Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 
      7 #include "src/v8.h"
      8 
      9 #if V8_TARGET_ARCH_MIPS64
     10 
     11 #include "src/codegen.h"
     12 #include "src/debug.h"
     13 #include "src/deoptimizer.h"
     14 #include "src/full-codegen.h"
     15 #include "src/runtime.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 
     20 
     21 #define __ ACCESS_MASM(masm)
     22 
     23 
     24 void Builtins::Generate_Adaptor(MacroAssembler* masm,
     25                                 CFunctionId id,
     26                                 BuiltinExtraArguments extra_args) {
     27   // ----------- S t a t e -------------
     28   //  -- a0                 : number of arguments excluding receiver
     29   //  -- a1                 : called function (only guaranteed when
     30   //  --                      extra_args requires it)
     31   //  -- cp                 : context
     32   //  -- sp[0]              : last argument
     33   //  -- ...
     34   //  -- sp[8 * (argc - 1)] : first argument
     35   //  -- sp[8 * agrc]       : receiver
     36   // -----------------------------------
     37 
     38   // Insert extra arguments.
     39   int num_extra_args = 0;
     40   if (extra_args == NEEDS_CALLED_FUNCTION) {
     41     num_extra_args = 1;
     42     __ push(a1);
     43   } else {
     44     DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
     45   }
     46 
     47   // JumpToExternalReference expects s0 to contain the number of arguments
     48   // including the receiver and the extra arguments.
     49   __ Daddu(s0, a0, num_extra_args + 1);
     50   __ dsll(s1, s0, kPointerSizeLog2);
     51   __ Dsubu(s1, s1, kPointerSize);
     52   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
     53 }
     54 
     55 
     56 // Load the built-in InternalArray function from the current context.
     57 static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
     58                                               Register result) {
     59   // Load the native context.
     60 
     61   __ ld(result,
     62         MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
     63   __ ld(result,
     64         FieldMemOperand(result, GlobalObject::kNativeContextOffset));
     65   // Load the InternalArray function from the native context.
     66   __ ld(result,
     67          MemOperand(result,
     68                     Context::SlotOffset(
     69                         Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
     70 }
     71 
     72 
     73 // Load the built-in Array function from the current context.
     74 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
     75   // Load the native context.
     76 
     77   __ ld(result,
     78         MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
     79   __ ld(result,
     80         FieldMemOperand(result, GlobalObject::kNativeContextOffset));
     81   // Load the Array function from the native context.
     82   __ ld(result,
     83         MemOperand(result,
     84                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
     85 }
     86 
     87 
     88 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
     89   // ----------- S t a t e -------------
     90   //  -- a0     : number of arguments
     91   //  -- ra     : return address
     92   //  -- sp[...]: constructor arguments
     93   // -----------------------------------
     94   Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
     95 
     96   // Get the InternalArray function.
     97   GenerateLoadInternalArrayFunction(masm, a1);
     98 
     99   if (FLAG_debug_code) {
    100     // Initial map for the builtin InternalArray functions should be maps.
    101     __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
    102     __ SmiTst(a2, a4);
    103     __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
    104               a4, Operand(zero_reg));
    105     __ GetObjectType(a2, a3, a4);
    106     __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
    107               a4, Operand(MAP_TYPE));
    108   }
    109 
    110   // Run the native code for the InternalArray function called as a normal
    111   // function.
    112   // Tail call a stub.
    113   InternalArrayConstructorStub stub(masm->isolate());
    114   __ TailCallStub(&stub);
    115 }
    116 
    117 
    118 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
    119   // ----------- S t a t e -------------
    120   //  -- a0     : number of arguments
    121   //  -- ra     : return address
    122   //  -- sp[...]: constructor arguments
    123   // -----------------------------------
    124   Label generic_array_code;
    125 
    126   // Get the Array function.
    127   GenerateLoadArrayFunction(masm, a1);
    128 
    129   if (FLAG_debug_code) {
    130     // Initial map for the builtin Array functions should be maps.
    131     __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
    132     __ SmiTst(a2, a4);
    133     __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
    134               a4, Operand(zero_reg));
    135     __ GetObjectType(a2, a3, a4);
    136     __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
    137               a4, Operand(MAP_TYPE));
    138   }
    139 
    140   // Run the native code for the Array function called as a normal function.
    141   // Tail call a stub.
    142   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
    143   ArrayConstructorStub stub(masm->isolate());
    144   __ TailCallStub(&stub);
    145 }
    146 
    147 
    148 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
    149   // ----------- S t a t e -------------
    150   //  -- a0                     : number of arguments
    151   //  -- a1                     : constructor function
    152   //  -- ra                     : return address
    153   //  -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
    154   //  -- sp[argc * 8]           : receiver
    155   // -----------------------------------
    156   Counters* counters = masm->isolate()->counters();
    157   __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
    158 
    159   Register function = a1;
    160   if (FLAG_debug_code) {
    161     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
    162     __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
    163   }
    164 
    165   // Load the first arguments in a0 and get rid of the rest.
    166   Label no_arguments;
    167   __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
    168   // First args = sp[(argc - 1) * 8].
    169   __ Dsubu(a0, a0, Operand(1));
    170   __ dsll(a0, a0, kPointerSizeLog2);
    171   __ Daddu(sp, a0, sp);
    172   __ ld(a0, MemOperand(sp));
    173   // sp now point to args[0], drop args[0] + receiver.
    174   __ Drop(2);
    175 
    176   Register argument = a2;
    177   Label not_cached, argument_is_string;
    178   __ LookupNumberStringCache(a0,        // Input.
    179                              argument,  // Result.
    180                              a3,        // Scratch.
    181                              a4,        // Scratch.
    182                              a5,        // Scratch.
    183                              &not_cached);
    184   __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4);
    185   __ bind(&argument_is_string);
    186 
    187   // ----------- S t a t e -------------
    188   //  -- a2     : argument converted to string
    189   //  -- a1     : constructor function
    190   //  -- ra     : return address
    191   // -----------------------------------
    192 
    193   Label gc_required;
    194   __ Allocate(JSValue::kSize,
    195               v0,  // Result.
    196               a3,  // Scratch.
    197               a4,  // Scratch.
    198               &gc_required,
    199               TAG_OBJECT);
    200 
    201   // Initialising the String Object.
    202   Register map = a3;
    203   __ LoadGlobalFunctionInitialMap(function, map, a4);
    204   if (FLAG_debug_code) {
    205     __ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset));
    206     __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
    207         a4, Operand(JSValue::kSize >> kPointerSizeLog2));
    208     __ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
    209     __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
    210         a4, Operand(zero_reg));
    211   }
    212   __ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset));
    213 
    214   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
    215   __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
    216   __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
    217 
    218   __ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset));
    219 
    220   // Ensure the object is fully initialized.
    221   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
    222 
    223   __ Ret();
    224 
    225   // The argument was not found in the number to string cache. Check
    226   // if it's a string already before calling the conversion builtin.
    227   Label convert_argument;
    228   __ bind(&not_cached);
    229   __ JumpIfSmi(a0, &convert_argument);
    230 
    231   // Is it a String?
    232   __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
    233   __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
    234   STATIC_ASSERT(kNotStringTag != 0);
    235   __ And(a4, a3, Operand(kIsNotStringMask));
    236   __ Branch(&convert_argument, ne, a4, Operand(zero_reg));
    237   __ mov(argument, a0);
    238   __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
    239   __ Branch(&argument_is_string);
    240 
    241   // Invoke the conversion builtin and put the result into a2.
    242   __ bind(&convert_argument);
    243   __ push(function);  // Preserve the function.
    244   __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
    245   {
    246     FrameScope scope(masm, StackFrame::INTERNAL);
    247     __ push(a0);
    248     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
    249   }
    250   __ pop(function);
    251   __ mov(argument, v0);
    252   __ Branch(&argument_is_string);
    253 
    254   // Load the empty string into a2, remove the receiver from the
    255   // stack, and jump back to the case where the argument is a string.
    256   __ bind(&no_arguments);
    257   __ LoadRoot(argument, Heap::kempty_stringRootIndex);
    258   __ Drop(1);
    259   __ Branch(&argument_is_string);
    260 
    261   // At this point the argument is already a string. Call runtime to
    262   // create a string wrapper.
    263   __ bind(&gc_required);
    264   __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4);
    265   {
    266     FrameScope scope(masm, StackFrame::INTERNAL);
    267     __ push(argument);
    268     __ CallRuntime(Runtime::kNewStringWrapper, 1);
    269   }
    270   __ Ret();
    271 }
    272 
    273 
    274 static void CallRuntimePassFunction(
    275     MacroAssembler* masm, Runtime::FunctionId function_id) {
    276   FrameScope scope(masm, StackFrame::INTERNAL);
    277   // Push a copy of the function onto the stack.
    278   // Push call kind information and function as parameter to the runtime call.
    279   __ Push(a1, a1);
    280 
    281   __ CallRuntime(function_id, 1);
    282   // Restore call kind information and receiver.
    283   __ Pop(a1);
    284 }
    285 
    286 
    287 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
    288   __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
    289   __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
    290   __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
    291   __ Jump(at);
    292 }
    293 
    294 
    295 static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
    296   __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
    297   __ Jump(at);
    298 }
    299 
    300 
    301 void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
    302   // Checking whether the queued function is ready for install is optional,
    303   // since we come across interrupts and stack checks elsewhere.  However,
    304   // not checking may delay installing ready functions, and always checking
    305   // would be quite expensive.  A good compromise is to first check against
    306   // stack limit as a cue for an interrupt signal.
    307   Label ok;
    308   __ LoadRoot(a4, Heap::kStackLimitRootIndex);
    309   __ Branch(&ok, hs, sp, Operand(a4));
    310 
    311   CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
    312   GenerateTailCallToReturnedCode(masm);
    313 
    314   __ bind(&ok);
    315   GenerateTailCallToSharedCode(masm);
    316 }
    317 
    318 
    319 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
    320                                            bool is_api_function,
    321                                            bool create_memento) {
    322   // ----------- S t a t e -------------
    323   //  -- a0     : number of arguments
    324   //  -- a1     : constructor function
    325   //  -- a2     : allocation site or undefined
    326   //  -- ra     : return address
    327   //  -- sp[...]: constructor arguments
    328   // -----------------------------------
    329 
    330   // Should never create mementos for api functions.
    331   DCHECK(!is_api_function || !create_memento);
    332 
    333   Isolate* isolate = masm->isolate();
    334 
    335   // ----------- S t a t e -------------
    336   //  -- a0     : number of arguments
    337   //  -- a1     : constructor function
    338   //  -- ra     : return address
    339   //  -- sp[...]: constructor arguments
    340   // -----------------------------------
    341 
    342   // Enter a construct frame.
    343   {
    344     FrameScope scope(masm, StackFrame::CONSTRUCT);
    345 
    346     if (create_memento) {
    347       __ AssertUndefinedOrAllocationSite(a2, a3);
    348       __ push(a2);
    349     }
    350 
    351     // Preserve the two incoming parameters on the stack.
    352     // Tag arguments count.
    353     __ dsll32(a0, a0, 0);
    354     __ MultiPushReversed(a0.bit() | a1.bit());
    355 
    356     Label rt_call, allocated;
    357     // Try to allocate the object without transitioning into C code. If any of
    358     // the preconditions is not met, the code bails out to the runtime call.
    359     if (FLAG_inline_new) {
    360       Label undo_allocation;
    361       ExternalReference debug_step_in_fp =
    362           ExternalReference::debug_step_in_fp_address(isolate);
    363       __ li(a2, Operand(debug_step_in_fp));
    364       __ ld(a2, MemOperand(a2));
    365       __ Branch(&rt_call, ne, a2, Operand(zero_reg));
    366 
    367       // Load the initial map and verify that it is in fact a map.
    368       // a1: constructor function
    369       __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
    370       __ JumpIfSmi(a2, &rt_call);
    371       __ GetObjectType(a2, a3, t0);
    372       __ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
    373 
    374       // Check that the constructor is not constructing a JSFunction (see
    375       // comments in Runtime_NewObject in runtime.cc). In which case the
    376       // initial map's instance type would be JS_FUNCTION_TYPE.
    377       // a1: constructor function
    378       // a2: initial map
    379       __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
    380       __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
    381 
    382       if (!is_api_function) {
    383         Label allocate;
    384         MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
    385         // Check if slack tracking is enabled.
    386         __ lwu(a4, bit_field3);
    387         __ DecodeField<Map::ConstructionCount>(a6, a4);
    388         __ Branch(&allocate,
    389                   eq,
    390                   a6,
    391                   Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
    392         // Decrease generous allocation count.
    393         __ Dsubu(a4, a4, Operand(1 << Map::ConstructionCount::kShift));
    394         __ Branch(USE_DELAY_SLOT,
    395             &allocate, ne, a6, Operand(JSFunction::kFinishSlackTracking));
    396         __ sw(a4, bit_field3);  // In delay slot.
    397 
    398         __ Push(a1, a2, a1);  // a1 = Constructor.
    399         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
    400 
    401         __ Pop(a1, a2);
    402         // Slack tracking counter is kNoSlackTracking after runtime call.
    403         DCHECK(JSFunction::kNoSlackTracking == 0);
    404         __ mov(a6, zero_reg);
    405 
    406         __ bind(&allocate);
    407       }
    408 
    409       // Now allocate the JSObject on the heap.
    410       // a1: constructor function
    411       // a2: initial map
    412       __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
    413       if (create_memento) {
    414         __ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
    415       }
    416 
    417       __ Allocate(a3, t0, t1, t2, &rt_call, SIZE_IN_WORDS);
    418 
    419       // Allocated the JSObject, now initialize the fields. Map is set to
    420       // initial map and properties and elements are set to empty fixed array.
    421       // a1: constructor function
    422       // a2: initial map
    423       // a3: object size (not including memento if create_memento)
    424       // t0: JSObject (not tagged)
    425       __ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
    426       __ mov(t1, t0);
    427       __ sd(a2, MemOperand(t1, JSObject::kMapOffset));
    428       __ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
    429       __ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
    430       __ Daddu(t1, t1, Operand(3*kPointerSize));
    431       DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
    432       DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
    433       DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
    434 
    435       // Fill all the in-object properties with appropriate filler.
    436       // a1: constructor function
    437       // a2: initial map
    438       // a3: object size (in words, including memento if create_memento)
    439       // t0: JSObject (not tagged)
    440       // t1: First in-object property of JSObject (not tagged)
    441       // a6: slack tracking counter (non-API function case)
    442       DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
    443 
    444       // Use t3 to hold undefined, which is used in several places below.
    445       __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
    446 
    447       if (!is_api_function) {
    448         Label no_inobject_slack_tracking;
    449 
    450         // Check if slack tracking is enabled.
    451         __ Branch(&no_inobject_slack_tracking,
    452                   eq,
    453                   a6,
    454                   Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
    455 
    456         // Allocate object with a slack.
    457         __ lwu(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
    458         __ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
    459                 kBitsPerByte);
    460         __ dsll(at, a0, kPointerSizeLog2);
    461         __ daddu(a0, t1, at);
    462         // a0: offset of first field after pre-allocated fields
    463         if (FLAG_debug_code) {
    464           __ dsll(at, a3, kPointerSizeLog2);
    465           __ Daddu(t2, t0, Operand(at));   // End of object.
    466           __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
    467               a0, Operand(t2));
    468         }
    469         __ InitializeFieldsWithFiller(t1, a0, t3);
    470         // To allow for truncation.
    471         __ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
    472         // Fill the remaining fields with one pointer filler map.
    473 
    474         __ bind(&no_inobject_slack_tracking);
    475       }
    476 
    477       if (create_memento) {
    478         __ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
    479         __ dsll(a0, a0, kPointerSizeLog2);
    480         __ Daddu(a0, t0, Operand(a0));  // End of object.
    481         __ InitializeFieldsWithFiller(t1, a0, t3);
    482 
    483         // Fill in memento fields.
    484         // t1: points to the allocated but uninitialized memento.
    485         __ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex);
    486         DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
    487         __ sd(t3, MemOperand(t1));
    488         __ Daddu(t1, t1, kPointerSize);
    489         // Load the AllocationSite.
    490         __ ld(t3, MemOperand(sp, 2 * kPointerSize));
    491         DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
    492         __ sd(t3, MemOperand(t1));
    493         __ Daddu(t1, t1, kPointerSize);
    494       } else {
    495         __ dsll(at, a3, kPointerSizeLog2);
    496         __ Daddu(a0, t0, Operand(at));  // End of object.
    497         __ InitializeFieldsWithFiller(t1, a0, t3);
    498       }
    499 
    500       // Add the object tag to make the JSObject real, so that we can continue
    501       // and jump into the continuation code at any time from now on. Any
    502       // failures need to undo the allocation, so that the heap is in a
    503       // consistent state and verifiable.
    504       __ Daddu(t0, t0, Operand(kHeapObjectTag));
    505 
    506       // Check if a non-empty properties array is needed. Continue with
    507       // allocated object if not fall through to runtime call if it is.
    508       // a1: constructor function
    509       // t0: JSObject
    510       // t1: start of next object (not tagged)
    511       __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
    512       // The field instance sizes contains both pre-allocated property fields
    513       // and in-object properties.
    514       __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
    515       __ Ext(t2, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
    516              kBitsPerByte);
    517       __ Daddu(a3, a3, Operand(t2));
    518       __ Ext(t2, a0, Map::kInObjectPropertiesByte * kBitsPerByte,
    519               kBitsPerByte);
    520       __ dsubu(a3, a3, t2);
    521 
    522       // Done if no extra properties are to be allocated.
    523       __ Branch(&allocated, eq, a3, Operand(zero_reg));
    524       __ Assert(greater_equal, kPropertyAllocationCountFailed,
    525           a3, Operand(zero_reg));
    526 
    527       // Scale the number of elements by pointer size and add the header for
    528       // FixedArrays to the start of the next object calculation from above.
    529       // a1: constructor
    530       // a3: number of elements in properties array
    531       // t0: JSObject
    532       // t1: start of next object
    533       __ Daddu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
    534       __ Allocate(
    535           a0,
    536           t1,
    537           t2,
    538           a2,
    539           &undo_allocation,
    540           static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
    541 
    542       // Initialize the FixedArray.
    543       // a1: constructor
    544       // a3: number of elements in properties array (untagged)
    545       // t0: JSObject
    546       // t1: start of next object
    547       __ LoadRoot(t2, Heap::kFixedArrayMapRootIndex);
    548       __ mov(a2, t1);
    549       __ sd(t2, MemOperand(a2, JSObject::kMapOffset));
    550       // Tag number of elements.
    551       __ dsll32(a0, a3, 0);
    552       __ sd(a0, MemOperand(a2, FixedArray::kLengthOffset));
    553       __ Daddu(a2, a2, Operand(2 * kPointerSize));
    554 
    555       DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
    556       DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
    557 
    558       // Initialize the fields to undefined.
    559       // a1: constructor
    560       // a2: First element of FixedArray (not tagged)
    561       // a3: number of elements in properties array
    562       // t0: JSObject
    563       // t1: FixedArray (not tagged)
    564       __ dsll(a7, a3, kPointerSizeLog2);
    565       __ daddu(t2, a2, a7);  // End of object.
    566       DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
    567       { Label loop, entry;
    568         if (!is_api_function || create_memento) {
    569           __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
    570         } else if (FLAG_debug_code) {
    571           __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
    572           __ Assert(eq, kUndefinedValueNotLoaded, t3, Operand(a6));
    573         }
    574         __ jmp(&entry);
    575         __ bind(&loop);
    576         __ sd(t3, MemOperand(a2));
    577         __ daddiu(a2, a2, kPointerSize);
    578         __ bind(&entry);
    579         __ Branch(&loop, less, a2, Operand(t2));
    580       }
    581 
    582       // Store the initialized FixedArray into the properties field of
    583       // the JSObject.
    584       // a1: constructor function
    585       // t0: JSObject
    586       // t1: FixedArray (not tagged)
    587       __ Daddu(t1, t1, Operand(kHeapObjectTag));  // Add the heap tag.
    588       __ sd(t1, FieldMemOperand(t0, JSObject::kPropertiesOffset));
    589 
    590       // Continue with JSObject being successfully allocated.
    591       // a1: constructor function
    592       // a4: JSObject
    593       __ jmp(&allocated);
    594 
    595       // Undo the setting of the new top so that the heap is verifiable. For
    596       // example, the map's unused properties potentially do not match the
    597       // allocated objects unused properties.
    598       // t0: JSObject (previous new top)
    599       __ bind(&undo_allocation);
    600       __ UndoAllocationInNewSpace(t0, t1);
    601     }
    602 
    603     // Allocate the new receiver object using the runtime call.
    604     // a1: constructor function
    605     __ bind(&rt_call);
    606     if (create_memento) {
    607       // Get the cell or allocation site.
    608       __ ld(a2, MemOperand(sp, 2 * kPointerSize));
    609       __ push(a2);
    610     }
    611 
    612     __ push(a1);  // Argument for Runtime_NewObject.
    613     if (create_memento) {
    614       __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2);
    615     } else {
    616       __ CallRuntime(Runtime::kNewObject, 1);
    617     }
    618     __ mov(t0, v0);
    619 
    620     // If we ended up using the runtime, and we want a memento, then the
    621     // runtime call made it for us, and we shouldn't do create count
    622     // increment.
    623     Label count_incremented;
    624     if (create_memento) {
    625       __ jmp(&count_incremented);
    626     }
    627 
    628     // Receiver for constructor call allocated.
    629     // t0: JSObject
    630     __ bind(&allocated);
    631 
    632     if (create_memento) {
    633       __ ld(a2, MemOperand(sp, kPointerSize * 2));
    634       __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
    635       __ Branch(&count_incremented, eq, a2, Operand(t1));
    636       // a2 is an AllocationSite. We are creating a memento from it, so we
    637       // need to increment the memento create count.
    638       __ ld(a3, FieldMemOperand(a2,
    639                                 AllocationSite::kPretenureCreateCountOffset));
    640       __ Daddu(a3, a3, Operand(Smi::FromInt(1)));
    641       __ sd(a3, FieldMemOperand(a2,
    642                                 AllocationSite::kPretenureCreateCountOffset));
    643       __ bind(&count_incremented);
    644     }
    645 
    646     __ Push(t0, t0);
    647 
    648     // Reload the number of arguments from the stack.
    649     // sp[0]: receiver
    650     // sp[1]: receiver
    651     // sp[2]: constructor function
    652     // sp[3]: number of arguments (smi-tagged)
    653     __ ld(a1, MemOperand(sp, 2 * kPointerSize));
    654     __ ld(a3, MemOperand(sp, 3 * kPointerSize));
    655 
    656     // Set up pointer to last argument.
    657     __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
    658 
    659     // Set up number of arguments for function call below.
    660     __ SmiUntag(a0, a3);
    661 
    662     // Copy arguments and receiver to the expression stack.
    663     // a0: number of arguments
    664     // a1: constructor function
    665     // a2: address of last argument (caller sp)
    666     // a3: number of arguments (smi-tagged)
    667     // sp[0]: receiver
    668     // sp[1]: receiver
    669     // sp[2]: constructor function
    670     // sp[3]: number of arguments (smi-tagged)
    671     Label loop, entry;
    672     __ SmiUntag(a3);
    673     __ jmp(&entry);
    674     __ bind(&loop);
    675     __ dsll(a4, a3, kPointerSizeLog2);
    676     __ Daddu(a4, a2, Operand(a4));
    677     __ ld(a5, MemOperand(a4));
    678     __ push(a5);
    679     __ bind(&entry);
    680     __ Daddu(a3, a3, Operand(-1));
    681     __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
    682 
    683     // Call the function.
    684     // a0: number of arguments
    685     // a1: constructor function
    686     if (is_api_function) {
    687       __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
    688       Handle<Code> code =
    689           masm->isolate()->builtins()->HandleApiCallConstruct();
    690       __ Call(code, RelocInfo::CODE_TARGET);
    691     } else {
    692       ParameterCount actual(a0);
    693       __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
    694     }
    695 
    696     // Store offset of return address for deoptimizer.
    697     if (!is_api_function) {
    698       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    699     }
    700 
    701     // Restore context from the frame.
    702     __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
    703 
    704     // If the result is an object (in the ECMA sense), we should get rid
    705     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    706     // on page 74.
    707     Label use_receiver, exit;
    708 
    709     // If the result is a smi, it is *not* an object in the ECMA sense.
    710     // v0: result
    711     // sp[0]: receiver (newly allocated object)
    712     // sp[1]: constructor function
    713     // sp[2]: number of arguments (smi-tagged)
    714     __ JumpIfSmi(v0, &use_receiver);
    715 
    716     // If the type of the result (stored in its map) is less than
    717     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    718     __ GetObjectType(v0, a1, a3);
    719     __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
    720 
    721     // Throw away the result of the constructor invocation and use the
    722     // on-stack receiver as the result.
    723     __ bind(&use_receiver);
    724     __ ld(v0, MemOperand(sp));
    725 
    726     // Remove receiver from the stack, remove caller arguments, and
    727     // return.
    728     __ bind(&exit);
    729     // v0: result
    730     // sp[0]: receiver (newly allocated object)
    731     // sp[1]: constructor function
    732     // sp[2]: number of arguments (smi-tagged)
    733     __ ld(a1, MemOperand(sp, 2 * kPointerSize));
    734 
    735     // Leave construct frame.
    736   }
    737 
    738   __ SmiScale(a4, a1, kPointerSizeLog2);
    739   __ Daddu(sp, sp, a4);
    740   __ Daddu(sp, sp, kPointerSize);
    741   __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
    742   __ Ret();
    743 }
    744 
    745 
    746 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
    747   Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
    748 }
    749 
    750 
    751 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
    752   Generate_JSConstructStubHelper(masm, true, false);
    753 }
    754 
    755 
    756 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
    757                                              bool is_construct) {
    758   // Called from JSEntryStub::GenerateBody
    759 
    760   // ----------- S t a t e -------------
    761   //  -- a0: code entry
    762   //  -- a1: function
    763   //  -- a2: receiver_pointer
    764   //  -- a3: argc
    765   //  -- s0: argv
    766   // -----------------------------------
    767   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    768   // Clear the context before we push it when entering the JS frame.
    769   __ mov(cp, zero_reg);
    770 
    771   // Enter an internal frame.
    772   {
    773     FrameScope scope(masm, StackFrame::INTERNAL);
    774 
    775     // Set up the context from the function argument.
    776     __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
    777 
    778     // Push the function and the receiver onto the stack.
    779     __ Push(a1, a2);
    780 
    781     // Copy arguments to the stack in a loop.
    782     // a3: argc
    783     // s0: argv, i.e. points to first arg
    784     Label loop, entry;
    785     // TODO(plind): At least on simulator, argc in a3 is an int32_t with junk
    786     //    in upper bits. Should fix the root cause, rather than use below
    787     //    workaround to clear upper bits.
    788     __ dsll32(a3, a3, 0);  // int32_t -> int64_t.
    789     __ dsrl32(a3, a3, 0);
    790     __ dsll(a4, a3, kPointerSizeLog2);
    791     __ daddu(a6, s0, a4);
    792     __ b(&entry);
    793     __ nop();   // Branch delay slot nop.
    794     // a6 points past last arg.
    795     __ bind(&loop);
    796     __ ld(a4, MemOperand(s0));  // Read next parameter.
    797     __ daddiu(s0, s0, kPointerSize);
    798     __ ld(a4, MemOperand(a4));  // Dereference handle.
    799     __ push(a4);  // Push parameter.
    800     __ bind(&entry);
    801     __ Branch(&loop, ne, s0, Operand(a6));
    802 
    803     // Initialize all JavaScript callee-saved registers, since they will be seen
    804     // by the garbage collector as part of handlers.
    805     __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
    806     __ mov(s1, a4);
    807     __ mov(s2, a4);
    808     __ mov(s3, a4);
    809     __ mov(s4, a4);
    810     __ mov(s5, a4);
    811     // s6 holds the root address. Do not clobber.
    812     // s7 is cp. Do not init.
    813 
    814     // Invoke the code and pass argc as a0.
    815     __ mov(a0, a3);
    816     if (is_construct) {
    817       // No type feedback cell is available
    818       __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
    819       CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
    820       __ CallStub(&stub);
    821     } else {
    822       ParameterCount actual(a0);
    823       __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
    824     }
    825 
    826     // Leave internal frame.
    827   }
    828   __ Jump(ra);
    829 }
    830 
    831 
    832 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
    833   Generate_JSEntryTrampolineHelper(masm, false);
    834 }
    835 
    836 
    837 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
    838   Generate_JSEntryTrampolineHelper(masm, true);
    839 }
    840 
    841 
    842 void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
    843   CallRuntimePassFunction(masm, Runtime::kCompileLazy);
    844   GenerateTailCallToReturnedCode(masm);
    845 }
    846 
    847 
    848 static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
    849   FrameScope scope(masm, StackFrame::INTERNAL);
    850   // Push a copy of the function onto the stack.
    851   // Push function as parameter to the runtime call.
    852   __ Push(a1, a1);
    853   // Whether to compile in a background thread.
    854   __ Push(masm->isolate()->factory()->ToBoolean(concurrent));
    855 
    856   __ CallRuntime(Runtime::kCompileOptimized, 2);
    857   // Restore receiver.
    858   __ Pop(a1);
    859 }
    860 
    861 
    862 void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
    863   CallCompileOptimized(masm, false);
    864   GenerateTailCallToReturnedCode(masm);
    865 }
    866 
    867 
    868 void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
    869   CallCompileOptimized(masm, true);
    870   GenerateTailCallToReturnedCode(masm);
    871 }
    872 
    873 
    874 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
    875   // For now, we are relying on the fact that make_code_young doesn't do any
    876   // garbage collection which allows us to save/restore the registers without
    877   // worrying about which of them contain pointers. We also don't build an
    878   // internal frame to make the code faster, since we shouldn't have to do stack
    879   // crawls in MakeCodeYoung. This seems a bit fragile.
    880 
    881   // Set a0 to point to the head of the PlatformCodeAge sequence.
    882   __ Dsubu(a0, a0,
    883       Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
    884 
    885   // The following registers must be saved and restored when calling through to
    886   // the runtime:
    887   //   a0 - contains return address (beginning of patch sequence)
    888   //   a1 - isolate
    889   RegList saved_regs =
    890       (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
    891   FrameScope scope(masm, StackFrame::MANUAL);
    892   __ MultiPush(saved_regs);
    893   __ PrepareCallCFunction(2, 0, a2);
    894   __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
    895   __ CallCFunction(
    896       ExternalReference::get_make_code_young_function(masm->isolate()), 2);
    897   __ MultiPop(saved_regs);
    898   __ Jump(a0);
    899 }
    900 
    901 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
    902 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
    903     MacroAssembler* masm) {                                  \
    904   GenerateMakeCodeYoungAgainCommon(masm);                    \
    905 }                                                            \
    906 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
    907     MacroAssembler* masm) {                                  \
    908   GenerateMakeCodeYoungAgainCommon(masm);                    \
    909 }
    910 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
    911 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
    912 
    913 
    914 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
    915   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
    916   // that make_code_young doesn't do any garbage collection which allows us to
    917   // save/restore the registers without worrying about which of them contain
    918   // pointers.
    919 
    920   // Set a0 to point to the head of the PlatformCodeAge sequence.
    921   __ Dsubu(a0, a0,
    922       Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
    923 
    924   // The following registers must be saved and restored when calling through to
    925   // the runtime:
    926   //   a0 - contains return address (beginning of patch sequence)
    927   //   a1 - isolate
    928   RegList saved_regs =
    929       (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
    930   FrameScope scope(masm, StackFrame::MANUAL);
    931   __ MultiPush(saved_regs);
    932   __ PrepareCallCFunction(2, 0, a2);
    933   __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
    934   __ CallCFunction(
    935       ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
    936       2);
    937   __ MultiPop(saved_regs);
    938 
    939   // Perform prologue operations usually performed by the young code stub.
    940   __ Push(ra, fp, cp, a1);
    941   __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    942 
    943   // Jump to point after the code-age stub.
    944   __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
    945   __ Jump(a0);
    946 }
    947 
    948 
    949 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
    950   GenerateMakeCodeYoungAgainCommon(masm);
    951 }
    952 
    953 
    954 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
    955                                              SaveFPRegsMode save_doubles) {
    956   {
    957     FrameScope scope(masm, StackFrame::INTERNAL);
    958 
    959     // Preserve registers across notification, this is important for compiled
    960     // stubs that tail call the runtime on deopts passing their parameters in
    961     // registers.
    962     __ MultiPush(kJSCallerSaved | kCalleeSaved);
    963     // Pass the function and deoptimization type to the runtime system.
    964     __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
    965     __ MultiPop(kJSCallerSaved | kCalleeSaved);
    966   }
    967 
    968   __ Daddu(sp, sp, Operand(kPointerSize));  // Ignore state
    969   __ Jump(ra);  // Jump to miss handler
    970 }
    971 
    972 
    973 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
    974   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
    975 }
    976 
    977 
    978 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
    979   Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
    980 }
    981 
    982 
    983 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
    984                                              Deoptimizer::BailoutType type) {
    985   {
    986     FrameScope scope(masm, StackFrame::INTERNAL);
    987     // Pass the function and deoptimization type to the runtime system.
    988     __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
    989     __ push(a0);
    990     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    991   }
    992 
    993   // Get the full codegen state from the stack and untag it -> a6.
    994   __ ld(a6, MemOperand(sp, 0 * kPointerSize));
    995   __ SmiUntag(a6);
    996   // Switch on the state.
    997   Label with_tos_register, unknown_state;
    998   __ Branch(&with_tos_register,
    999             ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
   1000   __ Ret(USE_DELAY_SLOT);
   1001   // Safe to fill delay slot Addu will emit one instruction.
   1002   __ Daddu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
   1003 
   1004   __ bind(&with_tos_register);
   1005   __ ld(v0, MemOperand(sp, 1 * kPointerSize));
   1006   __ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
   1007 
   1008   __ Ret(USE_DELAY_SLOT);
   1009   // Safe to fill delay slot Addu will emit one instruction.
   1010   __ Daddu(sp, sp, Operand(2 * kPointerSize));  // Remove state.
   1011 
   1012   __ bind(&unknown_state);
   1013   __ stop("no cases left");
   1014 }
   1015 
   1016 
   1017 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
   1018   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
   1019 }
   1020 
   1021 
   1022 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
   1023   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
   1024 }
   1025 
   1026 
   1027 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
   1028   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
   1029 }
   1030 
   1031 
   1032 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
   1033   // Lookup the function in the JavaScript frame.
   1034   __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   1035   {
   1036     FrameScope scope(masm, StackFrame::INTERNAL);
   1037     // Pass function as argument.
   1038     __ push(a0);
   1039     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
   1040   }
   1041 
   1042   // If the code object is null, just return to the unoptimized code.
   1043   __ Ret(eq, v0, Operand(Smi::FromInt(0)));
   1044 
   1045   // Load deoptimization data from the code object.
   1046   // <deopt_data> = <code>[#deoptimization_data_offset]
   1047   __ Uld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
   1048 
   1049   // Load the OSR entrypoint offset from the deoptimization data.
   1050   // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
   1051   __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
   1052       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
   1053   __ SmiUntag(a1);
   1054 
   1055   // Compute the target address = code_obj + header_size + osr_offset
   1056   // <entry_addr> = <code_obj> + #header_size + <osr_offset>
   1057   __ daddu(v0, v0, a1);
   1058   __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
   1059 
   1060   // And "return" to the OSR entry point of the function.
   1061   __ Ret();
   1062 }
   1063 
   1064 
   1065 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
   1066   // We check the stack limit as indicator that recompilation might be done.
   1067   Label ok;
   1068   __ LoadRoot(at, Heap::kStackLimitRootIndex);
   1069   __ Branch(&ok, hs, sp, Operand(at));
   1070   {
   1071     FrameScope scope(masm, StackFrame::INTERNAL);
   1072     __ CallRuntime(Runtime::kStackGuard, 0);
   1073   }
   1074   __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
   1075           RelocInfo::CODE_TARGET);
   1076 
   1077   __ bind(&ok);
   1078   __ Ret();
   1079 }
   1080 
   1081 
   1082 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
   1083   // 1. Make sure we have at least one argument.
   1084   // a0: actual number of arguments
   1085   { Label done;
   1086     __ Branch(&done, ne, a0, Operand(zero_reg));
   1087     __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
   1088     __ push(a6);
   1089     __ Daddu(a0, a0, Operand(1));
   1090     __ bind(&done);
   1091   }
   1092 
   1093   // 2. Get the function to call (passed as receiver) from the stack, check
   1094   //    if it is a function.
   1095   // a0: actual number of arguments
   1096   Label slow, non_function;
   1097   __ dsll(at, a0, kPointerSizeLog2);
   1098   __ daddu(at, sp, at);
   1099   __ ld(a1, MemOperand(at));
   1100   __ JumpIfSmi(a1, &non_function);
   1101   __ GetObjectType(a1, a2, a2);
   1102   __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
   1103 
   1104   // 3a. Patch the first argument if necessary when calling a function.
   1105   // a0: actual number of arguments
   1106   // a1: function
   1107   Label shift_arguments;
   1108   __ li(a4, Operand(0, RelocInfo::NONE32));  // Indicate regular JS_FUNCTION.
   1109   { Label convert_to_object, use_global_proxy, patch_receiver;
   1110     // Change context eagerly in case we need the global receiver.
   1111     __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   1112 
   1113     // Do not transform the receiver for strict mode functions.
   1114     __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   1115     __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
   1116     __ And(a7, a3, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
   1117     __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
   1118 
   1119     // Do not transform the receiver for native (Compilerhints already in a3).
   1120     __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
   1121     __ And(a7, a3, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
   1122     __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
   1123 
   1124     // Compute the receiver in sloppy mode.
   1125     // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
   1126     __ dsll(at, a0, kPointerSizeLog2);
   1127     __ daddu(a2, sp, at);
   1128     __ ld(a2, MemOperand(a2, -kPointerSize));
   1129     // a0: actual number of arguments
   1130     // a1: function
   1131     // a2: first argument
   1132     __ JumpIfSmi(a2, &convert_to_object, a6);
   1133 
   1134     __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
   1135     __ Branch(&use_global_proxy, eq, a2, Operand(a3));
   1136     __ LoadRoot(a3, Heap::kNullValueRootIndex);
   1137     __ Branch(&use_global_proxy, eq, a2, Operand(a3));
   1138 
   1139     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   1140     __ GetObjectType(a2, a3, a3);
   1141     __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
   1142 
   1143     __ bind(&convert_to_object);
   1144     // Enter an internal frame in order to preserve argument count.
   1145     {
   1146       FrameScope scope(masm, StackFrame::INTERNAL);
   1147       __ SmiTag(a0);
   1148       __ Push(a0, a2);
   1149       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1150       __ mov(a2, v0);
   1151 
   1152       __ pop(a0);
   1153       __ SmiUntag(a0);
   1154       // Leave internal frame.
   1155     }
   1156     // Restore the function to a1, and the flag to a4.
   1157     __ dsll(at, a0, kPointerSizeLog2);
   1158     __ daddu(at, sp, at);
   1159     __ ld(a1, MemOperand(at));
   1160     __ Branch(USE_DELAY_SLOT, &patch_receiver);
   1161     __ li(a4, Operand(0, RelocInfo::NONE32));
   1162 
   1163     __ bind(&use_global_proxy);
   1164     __ ld(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
   1165     __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
   1166 
   1167     __ bind(&patch_receiver);
   1168     __ dsll(at, a0, kPointerSizeLog2);
   1169     __ daddu(a3, sp, at);
   1170     __ sd(a2, MemOperand(a3, -kPointerSize));
   1171 
   1172     __ Branch(&shift_arguments);
   1173   }
   1174 
   1175   // 3b. Check for function proxy.
   1176   __ bind(&slow);
   1177   __ li(a4, Operand(1, RelocInfo::NONE32));  // Indicate function proxy.
   1178   __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
   1179 
   1180   __ bind(&non_function);
   1181   __ li(a4, Operand(2, RelocInfo::NONE32));  // Indicate non-function.
   1182 
   1183   // 3c. Patch the first argument when calling a non-function.  The
   1184   //     CALL_NON_FUNCTION builtin expects the non-function callee as
   1185   //     receiver, so overwrite the first argument which will ultimately
   1186   //     become the receiver.
   1187   // a0: actual number of arguments
   1188   // a1: function
   1189   // a4: call type (0: JS function, 1: function proxy, 2: non-function)
   1190   __ dsll(at, a0, kPointerSizeLog2);
   1191   __ daddu(a2, sp, at);
   1192   __ sd(a1, MemOperand(a2, -kPointerSize));
   1193 
   1194   // 4. Shift arguments and return address one slot down on the stack
   1195   //    (overwriting the original receiver).  Adjust argument count to make
   1196   //    the original first argument the new receiver.
   1197   // a0: actual number of arguments
   1198   // a1: function
   1199   // a4: call type (0: JS function, 1: function proxy, 2: non-function)
   1200   __ bind(&shift_arguments);
   1201   { Label loop;
   1202     // Calculate the copy start address (destination). Copy end address is sp.
   1203     __ dsll(at, a0, kPointerSizeLog2);
   1204     __ daddu(a2, sp, at);
   1205 
   1206     __ bind(&loop);
   1207     __ ld(at, MemOperand(a2, -kPointerSize));
   1208     __ sd(at, MemOperand(a2));
   1209     __ Dsubu(a2, a2, Operand(kPointerSize));
   1210     __ Branch(&loop, ne, a2, Operand(sp));
   1211     // Adjust the actual number of arguments and remove the top element
   1212     // (which is a copy of the last argument).
   1213     __ Dsubu(a0, a0, Operand(1));
   1214     __ Pop();
   1215   }
   1216 
   1217   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
   1218   //     or a function proxy via CALL_FUNCTION_PROXY.
   1219   // a0: actual number of arguments
   1220   // a1: function
   1221   // a4: call type (0: JS function, 1: function proxy, 2: non-function)
   1222   { Label function, non_proxy;
   1223     __ Branch(&function, eq, a4, Operand(zero_reg));
   1224     // Expected number of arguments is 0 for CALL_NON_FUNCTION.
   1225     __ mov(a2, zero_reg);
   1226     __ Branch(&non_proxy, ne, a4, Operand(1));
   1227 
   1228     __ push(a1);  // Re-add proxy object as additional argument.
   1229     __ Daddu(a0, a0, Operand(1));
   1230     __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
   1231     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1232             RelocInfo::CODE_TARGET);
   1233 
   1234     __ bind(&non_proxy);
   1235     __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
   1236     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1237             RelocInfo::CODE_TARGET);
   1238     __ bind(&function);
   1239   }
   1240 
   1241   // 5b. Get the code to call from the function and check that the number of
   1242   //     expected arguments matches what we're providing.  If so, jump
   1243   //     (tail-call) to the code in register edx without checking arguments.
   1244   // a0: actual number of arguments
   1245   // a1: function
   1246   __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   1247   // The argument count is stored as int32_t on 64-bit platforms.
   1248   // TODO(plind): Smi on 32-bit platforms.
   1249   __ lw(a2,
   1250          FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
   1251   // Check formal and actual parameter counts.
   1252   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1253           RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
   1254 
   1255   __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   1256   ParameterCount expected(0);
   1257   __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
   1258 }
   1259 
   1260 
   1261 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
   1262   const int kIndexOffset    =
   1263       StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
   1264   const int kLimitOffset    =
   1265       StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
   1266   const int kArgsOffset     = 2 * kPointerSize;
   1267   const int kRecvOffset     = 3 * kPointerSize;
   1268   const int kFunctionOffset = 4 * kPointerSize;
   1269 
   1270   {
   1271     FrameScope frame_scope(masm, StackFrame::INTERNAL);
   1272     __ ld(a0, MemOperand(fp, kFunctionOffset));  // Get the function.
   1273     __ push(a0);
   1274     __ ld(a0, MemOperand(fp, kArgsOffset));  // Get the args array.
   1275     __ push(a0);
   1276     // Returns (in v0) number of arguments to copy to stack as Smi.
   1277     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
   1278 
   1279     // Check the stack for overflow. We are not trying to catch
   1280     // interruptions (e.g. debug break and preemption) here, so the "real stack
   1281     // limit" is checked.
   1282     Label okay;
   1283     __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
   1284     // Make a2 the space we have left. The stack might already be overflowed
   1285     // here which will cause a2 to become negative.
   1286     __ dsubu(a2, sp, a2);
   1287     // Check if the arguments will overflow the stack.
   1288     __ SmiScale(a7, v0, kPointerSizeLog2);
   1289     __ Branch(&okay, gt, a2, Operand(a7));  // Signed comparison.
   1290 
   1291     // Out of stack space.
   1292     __ ld(a1, MemOperand(fp, kFunctionOffset));
   1293     __ Push(a1, v0);
   1294     __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
   1295     // End of stack check.
   1296 
   1297     // Push current limit and index.
   1298     __ bind(&okay);
   1299     __ mov(a1, zero_reg);
   1300     __ Push(v0, a1);  // Limit and initial index.
   1301 
   1302     // Get the receiver.
   1303     __ ld(a0, MemOperand(fp, kRecvOffset));
   1304 
   1305     // Check that the function is a JS function (otherwise it must be a proxy).
   1306     Label push_receiver;
   1307     __ ld(a1, MemOperand(fp, kFunctionOffset));
   1308     __ GetObjectType(a1, a2, a2);
   1309     __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
   1310 
   1311     // Change context eagerly to get the right global object if necessary.
   1312     __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   1313     // Load the shared function info while the function is still in a1.
   1314     __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   1315 
   1316     // Compute the receiver.
   1317     // Do not transform the receiver for strict mode functions.
   1318     Label call_to_object, use_global_proxy;
   1319     __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
   1320     __ And(a7, a7, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
   1321     __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
   1322 
   1323     // Do not transform the receiver for native (Compilerhints already in a2).
   1324     __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
   1325     __ And(a7, a7, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
   1326     __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
   1327 
   1328     // Compute the receiver in sloppy mode.
   1329     __ JumpIfSmi(a0, &call_to_object);
   1330     __ LoadRoot(a1, Heap::kNullValueRootIndex);
   1331     __ Branch(&use_global_proxy, eq, a0, Operand(a1));
   1332     __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   1333     __ Branch(&use_global_proxy, eq, a0, Operand(a2));
   1334 
   1335     // Check if the receiver is already a JavaScript object.
   1336     // a0: receiver
   1337     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   1338     __ GetObjectType(a0, a1, a1);
   1339     __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
   1340 
   1341     // Convert the receiver to a regular object.
   1342     // a0: receiver
   1343     __ bind(&call_to_object);
   1344     __ push(a0);
   1345     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1346     __ mov(a0, v0);  // Put object in a0 to match other paths to push_receiver.
   1347     __ Branch(&push_receiver);
   1348 
   1349     __ bind(&use_global_proxy);
   1350     __ ld(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
   1351     __ ld(a0, FieldMemOperand(a0, GlobalObject::kGlobalProxyOffset));
   1352 
   1353     // Push the receiver.
   1354     // a0: receiver
   1355     __ bind(&push_receiver);
   1356     __ push(a0);
   1357 
   1358     // Copy all arguments from the array to the stack.
   1359     Label entry, loop;
   1360     __ ld(a0, MemOperand(fp, kIndexOffset));
   1361     __ Branch(&entry);
   1362 
   1363     // Load the current argument from the arguments array and push it to the
   1364     // stack.
   1365     // a0: current argument index
   1366     __ bind(&loop);
   1367     __ ld(a1, MemOperand(fp, kArgsOffset));
   1368     __ Push(a1, a0);
   1369 
   1370     // Call the runtime to access the property in the arguments array.
   1371     __ CallRuntime(Runtime::kGetProperty, 2);
   1372     __ push(v0);
   1373 
   1374     // Use inline caching to access the arguments.
   1375     __ ld(a0, MemOperand(fp, kIndexOffset));
   1376     __ Daddu(a0, a0, Operand(Smi::FromInt(1)));
   1377     __ sd(a0, MemOperand(fp, kIndexOffset));
   1378 
   1379     // Test if the copy loop has finished copying all the elements from the
   1380     // arguments object.
   1381     __ bind(&entry);
   1382     __ ld(a1, MemOperand(fp, kLimitOffset));
   1383     __ Branch(&loop, ne, a0, Operand(a1));
   1384 
   1385     // Call the function.
   1386     Label call_proxy;
   1387     ParameterCount actual(a0);
   1388     __ SmiUntag(a0);
   1389     __ ld(a1, MemOperand(fp, kFunctionOffset));
   1390     __ GetObjectType(a1, a2, a2);
   1391     __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
   1392 
   1393     __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
   1394 
   1395     frame_scope.GenerateLeaveFrame();
   1396     __ Ret(USE_DELAY_SLOT);
   1397     __ Daddu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
   1398 
   1399     // Call the function proxy.
   1400     __ bind(&call_proxy);
   1401     __ push(a1);  // Add function proxy as last argument.
   1402     __ Daddu(a0, a0, Operand(1));
   1403     __ li(a2, Operand(0, RelocInfo::NONE32));
   1404     __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
   1405     __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1406             RelocInfo::CODE_TARGET);
   1407     // Tear down the internal frame and remove function, receiver and args.
   1408   }
   1409 
   1410   __ Ret(USE_DELAY_SLOT);
   1411   __ Daddu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
   1412 }
   1413 
   1414 
   1415 static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
   1416                                       Label* stack_overflow) {
   1417   // ----------- S t a t e -------------
   1418   //  -- a0 : actual number of arguments
   1419   //  -- a1 : function (passed through to callee)
   1420   //  -- a2 : expected number of arguments
   1421   // -----------------------------------
   1422   // Check the stack for overflow. We are not trying to catch
   1423   // interruptions (e.g. debug break and preemption) here, so the "real stack
   1424   // limit" is checked.
   1425   __ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
   1426   // Make a5 the space we have left. The stack might already be overflowed
   1427   // here which will cause a5 to become negative.
   1428   __ dsubu(a5, sp, a5);
   1429   // Check if the arguments will overflow the stack.
   1430   __ dsll(at, a2, kPointerSizeLog2);
   1431   // Signed comparison.
   1432   __ Branch(stack_overflow, le, a5, Operand(at));
   1433 }
   1434 
   1435 
   1436 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
   1437   // __ sll(a0, a0, kSmiTagSize);
   1438   __ dsll32(a0, a0, 0);
   1439   __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1440   __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
   1441   __ Daddu(fp, sp,
   1442       Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
   1443 }
   1444 
   1445 
   1446 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
   1447   // ----------- S t a t e -------------
   1448   //  -- v0 : result being passed through
   1449   // -----------------------------------
   1450   // Get the number of arguments passed (as a smi), tear down the frame and
   1451   // then tear down the parameters.
   1452   __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
   1453                              kPointerSize)));
   1454   __ mov(sp, fp);
   1455   __ MultiPop(fp.bit() | ra.bit());
   1456   __ SmiScale(a4, a1, kPointerSizeLog2);
   1457   __ Daddu(sp, sp, a4);
   1458   // Adjust for the receiver.
   1459   __ Daddu(sp, sp, Operand(kPointerSize));
   1460 }
   1461 
   1462 
   1463 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
   1464   // State setup as expected by MacroAssembler::InvokePrologue.
   1465   // ----------- S t a t e -------------
   1466   //  -- a0: actual arguments count
   1467   //  -- a1: function (passed through to callee)
   1468   //  -- a2: expected arguments count
   1469   // -----------------------------------
   1470 
   1471   Label stack_overflow;
   1472   ArgumentAdaptorStackCheck(masm, &stack_overflow);
   1473   Label invoke, dont_adapt_arguments;
   1474 
   1475   Label enough, too_few;
   1476   __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   1477   __ Branch(&dont_adapt_arguments, eq,
   1478       a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
   1479   // We use Uless as the number of argument should always be greater than 0.
   1480   __ Branch(&too_few, Uless, a0, Operand(a2));
   1481 
   1482   {  // Enough parameters: actual >= expected.
   1483     // a0: actual number of arguments as a smi
   1484     // a1: function
   1485     // a2: expected number of arguments
   1486     // a3: code entry to call
   1487     __ bind(&enough);
   1488     EnterArgumentsAdaptorFrame(masm);
   1489 
   1490     // Calculate copy start address into a0 and copy end address into a2.
   1491     __ SmiScale(a0, a0, kPointerSizeLog2);
   1492     __ Daddu(a0, fp, a0);
   1493     // Adjust for return address and receiver.
   1494     __ Daddu(a0, a0, Operand(2 * kPointerSize));
   1495     // Compute copy end address.
   1496     __ dsll(a2, a2, kPointerSizeLog2);
   1497     __ dsubu(a2, a0, a2);
   1498 
   1499     // Copy the arguments (including the receiver) to the new stack frame.
   1500     // a0: copy start address
   1501     // a1: function
   1502     // a2: copy end address
   1503     // a3: code entry to call
   1504 
   1505     Label copy;
   1506     __ bind(&copy);
   1507     __ ld(a4, MemOperand(a0));
   1508     __ push(a4);
   1509     __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
   1510     __ daddiu(a0, a0, -kPointerSize);  // In delay slot.
   1511 
   1512     __ jmp(&invoke);
   1513   }
   1514 
   1515   {  // Too few parameters: Actual < expected.
   1516     __ bind(&too_few);
   1517     EnterArgumentsAdaptorFrame(masm);
   1518 
   1519     // Calculate copy start address into a0 and copy end address is fp.
   1520     // a0: actual number of arguments as a smi
   1521     // a1: function
   1522     // a2: expected number of arguments
   1523     // a3: code entry to call
   1524     __ SmiScale(a0, a0, kPointerSizeLog2);
   1525     __ Daddu(a0, fp, a0);
   1526     // Adjust for return address and receiver.
   1527     __ Daddu(a0, a0, Operand(2 * kPointerSize));
   1528     // Compute copy end address. Also adjust for return address.
   1529     __ Daddu(a7, fp, kPointerSize);
   1530 
   1531     // Copy the arguments (including the receiver) to the new stack frame.
   1532     // a0: copy start address
   1533     // a1: function
   1534     // a2: expected number of arguments
   1535     // a3: code entry to call
   1536     // a7: copy end address
   1537     Label copy;
   1538     __ bind(&copy);
   1539     __ ld(a4, MemOperand(a0));  // Adjusted above for return addr and receiver.
   1540     __ Dsubu(sp, sp, kPointerSize);
   1541     __ Dsubu(a0, a0, kPointerSize);
   1542     __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
   1543     __ sd(a4, MemOperand(sp));  // In the delay slot.
   1544 
   1545     // Fill the remaining expected arguments with undefined.
   1546     // a1: function
   1547     // a2: expected number of arguments
   1548     // a3: code entry to call
   1549     __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
   1550     __ dsll(a6, a2, kPointerSizeLog2);
   1551     __ Dsubu(a2, fp, Operand(a6));
   1552     // Adjust for frame.
   1553     __ Dsubu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
   1554                             2 * kPointerSize));
   1555 
   1556     Label fill;
   1557     __ bind(&fill);
   1558     __ Dsubu(sp, sp, kPointerSize);
   1559     __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
   1560     __ sd(a4, MemOperand(sp));
   1561   }
   1562 
   1563   // Call the entry point.
   1564   __ bind(&invoke);
   1565 
   1566   __ Call(a3);
   1567 
   1568   // Store offset of return address for deoptimizer.
   1569   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
   1570 
   1571   // Exit frame and return.
   1572   LeaveArgumentsAdaptorFrame(masm);
   1573   __ Ret();
   1574 
   1575 
   1576   // -------------------------------------------
   1577   // Don't adapt arguments.
   1578   // -------------------------------------------
   1579   __ bind(&dont_adapt_arguments);
   1580   __ Jump(a3);
   1581 
   1582   __ bind(&stack_overflow);
   1583   {
   1584     FrameScope frame(masm, StackFrame::MANUAL);
   1585     EnterArgumentsAdaptorFrame(masm);
   1586     __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
   1587     __ break_(0xCC);
   1588   }
   1589 }
   1590 
   1591 
   1592 #undef __
   1593 
   1594 } }  // namespace v8::internal
   1595 
   1596 #endif  // V8_TARGET_ARCH_MIPS64
   1597