158 : assembler_(assembler), 159 expected_size_(expected_size), 160 start_offset_(assembler->pc_offset()), 161 old_value_(assembler->predictable_code_size()) { 162 assembler_->set_predictable_code_size(true); 163 } 164 165 166 PredictableCodeSizeScope::~PredictableCodeSizeScope() { 167 // TODO(svenpanne) Remove the 'if' when everything works. 168 if (expected_size_ >= 0) { 169 CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_); 170 } 171 assembler_->set_predictable_code_size(old_value_); 172 } 173 174 175 // ----------------------------------------------------------------------------- 176 // Implementation of CpuFeatureScope 177 178 #ifdef DEBUG 179 CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) 180 : assembler_(assembler) { 181 DCHECK(CpuFeatures::IsSupported(f)); 182 old_enabled_ = assembler_->enabled_cpu_features(); 183 uint64_t mask = static_cast<uint64_t>(1) << f; 184 // TODO(svenpanne) This special case below doesn't belong here! 185 #if V8_TARGET_ARCH_ARM 186 // ARMv7 is implied by VFP3. 187 if (f == VFP3) { 188 mask |= static_cast<uint64_t>(1) << ARMv7; 189 } 190 #endif 191 assembler_->set_enabled_cpu_features(old_enabled_ | mask); 192 } 193 194 195 CpuFeatureScope::~CpuFeatureScope() { 196 assembler_->set_enabled_cpu_features(old_enabled_); 197 } 198 #endif 199 200 201 bool CpuFeatures::initialized_ = false; 202 unsigned CpuFeatures::supported_ = 0; 203 unsigned CpuFeatures::cache_line_size_ = 0; 204 205 206 // ----------------------------------------------------------------------------- 207 // Implementation of Label 208 209 int Label::pos() const { 210 if (pos_ < 0) return -pos_ - 1; 211 if (pos_ > 0) return pos_ - 1; 212 UNREACHABLE(); 213 return 0; 214 } 215 216 217 // ----------------------------------------------------------------------------- 218 // Implementation of RelocInfoWriter and RelocIterator 219 // 220 // Relocation information is written backwards in memory, from high addresses 221 // towards low addresses, byte by byte. Therefore, in the encodings listed 222 // below, the first byte listed it at the highest address, and successive 223 // bytes in the record are at progressively lower addresses. 224 // 225 // Encoding 226 // 227 // The most common modes are given single-byte encodings. Also, it is 228 // easy to identify the type of reloc info and skip unwanted modes in 229 // an iteration. 230 // 231 // The encoding relies on the fact that there are fewer than 14 232 // different relocation modes using standard non-compact encoding. 233 // 234 // The first byte of a relocation record has a tag in its low 2 bits: 235 // Here are the record schemes, depending on the low tag and optional higher 236 // tags. 237 // 238 // Low tag: 239 // 00: embedded_object: [6-bit pc delta] 00 240 // 241 // 01: code_target: [6-bit pc delta] 01 242 // 243 // 10: short_data_record: [6-bit pc delta] 10 followed by 244 // [6-bit data delta] [2-bit data type tag] 245 // 246 // 11: long_record [2-bit high tag][4 bit middle_tag] 11 247 // followed by variable data depending on type. 248 // 249 // 2-bit data type tags, used in short_data_record and data_jump long_record: 250 // code_target_with_id: 00 251 // position: 01 252 // statement_position: 10 253 // comment: 11 (not used in short_data_record) 254 // 255 // Long record format: 256 // 4-bit middle_tag: 257 // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2 258 // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM, 259 // and is between 0000 and 1100) 260 // The format is: 261 // 00 [4 bit middle_tag] 11 followed by 262 // 00 [6 bit pc delta] 263 // 264 // 1101: constant or veneer pool. Used only on ARM and ARM64 for now. 265 // The format is: [2-bit sub-type] 1101 11 266 // signed int (size of the pool). 267 // The 2-bit sub-types are: 268 // 00: constant pool 269 // 01: veneer pool 270 // 1110: long_data_record 271 // The format is: [2-bit data_type_tag] 1110 11 272 // signed intptr_t, lowest byte written first 273 // (except data_type code_target_with_id, which 274 // is followed by a signed int, not intptr_t.) 275 // 276 // 1111: long_pc_jump 277 // The format is: 278 // pc-jump: 00 1111 11, 279 // 00 [6 bits pc delta] 280 // or 281 // pc-jump (variable length): 282 // 01 1111 11, 283 // [7 bits data] 0 284 // ... 285 // [7 bits data] 1 286 // (Bits 6..31 of pc delta, with leading zeroes 287 // dropped, and last non-zero chunk tagged with 1.) 288 289 290 #ifdef DEBUG 291 const int kMaxStandardNonCompactModes = 14; 292 #endif 293 294 const int kTagBits = 2; 295 const int kTagMask = (1 << kTagBits) - 1; 296 const int kExtraTagBits = 4; 297 const int kLocatableTypeTagBits = 2; 298 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits; 299 300 const int kEmbeddedObjectTag = 0; 301 const int kCodeTargetTag = 1; 302 const int kLocatableTag = 2; 303 const int kDefaultTag = 3; 304 305 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1; 306 307 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; 308 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; 309 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; 310 311 const int kVariableLengthPCJumpTopTag = 1; 312 const int kChunkBits = 7; 313 const int kChunkMask = (1 << kChunkBits) - 1; 314 const int kLastChunkTagBits = 1; 315 const int kLastChunkTagMask = 1; 316 const int kLastChunkTag = 1; 317 318 319 const int kDataJumpExtraTag = kPCJumpExtraTag - 1; 320 321 const int kCodeWithIdTag = 0; 322 const int kNonstatementPositionTag = 1; 323 const int kStatementPositionTag = 2; 324 const int kCommentTag = 3; 325 326 const int kPoolExtraTag = kPCJumpExtraTag - 2; 327 const int kConstPoolTag = 0; 328 const int kVeneerPoolTag = 1; 329 330 331 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { 332 // Return if the pc_delta can fit in kSmallPCDeltaBits bits. 333 // Otherwise write a variable length PC jump for the bits that do 334 // not fit in the kSmallPCDeltaBits bits. 335 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; 336 WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag); 337 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; 338 DCHECK(pc_jump > 0); 339 // Write kChunkBits size chunks of the pc_jump. 340 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { 341 byte b = pc_jump & kChunkMask; 342 *--pos_ = b << kLastChunkTagBits; 343 } 344 // Tag the last chunk so it can be identified. 345 *pos_ = *pos_ | kLastChunkTag; 346 // Return the remaining kSmallPCDeltaBits of the pc_delta. 347 return pc_delta & kSmallPCDeltaMask; 348 } 349 350 351 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { 352 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. 353 pc_delta = WriteVariableLengthPCJump(pc_delta); 354 *--pos_ = pc_delta << kTagBits | tag; 355 } 356 357 358 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { 359 *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag); 360 } 361 362 363 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { 364 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | 365 extra_tag << kTagBits | 366 kDefaultTag); 367 } 368 369 370 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { 371 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. 372 pc_delta = WriteVariableLengthPCJump(pc_delta); 373 WriteExtraTag(extra_tag, 0); 374 *--pos_ = pc_delta; 375 } 376 377 378 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) { 379 WriteExtraTag(kDataJumpExtraTag, top_tag); 380 for (int i = 0; i < kIntSize; i++) { 381 *--pos_ = static_cast<byte>(data_delta); 382 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 383 data_delta = data_delta >> kBitsPerByte; 384 } 385 } 386 387 388 void RelocInfoWriter::WriteExtraTaggedPoolData(int data, int pool_type) { 389 WriteExtraTag(kPoolExtraTag, pool_type); 390 for (int i = 0; i < kIntSize; i++) { 391 *--pos_ = static_cast<byte>(data); 392 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 393 data = data >> kBitsPerByte; 394 } 395 } 396 397 398 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { 399 WriteExtraTag(kDataJumpExtraTag, top_tag); 400 for (int i = 0; i < kIntptrSize; i++) { 401 *--pos_ = static_cast<byte>(data_delta); 402 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 403 data_delta = data_delta >> kBitsPerByte; 404 } 405 } 406 407 408 void RelocInfoWriter::Write(const RelocInfo* rinfo) { 409 #ifdef DEBUG 410 byte* begin_pos = pos_; 411 #endif 412 DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES); 413 DCHECK(rinfo->pc() - last_pc_ >= 0); 414 DCHECK(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM 415 <= kMaxStandardNonCompactModes); 416 // Use unsigned delta-encoding for pc. 417 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); 418 RelocInfo::Mode rmode = rinfo->rmode(); 419 420 // The two most common modes are given small tags, and usually fit in a byte. 421 if (rmode == RelocInfo::EMBEDDED_OBJECT) { 422 WriteTaggedPC(pc_delta, kEmbeddedObjectTag); 423 } else if (rmode == RelocInfo::CODE_TARGET) { 424 WriteTaggedPC(pc_delta, kCodeTargetTag); 425 DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize); 426 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { 427 // Use signed delta-encoding for id. 428 DCHECK(static_cast<int>(rinfo->data()) == rinfo->data()); 429 int id_delta = static_cast<int>(rinfo->data()) - last_id_; 430 // Check if delta is small enough to fit in a tagged byte. 431 if (is_intn(id_delta, kSmallDataBits)) { 432 WriteTaggedPC(pc_delta, kLocatableTag); 433 WriteTaggedData(id_delta, kCodeWithIdTag); 434 } else { 435 // Otherwise, use costly encoding. 436 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 437 WriteExtraTaggedIntData(id_delta, kCodeWithIdTag); 438 } 439 last_id_ = static_cast<int>(rinfo->data()); 440 } else if (RelocInfo::IsPosition(rmode)) { 441 // Use signed delta-encoding for position. 442 DCHECK(static_cast<int>(rinfo->data()) == rinfo->data()); 443 int pos_delta = static_cast<int>(rinfo->data()) - last_position_; 444 int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag 445 : kStatementPositionTag; 446 // Check if delta is small enough to fit in a tagged byte. 447 if (is_intn(pos_delta, kSmallDataBits)) { 448 WriteTaggedPC(pc_delta, kLocatableTag); 449 WriteTaggedData(pos_delta, pos_type_tag); 450 } else { 451 // Otherwise, use costly encoding. 452 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 453 WriteExtraTaggedIntData(pos_delta, pos_type_tag); 454 } 455 last_position_ = static_cast<int>(rinfo->data()); 456 } else if (RelocInfo::IsComment(rmode)) { 457 // Comments are normally not generated, so we use the costly encoding. 458 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 459 WriteExtraTaggedData(rinfo->data(), kCommentTag); 460 DCHECK(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); 461 } else if (RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)) { 462 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); 463 WriteExtraTaggedPoolData(static_cast<int>(rinfo->data()), 464 RelocInfo::IsConstPool(rmode) ? kConstPoolTag 465 : kVeneerPoolTag); 466 } else { 467 DCHECK(rmode > RelocInfo::LAST_COMPACT_ENUM); 468 int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM; 469 // For all other modes we simply use the mode as the extra tag. 470 // None of these modes need a data component. 471 DCHECK(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag); 472 WriteExtraTaggedPC(pc_delta, saved_mode); 473 } 474 last_pc_ = rinfo->pc(); 475 #ifdef DEBUG 476 DCHECK(begin_pos - pos_ <= kMaxSize); 477 #endif 478 } 479 480 481 inline int RelocIterator::AdvanceGetTag() { 482 return *--pos_ & kTagMask; 483 } 484 485 486 inline int RelocIterator::GetExtraTag() { 487 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); 488 } 489 490 491 inline int RelocIterator::GetTopTag() { 492 return *pos_ >> (kTagBits + kExtraTagBits); 493 } 494 495 496 inline void RelocIterator::ReadTaggedPC() { 497 rinfo_.pc_ += *pos_ >> kTagBits; 498 } 499 500 501 inline void RelocIterator::AdvanceReadPC() { 502 rinfo_.pc_ += *--pos_; 503 } 504 505 506 void RelocIterator::AdvanceReadId() { 507 int x = 0; 508 for (int i = 0; i < kIntSize; i++) { 509 x |= static_cast<int>(*--pos_) << i * kBitsPerByte; 510 } 511 last_id_ += x; 512 rinfo_.data_ = last_id_; 513 } 514 515 516 void RelocIterator::AdvanceReadPoolData() { 517 int x = 0; 518 for (int i = 0; i < kIntSize; i++) { 519 x |= static_cast<int>(*--pos_) << i * kBitsPerByte; 520 } 521 rinfo_.data_ = x; 522 } 523 524 525 void RelocIterator::AdvanceReadPosition() { 526 int x = 0; 527 for (int i = 0; i < kIntSize; i++) { 528 x |= static_cast<int>(*--pos_) << i * kBitsPerByte; 529 } 530 last_position_ += x; 531 rinfo_.data_ = last_position_; 532 } 533 534 535 void RelocIterator::AdvanceReadData() { 536 intptr_t x = 0; 537 for (int i = 0; i < kIntptrSize; i++) { 538 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; 539 } 540 rinfo_.data_ = x; 541 } 542 543 544 void RelocIterator::AdvanceReadVariableLengthPCJump() { 545 // Read the 32-kSmallPCDeltaBits most significant bits of the 546 // pc jump in kChunkBits bit chunks and shift them into place. 547 // Stop when the last chunk is encountered. 548 uint32_t pc_jump = 0; 549 for (int i = 0; i < kIntSize; i++) { 550 byte pc_jump_part = *--pos_; 551 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; 552 if ((pc_jump_part & kLastChunkTagMask) == 1) break; 553 } 554 // The least significant kSmallPCDeltaBits bits will be added 555 // later. 556 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; 557 } 558 559 560 inline int RelocIterator::GetLocatableTypeTag() { 561 return *pos_ & ((1 << kLocatableTypeTagBits) - 1); 562 } 563 564 565 inline void RelocIterator::ReadTaggedId() { 566 int8_t signed_b = *pos_; 567 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 568 last_id_ += signed_b >> kLocatableTypeTagBits; 569 rinfo_.data_ = last_id_; 570 } 571 572 573 inline void RelocIterator::ReadTaggedPosition() { 574 int8_t signed_b = *pos_; 575 // Signed right shift is arithmetic shift. Tested in test-utils.cc. 576 last_position_ += signed_b >> kLocatableTypeTagBits; 577 rinfo_.data_ = last_position_; 578 } 579 580 581 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) { 582 DCHECK(tag == kNonstatementPositionTag || 583 tag == kStatementPositionTag); 584 return (tag == kNonstatementPositionTag) ? 585 RelocInfo::POSITION : 586 RelocInfo::STATEMENT_POSITION; 587 } 588 589 590 void RelocIterator::next() { 591 DCHECK(!done()); 592 // Basically, do the opposite of RelocInfoWriter::Write. 593 // Reading of data is as far as possible avoided for unwanted modes, 594 // but we must always update the pc. 595 // 596 // We exit this loop by returning when we find a mode we want. 597 while (pos_ > end_) { 598 int tag = AdvanceGetTag(); 599 if (tag == kEmbeddedObjectTag) { 600 ReadTaggedPC(); 601 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; 602 } else if (tag == kCodeTargetTag) { 603 ReadTaggedPC(); 604 if (SetMode(RelocInfo::CODE_TARGET)) return; 605 } else if (tag == kLocatableTag) { 606 ReadTaggedPC(); 607 Advance(); 608 int locatable_tag = GetLocatableTypeTag(); 609 if (locatable_tag == kCodeWithIdTag) { 610 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { 611 ReadTaggedId(); 612 return; 613 } 614 } else { 615 // Compact encoding is never used for comments, 616 // so it must be a position. 617 DCHECK(locatable_tag == kNonstatementPositionTag || 618 locatable_tag == kStatementPositionTag); 619 if (mode_mask_ & RelocInfo::kPositionMask) { 620 ReadTaggedPosition(); 621 if (SetMode(GetPositionModeFromTag(locatable_tag))) return; 622 } 623 } 624 } else { 625 DCHECK(tag == kDefaultTag); 626 int extra_tag = GetExtraTag(); 627 if (extra_tag == kPCJumpExtraTag) { 628 if (GetTopTag() == kVariableLengthPCJumpTopTag) { 629 AdvanceReadVariableLengthPCJump(); 630 } else { 631 AdvanceReadPC(); 632 } 633 } else if (extra_tag == kDataJumpExtraTag) { 634 int locatable_tag = GetTopTag(); 635 if (locatable_tag == kCodeWithIdTag) { 636 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { 637 AdvanceReadId(); 638 return; 639 } 640 Advance(kIntSize); 641 } else if (locatable_tag != kCommentTag) { 642 DCHECK(locatable_tag == kNonstatementPositionTag || 643 locatable_tag == kStatementPositionTag); 644 if (mode_mask_ & RelocInfo::kPositionMask) { 645 AdvanceReadPosition(); 646 if (SetMode(GetPositionModeFromTag(locatable_tag))) return; 647 } else { 648 Advance(kIntSize); 649 } 650 } else { 651 DCHECK(locatable_tag == kCommentTag); 652 if (SetMode(RelocInfo::COMMENT)) { 653 AdvanceReadData(); 654 return; 655 } 656 Advance(kIntptrSize); 657 } 658 } else if (extra_tag == kPoolExtraTag) { 659 int pool_type = GetTopTag(); 660 DCHECK(pool_type == kConstPoolTag || pool_type == kVeneerPoolTag); 661 RelocInfo::Mode rmode = (pool_type == kConstPoolTag) ? 662 RelocInfo::CONST_POOL : RelocInfo::VENEER_POOL; 663 if (SetMode(rmode)) { 664 AdvanceReadPoolData(); 665 return; 666 } 667 Advance(kIntSize); 668 } else { 669 AdvanceReadPC(); 670 int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM; 671 if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return; 672 } 673 } 674 } 675 if (code_age_sequence_ != NULL) { 676 byte* old_code_age_sequence = code_age_sequence_; 677 code_age_sequence_ = NULL; 678 if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) { 679 rinfo_.data_ = 0; 680 rinfo_.pc_ = old_code_age_sequence; 681 return; 682 } 683 } 684 done_ = true; 685 } 686 687 688 RelocIterator::RelocIterator(Code* code, int mode_mask) { 689 rinfo_.host_ = code; 690 rinfo_.pc_ = code->instruction_start(); 691 rinfo_.data_ = 0; 692 // Relocation info is read backwards. 693 pos_ = code->relocation_start() + code->relocation_size(); 694 end_ = code->relocation_start(); 695 done_ = false; 696 mode_mask_ = mode_mask; 697 last_id_ = 0; 698 last_position_ = 0; 699 byte* sequence = code->FindCodeAgeSequence(); 700 // We get the isolate from the map, because at serialization time 701 // the code pointer has been cloned and isn't really in heap space. 702 Isolate* isolate = code->map()->GetIsolate(); 703 if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) { 704 code_age_sequence_ = sequence; 705 } else { 706 code_age_sequence_ = NULL; 707 } 708 if (mode_mask_ == 0) pos_ = end_; 709 next(); 710 } 711 712 713 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { 714 rinfo_.pc_ = desc.buffer; 715 rinfo_.data_ = 0; 716 // Relocation info is read backwards. 717 pos_ = desc.buffer + desc.buffer_size; 718 end_ = pos_ - desc.reloc_size; 719 done_ = false; 720 mode_mask_ = mode_mask; 721 last_id_ = 0; 722 last_position_ = 0; 723 code_age_sequence_ = NULL; 724 if (mode_mask_ == 0) pos_ = end_; 725 next(); 726 } 727 728 729 // ----------------------------------------------------------------------------- 730 // Implementation of RelocInfo 731 732 733 #ifdef DEBUG 734 bool RelocInfo::RequiresRelocation(const CodeDesc& desc) { 735 // Ensure there are no code targets or embedded objects present in the 736 // deoptimization entries, they would require relocation after code 737 // generation. 738 int mode_mask = RelocInfo::kCodeTargetMask | 739 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | 740 RelocInfo::ModeMask(RelocInfo::CELL) | 741 RelocInfo::kApplyMask; 742 RelocIterator it(desc, mode_mask); 743 return !it.done(); 744 } 745 #endif 746 747 748 #ifdef ENABLE_DISASSEMBLER 749 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { 750 switch (rmode) { 751 case RelocInfo::NONE32: 752 return "no reloc 32"; 753 case RelocInfo::NONE64: 754 return "no reloc 64"; 755 case RelocInfo::EMBEDDED_OBJECT: 756 return "embedded object"; 757 case RelocInfo::CONSTRUCT_CALL: 758 return "code target (js construct call)"; 759 case RelocInfo::DEBUG_BREAK: 760 return "debug break"; 761 case RelocInfo::CODE_TARGET: 762 return "code target"; 763 case RelocInfo::CODE_TARGET_WITH_ID: 764 return "code target with id"; 765 case RelocInfo::CELL: 766 return "property cell"; 767 case RelocInfo::RUNTIME_ENTRY: 768 return "runtime entry"; 769 case RelocInfo::JS_RETURN: 770 return "js return"; 771 case RelocInfo::COMMENT: 772 return "comment"; 773 case RelocInfo::POSITION: 774 return "position"; 775 case RelocInfo::STATEMENT_POSITION: 776 return "statement position"; 777 case RelocInfo::EXTERNAL_REFERENCE: 778 return "external reference"; 779 case RelocInfo::INTERNAL_REFERENCE: 780 return "internal reference"; 781 case RelocInfo::CONST_POOL: 782 return "constant pool"; 783 case RelocInfo::VENEER_POOL: 784 return "veneer pool"; 785 case RelocInfo::DEBUG_BREAK_SLOT: 786 return "debug break slot"; 787 case RelocInfo::CODE_AGE_SEQUENCE: 788 return "code_age_sequence"; 789 case RelocInfo::NUMBER_OF_MODES: 790 UNREACHABLE(); 791 return "number_of_modes"; 792 } 793 return "unknown relocation type"; 794 } 795 796 797 void RelocInfo::Print(Isolate* isolate, OStream& os) { // NOLINT 798 os << pc_ << " " << RelocModeName(rmode_); 799 if (IsComment(rmode_)) { 800 os << " (" << reinterpret_cast<char*>(data_) << ")"; 801 } else if (rmode_ == EMBEDDED_OBJECT) { 802 os << " (" << Brief(target_object()) << ")"; 803 } else if (rmode_ == EXTERNAL_REFERENCE) { 804 ExternalReferenceEncoder ref_encoder(isolate); 805 os << " (" << ref_encoder.NameOfAddress(target_reference()) << ") (" 806 << target_reference() << ")"; 807 } else if (IsCodeTarget(rmode_)) { 808 Code* code = Code::GetCodeFromTargetAddress(target_address()); 809 os << " (" << Code::Kind2String(code->kind()) << ") (" << target_address() 810 << ")"; 811 if (rmode_ == CODE_TARGET_WITH_ID) { 812 os << " (id=" << static_cast<int>(data_) << ")"; 813 } 814 } else if (IsPosition(rmode_)) { 815 os << " (" << data() << ")"; 816 } else if (IsRuntimeEntry(rmode_) && 817 isolate->deoptimizer_data() != NULL) { 818 // Depotimization bailouts are stored as runtime entries. 819 int id = Deoptimizer::GetDeoptimizationId( 820 isolate, target_address(), Deoptimizer::EAGER); 821 if (id != Deoptimizer::kNotDeoptimizationEntry) { 822 os << " (deoptimization bailout " << id << ")"; 823 } 824 } 825 826 os << "\n"; 827 } 828 #endif // ENABLE_DISASSEMBLER 829 830 831 #ifdef VERIFY_HEAP 832 void RelocInfo::Verify(Isolate* isolate) { 833 switch (rmode_) { 834 case EMBEDDED_OBJECT: 835 Object::VerifyPointer(target_object()); 836 break; 837 case CELL: 838 Object::VerifyPointer(target_cell()); 839 break; 840 case DEBUG_BREAK: 841 case CONSTRUCT_CALL: 842 case CODE_TARGET_WITH_ID: 843 case CODE_TARGET: { 844 // convert inline target address to code object 845 Address addr = target_address(); 846 CHECK(addr != NULL); 847 // Check that we can find the right code object. 848 Code* code = Code::GetCodeFromTargetAddress(addr); 849 Object* found = isolate->FindCodeObject(addr); 850 CHECK(found->IsCode()); 851 CHECK(code->address() == HeapObject::cast(found)->address()); 852 break; 853 } 854 case RUNTIME_ENTRY: 855 case JS_RETURN: 856 case COMMENT: 857 case POSITION: 858 case STATEMENT_POSITION: 859 case EXTERNAL_REFERENCE: 860 case INTERNAL_REFERENCE: 861 case CONST_POOL: 862 case VENEER_POOL: 863 case DEBUG_BREAK_SLOT: 864 case NONE32: 865 case NONE64: 866 break; 867 case NUMBER_OF_MODES: 868 UNREACHABLE(); 869 break; 870 case CODE_AGE_SEQUENCE: 871 DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode()); 872 break; 873 } 874 } 875 #endif // VERIFY_HEAP 876 877 878 // ----------------------------------------------------------------------------- 879 // Implementation of ExternalReference 880 881 void ExternalReference::SetUp() { 882 double_constants.min_int = kMinInt; 883 double_constants.one_half = 0.5; 884 double_constants.minus_one_half = -0.5; 885 double_constants.canonical_non_hole_nan = base::OS::nan_value(); 886 double_constants.the_hole_nan = bit_cast<double>(kHoleNanInt64); 887 double_constants.negative_infinity = -V8_INFINITY; 888 double_constants.uint32_bias = 889 static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1; 890 891 math_exp_data_mutex = new base::Mutex(); 892 } 893 894 895 void ExternalReference::InitializeMathExpData() { 896 // Early return? 897 if (math_exp_data_initialized) return; 898 899 base::LockGuard<base::Mutex> lock_guard(math_exp_data_mutex); 900 if (!math_exp_data_initialized) { 901 // If this is changed, generated code must be adapted too. 902 const int kTableSizeBits = 11; 903 const int kTableSize = 1 << kTableSizeBits; 904 const double kTableSizeDouble = static_cast<double>(kTableSize); 905 906 math_exp_constants_array = new double[9]; 907 // Input values smaller than this always return 0. 908 math_exp_constants_array[0] = -708.39641853226408; 909 // Input values larger than this always return +Infinity. 910 math_exp_constants_array[1] = 709.78271289338397; 911 math_exp_constants_array[2] = V8_INFINITY; 912 // The rest is black magic. Do not attempt to understand it. It is 913 // loosely based on the "expd" function published at: 914 // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html 915 const double constant3 = (1 << kTableSizeBits) / std::log(2.0); 916 math_exp_constants_array[3] = constant3; 917 math_exp_constants_array[4] = 918 static_cast<double>(static_cast<int64_t>(3) << 51); 919 math_exp_constants_array[5] = 1 / constant3; 920 math_exp_constants_array[6] = 3.0000000027955394; 921 math_exp_constants_array[7] = 0.16666666685227835; 922 math_exp_constants_array[8] = 1; 923 924 math_exp_log_table_array = new double[kTableSize]; 925 for (int i = 0; i < kTableSize; i++) { 926 double value = std::pow(2, i / kTableSizeDouble); 927 uint64_t bits = bit_cast<uint64_t, double>(value); 928 bits &= (static_cast<uint64_t>(1) << 52) - 1; 929 double mantissa = bit_cast<double, uint64_t>(bits); 930 math_exp_log_table_array[i] = mantissa; 931 } 932 933 math_exp_data_initialized = true; 934 } 935 } 936 937 938 void ExternalReference::TearDownMathExpData() { 939 delete[] math_exp_constants_array; 940 math_exp_constants_array = NULL; 941 delete[] math_exp_log_table_array; 942 math_exp_log_table_array = NULL; 943 delete math_exp_data_mutex; 944 math_exp_data_mutex = NULL; 945 } 946 947 948 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) 949 : address_(Redirect(isolate, Builtins::c_function_address(id))) {} 950 951 952 ExternalReference::ExternalReference( 953 ApiFunction* fun, 954 Type type = ExternalReference::BUILTIN_CALL, 955 Isolate* isolate = NULL) 956 : address_(Redirect(isolate, fun->address(), type)) {} 957 958 959 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) 960 : address_(isolate->builtins()->builtin_address(name)) {} 961 962 963 ExternalReference::ExternalReference(Runtime::FunctionId id, 964 Isolate* isolate) 965 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} 966 967 968 ExternalReference::ExternalReference(const Runtime::Function* f, 969 Isolate* isolate) 970 : address_(Redirect(isolate, f->entry)) {} 971 972 973 ExternalReference ExternalReference::isolate_address(Isolate* isolate) { 974 return ExternalReference(isolate); 975 } 976 977 978 ExternalReference::ExternalReference(const IC_Utility& ic_utility, 979 Isolate* isolate) 980 : address_(Redirect(isolate, ic_utility.address())) {} 981 982 983 ExternalReference::ExternalReference(StatsCounter* counter) 984 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} 985 986 987 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) 988 : address_(isolate->get_address_from_id(id)) {} 989 990 991 ExternalReference::ExternalReference(const SCTableReference& table_ref) 992 : address_(table_ref.address()) {} 993 994 995 ExternalReference ExternalReference:: 996 incremental_marking_record_write_function(Isolate* isolate) { 997 return ExternalReference(Redirect( 998 isolate, 999 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); 1000 } 1001 1002 1003 ExternalReference ExternalReference:: 1004 store_buffer_overflow_function(Isolate* isolate) { 1005 return ExternalReference(Redirect( 1006 isolate, 1007 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); 1008 } 1009 1010 1011 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) { 1012 return ExternalReference( 1013 Redirect(isolate, FUNCTION_ADDR(CpuFeatures::FlushICache))); 1014 } 1015 1016 1017 ExternalReference ExternalReference::delete_handle_scope_extensions( 1018 Isolate* isolate) { 1019 return ExternalReference(Redirect( 1020 isolate, 1021 FUNCTION_ADDR(HandleScope::DeleteExtensions))); 1022 } 1023 1024 1025 ExternalReference ExternalReference::get_date_field_function( 1026 Isolate* isolate) { 1027 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); 1028 } 1029 1030 1031 ExternalReference ExternalReference::get_make_code_young_function( 1032 Isolate* isolate) { 1033 return ExternalReference(Redirect( 1034 isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung))); 1035 } 1036 1037 1038 ExternalReference ExternalReference::get_mark_code_as_executed_function( 1039 Isolate* isolate) { 1040 return ExternalReference(Redirect( 1041 isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted))); 1042 } 1043 1044 1045 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { 1046 return ExternalReference(isolate->date_cache()->stamp_address()); 1047 } 1048 1049 1050 ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) { 1051 return ExternalReference(isolate->stress_deopt_count_address()); 1052 } 1053 1054 1055 ExternalReference ExternalReference::new_deoptimizer_function( 1056 Isolate* isolate) { 1057 return ExternalReference( 1058 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); 1059 } 1060 1061 1062 ExternalReference ExternalReference::compute_output_frames_function( 1063 Isolate* isolate) { 1064 return ExternalReference( 1065 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); 1066 } 1067 1068 1069 ExternalReference ExternalReference::log_enter_external_function( 1070 Isolate* isolate) { 1071 return ExternalReference( 1072 Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal))); 1073 } 1074 1075 1076 ExternalReference ExternalReference::log_leave_external_function( 1077 Isolate* isolate) { 1078 return ExternalReference( 1079 Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal))); 1080 } 1081 1082 1083 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { 1084 return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); 1085 } 1086 1087 1088 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( 1089 Isolate* isolate) { 1090 return ExternalReference( 1091 isolate->keyed_lookup_cache()->field_offsets_address()); 1092 } 1093 1094 1095 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { 1096 return ExternalReference(isolate->heap()->roots_array_start()); 1097 } 1098 1099 1100 ExternalReference ExternalReference::allocation_sites_list_address( 1101 Isolate* isolate) { 1102 return ExternalReference(isolate->heap()->allocation_sites_list_address()); 1103 } 1104 1105 1106 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { 1107 return ExternalReference(isolate->stack_guard()->address_of_jslimit()); 1108 } 1109 1110 1111 ExternalReference ExternalReference::address_of_real_stack_limit( 1112 Isolate* isolate) { 1113 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); 1114 } 1115 1116 1117 ExternalReference ExternalReference::address_of_regexp_stack_limit( 1118 Isolate* isolate) { 1119 return ExternalReference(isolate->regexp_stack()->limit_address()); 1120 } 1121 1122 1123 ExternalReference ExternalReference::new_space_start(Isolate* isolate) { 1124 return ExternalReference(isolate->heap()->NewSpaceStart()); 1125 } 1126 1127 1128 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { 1129 return ExternalReference(isolate->heap()->store_buffer()->TopAddress()); 1130 } 1131 1132 1133 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { 1134 return ExternalReference(reinterpret_cast<Address>( 1135 isolate->heap()->NewSpaceMask())); 1136 } 1137 1138 1139 ExternalReference ExternalReference::new_space_allocation_top_address( 1140 Isolate* isolate) { 1141 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); 1142 } 1143 1144 1145 ExternalReference ExternalReference::new_space_allocation_limit_address( 1146 Isolate* isolate) { 1147 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); 1148 } 1149 1150 1151 ExternalReference ExternalReference::old_pointer_space_allocation_top_address( 1152 Isolate* isolate) { 1153 return ExternalReference( 1154 isolate->heap()->OldPointerSpaceAllocationTopAddress()); 1155 } 1156 1157 1158 ExternalReference ExternalReference::old_pointer_space_allocation_limit_address( 1159 Isolate* isolate) { 1160 return ExternalReference( 1161 isolate->heap()->OldPointerSpaceAllocationLimitAddress()); 1162 } 1163 1164 1165 ExternalReference ExternalReference::old_data_space_allocation_top_address( 1166 Isolate* isolate) { 1167 return ExternalReference( 1168 isolate->heap()->OldDataSpaceAllocationTopAddress()); 1169 } 1170 1171 1172 ExternalReference ExternalReference::old_data_space_allocation_limit_address( 1173 Isolate* isolate) { 1174 return ExternalReference( 1175 isolate->heap()->OldDataSpaceAllocationLimitAddress()); 1176 } 1177 1178 1179 ExternalReference ExternalReference::handle_scope_level_address( 1180 Isolate* isolate) { 1181 return ExternalReference(HandleScope::current_level_address(isolate)); 1182 } 1183 1184 1185 ExternalReference ExternalReference::handle_scope_next_address( 1186 Isolate* isolate) { 1187 return ExternalReference(HandleScope::current_next_address(isolate)); 1188 } 1189 1190 1191 ExternalReference ExternalReference::handle_scope_limit_address( 1192 Isolate* isolate) { 1193 return ExternalReference(HandleScope::current_limit_address(isolate)); 1194 } 1195 1196 1197 ExternalReference ExternalReference::scheduled_exception_address( 1198 Isolate* isolate) { 1199 return ExternalReference(isolate->scheduled_exception_address()); 1200 } 1201 1202 1203 ExternalReference ExternalReference::address_of_pending_message_obj( 1204 Isolate* isolate) { 1205 return ExternalReference(isolate->pending_message_obj_address()); 1206 } 1207 1208 1209 ExternalReference ExternalReference::address_of_has_pending_message( 1210 Isolate* isolate) { 1211 return ExternalReference(isolate->has_pending_message_address()); 1212 } 1213 1214 1215 ExternalReference ExternalReference::address_of_pending_message_script( 1216 Isolate* isolate) { 1217 return ExternalReference(isolate->pending_message_script_address()); 1218 } 1219 1220 1221 ExternalReference ExternalReference::address_of_min_int() { 1222 return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int)); 1223 } 1224 1225 1226 ExternalReference ExternalReference::address_of_one_half() { 1227 return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half)); 1228 } 1229 1230 1231 ExternalReference ExternalReference::address_of_minus_one_half() { 1232 return ExternalReference( 1233 reinterpret_cast<void*>(&double_constants.minus_one_half)); 1234 } 1235 1236 1237 ExternalReference ExternalReference::address_of_negative_infinity() { 1238 return ExternalReference( 1239 reinterpret_cast<void*>(&double_constants.negative_infinity)); 1240 } 1241 1242 1243 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() { 1244 return ExternalReference( 1245 reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan)); 1246 } 1247 1248 1249 ExternalReference ExternalReference::address_of_the_hole_nan() { 1250 return ExternalReference( 1251 reinterpret_cast<void*>(&double_constants.the_hole_nan)); 1252 } 1253 1254 1255 ExternalReference ExternalReference::address_of_uint32_bias() { 1256 return ExternalReference( 1257 reinterpret_cast<void*>(&double_constants.uint32_bias)); 1258 } 1259 1260 1261 ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) { 1262 return ExternalReference(isolate->cpu_profiler()->is_profiling_address()); 1263 } 1264 1265 1266 ExternalReference ExternalReference::invoke_function_callback( 1267 Isolate* isolate) { 1268 Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); 1269 ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; 1270 ApiFunction thunk_fun(thunk_address); 1271 return ExternalReference(&thunk_fun, thunk_type, isolate); 1272 } 1273 1274 1275 ExternalReference ExternalReference::invoke_accessor_getter_callback( 1276 Isolate* isolate) { 1277 Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); 1278 ExternalReference::Type thunk_type = 1279 ExternalReference::PROFILING_GETTER_CALL; 1280 ApiFunction thunk_fun(thunk_address); 1281 return ExternalReference(&thunk_fun, thunk_type, isolate); 1282 } 1283 1284 1285 #ifndef V8_INTERPRETED_REGEXP 1286 1287 ExternalReference ExternalReference::re_check_stack_guard_state( 1288 Isolate* isolate) { 1289 Address function; 1290 #if V8_TARGET_ARCH_X64 1291 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); 1292 #elif V8_TARGET_ARCH_IA32 1293 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); 1294 #elif V8_TARGET_ARCH_ARM64 1295 function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState); 1296 #elif V8_TARGET_ARCH_ARM 1297 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); 1298 #elif V8_TARGET_ARCH_MIPS 1299 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); 1300 #elif V8_TARGET_ARCH_MIPS64 1301 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); 1302 #elif V8_TARGET_ARCH_X87 1303 function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState); 1304 #else 1305 UNREACHABLE(); 1306 #endif 1307 return ExternalReference(Redirect(isolate, function)); 1308 } 1309 1310 1311 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { 1312 return ExternalReference( 1313 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); 1314 } 1315 1316 ExternalReference ExternalReference::re_case_insensitive_compare_uc16( 1317 Isolate* isolate) { 1318 return ExternalReference(Redirect( 1319 isolate, 1320 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); 1321 } 1322 1323 1324 ExternalReference ExternalReference::re_word_character_map() { 1325 return ExternalReference( 1326 NativeRegExpMacroAssembler::word_character_map_address()); 1327 } 1328 1329 ExternalReference ExternalReference::address_of_static_offsets_vector( 1330 Isolate* isolate) { 1331 return ExternalReference( 1332 reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector())); 1333 } 1334 1335 ExternalReference ExternalReference::address_of_regexp_stack_memory_address( 1336 Isolate* isolate) { 1337 return ExternalReference( 1338 isolate->regexp_stack()->memory_address()); 1339 } 1340 1341 ExternalReference ExternalReference::address_of_regexp_stack_memory_size( 1342 Isolate* isolate) { 1343 return ExternalReference(isolate->regexp_stack()->memory_size_address()); 1344 } 1345 1346 #endif // V8_INTERPRETED_REGEXP 1347 1348 1349 ExternalReference ExternalReference::math_log_double_function( 1350 Isolate* isolate) { 1351 typedef double (*d2d)(double x); 1352 return ExternalReference(Redirect(isolate, 1353 FUNCTION_ADDR(static_cast<d2d>(std::log)), 1354 BUILTIN_FP_CALL)); 1355 } 1356 1357 1358 ExternalReference ExternalReference::math_exp_constants(int constant_index) { 1359 DCHECK(math_exp_data_initialized); 1360 return ExternalReference( 1361 reinterpret_cast<void*>(math_exp_constants_array + constant_index)); 1362 } 1363 1364 1365 ExternalReference ExternalReference::math_exp_log_table() { 1366 DCHECK(math_exp_data_initialized); 1367 return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array)); 1368 } 1369 1370 1371 ExternalReference ExternalReference::page_flags(Page* page) { 1372 return ExternalReference(reinterpret_cast<Address>(page) + 1373 MemoryChunk::kFlagsOffset); 1374 } 1375 1376 1377 ExternalReference ExternalReference::ForDeoptEntry(Address entry) { 1378 return ExternalReference(entry); 1379 } 1380 1381 1382 ExternalReference ExternalReference::cpu_features() { 1383 DCHECK(CpuFeatures::initialized_); 1384 return ExternalReference(&CpuFeatures::supported_); 1385 } 1386 1387 1388 ExternalReference ExternalReference::debug_is_active_address( 1389 Isolate* isolate) { 1390 return ExternalReference(isolate->debug()->is_active_address()); 1391 } 1392 1393 1394 ExternalReference ExternalReference::debug_after_break_target_address( 1395 Isolate* isolate) { 1396 return ExternalReference(isolate->debug()->after_break_target_address()); 1397 } 1398 1399 1400 ExternalReference 1401 ExternalReference::debug_restarter_frame_function_pointer_address( 1402 Isolate* isolate) { 1403 return ExternalReference( 1404 isolate->debug()->restarter_frame_function_pointer_address()); 1405 } 1406 1407 1408 double power_helper(double x, double y) { 1409 int y_int = static_cast<int>(y); 1410 if (y == y_int) { 1411 return power_double_int(x, y_int); // Returns 1 if exponent is 0. 1412 } 1413 if (y == 0.5) { 1414 return (std::isinf(x)) ? V8_INFINITY 1415 : fast_sqrt(x + 0.0); // Convert -0 to +0. 1416 } 1417 if (y == -0.5) { 1418 return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0. 1419 } 1420 return power_double_double(x, y); 1421 } 1422 1423 1424 // Helper function to compute x^y, where y is known to be an 1425 // integer. Uses binary decomposition to limit the number of 1426 // multiplications; see the discussion in "Hacker's Delight" by Henry 1427 // S. Warren, Jr., figure 11-6, page 213. 1428 double power_double_int(double x, int y) { 1429 double m = (y < 0) ? 1 / x : x; 1430 unsigned n = (y < 0) ? -y : y; 1431 double p = 1; 1432 while (n != 0) { 1433 if ((n & 1) != 0) p *= m; 1434 m *= m; 1435 if ((n & 2) != 0) p *= m; 1436 m *= m; 1437 n >>= 2; 1438 } 1439 return p; 1440 } 1441 1442 1443 double power_double_double(double x, double y) { 1444 #if defined(__MINGW64_VERSION_MAJOR) && \ 1445 (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) 1446 // MinGW64 has a custom implementation for pow. This handles certain 1447 // special cases that are different. 1448 if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { 1449 double f; 1450 if (std::modf(y, &f) != 0.0) { 1451 return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0; 1452 } 1453 } 1454 1455 if (x == 2.0) { 1456 int y_int = static_cast<int>(y); 1457 if (y == y_int) { 1458 return std::ldexp(1.0, y_int); 1459 } 1460 } 1461 #endif 1462 1463 // The checks for special cases can be dropped in ia32 because it has already 1464 // been done in generated code before bailing out here. 1465 if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { 1466 return base::OS::nan_value(); 1467 } 1468 return std::pow(x, y); 1469 } 1470 1471 1472 ExternalReference ExternalReference::power_double_double_function( 1473 Isolate* isolate) { 1474 return ExternalReference(Redirect(isolate, 1475 FUNCTION_ADDR(power_double_double), 1476 BUILTIN_FP_FP_CALL)); 1477 } 1478 1479 1480 ExternalReference ExternalReference::power_double_int_function( 1481 Isolate* isolate) { 1482 return ExternalReference(Redirect(isolate, 1483 FUNCTION_ADDR(power_double_int), 1484 BUILTIN_FP_INT_CALL)); 1485 } 1486 1487 1488 bool EvalComparison(Token::Value op, double op1, double op2) { 1489 DCHECK(Token::IsCompareOp(op)); 1490 switch (op) { 1491 case Token::EQ: 1492 case Token::EQ_STRICT: return (op1 == op2); 1493 case Token::NE: return (op1 != op2); 1494 case Token::LT: return (op1 < op2); 1495 case Token::GT: return (op1 > op2); 1496 case Token::LTE: return (op1 <= op2); 1497 case Token::GTE: return (op1 >= op2); 1498 default: 1499 UNREACHABLE(); 1500 return false; 1501 } 1502 } 1503 1504 1505 ExternalReference ExternalReference::mod_two_doubles_operation( 1506 Isolate* isolate) { 1507 return ExternalReference(Redirect(isolate, 1508 FUNCTION_ADDR(modulo), 1509 BUILTIN_FP_FP_CALL)); 1510 } 1511 1512 1513 ExternalReference ExternalReference::debug_break(Isolate* isolate) { 1514 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); 1515 } 1516 1517 1518 ExternalReference ExternalReference::debug_step_in_fp_address( 1519 Isolate* isolate) { 1520 return ExternalReference(isolate->debug()->step_in_fp_addr()); 1521 } 1522 1523 1524 void PositionsRecorder::RecordPosition(int pos) { 1525 DCHECK(pos != RelocInfo::kNoPosition); 1526 DCHECK(pos >= 0); 1527 state_.current_position = pos; 1528 LOG_CODE_EVENT(assembler_->isolate(), 1529 CodeLinePosInfoAddPositionEvent(jit_handler_data_, 1530 assembler_->pc_offset(), 1531 pos)); 1532 } 1533 1534 1535 void PositionsRecorder::RecordStatementPosition(int pos) { 1536 DCHECK(pos != RelocInfo::kNoPosition); 1537 DCHECK(pos >= 0); 1538 state_.current_statement_position = pos; 1539 LOG_CODE_EVENT(assembler_->isolate(), 1540 CodeLinePosInfoAddStatementPositionEvent( 1541 jit_handler_data_, 1542 assembler_->pc_offset(), 1543 pos)); 1544 } 1545 1546 1547 bool PositionsRecorder::WriteRecordedPositions() { 1548 bool written = false; 1549 1550 // Write the statement position if it is different from what was written last 1551 // time. 1552 if (state_.current_statement_position != state_.written_statement_position) { 1553 EnsureSpace ensure_space(assembler_); 1554 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, 1555 state_.current_statement_position); 1556 state_.written_statement_position = state_.current_statement_position; 1557 written = true; 1558 } 1559 1560 // Write the position if it is different from what was written last time and 1561 // also different from the written statement position. 1562 if (state_.current_position != state_.written_position && 1563 state_.current_position != state_.written_statement_position) { 1564 EnsureSpace ensure_space(assembler_); 1565 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); 1566 state_.written_position = state_.current_position; 1567 written = true; 1568 } 1569 1570 // Return whether something was written. 1571 return written; 1572 } 1573 1574 } } // namespace v8::internal 1575