Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_MIPS64
      8 
      9 #include "src/bootstrapper.h"
     10 #include "src/code-stubs.h"
     11 #include "src/codegen.h"
     12 #include "src/ic/handler-compiler.h"
     13 #include "src/ic/ic.h"
     14 #include "src/isolate.h"
     15 #include "src/jsregexp.h"
     16 #include "src/regexp-macro-assembler.h"
     17 #include "src/runtime.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 
     23 static void InitializeArrayConstructorDescriptor(
     24     Isolate* isolate, CodeStubDescriptor* descriptor,
     25     int constant_stack_parameter_count) {
     26   Address deopt_handler = Runtime::FunctionForId(
     27       Runtime::kArrayConstructor)->entry;
     28 
     29   if (constant_stack_parameter_count == 0) {
     30     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     31                            JS_FUNCTION_STUB_MODE);
     32   } else {
     33     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
     34                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     35   }
     36 }
     37 
     38 
     39 static void InitializeInternalArrayConstructorDescriptor(
     40     Isolate* isolate, CodeStubDescriptor* descriptor,
     41     int constant_stack_parameter_count) {
     42   Address deopt_handler = Runtime::FunctionForId(
     43       Runtime::kInternalArrayConstructor)->entry;
     44 
     45   if (constant_stack_parameter_count == 0) {
     46     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     47                            JS_FUNCTION_STUB_MODE);
     48   } else {
     49     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
     50                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     51   }
     52 }
     53 
     54 
     55 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     56     CodeStubDescriptor* descriptor) {
     57   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     58 }
     59 
     60 
     61 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     62     CodeStubDescriptor* descriptor) {
     63   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     64 }
     65 
     66 
     67 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     68     CodeStubDescriptor* descriptor) {
     69   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     70 }
     71 
     72 
     73 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     74     CodeStubDescriptor* descriptor) {
     75   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     76 }
     77 
     78 
     79 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     80     CodeStubDescriptor* descriptor) {
     81   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     82 }
     83 
     84 
     85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     86     CodeStubDescriptor* descriptor) {
     87   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     88 }
     89 
     90 
     91 #define __ ACCESS_MASM(masm)
     92 
     93 
     94 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
     95                                           Label* slow,
     96                                           Condition cc);
     97 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     98                                     Register lhs,
     99                                     Register rhs,
    100                                     Label* rhs_not_nan,
    101                                     Label* slow,
    102                                     bool strict);
    103 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    104                                            Register lhs,
    105                                            Register rhs);
    106 
    107 
    108 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
    109                                                ExternalReference miss) {
    110   // Update the static counter each time a new code stub is generated.
    111   isolate()->counters()->code_stubs()->Increment();
    112 
    113   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    114   int param_count = descriptor.GetEnvironmentParameterCount();
    115   {
    116     // Call the runtime system in a fresh internal frame.
    117     FrameScope scope(masm, StackFrame::INTERNAL);
    118     DCHECK((param_count == 0) ||
    119            a0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
    120     // Push arguments, adjust sp.
    121     __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
    122     for (int i = 0; i < param_count; ++i) {
    123       // Store argument to stack.
    124       __ sd(descriptor.GetEnvironmentParameterRegister(i),
    125             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
    126     }
    127     __ CallExternalReference(miss, param_count);
    128   }
    129 
    130   __ Ret();
    131 }
    132 
    133 
    134 void DoubleToIStub::Generate(MacroAssembler* masm) {
    135   Label out_of_range, only_low, negate, done;
    136   Register input_reg = source();
    137   Register result_reg = destination();
    138 
    139   int double_offset = offset();
    140   // Account for saved regs if input is sp.
    141   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
    142 
    143   Register scratch =
    144       GetRegisterThatIsNotOneOf(input_reg, result_reg);
    145   Register scratch2 =
    146       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
    147   Register scratch3 =
    148       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
    149   DoubleRegister double_scratch = kLithiumScratchDouble;
    150 
    151   __ Push(scratch, scratch2, scratch3);
    152   if (!skip_fastpath()) {
    153     // Load double input.
    154     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
    155 
    156     // Clear cumulative exception flags and save the FCSR.
    157     __ cfc1(scratch2, FCSR);
    158     __ ctc1(zero_reg, FCSR);
    159 
    160     // Try a conversion to a signed integer.
    161     __ Trunc_w_d(double_scratch, double_scratch);
    162     // Move the converted value into the result register.
    163     __ mfc1(scratch3, double_scratch);
    164 
    165     // Retrieve and restore the FCSR.
    166     __ cfc1(scratch, FCSR);
    167     __ ctc1(scratch2, FCSR);
    168 
    169     // Check for overflow and NaNs.
    170     __ And(
    171         scratch, scratch,
    172         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
    173            | kFCSRInvalidOpFlagMask);
    174     // If we had no exceptions then set result_reg and we are done.
    175     Label error;
    176     __ Branch(&error, ne, scratch, Operand(zero_reg));
    177     __ Move(result_reg, scratch3);
    178     __ Branch(&done);
    179     __ bind(&error);
    180   }
    181 
    182   // Load the double value and perform a manual truncation.
    183   Register input_high = scratch2;
    184   Register input_low = scratch3;
    185 
    186   __ lw(input_low, MemOperand(input_reg, double_offset));
    187   __ lw(input_high, MemOperand(input_reg, double_offset + kIntSize));
    188 
    189   Label normal_exponent, restore_sign;
    190   // Extract the biased exponent in result.
    191   __ Ext(result_reg,
    192          input_high,
    193          HeapNumber::kExponentShift,
    194          HeapNumber::kExponentBits);
    195 
    196   // Check for Infinity and NaNs, which should return 0.
    197   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
    198   __ Movz(result_reg, zero_reg, scratch);
    199   __ Branch(&done, eq, scratch, Operand(zero_reg));
    200 
    201   // Express exponent as delta to (number of mantissa bits + 31).
    202   __ Subu(result_reg,
    203           result_reg,
    204           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
    205 
    206   // If the delta is strictly positive, all bits would be shifted away,
    207   // which means that we can return 0.
    208   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
    209   __ mov(result_reg, zero_reg);
    210   __ Branch(&done);
    211 
    212   __ bind(&normal_exponent);
    213   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
    214   // Calculate shift.
    215   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
    216 
    217   // Save the sign.
    218   Register sign = result_reg;
    219   result_reg = no_reg;
    220   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
    221 
    222   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
    223   // to check for this specific case.
    224   Label high_shift_needed, high_shift_done;
    225   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
    226   __ mov(input_high, zero_reg);
    227   __ Branch(&high_shift_done);
    228   __ bind(&high_shift_needed);
    229 
    230   // Set the implicit 1 before the mantissa part in input_high.
    231   __ Or(input_high,
    232         input_high,
    233         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    234   // Shift the mantissa bits to the correct position.
    235   // We don't need to clear non-mantissa bits as they will be shifted away.
    236   // If they weren't, it would mean that the answer is in the 32bit range.
    237   __ sllv(input_high, input_high, scratch);
    238 
    239   __ bind(&high_shift_done);
    240 
    241   // Replace the shifted bits with bits from the lower mantissa word.
    242   Label pos_shift, shift_done;
    243   __ li(at, 32);
    244   __ subu(scratch, at, scratch);
    245   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
    246 
    247   // Negate scratch.
    248   __ Subu(scratch, zero_reg, scratch);
    249   __ sllv(input_low, input_low, scratch);
    250   __ Branch(&shift_done);
    251 
    252   __ bind(&pos_shift);
    253   __ srlv(input_low, input_low, scratch);
    254 
    255   __ bind(&shift_done);
    256   __ Or(input_high, input_high, Operand(input_low));
    257   // Restore sign if necessary.
    258   __ mov(scratch, sign);
    259   result_reg = sign;
    260   sign = no_reg;
    261   __ Subu(result_reg, zero_reg, input_high);
    262   __ Movz(result_reg, input_high, scratch);
    263 
    264   __ bind(&done);
    265 
    266   __ Pop(scratch, scratch2, scratch3);
    267   __ Ret();
    268 }
    269 
    270 
    271 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
    272     Isolate* isolate) {
    273   WriteInt32ToHeapNumberStub stub1(isolate, a1, v0, a2, a3);
    274   WriteInt32ToHeapNumberStub stub2(isolate, a2, v0, a3, a0);
    275   stub1.GetCode();
    276   stub2.GetCode();
    277 }
    278 
    279 
    280 // See comment for class, this does NOT work for int32's that are in Smi range.
    281 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
    282   Label max_negative_int;
    283   // the_int_ has the answer which is a signed int32 but not a Smi.
    284   // We test for the special value that has a different exponent.
    285   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
    286   // Test sign, and save for later conditionals.
    287   __ And(sign(), the_int(), Operand(0x80000000u));
    288   __ Branch(&max_negative_int, eq, the_int(), Operand(0x80000000u));
    289 
    290   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
    291   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
    292   uint32_t non_smi_exponent =
    293       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
    294   __ li(scratch(), Operand(non_smi_exponent));
    295   // Set the sign bit in scratch_ if the value was negative.
    296   __ or_(scratch(), scratch(), sign());
    297   // Subtract from 0 if the value was negative.
    298   __ subu(at, zero_reg, the_int());
    299   __ Movn(the_int(), at, sign());
    300   // We should be masking the implict first digit of the mantissa away here,
    301   // but it just ends up combining harmlessly with the last digit of the
    302   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
    303   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
    304   DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
    305   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
    306   __ srl(at, the_int(), shift_distance);
    307   __ or_(scratch(), scratch(), at);
    308   __ sw(scratch(), FieldMemOperand(the_heap_number(),
    309                                    HeapNumber::kExponentOffset));
    310   __ sll(scratch(), the_int(), 32 - shift_distance);
    311   __ Ret(USE_DELAY_SLOT);
    312   __ sw(scratch(), FieldMemOperand(the_heap_number(),
    313                                    HeapNumber::kMantissaOffset));
    314 
    315   __ bind(&max_negative_int);
    316   // The max negative int32 is stored as a positive number in the mantissa of
    317   // a double because it uses a sign bit instead of using two's complement.
    318   // The actual mantissa bits stored are all 0 because the implicit most
    319   // significant 1 bit is not stored.
    320   non_smi_exponent += 1 << HeapNumber::kExponentShift;
    321   __ li(scratch(), Operand(HeapNumber::kSignMask | non_smi_exponent));
    322   __ sw(scratch(),
    323         FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
    324   __ mov(scratch(), zero_reg);
    325   __ Ret(USE_DELAY_SLOT);
    326   __ sw(scratch(),
    327         FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
    328 }
    329 
    330 
    331 // Handle the case where the lhs and rhs are the same object.
    332 // Equality is almost reflexive (everything but NaN), so this is a test
    333 // for "identity and not NaN".
    334 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
    335                                           Label* slow,
    336                                           Condition cc) {
    337   Label not_identical;
    338   Label heap_number, return_equal;
    339   Register exp_mask_reg = t1;
    340 
    341   __ Branch(&not_identical, ne, a0, Operand(a1));
    342 
    343   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
    344 
    345   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    346   // so we do the second best thing - test it ourselves.
    347   // They are both equal and they are not both Smis so both of them are not
    348   // Smis. If it's not a heap number, then return equal.
    349   if (cc == less || cc == greater) {
    350     __ GetObjectType(a0, t0, t0);
    351     __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
    352   } else {
    353     __ GetObjectType(a0, t0, t0);
    354     __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
    355     // Comparing JS objects with <=, >= is complicated.
    356     if (cc != eq) {
    357     __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
    358       // Normally here we fall through to return_equal, but undefined is
    359       // special: (undefined == undefined) == true, but
    360       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    361       if (cc == less_equal || cc == greater_equal) {
    362         __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
    363         __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
    364         __ Branch(&return_equal, ne, a0, Operand(a6));
    365         DCHECK(is_int16(GREATER) && is_int16(LESS));
    366         __ Ret(USE_DELAY_SLOT);
    367         if (cc == le) {
    368           // undefined <= undefined should fail.
    369           __ li(v0, Operand(GREATER));
    370         } else  {
    371           // undefined >= undefined should fail.
    372           __ li(v0, Operand(LESS));
    373         }
    374       }
    375     }
    376   }
    377 
    378   __ bind(&return_equal);
    379   DCHECK(is_int16(GREATER) && is_int16(LESS));
    380   __ Ret(USE_DELAY_SLOT);
    381   if (cc == less) {
    382     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
    383   } else if (cc == greater) {
    384     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
    385   } else {
    386     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
    387   }
    388   // For less and greater we don't have to check for NaN since the result of
    389   // x < x is false regardless.  For the others here is some code to check
    390   // for NaN.
    391   if (cc != lt && cc != gt) {
    392     __ bind(&heap_number);
    393     // It is a heap number, so return non-equal if it's NaN and equal if it's
    394     // not NaN.
    395 
    396     // The representation of NaN values has all exponent bits (52..62) set,
    397     // and not all mantissa bits (0..51) clear.
    398     // Read top bits of double representation (second word of value).
    399     __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    400     // Test that exponent bits are all set.
    401     __ And(a7, a6, Operand(exp_mask_reg));
    402     // If all bits not set (ne cond), then not a NaN, objects are equal.
    403     __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
    404 
    405     // Shift out flag and all exponent bits, retaining only mantissa.
    406     __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
    407     // Or with all low-bits of mantissa.
    408     __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
    409     __ Or(v0, a7, Operand(a6));
    410     // For equal we already have the right value in v0:  Return zero (equal)
    411     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    412     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
    413     // value if it's a NaN.
    414     if (cc != eq) {
    415       // All-zero means Infinity means equal.
    416       __ Ret(eq, v0, Operand(zero_reg));
    417       DCHECK(is_int16(GREATER) && is_int16(LESS));
    418       __ Ret(USE_DELAY_SLOT);
    419       if (cc == le) {
    420         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
    421       } else {
    422         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
    423       }
    424     }
    425   }
    426   // No fall through here.
    427 
    428   __ bind(&not_identical);
    429 }
    430 
    431 
    432 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    433                                     Register lhs,
    434                                     Register rhs,
    435                                     Label* both_loaded_as_doubles,
    436                                     Label* slow,
    437                                     bool strict) {
    438   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    439          (lhs.is(a1) && rhs.is(a0)));
    440 
    441   Label lhs_is_smi;
    442   __ JumpIfSmi(lhs, &lhs_is_smi);
    443   // Rhs is a Smi.
    444   // Check whether the non-smi is a heap number.
    445   __ GetObjectType(lhs, t0, t0);
    446   if (strict) {
    447     // If lhs was not a number and rhs was a Smi then strict equality cannot
    448     // succeed. Return non-equal (lhs is already not zero).
    449     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    450     __ mov(v0, lhs);
    451   } else {
    452     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    453     // the runtime.
    454     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    455   }
    456   // Rhs is a smi, lhs is a number.
    457   // Convert smi rhs to double.
    458   __ SmiUntag(at, rhs);
    459   __ mtc1(at, f14);
    460   __ cvt_d_w(f14, f14);
    461   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    462 
    463   // We now have both loaded as doubles.
    464   __ jmp(both_loaded_as_doubles);
    465 
    466   __ bind(&lhs_is_smi);
    467   // Lhs is a Smi.  Check whether the non-smi is a heap number.
    468   __ GetObjectType(rhs, t0, t0);
    469   if (strict) {
    470     // If lhs was not a number and rhs was a Smi then strict equality cannot
    471     // succeed. Return non-equal.
    472     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    473     __ li(v0, Operand(1));
    474   } else {
    475     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    476     // the runtime.
    477     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    478   }
    479 
    480   // Lhs is a smi, rhs is a number.
    481   // Convert smi lhs to double.
    482   __ SmiUntag(at, lhs);
    483   __ mtc1(at, f12);
    484   __ cvt_d_w(f12, f12);
    485   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    486   // Fall through to both_loaded_as_doubles.
    487 }
    488 
    489 
    490 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    491                                            Register lhs,
    492                                            Register rhs) {
    493     // If either operand is a JS object or an oddball value, then they are
    494     // not equal since their pointers are different.
    495     // There is no test for undetectability in strict equality.
    496     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
    497     Label first_non_object;
    498     // Get the type of the first operand into a2 and compare it with
    499     // FIRST_SPEC_OBJECT_TYPE.
    500     __ GetObjectType(lhs, a2, a2);
    501     __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
    502 
    503     // Return non-zero.
    504     Label return_not_equal;
    505     __ bind(&return_not_equal);
    506     __ Ret(USE_DELAY_SLOT);
    507     __ li(v0, Operand(1));
    508 
    509     __ bind(&first_non_object);
    510     // Check for oddballs: true, false, null, undefined.
    511     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
    512 
    513     __ GetObjectType(rhs, a3, a3);
    514     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
    515 
    516     // Check for oddballs: true, false, null, undefined.
    517     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
    518 
    519     // Now that we have the types we might as well check for
    520     // internalized-internalized.
    521     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    522     __ Or(a2, a2, Operand(a3));
    523     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    524     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
    525 }
    526 
    527 
    528 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    529                                        Register lhs,
    530                                        Register rhs,
    531                                        Label* both_loaded_as_doubles,
    532                                        Label* not_heap_numbers,
    533                                        Label* slow) {
    534   __ GetObjectType(lhs, a3, a2);
    535   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
    536   __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
    537   // If first was a heap number & second wasn't, go to slow case.
    538   __ Branch(slow, ne, a3, Operand(a2));
    539 
    540   // Both are heap numbers. Load them up then jump to the code we have
    541   // for that.
    542   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    543   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    544 
    545   __ jmp(both_loaded_as_doubles);
    546 }
    547 
    548 
    549 // Fast negative check for internalized-to-internalized equality.
    550 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    551                                                      Register lhs,
    552                                                      Register rhs,
    553                                                      Label* possible_strings,
    554                                                      Label* not_both_strings) {
    555   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    556          (lhs.is(a1) && rhs.is(a0)));
    557 
    558   // a2 is object type of rhs.
    559   Label object_test;
    560   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    561   __ And(at, a2, Operand(kIsNotStringMask));
    562   __ Branch(&object_test, ne, at, Operand(zero_reg));
    563   __ And(at, a2, Operand(kIsNotInternalizedMask));
    564   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    565   __ GetObjectType(rhs, a3, a3);
    566   __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
    567   __ And(at, a3, Operand(kIsNotInternalizedMask));
    568   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    569 
    570   // Both are internalized strings. We already checked they weren't the same
    571   // pointer so they are not equal.
    572   __ Ret(USE_DELAY_SLOT);
    573   __ li(v0, Operand(1));   // Non-zero indicates not equal.
    574 
    575   __ bind(&object_test);
    576   __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
    577   __ GetObjectType(rhs, a2, a3);
    578   __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
    579 
    580   // If both objects are undetectable, they are equal.  Otherwise, they
    581   // are not equal, since they are different objects and an object is not
    582   // equal to undefined.
    583   __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
    584   __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
    585   __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
    586   __ and_(a0, a2, a3);
    587   __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
    588   __ Ret(USE_DELAY_SLOT);
    589   __ xori(v0, a0, 1 << Map::kIsUndetectable);
    590 }
    591 
    592 
    593 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    594                                          Register scratch,
    595                                          CompareICState::State expected,
    596                                          Label* fail) {
    597   Label ok;
    598   if (expected == CompareICState::SMI) {
    599     __ JumpIfNotSmi(input, fail);
    600   } else if (expected == CompareICState::NUMBER) {
    601     __ JumpIfSmi(input, &ok);
    602     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    603                 DONT_DO_SMI_CHECK);
    604   }
    605   // We could be strict about internalized/string here, but as long as
    606   // hydrogen doesn't care, the stub doesn't have to care either.
    607   __ bind(&ok);
    608 }
    609 
    610 
    611 // On entry a1 and a2 are the values to be compared.
    612 // On exit a0 is 0, positive or negative to indicate the result of
    613 // the comparison.
    614 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    615   Register lhs = a1;
    616   Register rhs = a0;
    617   Condition cc = GetCondition();
    618 
    619   Label miss;
    620   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
    621   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
    622 
    623   Label slow;  // Call builtin.
    624   Label not_smis, both_loaded_as_doubles;
    625 
    626   Label not_two_smis, smi_done;
    627   __ Or(a2, a1, a0);
    628   __ JumpIfNotSmi(a2, &not_two_smis);
    629   __ SmiUntag(a1);
    630   __ SmiUntag(a0);
    631 
    632   __ Ret(USE_DELAY_SLOT);
    633   __ dsubu(v0, a1, a0);
    634   __ bind(&not_two_smis);
    635 
    636   // NOTICE! This code is only reached after a smi-fast-case check, so
    637   // it is certain that at least one operand isn't a smi.
    638 
    639   // Handle the case where the objects are identical.  Either returns the answer
    640   // or goes to slow.  Only falls through if the objects were not identical.
    641   EmitIdenticalObjectComparison(masm, &slow, cc);
    642 
    643   // If either is a Smi (we know that not both are), then they can only
    644   // be strictly equal if the other is a HeapNumber.
    645   STATIC_ASSERT(kSmiTag == 0);
    646   DCHECK_EQ(0, Smi::FromInt(0));
    647   __ And(a6, lhs, Operand(rhs));
    648   __ JumpIfNotSmi(a6, &not_smis, a4);
    649   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
    650   // 1) Return the answer.
    651   // 2) Go to slow.
    652   // 3) Fall through to both_loaded_as_doubles.
    653   // 4) Jump to rhs_not_nan.
    654   // In cases 3 and 4 we have found out we were dealing with a number-number
    655   // comparison and the numbers have been loaded into f12 and f14 as doubles,
    656   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
    657   EmitSmiNonsmiComparison(masm, lhs, rhs,
    658                           &both_loaded_as_doubles, &slow, strict());
    659 
    660   __ bind(&both_loaded_as_doubles);
    661   // f12, f14 are the double representations of the left hand side
    662   // and the right hand side if we have FPU. Otherwise a2, a3 represent
    663   // left hand side and a0, a1 represent right hand side.
    664 
    665   Label nan;
    666   __ li(a4, Operand(LESS));
    667   __ li(a5, Operand(GREATER));
    668   __ li(a6, Operand(EQUAL));
    669 
    670   // Check if either rhs or lhs is NaN.
    671   __ BranchF(NULL, &nan, eq, f12, f14);
    672 
    673   // Check if LESS condition is satisfied. If true, move conditionally
    674   // result to v0.
    675   if (kArchVariant != kMips64r6) {
    676     __ c(OLT, D, f12, f14);
    677     __ Movt(v0, a4);
    678     // Use previous check to store conditionally to v0 oposite condition
    679     // (GREATER). If rhs is equal to lhs, this will be corrected in next
    680     // check.
    681     __ Movf(v0, a5);
    682     // Check if EQUAL condition is satisfied. If true, move conditionally
    683     // result to v0.
    684     __ c(EQ, D, f12, f14);
    685     __ Movt(v0, a6);
    686   } else {
    687     Label skip;
    688     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
    689     __ mov(v0, a4);  // Return LESS as result.
    690 
    691     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
    692     __ mov(v0, a6);  // Return EQUAL as result.
    693 
    694     __ mov(v0, a5);  // Return GREATER as result.
    695     __ bind(&skip);
    696   }
    697   __ Ret();
    698 
    699   __ bind(&nan);
    700   // NaN comparisons always fail.
    701   // Load whatever we need in v0 to make the comparison fail.
    702   DCHECK(is_int16(GREATER) && is_int16(LESS));
    703   __ Ret(USE_DELAY_SLOT);
    704   if (cc == lt || cc == le) {
    705     __ li(v0, Operand(GREATER));
    706   } else {
    707     __ li(v0, Operand(LESS));
    708   }
    709 
    710 
    711   __ bind(&not_smis);
    712   // At this point we know we are dealing with two different objects,
    713   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
    714   if (strict()) {
    715     // This returns non-equal for some object types, or falls through if it
    716     // was not lucky.
    717     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    718   }
    719 
    720   Label check_for_internalized_strings;
    721   Label flat_string_check;
    722   // Check for heap-number-heap-number comparison. Can jump to slow case,
    723   // or load both doubles and jump to the code that handles
    724   // that case. If the inputs are not doubles then jumps to
    725   // check_for_internalized_strings.
    726   // In this case a2 will contain the type of lhs_.
    727   EmitCheckForTwoHeapNumbers(masm,
    728                              lhs,
    729                              rhs,
    730                              &both_loaded_as_doubles,
    731                              &check_for_internalized_strings,
    732                              &flat_string_check);
    733 
    734   __ bind(&check_for_internalized_strings);
    735   if (cc == eq && !strict()) {
    736     // Returns an answer for two internalized strings or two
    737     // detectable objects.
    738     // Otherwise jumps to string case or not both strings case.
    739     // Assumes that a2 is the type of lhs_ on entry.
    740     EmitCheckForInternalizedStringsOrObjects(
    741         masm, lhs, rhs, &flat_string_check, &slow);
    742   }
    743 
    744   // Check for both being sequential one-byte strings,
    745   // and inline if that is the case.
    746   __ bind(&flat_string_check);
    747 
    748   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
    749 
    750   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
    751                       a3);
    752   if (cc == eq) {
    753     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
    754   } else {
    755     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
    756                                                     a5);
    757   }
    758   // Never falls through to here.
    759 
    760   __ bind(&slow);
    761   // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
    762   // a1 (rhs) second.
    763   __ Push(lhs, rhs);
    764   // Figure out which native to call and setup the arguments.
    765   Builtins::JavaScript native;
    766   if (cc == eq) {
    767     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
    768   } else {
    769     native = Builtins::COMPARE;
    770     int ncr;  // NaN compare result.
    771     if (cc == lt || cc == le) {
    772       ncr = GREATER;
    773     } else {
    774       DCHECK(cc == gt || cc == ge);  // Remaining cases.
    775       ncr = LESS;
    776     }
    777     __ li(a0, Operand(Smi::FromInt(ncr)));
    778     __ push(a0);
    779   }
    780 
    781   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    782   // tagged as a small integer.
    783   __ InvokeBuiltin(native, JUMP_FUNCTION);
    784 
    785   __ bind(&miss);
    786   GenerateMiss(masm);
    787 }
    788 
    789 
    790 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
    791   __ mov(t9, ra);
    792   __ pop(ra);
    793   __ PushSafepointRegisters();
    794   __ Jump(t9);
    795 }
    796 
    797 
    798 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
    799   __ mov(t9, ra);
    800   __ pop(ra);
    801   __ PopSafepointRegisters();
    802   __ Jump(t9);
    803 }
    804 
    805 
    806 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    807   // We don't allow a GC during a store buffer overflow so there is no need to
    808   // store the registers in any particular way, but we do have to store and
    809   // restore them.
    810   __ MultiPush(kJSCallerSaved | ra.bit());
    811   if (save_doubles()) {
    812     __ MultiPushFPU(kCallerSavedFPU);
    813   }
    814   const int argument_count = 1;
    815   const int fp_argument_count = 0;
    816   const Register scratch = a1;
    817 
    818   AllowExternalCallThatCantCauseGC scope(masm);
    819   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    820   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
    821   __ CallCFunction(
    822       ExternalReference::store_buffer_overflow_function(isolate()),
    823       argument_count);
    824   if (save_doubles()) {
    825     __ MultiPopFPU(kCallerSavedFPU);
    826   }
    827 
    828   __ MultiPop(kJSCallerSaved | ra.bit());
    829   __ Ret();
    830 }
    831 
    832 
    833 void MathPowStub::Generate(MacroAssembler* masm) {
    834   const Register base = a1;
    835   const Register exponent = MathPowTaggedDescriptor::exponent();
    836   DCHECK(exponent.is(a2));
    837   const Register heapnumbermap = a5;
    838   const Register heapnumber = v0;
    839   const DoubleRegister double_base = f2;
    840   const DoubleRegister double_exponent = f4;
    841   const DoubleRegister double_result = f0;
    842   const DoubleRegister double_scratch = f6;
    843   const FPURegister single_scratch = f8;
    844   const Register scratch = t1;
    845   const Register scratch2 = a7;
    846 
    847   Label call_runtime, done, int_exponent;
    848   if (exponent_type() == ON_STACK) {
    849     Label base_is_smi, unpack_exponent;
    850     // The exponent and base are supplied as arguments on the stack.
    851     // This can only happen if the stub is called from non-optimized code.
    852     // Load input parameters from stack to double registers.
    853     __ ld(base, MemOperand(sp, 1 * kPointerSize));
    854     __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
    855 
    856     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
    857 
    858     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
    859     __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
    860     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    861 
    862     __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
    863     __ jmp(&unpack_exponent);
    864 
    865     __ bind(&base_is_smi);
    866     __ mtc1(scratch, single_scratch);
    867     __ cvt_d_w(double_base, single_scratch);
    868     __ bind(&unpack_exponent);
    869 
    870     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    871 
    872     __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
    873     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    874     __ ldc1(double_exponent,
    875             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    876   } else if (exponent_type() == TAGGED) {
    877     // Base is already in double_base.
    878     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    879 
    880     __ ldc1(double_exponent,
    881             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    882   }
    883 
    884   if (exponent_type() != INTEGER) {
    885     Label int_exponent_convert;
    886     // Detect integer exponents stored as double.
    887     __ EmitFPUTruncate(kRoundToMinusInf,
    888                        scratch,
    889                        double_exponent,
    890                        at,
    891                        double_scratch,
    892                        scratch2,
    893                        kCheckForInexactConversion);
    894     // scratch2 == 0 means there was no conversion error.
    895     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
    896 
    897     if (exponent_type() == ON_STACK) {
    898       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    899       // compile time and uses DoMathPowHalf instead.  We then skip this check
    900       // for non-constant cases of +/-0.5 as these hardly occur.
    901       Label not_plus_half;
    902 
    903       // Test for 0.5.
    904       __ Move(double_scratch, 0.5);
    905       __ BranchF(USE_DELAY_SLOT,
    906                  &not_plus_half,
    907                  NULL,
    908                  ne,
    909                  double_exponent,
    910                  double_scratch);
    911       // double_scratch can be overwritten in the delay slot.
    912       // Calculates square root of base.  Check for the special case of
    913       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    914       __ Move(double_scratch, -V8_INFINITY);
    915       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    916       __ neg_d(double_result, double_scratch);
    917 
    918       // Add +0 to convert -0 to +0.
    919       __ add_d(double_scratch, double_base, kDoubleRegZero);
    920       __ sqrt_d(double_result, double_scratch);
    921       __ jmp(&done);
    922 
    923       __ bind(&not_plus_half);
    924       __ Move(double_scratch, -0.5);
    925       __ BranchF(USE_DELAY_SLOT,
    926                  &call_runtime,
    927                  NULL,
    928                  ne,
    929                  double_exponent,
    930                  double_scratch);
    931       // double_scratch can be overwritten in the delay slot.
    932       // Calculates square root of base.  Check for the special case of
    933       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    934       __ Move(double_scratch, -V8_INFINITY);
    935       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    936       __ Move(double_result, kDoubleRegZero);
    937 
    938       // Add +0 to convert -0 to +0.
    939       __ add_d(double_scratch, double_base, kDoubleRegZero);
    940       __ Move(double_result, 1);
    941       __ sqrt_d(double_scratch, double_scratch);
    942       __ div_d(double_result, double_result, double_scratch);
    943       __ jmp(&done);
    944     }
    945 
    946     __ push(ra);
    947     {
    948       AllowExternalCallThatCantCauseGC scope(masm);
    949       __ PrepareCallCFunction(0, 2, scratch2);
    950       __ MovToFloatParameters(double_base, double_exponent);
    951       __ CallCFunction(
    952           ExternalReference::power_double_double_function(isolate()),
    953           0, 2);
    954     }
    955     __ pop(ra);
    956     __ MovFromFloatResult(double_result);
    957     __ jmp(&done);
    958 
    959     __ bind(&int_exponent_convert);
    960   }
    961 
    962   // Calculate power with integer exponent.
    963   __ bind(&int_exponent);
    964 
    965   // Get two copies of exponent in the registers scratch and exponent.
    966   if (exponent_type() == INTEGER) {
    967     __ mov(scratch, exponent);
    968   } else {
    969     // Exponent has previously been stored into scratch as untagged integer.
    970     __ mov(exponent, scratch);
    971   }
    972 
    973   __ mov_d(double_scratch, double_base);  // Back up base.
    974   __ Move(double_result, 1.0);
    975 
    976   // Get absolute value of exponent.
    977   Label positive_exponent;
    978   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
    979   __ Dsubu(scratch, zero_reg, scratch);
    980   __ bind(&positive_exponent);
    981 
    982   Label while_true, no_carry, loop_end;
    983   __ bind(&while_true);
    984 
    985   __ And(scratch2, scratch, 1);
    986 
    987   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
    988   __ mul_d(double_result, double_result, double_scratch);
    989   __ bind(&no_carry);
    990 
    991   __ dsra(scratch, scratch, 1);
    992 
    993   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
    994   __ mul_d(double_scratch, double_scratch, double_scratch);
    995 
    996   __ Branch(&while_true);
    997 
    998   __ bind(&loop_end);
    999 
   1000   __ Branch(&done, ge, exponent, Operand(zero_reg));
   1001   __ Move(double_scratch, 1.0);
   1002   __ div_d(double_result, double_scratch, double_result);
   1003   // Test whether result is zero.  Bail out to check for subnormal result.
   1004   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
   1005   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
   1006 
   1007   // double_exponent may not contain the exponent value if the input was a
   1008   // smi.  We set it with exponent value before bailing out.
   1009   __ mtc1(exponent, single_scratch);
   1010   __ cvt_d_w(double_exponent, single_scratch);
   1011 
   1012   // Returning or bailing out.
   1013   Counters* counters = isolate()->counters();
   1014   if (exponent_type() == ON_STACK) {
   1015     // The arguments are still on the stack.
   1016     __ bind(&call_runtime);
   1017     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
   1018 
   1019     // The stub is called from non-optimized code, which expects the result
   1020     // as heap number in exponent.
   1021     __ bind(&done);
   1022     __ AllocateHeapNumber(
   1023         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
   1024     __ sdc1(double_result,
   1025             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
   1026     DCHECK(heapnumber.is(v0));
   1027     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
   1028     __ DropAndRet(2);
   1029   } else {
   1030     __ push(ra);
   1031     {
   1032       AllowExternalCallThatCantCauseGC scope(masm);
   1033       __ PrepareCallCFunction(0, 2, scratch);
   1034       __ MovToFloatParameters(double_base, double_exponent);
   1035       __ CallCFunction(
   1036           ExternalReference::power_double_double_function(isolate()),
   1037           0, 2);
   1038     }
   1039     __ pop(ra);
   1040     __ MovFromFloatResult(double_result);
   1041 
   1042     __ bind(&done);
   1043     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
   1044     __ Ret();
   1045   }
   1046 }
   1047 
   1048 
   1049 bool CEntryStub::NeedsImmovableCode() {
   1050   return true;
   1051 }
   1052 
   1053 
   1054 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1055   CEntryStub::GenerateAheadOfTime(isolate);
   1056   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1057   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1058   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1059   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   1060   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1061   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1062   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
   1063   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
   1064   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1065 }
   1066 
   1067 
   1068 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
   1069   StoreRegistersStateStub stub(isolate);
   1070   stub.GetCode();
   1071 }
   1072 
   1073 
   1074 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
   1075   RestoreRegistersStateStub stub(isolate);
   1076   stub.GetCode();
   1077 }
   1078 
   1079 
   1080 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1081   // Generate if not already in cache.
   1082   SaveFPRegsMode mode = kSaveFPRegs;
   1083   CEntryStub(isolate, 1, mode).GetCode();
   1084   StoreBufferOverflowStub(isolate, mode).GetCode();
   1085   isolate->set_fp_stubs_generated(true);
   1086 }
   1087 
   1088 
   1089 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1090   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1091   stub.GetCode();
   1092 }
   1093 
   1094 
   1095 void CEntryStub::Generate(MacroAssembler* masm) {
   1096   // Called from JavaScript; parameters are on stack as if calling JS function
   1097   // s0: number of arguments including receiver
   1098   // s1: size of arguments excluding receiver
   1099   // s2: pointer to builtin function
   1100   // fp: frame pointer    (restored after C call)
   1101   // sp: stack pointer    (restored as callee's sp after C call)
   1102   // cp: current context  (C callee-saved)
   1103 
   1104   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1105 
   1106   // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
   1107   // The reason for this is that these arguments would need to be saved anyway
   1108   // so it's faster to set them up directly.
   1109   // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
   1110 
   1111   // Compute the argv pointer in a callee-saved register.
   1112   __ Daddu(s1, sp, s1);
   1113 
   1114   // Enter the exit frame that transitions from JavaScript to C++.
   1115   FrameScope scope(masm, StackFrame::MANUAL);
   1116   __ EnterExitFrame(save_doubles());
   1117 
   1118   // s0: number of arguments  including receiver (C callee-saved)
   1119   // s1: pointer to first argument (C callee-saved)
   1120   // s2: pointer to builtin function (C callee-saved)
   1121 
   1122   // Prepare arguments for C routine.
   1123   // a0 = argc
   1124   __ mov(a0, s0);
   1125   // a1 = argv (set in the delay slot after find_ra below).
   1126 
   1127   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
   1128   // also need to reserve the 4 argument slots on the stack.
   1129 
   1130   __ AssertStackIsAligned();
   1131 
   1132   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1133 
   1134   // To let the GC traverse the return address of the exit frames, we need to
   1135   // know where the return address is. The CEntryStub is unmovable, so
   1136   // we can store the address on the stack to be able to find it again and
   1137   // we never have to restore it, because it will not change.
   1138   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
   1139     // This branch-and-link sequence is needed to find the current PC on mips,
   1140     // saved to the ra register.
   1141     // Use masm-> here instead of the double-underscore macro since extra
   1142     // coverage code can interfere with the proper calculation of ra.
   1143     Label find_ra;
   1144     masm->bal(&find_ra);  // bal exposes branch delay slot.
   1145     masm->mov(a1, s1);
   1146     masm->bind(&find_ra);
   1147 
   1148     // Adjust the value in ra to point to the correct return location, 2nd
   1149     // instruction past the real call into C code (the jalr(t9)), and push it.
   1150     // This is the return address of the exit frame.
   1151     const int kNumInstructionsToJump = 5;
   1152     masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
   1153     masm->sd(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
   1154     // Stack space reservation moved to the branch delay slot below.
   1155     // Stack is still aligned.
   1156 
   1157     // Call the C routine.
   1158     masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
   1159     masm->jalr(t9);
   1160     // Set up sp in the delay slot.
   1161     masm->daddiu(sp, sp, -kCArgsSlotsSize);
   1162     // Make sure the stored 'ra' points to this position.
   1163     DCHECK_EQ(kNumInstructionsToJump,
   1164               masm->InstructionsGeneratedSince(&find_ra));
   1165   }
   1166 
   1167   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   1168   // lead to crashes in the IC code later.
   1169   if (FLAG_debug_code) {
   1170     Label okay;
   1171     __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   1172     __ Branch(&okay, ne, v0, Operand(a4));
   1173     __ stop("The hole escaped");
   1174     __ bind(&okay);
   1175   }
   1176 
   1177   // Check result for exception sentinel.
   1178   Label exception_returned;
   1179   __ LoadRoot(a4, Heap::kExceptionRootIndex);
   1180   __ Branch(&exception_returned, eq, a4, Operand(v0));
   1181 
   1182   ExternalReference pending_exception_address(
   1183       Isolate::kPendingExceptionAddress, isolate());
   1184 
   1185   // Check that there is no pending exception, otherwise we
   1186   // should have returned the exception sentinel.
   1187   if (FLAG_debug_code) {
   1188     Label okay;
   1189     __ li(a2, Operand(pending_exception_address));
   1190     __ ld(a2, MemOperand(a2));
   1191     __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   1192     // Cannot use check here as it attempts to generate call into runtime.
   1193     __ Branch(&okay, eq, a4, Operand(a2));
   1194     __ stop("Unexpected pending exception");
   1195     __ bind(&okay);
   1196   }
   1197 
   1198   // Exit C frame and return.
   1199   // v0:v1: result
   1200   // sp: stack pointer
   1201   // fp: frame pointer
   1202   // s0: still holds argc (callee-saved).
   1203   __ LeaveExitFrame(save_doubles(), s0, true, EMIT_RETURN);
   1204 
   1205   // Handling of exception.
   1206   __ bind(&exception_returned);
   1207 
   1208   // Retrieve the pending exception.
   1209   __ li(a2, Operand(pending_exception_address));
   1210   __ ld(v0, MemOperand(a2));
   1211 
   1212   // Clear the pending exception.
   1213   __ li(a3, Operand(isolate()->factory()->the_hole_value()));
   1214   __ sd(a3, MemOperand(a2));
   1215 
   1216   // Special handling of termination exceptions which are uncatchable
   1217   // by javascript code.
   1218   Label throw_termination_exception;
   1219   __ LoadRoot(a4, Heap::kTerminationExceptionRootIndex);
   1220   __ Branch(&throw_termination_exception, eq, v0, Operand(a4));
   1221 
   1222   // Handle normal exception.
   1223   __ Throw(v0);
   1224 
   1225   __ bind(&throw_termination_exception);
   1226   __ ThrowUncatchable(v0);
   1227 }
   1228 
   1229 
   1230 void JSEntryStub::Generate(MacroAssembler* masm) {
   1231   Label invoke, handler_entry, exit;
   1232   Isolate* isolate = masm->isolate();
   1233 
   1234   // TODO(plind): unify the ABI description here.
   1235   // Registers:
   1236   // a0: entry address
   1237   // a1: function
   1238   // a2: receiver
   1239   // a3: argc
   1240   // a4 (a4): on mips64
   1241 
   1242   // Stack:
   1243   // 0 arg slots on mips64 (4 args slots on mips)
   1244   // args -- in a4/a4 on mips64, on stack on mips
   1245 
   1246   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1247 
   1248   // Save callee saved registers on the stack.
   1249   __ MultiPush(kCalleeSaved | ra.bit());
   1250 
   1251   // Save callee-saved FPU registers.
   1252   __ MultiPushFPU(kCalleeSavedFPU);
   1253   // Set up the reserved register for 0.0.
   1254   __ Move(kDoubleRegZero, 0.0);
   1255 
   1256   // Load argv in s0 register.
   1257   if (kMipsAbi == kN64) {
   1258     __ mov(s0, a4);  // 5th parameter in mips64 a4 (a4) register.
   1259   } else {  // Abi O32.
   1260     // 5th parameter on stack for O32 abi.
   1261     int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
   1262     offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
   1263     __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
   1264   }
   1265 
   1266   __ InitializeRootRegister();
   1267 
   1268   // We build an EntryFrame.
   1269   __ li(a7, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1270   int marker = type();
   1271   __ li(a6, Operand(Smi::FromInt(marker)));
   1272   __ li(a5, Operand(Smi::FromInt(marker)));
   1273   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
   1274   __ li(a4, Operand(c_entry_fp));
   1275   __ ld(a4, MemOperand(a4));
   1276   __ Push(a7, a6, a5, a4);
   1277   // Set up frame pointer for the frame to be pushed.
   1278   __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
   1279 
   1280   // Registers:
   1281   // a0: entry_address
   1282   // a1: function
   1283   // a2: receiver_pointer
   1284   // a3: argc
   1285   // s0: argv
   1286   //
   1287   // Stack:
   1288   // caller fp          |
   1289   // function slot      | entry frame
   1290   // context slot       |
   1291   // bad fp (0xff...f)  |
   1292   // callee saved registers + ra
   1293   // [ O32: 4 args slots]
   1294   // args
   1295 
   1296   // If this is the outermost JS call, set js_entry_sp value.
   1297   Label non_outermost_js;
   1298   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
   1299   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1300   __ ld(a6, MemOperand(a5));
   1301   __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
   1302   __ sd(fp, MemOperand(a5));
   1303   __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1304   Label cont;
   1305   __ b(&cont);
   1306   __ nop();   // Branch delay slot nop.
   1307   __ bind(&non_outermost_js);
   1308   __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   1309   __ bind(&cont);
   1310   __ push(a4);
   1311 
   1312   // Jump to a faked try block that does the invoke, with a faked catch
   1313   // block that sets the pending exception.
   1314   __ jmp(&invoke);
   1315   __ bind(&handler_entry);
   1316   handler_offset_ = handler_entry.pos();
   1317   // Caught exception: Store result (exception) in the pending exception
   1318   // field in the JSEnv and return a failure sentinel.  Coming in here the
   1319   // fp will be invalid because the PushTryHandler below sets it to 0 to
   1320   // signal the existence of the JSEntry frame.
   1321   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1322                                       isolate)));
   1323   __ sd(v0, MemOperand(a4));  // We come back from 'invoke'. result is in v0.
   1324   __ LoadRoot(v0, Heap::kExceptionRootIndex);
   1325   __ b(&exit);  // b exposes branch delay slot.
   1326   __ nop();   // Branch delay slot nop.
   1327 
   1328   // Invoke: Link this frame into the handler chain.  There's only one
   1329   // handler block in this code object, so its index is 0.
   1330   __ bind(&invoke);
   1331   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   1332   // If an exception not caught by another handler occurs, this handler
   1333   // returns control to the code after the bal(&invoke) above, which
   1334   // restores all kCalleeSaved registers (including cp and fp) to their
   1335   // saved values before returning a failure to C.
   1336 
   1337   // Clear any pending exceptions.
   1338   __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
   1339   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1340                                       isolate)));
   1341   __ sd(a5, MemOperand(a4));
   1342 
   1343   // Invoke the function by calling through JS entry trampoline builtin.
   1344   // Notice that we cannot store a reference to the trampoline code directly in
   1345   // this stub, because runtime stubs are not traversed when doing GC.
   1346 
   1347   // Registers:
   1348   // a0: entry_address
   1349   // a1: function
   1350   // a2: receiver_pointer
   1351   // a3: argc
   1352   // s0: argv
   1353   //
   1354   // Stack:
   1355   // handler frame
   1356   // entry frame
   1357   // callee saved registers + ra
   1358   // [ O32: 4 args slots]
   1359   // args
   1360 
   1361   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1362     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1363                                       isolate);
   1364     __ li(a4, Operand(construct_entry));
   1365   } else {
   1366     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
   1367     __ li(a4, Operand(entry));
   1368   }
   1369   __ ld(t9, MemOperand(a4));  // Deref address.
   1370   // Call JSEntryTrampoline.
   1371   __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
   1372   __ Call(t9);
   1373 
   1374   // Unlink this frame from the handler chain.
   1375   __ PopTryHandler();
   1376 
   1377   __ bind(&exit);  // v0 holds result
   1378   // Check if the current stack frame is marked as the outermost JS frame.
   1379   Label non_outermost_js_2;
   1380   __ pop(a5);
   1381   __ Branch(&non_outermost_js_2,
   1382             ne,
   1383             a5,
   1384             Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1385   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1386   __ sd(zero_reg, MemOperand(a5));
   1387   __ bind(&non_outermost_js_2);
   1388 
   1389   // Restore the top frame descriptors from the stack.
   1390   __ pop(a5);
   1391   __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
   1392                                       isolate)));
   1393   __ sd(a5, MemOperand(a4));
   1394 
   1395   // Reset the stack to the callee saved registers.
   1396   __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
   1397 
   1398   // Restore callee-saved fpu registers.
   1399   __ MultiPopFPU(kCalleeSavedFPU);
   1400 
   1401   // Restore callee saved registers from the stack.
   1402   __ MultiPop(kCalleeSaved | ra.bit());
   1403   // Return.
   1404   __ Jump(ra);
   1405 }
   1406 
   1407 
   1408 // Uses registers a0 to a4.
   1409 // Expected input (depending on whether args are in registers or on the stack):
   1410 // * object: a0 or at sp + 1 * kPointerSize.
   1411 // * function: a1 or at sp.
   1412 //
   1413 // An inlined call site may have been generated before calling this stub.
   1414 // In this case the offset to the inline site to patch is passed on the stack,
   1415 // in the safepoint slot for register a4.
   1416 void InstanceofStub::Generate(MacroAssembler* masm) {
   1417   // Call site inlining and patching implies arguments in registers.
   1418   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   1419   // ReturnTrueFalse is only implemented for inlined call sites.
   1420   DCHECK(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
   1421 
   1422   // Fixed register usage throughout the stub:
   1423   const Register object = a0;  // Object (lhs).
   1424   Register map = a3;  // Map of the object.
   1425   const Register function = a1;  // Function (rhs).
   1426   const Register prototype = a4;  // Prototype of the function.
   1427   const Register inline_site = t1;
   1428   const Register scratch = a2;
   1429 
   1430   const int32_t kDeltaToLoadBoolResult = 7 * Assembler::kInstrSize;
   1431 
   1432   Label slow, loop, is_instance, is_not_instance, not_js_object;
   1433 
   1434   if (!HasArgsInRegisters()) {
   1435     __ ld(object, MemOperand(sp, 1 * kPointerSize));
   1436     __ ld(function, MemOperand(sp, 0));
   1437   }
   1438 
   1439   // Check that the left hand is a JS object and load map.
   1440   __ JumpIfSmi(object, &not_js_object);
   1441   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   1442 
   1443   // If there is a call site cache don't look in the global cache, but do the
   1444   // real lookup and update the call site cache.
   1445   if (!HasCallSiteInlineCheck()) {
   1446     Label miss;
   1447     __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
   1448     __ Branch(&miss, ne, function, Operand(at));
   1449     __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
   1450     __ Branch(&miss, ne, map, Operand(at));
   1451     __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
   1452     __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1453 
   1454     __ bind(&miss);
   1455   }
   1456 
   1457   // Get the prototype of the function.
   1458   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   1459 
   1460   // Check that the function prototype is a JS object.
   1461   __ JumpIfSmi(prototype, &slow);
   1462   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   1463 
   1464   // Update the global instanceof or call site inlined cache with the current
   1465   // map and function. The cached answer will be set when it is known below.
   1466   if (!HasCallSiteInlineCheck()) {
   1467     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   1468     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
   1469   } else {
   1470     DCHECK(HasArgsInRegisters());
   1471     // Patch the (relocated) inlined map check.
   1472 
   1473     // The offset was stored in a4 safepoint slot.
   1474     // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
   1475     __ LoadFromSafepointRegisterSlot(scratch, a4);
   1476     __ Dsubu(inline_site, ra, scratch);
   1477     // Get the map location in scratch and patch it.
   1478     __ GetRelocatedValue(inline_site, scratch, v1);  // v1 used as scratch.
   1479     __ sd(map, FieldMemOperand(scratch, Cell::kValueOffset));
   1480   }
   1481 
   1482   // Register mapping: a3 is object map and a4 is function prototype.
   1483   // Get prototype of object into a2.
   1484   __ ld(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
   1485 
   1486   // We don't need map any more. Use it as a scratch register.
   1487   Register scratch2 = map;
   1488   map = no_reg;
   1489 
   1490   // Loop through the prototype chain looking for the function prototype.
   1491   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
   1492   __ bind(&loop);
   1493   __ Branch(&is_instance, eq, scratch, Operand(prototype));
   1494   __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
   1495   __ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
   1496   __ ld(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
   1497   __ Branch(&loop);
   1498 
   1499   __ bind(&is_instance);
   1500   DCHECK(Smi::FromInt(0) == 0);
   1501   if (!HasCallSiteInlineCheck()) {
   1502     __ mov(v0, zero_reg);
   1503     __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
   1504   } else {
   1505     // Patch the call site to return true.
   1506     __ LoadRoot(v0, Heap::kTrueValueRootIndex);
   1507     __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
   1508     // Get the boolean result location in scratch and patch it.
   1509     __ PatchRelocatedValue(inline_site, scratch, v0);
   1510 
   1511     if (!ReturnTrueFalseObject()) {
   1512       DCHECK_EQ(Smi::FromInt(0), 0);
   1513       __ mov(v0, zero_reg);
   1514     }
   1515   }
   1516   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1517 
   1518   __ bind(&is_not_instance);
   1519   if (!HasCallSiteInlineCheck()) {
   1520     __ li(v0, Operand(Smi::FromInt(1)));
   1521     __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
   1522   } else {
   1523     // Patch the call site to return false.
   1524     __ LoadRoot(v0, Heap::kFalseValueRootIndex);
   1525     __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
   1526     // Get the boolean result location in scratch and patch it.
   1527     __ PatchRelocatedValue(inline_site, scratch, v0);
   1528 
   1529     if (!ReturnTrueFalseObject()) {
   1530       __ li(v0, Operand(Smi::FromInt(1)));
   1531     }
   1532   }
   1533 
   1534   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1535 
   1536   Label object_not_null, object_not_null_or_smi;
   1537   __ bind(&not_js_object);
   1538   // Before null, smi and string value checks, check that the rhs is a function
   1539   // as for a non-function rhs an exception needs to be thrown.
   1540   __ JumpIfSmi(function, &slow);
   1541   __ GetObjectType(function, scratch2, scratch);
   1542   __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
   1543 
   1544   // Null is not instance of anything.
   1545   __ Branch(&object_not_null,
   1546             ne,
   1547             scratch,
   1548             Operand(isolate()->factory()->null_value()));
   1549   __ li(v0, Operand(Smi::FromInt(1)));
   1550   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1551 
   1552   __ bind(&object_not_null);
   1553   // Smi values are not instances of anything.
   1554   __ JumpIfNotSmi(object, &object_not_null_or_smi);
   1555   __ li(v0, Operand(Smi::FromInt(1)));
   1556   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1557 
   1558   __ bind(&object_not_null_or_smi);
   1559   // String values are not instances of anything.
   1560   __ IsObjectJSStringType(object, scratch, &slow);
   1561   __ li(v0, Operand(Smi::FromInt(1)));
   1562   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1563 
   1564   // Slow-case.  Tail call builtin.
   1565   __ bind(&slow);
   1566   if (!ReturnTrueFalseObject()) {
   1567     if (HasArgsInRegisters()) {
   1568       __ Push(a0, a1);
   1569     }
   1570   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   1571   } else {
   1572     {
   1573       FrameScope scope(masm, StackFrame::INTERNAL);
   1574       __ Push(a0, a1);
   1575       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   1576     }
   1577     __ mov(a0, v0);
   1578     __ LoadRoot(v0, Heap::kTrueValueRootIndex);
   1579     __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
   1580     __ LoadRoot(v0, Heap::kFalseValueRootIndex);
   1581     __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
   1582   }
   1583 }
   1584 
   1585 
   1586 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
   1587   Label miss;
   1588   Register receiver = LoadDescriptor::ReceiverRegister();
   1589   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a3,
   1590                                                           a4, &miss);
   1591   __ bind(&miss);
   1592   PropertyAccessCompiler::TailCallBuiltin(
   1593       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
   1594 }
   1595 
   1596 
   1597 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
   1598   // The displacement is the offset of the last parameter (if any)
   1599   // relative to the frame pointer.
   1600   const int kDisplacement =
   1601       StandardFrameConstants::kCallerSPOffset - kPointerSize;
   1602   DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
   1603   DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
   1604 
   1605   // Check that the key is a smiGenerateReadElement.
   1606   Label slow;
   1607   __ JumpIfNotSmi(a1, &slow);
   1608 
   1609   // Check if the calling frame is an arguments adaptor frame.
   1610   Label adaptor;
   1611   __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1612   __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
   1613   __ Branch(&adaptor,
   1614             eq,
   1615             a3,
   1616             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1617 
   1618   // Check index (a1) against formal parameters count limit passed in
   1619   // through register a0. Use unsigned comparison to get negative
   1620   // check for free.
   1621   __ Branch(&slow, hs, a1, Operand(a0));
   1622 
   1623   // Read the argument from the stack and return it.
   1624   __ dsubu(a3, a0, a1);
   1625   __ SmiScale(a7, a3, kPointerSizeLog2);
   1626   __ Daddu(a3, fp, Operand(a7));
   1627   __ Ret(USE_DELAY_SLOT);
   1628   __ ld(v0, MemOperand(a3, kDisplacement));
   1629 
   1630   // Arguments adaptor case: Check index (a1) against actual arguments
   1631   // limit found in the arguments adaptor frame. Use unsigned
   1632   // comparison to get negative check for free.
   1633   __ bind(&adaptor);
   1634   __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1635   __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
   1636 
   1637   // Read the argument from the adaptor frame and return it.
   1638   __ dsubu(a3, a0, a1);
   1639   __ SmiScale(a7, a3, kPointerSizeLog2);
   1640   __ Daddu(a3, a2, Operand(a7));
   1641   __ Ret(USE_DELAY_SLOT);
   1642   __ ld(v0, MemOperand(a3, kDisplacement));
   1643 
   1644   // Slow-case: Handle non-smi or out-of-bounds access to arguments
   1645   // by calling the runtime system.
   1646   __ bind(&slow);
   1647   __ push(a1);
   1648   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
   1649 }
   1650 
   1651 
   1652 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
   1653   // sp[0] : number of parameters
   1654   // sp[4] : receiver displacement
   1655   // sp[8] : function
   1656   // Check if the calling frame is an arguments adaptor frame.
   1657   Label runtime;
   1658   __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1659   __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
   1660   __ Branch(&runtime,
   1661             ne,
   1662             a2,
   1663             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1664 
   1665   // Patch the arguments.length and the parameters pointer in the current frame.
   1666   __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1667   __ sd(a2, MemOperand(sp, 0 * kPointerSize));
   1668   __ SmiScale(a7, a2, kPointerSizeLog2);
   1669   __ Daddu(a3, a3, Operand(a7));
   1670   __ daddiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
   1671   __ sd(a3, MemOperand(sp, 1 * kPointerSize));
   1672 
   1673   __ bind(&runtime);
   1674   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
   1675 }
   1676 
   1677 
   1678 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
   1679   // Stack layout:
   1680   //  sp[0] : number of parameters (tagged)
   1681   //  sp[4] : address of receiver argument
   1682   //  sp[8] : function
   1683   // Registers used over whole function:
   1684   //  a6 : allocated object (tagged)
   1685   //  t1 : mapped parameter count (tagged)
   1686 
   1687   __ ld(a1, MemOperand(sp, 0 * kPointerSize));
   1688   // a1 = parameter count (tagged)
   1689 
   1690   // Check if the calling frame is an arguments adaptor frame.
   1691   Label runtime;
   1692   Label adaptor_frame, try_allocate;
   1693   __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1694   __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
   1695   __ Branch(&adaptor_frame,
   1696             eq,
   1697             a2,
   1698             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1699 
   1700   // No adaptor, parameter count = argument count.
   1701   __ mov(a2, a1);
   1702   __ Branch(&try_allocate);
   1703 
   1704   // We have an adaptor frame. Patch the parameters pointer.
   1705   __ bind(&adaptor_frame);
   1706   __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1707   __ SmiScale(t2, a2, kPointerSizeLog2);
   1708   __ Daddu(a3, a3, Operand(t2));
   1709   __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
   1710   __ sd(a3, MemOperand(sp, 1 * kPointerSize));
   1711 
   1712   // a1 = parameter count (tagged)
   1713   // a2 = argument count (tagged)
   1714   // Compute the mapped parameter count = min(a1, a2) in a1.
   1715   Label skip_min;
   1716   __ Branch(&skip_min, lt, a1, Operand(a2));
   1717   __ mov(a1, a2);
   1718   __ bind(&skip_min);
   1719 
   1720   __ bind(&try_allocate);
   1721 
   1722   // Compute the sizes of backing store, parameter map, and arguments object.
   1723   // 1. Parameter map, has 2 extra words containing context and backing store.
   1724   const int kParameterMapHeaderSize =
   1725       FixedArray::kHeaderSize + 2 * kPointerSize;
   1726   // If there are no mapped parameters, we do not need the parameter_map.
   1727   Label param_map_size;
   1728   DCHECK_EQ(0, Smi::FromInt(0));
   1729   __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
   1730   __ mov(t1, zero_reg);  // In delay slot: param map size = 0 when a1 == 0.
   1731   __ SmiScale(t1, a1, kPointerSizeLog2);
   1732   __ daddiu(t1, t1, kParameterMapHeaderSize);
   1733   __ bind(&param_map_size);
   1734 
   1735   // 2. Backing store.
   1736   __ SmiScale(t2, a2, kPointerSizeLog2);
   1737   __ Daddu(t1, t1, Operand(t2));
   1738   __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
   1739 
   1740   // 3. Arguments object.
   1741   __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
   1742 
   1743   // Do the allocation of all three objects in one go.
   1744   __ Allocate(t1, v0, a3, a4, &runtime, TAG_OBJECT);
   1745 
   1746   // v0 = address of new object(s) (tagged)
   1747   // a2 = argument count (smi-tagged)
   1748   // Get the arguments boilerplate from the current native context into a4.
   1749   const int kNormalOffset =
   1750       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
   1751   const int kAliasedOffset =
   1752       Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
   1753 
   1754   __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1755   __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
   1756   Label skip2_ne, skip2_eq;
   1757   __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
   1758   __ ld(a4, MemOperand(a4, kNormalOffset));
   1759   __ bind(&skip2_ne);
   1760 
   1761   __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
   1762   __ ld(a4, MemOperand(a4, kAliasedOffset));
   1763   __ bind(&skip2_eq);
   1764 
   1765   // v0 = address of new object (tagged)
   1766   // a1 = mapped parameter count (tagged)
   1767   // a2 = argument count (smi-tagged)
   1768   // a4 = address of arguments map (tagged)
   1769   __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
   1770   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
   1771   __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   1772   __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
   1773 
   1774   // Set up the callee in-object property.
   1775   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
   1776   __ ld(a3, MemOperand(sp, 2 * kPointerSize));
   1777   __ AssertNotSmi(a3);
   1778   const int kCalleeOffset = JSObject::kHeaderSize +
   1779       Heap::kArgumentsCalleeIndex * kPointerSize;
   1780   __ sd(a3, FieldMemOperand(v0, kCalleeOffset));
   1781 
   1782   // Use the length (smi tagged) and set that as an in-object property too.
   1783   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1784   const int kLengthOffset = JSObject::kHeaderSize +
   1785       Heap::kArgumentsLengthIndex * kPointerSize;
   1786   __ sd(a2, FieldMemOperand(v0, kLengthOffset));
   1787 
   1788   // Set up the elements pointer in the allocated arguments object.
   1789   // If we allocated a parameter map, a4 will point there, otherwise
   1790   // it will point to the backing store.
   1791   __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
   1792   __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
   1793 
   1794   // v0 = address of new object (tagged)
   1795   // a1 = mapped parameter count (tagged)
   1796   // a2 = argument count (tagged)
   1797   // a4 = address of parameter map or backing store (tagged)
   1798   // Initialize parameter map. If there are no mapped arguments, we're done.
   1799   Label skip_parameter_map;
   1800   Label skip3;
   1801   __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
   1802   // Move backing store address to a3, because it is
   1803   // expected there when filling in the unmapped arguments.
   1804   __ mov(a3, a4);
   1805   __ bind(&skip3);
   1806 
   1807   __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
   1808 
   1809   __ LoadRoot(a6, Heap::kSloppyArgumentsElementsMapRootIndex);
   1810   __ sd(a6, FieldMemOperand(a4, FixedArray::kMapOffset));
   1811   __ Daddu(a6, a1, Operand(Smi::FromInt(2)));
   1812   __ sd(a6, FieldMemOperand(a4, FixedArray::kLengthOffset));
   1813   __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
   1814   __ SmiScale(t2, a1, kPointerSizeLog2);
   1815   __ Daddu(a6, a4, Operand(t2));
   1816   __ Daddu(a6, a6, Operand(kParameterMapHeaderSize));
   1817   __ sd(a6, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
   1818 
   1819   // Copy the parameter slots and the holes in the arguments.
   1820   // We need to fill in mapped_parameter_count slots. They index the context,
   1821   // where parameters are stored in reverse order, at
   1822   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   1823   // The mapped parameter thus need to get indices
   1824   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   1825   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   1826   // We loop from right to left.
   1827   Label parameters_loop, parameters_test;
   1828   __ mov(a6, a1);
   1829   __ ld(t1, MemOperand(sp, 0 * kPointerSize));
   1830   __ Daddu(t1, t1, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   1831   __ Dsubu(t1, t1, Operand(a1));
   1832   __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
   1833   __ SmiScale(t2, a6, kPointerSizeLog2);
   1834   __ Daddu(a3, a4, Operand(t2));
   1835   __ Daddu(a3, a3, Operand(kParameterMapHeaderSize));
   1836 
   1837   // a6 = loop variable (tagged)
   1838   // a1 = mapping index (tagged)
   1839   // a3 = address of backing store (tagged)
   1840   // a4 = address of parameter map (tagged)
   1841   // a5 = temporary scratch (a.o., for address calculation)
   1842   // a7 = the hole value
   1843   __ jmp(&parameters_test);
   1844 
   1845   __ bind(&parameters_loop);
   1846 
   1847   __ Dsubu(a6, a6, Operand(Smi::FromInt(1)));
   1848   __ SmiScale(a5, a6, kPointerSizeLog2);
   1849   __ Daddu(a5, a5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
   1850   __ Daddu(t2, a4, a5);
   1851   __ sd(t1, MemOperand(t2));
   1852   __ Dsubu(a5, a5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
   1853   __ Daddu(t2, a3, a5);
   1854   __ sd(a7, MemOperand(t2));
   1855   __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
   1856   __ bind(&parameters_test);
   1857   __ Branch(&parameters_loop, ne, a6, Operand(Smi::FromInt(0)));
   1858 
   1859   __ bind(&skip_parameter_map);
   1860   // a2 = argument count (tagged)
   1861   // a3 = address of backing store (tagged)
   1862   // a5 = scratch
   1863   // Copy arguments header and remaining slots (if there are any).
   1864   __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
   1865   __ sd(a5, FieldMemOperand(a3, FixedArray::kMapOffset));
   1866   __ sd(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
   1867 
   1868   Label arguments_loop, arguments_test;
   1869   __ mov(t1, a1);
   1870   __ ld(a4, MemOperand(sp, 1 * kPointerSize));
   1871   __ SmiScale(t2, t1, kPointerSizeLog2);
   1872   __ Dsubu(a4, a4, Operand(t2));
   1873   __ jmp(&arguments_test);
   1874 
   1875   __ bind(&arguments_loop);
   1876   __ Dsubu(a4, a4, Operand(kPointerSize));
   1877   __ ld(a6, MemOperand(a4, 0));
   1878   __ SmiScale(t2, t1, kPointerSizeLog2);
   1879   __ Daddu(a5, a3, Operand(t2));
   1880   __ sd(a6, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1881   __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
   1882 
   1883   __ bind(&arguments_test);
   1884   __ Branch(&arguments_loop, lt, t1, Operand(a2));
   1885 
   1886   // Return and remove the on-stack parameters.
   1887   __ DropAndRet(3);
   1888 
   1889   // Do the runtime call to allocate the arguments object.
   1890   // a2 = argument count (tagged)
   1891   __ bind(&runtime);
   1892   __ sd(a2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
   1893   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
   1894 }
   1895 
   1896 
   1897 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
   1898   // Return address is in ra.
   1899   Label slow;
   1900 
   1901   Register receiver = LoadDescriptor::ReceiverRegister();
   1902   Register key = LoadDescriptor::NameRegister();
   1903 
   1904   // Check that the key is an array index, that is Uint32.
   1905   __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
   1906   __ Branch(&slow, ne, t0, Operand(zero_reg));
   1907 
   1908   // Everything is fine, call runtime.
   1909   __ Push(receiver, key);  // Receiver, key.
   1910 
   1911   // Perform tail call to the entry.
   1912   __ TailCallExternalReference(
   1913       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
   1914                         masm->isolate()),
   1915       2, 1);
   1916 
   1917   __ bind(&slow);
   1918   PropertyAccessCompiler::TailCallBuiltin(
   1919       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
   1920 }
   1921 
   1922 
   1923 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   1924   // sp[0] : number of parameters
   1925   // sp[4] : receiver displacement
   1926   // sp[8] : function
   1927   // Check if the calling frame is an arguments adaptor frame.
   1928   Label adaptor_frame, try_allocate, runtime;
   1929   __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1930   __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
   1931   __ Branch(&adaptor_frame,
   1932             eq,
   1933             a3,
   1934             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1935 
   1936   // Get the length from the frame.
   1937   __ ld(a1, MemOperand(sp, 0));
   1938   __ Branch(&try_allocate);
   1939 
   1940   // Patch the arguments.length and the parameters pointer.
   1941   __ bind(&adaptor_frame);
   1942   __ ld(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1943   __ sd(a1, MemOperand(sp, 0));
   1944   __ SmiScale(at, a1, kPointerSizeLog2);
   1945 
   1946   __ Daddu(a3, a2, Operand(at));
   1947 
   1948   __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
   1949   __ sd(a3, MemOperand(sp, 1 * kPointerSize));
   1950 
   1951   // Try the new space allocation. Start out with computing the size
   1952   // of the arguments object and the elements array in words.
   1953   Label add_arguments_object;
   1954   __ bind(&try_allocate);
   1955   __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
   1956   __ SmiUntag(a1);
   1957 
   1958   __ Daddu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
   1959   __ bind(&add_arguments_object);
   1960   __ Daddu(a1, a1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
   1961 
   1962   // Do the allocation of both objects in one go.
   1963   __ Allocate(a1, v0, a2, a3, &runtime,
   1964               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
   1965 
   1966   // Get the arguments boilerplate from the current native context.
   1967   __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1968   __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
   1969   __ ld(a4, MemOperand(a4, Context::SlotOffset(
   1970       Context::STRICT_ARGUMENTS_MAP_INDEX)));
   1971 
   1972   __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
   1973   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
   1974   __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   1975   __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
   1976 
   1977   // Get the length (smi tagged) and set that as an in-object property too.
   1978   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1979   __ ld(a1, MemOperand(sp, 0 * kPointerSize));
   1980   __ AssertSmi(a1);
   1981   __ sd(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
   1982       Heap::kArgumentsLengthIndex * kPointerSize));
   1983 
   1984   Label done;
   1985   __ Branch(&done, eq, a1, Operand(zero_reg));
   1986 
   1987   // Get the parameters pointer from the stack.
   1988   __ ld(a2, MemOperand(sp, 1 * kPointerSize));
   1989 
   1990   // Set up the elements pointer in the allocated arguments object and
   1991   // initialize the header in the elements fixed array.
   1992   __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
   1993   __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
   1994   __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
   1995   __ sd(a3, FieldMemOperand(a4, FixedArray::kMapOffset));
   1996   __ sd(a1, FieldMemOperand(a4, FixedArray::kLengthOffset));
   1997   // Untag the length for the loop.
   1998   __ SmiUntag(a1);
   1999 
   2000 
   2001   // Copy the fixed array slots.
   2002   Label loop;
   2003   // Set up a4 to point to the first array slot.
   2004   __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   2005   __ bind(&loop);
   2006   // Pre-decrement a2 with kPointerSize on each iteration.
   2007   // Pre-decrement in order to skip receiver.
   2008   __ Daddu(a2, a2, Operand(-kPointerSize));
   2009   __ ld(a3, MemOperand(a2));
   2010   // Post-increment a4 with kPointerSize on each iteration.
   2011   __ sd(a3, MemOperand(a4));
   2012   __ Daddu(a4, a4, Operand(kPointerSize));
   2013   __ Dsubu(a1, a1, Operand(1));
   2014   __ Branch(&loop, ne, a1, Operand(zero_reg));
   2015 
   2016   // Return and remove the on-stack parameters.
   2017   __ bind(&done);
   2018   __ DropAndRet(3);
   2019 
   2020   // Do the runtime call to allocate the arguments object.
   2021   __ bind(&runtime);
   2022   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
   2023 }
   2024 
   2025 
   2026 void RegExpExecStub::Generate(MacroAssembler* masm) {
   2027   // Just jump directly to runtime if native RegExp is not selected at compile
   2028   // time or if regexp entry in generated code is turned off runtime switch or
   2029   // at compilation.
   2030 #ifdef V8_INTERPRETED_REGEXP
   2031   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   2032 #else  // V8_INTERPRETED_REGEXP
   2033 
   2034   // Stack frame on entry.
   2035   //  sp[0]: last_match_info (expected JSArray)
   2036   //  sp[4]: previous index
   2037   //  sp[8]: subject string
   2038   //  sp[12]: JSRegExp object
   2039 
   2040   const int kLastMatchInfoOffset = 0 * kPointerSize;
   2041   const int kPreviousIndexOffset = 1 * kPointerSize;
   2042   const int kSubjectOffset = 2 * kPointerSize;
   2043   const int kJSRegExpOffset = 3 * kPointerSize;
   2044 
   2045   Label runtime;
   2046   // Allocation of registers for this function. These are in callee save
   2047   // registers and will be preserved by the call to the native RegExp code, as
   2048   // this code is called using the normal C calling convention. When calling
   2049   // directly from generated code the native RegExp code will not do a GC and
   2050   // therefore the content of these registers are safe to use after the call.
   2051   // MIPS - using s0..s2, since we are not using CEntry Stub.
   2052   Register subject = s0;
   2053   Register regexp_data = s1;
   2054   Register last_match_info_elements = s2;
   2055 
   2056   // Ensure that a RegExp stack is allocated.
   2057   ExternalReference address_of_regexp_stack_memory_address =
   2058       ExternalReference::address_of_regexp_stack_memory_address(
   2059           isolate());
   2060   ExternalReference address_of_regexp_stack_memory_size =
   2061       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   2062   __ li(a0, Operand(address_of_regexp_stack_memory_size));
   2063   __ ld(a0, MemOperand(a0, 0));
   2064   __ Branch(&runtime, eq, a0, Operand(zero_reg));
   2065 
   2066   // Check that the first argument is a JSRegExp object.
   2067   __ ld(a0, MemOperand(sp, kJSRegExpOffset));
   2068   STATIC_ASSERT(kSmiTag == 0);
   2069   __ JumpIfSmi(a0, &runtime);
   2070   __ GetObjectType(a0, a1, a1);
   2071   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
   2072 
   2073   // Check that the RegExp has been compiled (data contains a fixed array).
   2074   __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
   2075   if (FLAG_debug_code) {
   2076     __ SmiTst(regexp_data, a4);
   2077     __ Check(nz,
   2078              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   2079              a4,
   2080              Operand(zero_reg));
   2081     __ GetObjectType(regexp_data, a0, a0);
   2082     __ Check(eq,
   2083              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   2084              a0,
   2085              Operand(FIXED_ARRAY_TYPE));
   2086   }
   2087 
   2088   // regexp_data: RegExp data (FixedArray)
   2089   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   2090   __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   2091   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   2092 
   2093   // regexp_data: RegExp data (FixedArray)
   2094   // Check that the number of captures fit in the static offsets vector buffer.
   2095   __ ld(a2,
   2096          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   2097   // Check (number_of_captures + 1) * 2 <= offsets vector size
   2098   // Or          number_of_captures * 2 <= offsets vector size - 2
   2099   // Or          number_of_captures     <= offsets vector size / 2 - 1
   2100   // Multiplying by 2 comes for free since a2 is smi-tagged.
   2101   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   2102   int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
   2103   __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
   2104 
   2105   // Reset offset for possibly sliced string.
   2106   __ mov(t0, zero_reg);
   2107   __ ld(subject, MemOperand(sp, kSubjectOffset));
   2108   __ JumpIfSmi(subject, &runtime);
   2109   __ mov(a3, subject);  // Make a copy of the original subject string.
   2110   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2111   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2112   // subject: subject string
   2113   // a3: subject string
   2114   // a0: subject string instance type
   2115   // regexp_data: RegExp data (FixedArray)
   2116   // Handle subject string according to its encoding and representation:
   2117   // (1) Sequential string?  If yes, go to (5).
   2118   // (2) Anything but sequential or cons?  If yes, go to (6).
   2119   // (3) Cons string.  If the string is flat, replace subject with first string.
   2120   //     Otherwise bailout.
   2121   // (4) Is subject external?  If yes, go to (7).
   2122   // (5) Sequential string.  Load regexp code according to encoding.
   2123   // (E) Carry on.
   2124   /// [...]
   2125 
   2126   // Deferred code at the end of the stub:
   2127   // (6) Not a long external string?  If yes, go to (8).
   2128   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2129   //     Go to (5).
   2130   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2131   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2132 
   2133   Label check_underlying;   // (4)
   2134   Label seq_string;         // (5)
   2135   Label not_seq_nor_cons;   // (6)
   2136   Label external_string;    // (7)
   2137   Label not_long_external;  // (8)
   2138 
   2139   // (1) Sequential string?  If yes, go to (5).
   2140   __ And(a1,
   2141          a0,
   2142          Operand(kIsNotStringMask |
   2143                  kStringRepresentationMask |
   2144                  kShortExternalStringMask));
   2145   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   2146   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
   2147 
   2148   // (2) Anything but sequential or cons?  If yes, go to (6).
   2149   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   2150   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   2151   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   2152   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   2153   // Go to (6).
   2154   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
   2155 
   2156   // (3) Cons string.  Check that it's flat.
   2157   // Replace subject with first string and reload instance type.
   2158   __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
   2159   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
   2160   __ Branch(&runtime, ne, a0, Operand(a1));
   2161   __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   2162 
   2163   // (4) Is subject external?  If yes, go to (7).
   2164   __ bind(&check_underlying);
   2165   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2166   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2167   STATIC_ASSERT(kSeqStringTag == 0);
   2168   __ And(at, a0, Operand(kStringRepresentationMask));
   2169   // The underlying external string is never a short external string.
   2170   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   2171   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   2172   __ Branch(&external_string, ne, at, Operand(zero_reg));  // Go to (7).
   2173 
   2174   // (5) Sequential string.  Load regexp code according to encoding.
   2175   __ bind(&seq_string);
   2176   // subject: sequential subject string (or look-alike, external string)
   2177   // a3: original subject string
   2178   // Load previous index and check range before a3 is overwritten.  We have to
   2179   // use a3 instead of subject here because subject might have been only made
   2180   // to look like a sequential string when it actually is an external string.
   2181   __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
   2182   __ JumpIfNotSmi(a1, &runtime);
   2183   __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
   2184   __ Branch(&runtime, ls, a3, Operand(a1));
   2185   __ SmiUntag(a1);
   2186 
   2187   STATIC_ASSERT(kStringEncodingMask == 4);
   2188   STATIC_ASSERT(kOneByteStringTag == 4);
   2189   STATIC_ASSERT(kTwoByteStringTag == 0);
   2190   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one_byte.
   2191   __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
   2192   __ dsra(a3, a0, 2);  // a3 is 1 for one_byte, 0 for UC16 (used below).
   2193   __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
   2194   __ Movz(t9, a5, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
   2195 
   2196   // (E) Carry on.  String handling is done.
   2197   // t9: irregexp code
   2198   // Check that the irregexp code has been generated for the actual string
   2199   // encoding. If it has, the field contains a code object otherwise it contains
   2200   // a smi (code flushing support).
   2201   __ JumpIfSmi(t9, &runtime);
   2202 
   2203   // a1: previous index
   2204   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
   2205   // t9: code
   2206   // subject: Subject string
   2207   // regexp_data: RegExp data (FixedArray)
   2208   // All checks done. Now push arguments for native regexp code.
   2209   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
   2210                       1, a0, a2);
   2211 
   2212   // Isolates: note we add an additional parameter here (isolate pointer).
   2213   const int kRegExpExecuteArguments = 9;
   2214   const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
   2215   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   2216 
   2217   // Stack pointer now points to cell where return address is to be written.
   2218   // Arguments are before that on the stack or in registers, meaning we
   2219   // treat the return address as argument 5. Thus every argument after that
   2220   // needs to be shifted back by 1. Since DirectCEntryStub will handle
   2221   // allocating space for the c argument slots, we don't need to calculate
   2222   // that into the argument positions on the stack. This is how the stack will
   2223   // look (sp meaning the value of sp at this moment):
   2224   // Abi n64:
   2225   //   [sp + 1] - Argument 9
   2226   //   [sp + 0] - saved ra
   2227   // Abi O32:
   2228   //   [sp + 5] - Argument 9
   2229   //   [sp + 4] - Argument 8
   2230   //   [sp + 3] - Argument 7
   2231   //   [sp + 2] - Argument 6
   2232   //   [sp + 1] - Argument 5
   2233   //   [sp + 0] - saved ra
   2234 
   2235   if (kMipsAbi == kN64) {
   2236     // Argument 9: Pass current isolate address.
   2237     __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
   2238     __ sd(a0, MemOperand(sp, 1 * kPointerSize));
   2239 
   2240     // Argument 8: Indicate that this is a direct call from JavaScript.
   2241     __ li(a7, Operand(1));
   2242 
   2243     // Argument 7: Start (high end) of backtracking stack memory area.
   2244     __ li(a0, Operand(address_of_regexp_stack_memory_address));
   2245     __ ld(a0, MemOperand(a0, 0));
   2246     __ li(a2, Operand(address_of_regexp_stack_memory_size));
   2247     __ ld(a2, MemOperand(a2, 0));
   2248     __ daddu(a6, a0, a2);
   2249 
   2250     // Argument 6: Set the number of capture registers to zero to force global
   2251     // regexps to behave as non-global. This does not affect non-global regexps.
   2252     __ mov(a5, zero_reg);
   2253 
   2254     // Argument 5: static offsets vector buffer.
   2255     __ li(a4, Operand(
   2256           ExternalReference::address_of_static_offsets_vector(isolate())));
   2257   } else {  // O32.
   2258     DCHECK(kMipsAbi == kO32);
   2259 
   2260     // Argument 9: Pass current isolate address.
   2261     // CFunctionArgumentOperand handles MIPS stack argument slots.
   2262     __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
   2263     __ sd(a0, MemOperand(sp, 5 * kPointerSize));
   2264 
   2265     // Argument 8: Indicate that this is a direct call from JavaScript.
   2266     __ li(a0, Operand(1));
   2267     __ sd(a0, MemOperand(sp, 4 * kPointerSize));
   2268 
   2269     // Argument 7: Start (high end) of backtracking stack memory area.
   2270     __ li(a0, Operand(address_of_regexp_stack_memory_address));
   2271     __ ld(a0, MemOperand(a0, 0));
   2272     __ li(a2, Operand(address_of_regexp_stack_memory_size));
   2273     __ ld(a2, MemOperand(a2, 0));
   2274     __ daddu(a0, a0, a2);
   2275     __ sd(a0, MemOperand(sp, 3 * kPointerSize));
   2276 
   2277     // Argument 6: Set the number of capture registers to zero to force global
   2278     // regexps to behave as non-global. This does not affect non-global regexps.
   2279     __ mov(a0, zero_reg);
   2280     __ sd(a0, MemOperand(sp, 2 * kPointerSize));
   2281 
   2282     // Argument 5: static offsets vector buffer.
   2283     __ li(a0, Operand(
   2284           ExternalReference::address_of_static_offsets_vector(isolate())));
   2285     __ sd(a0, MemOperand(sp, 1 * kPointerSize));
   2286   }
   2287 
   2288   // For arguments 4 and 3 get string length, calculate start of string data
   2289   // and calculate the shift of the index (0 for one_byte and 1 for two byte).
   2290   __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   2291   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
   2292   // Load the length from the original subject string from the previous stack
   2293   // frame. Therefore we have to use fp, which points exactly to two pointer
   2294   // sizes below the previous sp. (Because creating a new stack frame pushes
   2295   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   2296   __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   2297   // If slice offset is not 0, load the length from the original sliced string.
   2298   // Argument 4, a3: End of string data
   2299   // Argument 3, a2: Start of string data
   2300   // Prepare start and end index of the input.
   2301   __ dsllv(t1, t0, a3);
   2302   __ daddu(t0, t2, t1);
   2303   __ dsllv(t1, a1, a3);
   2304   __ daddu(a2, t0, t1);
   2305 
   2306   __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
   2307 
   2308   __ SmiUntag(t2);
   2309   __ dsllv(t1, t2, a3);
   2310   __ daddu(a3, t0, t1);
   2311   // Argument 2 (a1): Previous index.
   2312   // Already there
   2313 
   2314   // Argument 1 (a0): Subject string.
   2315   __ mov(a0, subject);
   2316 
   2317   // Locate the code entry and call it.
   2318   __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
   2319   DirectCEntryStub stub(isolate());
   2320   stub.GenerateCall(masm, t9);
   2321 
   2322   __ LeaveExitFrame(false, no_reg, true);
   2323 
   2324   // v0: result
   2325   // subject: subject string (callee saved)
   2326   // regexp_data: RegExp data (callee saved)
   2327   // last_match_info_elements: Last match info elements (callee saved)
   2328   // Check the result.
   2329   Label success;
   2330   __ Branch(&success, eq, v0, Operand(1));
   2331   // We expect exactly one result since we force the called regexp to behave
   2332   // as non-global.
   2333   Label failure;
   2334   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
   2335   // If not exception it can only be retry. Handle that in the runtime system.
   2336   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   2337   // Result must now be exception. If there is no pending exception already a
   2338   // stack overflow (on the backtrack stack) was detected in RegExp code but
   2339   // haven't created the exception yet. Handle that in the runtime system.
   2340   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   2341   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
   2342   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   2343                                       isolate())));
   2344   __ ld(v0, MemOperand(a2, 0));
   2345   __ Branch(&runtime, eq, v0, Operand(a1));
   2346 
   2347   __ sd(a1, MemOperand(a2, 0));  // Clear pending exception.
   2348 
   2349   // Check if the exception is a termination. If so, throw as uncatchable.
   2350   __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
   2351   Label termination_exception;
   2352   __ Branch(&termination_exception, eq, v0, Operand(a0));
   2353 
   2354   __ Throw(v0);
   2355 
   2356   __ bind(&termination_exception);
   2357   __ ThrowUncatchable(v0);
   2358 
   2359   __ bind(&failure);
   2360   // For failure and exception return null.
   2361   __ li(v0, Operand(isolate()->factory()->null_value()));
   2362   __ DropAndRet(4);
   2363 
   2364   // Process the result from the native regexp code.
   2365   __ bind(&success);
   2366 
   2367   __ lw(a1, UntagSmiFieldMemOperand(
   2368       regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   2369   // Calculate number of capture registers (number_of_captures + 1) * 2.
   2370   __ Daddu(a1, a1, Operand(1));
   2371   __ dsll(a1, a1, 1);  // Multiply by 2.
   2372 
   2373   __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
   2374   __ JumpIfSmi(a0, &runtime);
   2375   __ GetObjectType(a0, a2, a2);
   2376   __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
   2377   // Check that the JSArray is in fast case.
   2378   __ ld(last_match_info_elements,
   2379         FieldMemOperand(a0, JSArray::kElementsOffset));
   2380   __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   2381   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   2382   __ Branch(&runtime, ne, a0, Operand(at));
   2383   // Check that the last match info has space for the capture registers and the
   2384   // additional information.
   2385   __ ld(a0,
   2386         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   2387   __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
   2388 
   2389   __ SmiUntag(at, a0);
   2390   __ Branch(&runtime, gt, a2, Operand(at));
   2391 
   2392   // a1: number of capture registers
   2393   // subject: subject string
   2394   // Store the capture count.
   2395   __ SmiTag(a2, a1);  // To smi.
   2396   __ sd(a2, FieldMemOperand(last_match_info_elements,
   2397                              RegExpImpl::kLastCaptureCountOffset));
   2398   // Store last subject and last input.
   2399   __ sd(subject,
   2400          FieldMemOperand(last_match_info_elements,
   2401                          RegExpImpl::kLastSubjectOffset));
   2402   __ mov(a2, subject);
   2403   __ RecordWriteField(last_match_info_elements,
   2404                       RegExpImpl::kLastSubjectOffset,
   2405                       subject,
   2406                       a7,
   2407                       kRAHasNotBeenSaved,
   2408                       kDontSaveFPRegs);
   2409   __ mov(subject, a2);
   2410   __ sd(subject,
   2411          FieldMemOperand(last_match_info_elements,
   2412                          RegExpImpl::kLastInputOffset));
   2413   __ RecordWriteField(last_match_info_elements,
   2414                       RegExpImpl::kLastInputOffset,
   2415                       subject,
   2416                       a7,
   2417                       kRAHasNotBeenSaved,
   2418                       kDontSaveFPRegs);
   2419 
   2420   // Get the static offsets vector filled by the native regexp code.
   2421   ExternalReference address_of_static_offsets_vector =
   2422       ExternalReference::address_of_static_offsets_vector(isolate());
   2423   __ li(a2, Operand(address_of_static_offsets_vector));
   2424 
   2425   // a1: number of capture registers
   2426   // a2: offsets vector
   2427   Label next_capture, done;
   2428   // Capture register counter starts from number of capture registers and
   2429   // counts down until wrapping after zero.
   2430   __ Daddu(a0,
   2431          last_match_info_elements,
   2432          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
   2433   __ bind(&next_capture);
   2434   __ Dsubu(a1, a1, Operand(1));
   2435   __ Branch(&done, lt, a1, Operand(zero_reg));
   2436   // Read the value from the static offsets vector buffer.
   2437   __ lw(a3, MemOperand(a2, 0));
   2438   __ daddiu(a2, a2, kIntSize);
   2439   // Store the smi value in the last match info.
   2440   __ SmiTag(a3);
   2441   __ sd(a3, MemOperand(a0, 0));
   2442   __ Branch(&next_capture, USE_DELAY_SLOT);
   2443   __ daddiu(a0, a0, kPointerSize);  // In branch delay slot.
   2444 
   2445   __ bind(&done);
   2446 
   2447   // Return last match info.
   2448   __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
   2449   __ DropAndRet(4);
   2450 
   2451   // Do the runtime call to execute the regexp.
   2452   __ bind(&runtime);
   2453   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   2454 
   2455   // Deferred code for string handling.
   2456   // (6) Not a long external string?  If yes, go to (8).
   2457   __ bind(&not_seq_nor_cons);
   2458   // Go to (8).
   2459   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
   2460 
   2461   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2462   __ bind(&external_string);
   2463   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2464   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2465   if (FLAG_debug_code) {
   2466     // Assert that we do not have a cons or slice (indirect strings) here.
   2467     // Sequential strings have already been ruled out.
   2468     __ And(at, a0, Operand(kIsIndirectStringMask));
   2469     __ Assert(eq,
   2470               kExternalStringExpectedButNotFound,
   2471               at,
   2472               Operand(zero_reg));
   2473   }
   2474   __ ld(subject,
   2475         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   2476   // Move the pointer so that offset-wise, it looks like a sequential string.
   2477   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2478   __ Dsubu(subject,
   2479           subject,
   2480           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
   2481   __ jmp(&seq_string);    // Go to (5).
   2482 
   2483   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2484   __ bind(&not_long_external);
   2485   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   2486   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
   2487   __ Branch(&runtime, ne, at, Operand(zero_reg));
   2488 
   2489   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2490   // Load offset into t0 and replace subject string with parent.
   2491   __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   2492   __ SmiUntag(t0);
   2493   __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   2494   __ jmp(&check_underlying);  // Go to (4).
   2495 #endif  // V8_INTERPRETED_REGEXP
   2496 }
   2497 
   2498 
   2499 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   2500   // Cache the called function in a feedback vector slot.  Cache states
   2501   // are uninitialized, monomorphic (indicated by a JSFunction), and
   2502   // megamorphic.
   2503   // a0 : number of arguments to the construct function
   2504   // a1 : the function to call
   2505   // a2 : Feedback vector
   2506   // a3 : slot in feedback vector (Smi)
   2507   Label initialize, done, miss, megamorphic, not_array_function;
   2508 
   2509   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
   2510             masm->isolate()->heap()->megamorphic_symbol());
   2511   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
   2512             masm->isolate()->heap()->uninitialized_symbol());
   2513 
   2514   // Load the cache state into a4.
   2515   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2516   __ Daddu(a4, a2, Operand(a4));
   2517   __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2518 
   2519   // A monomorphic cache hit or an already megamorphic state: invoke the
   2520   // function without changing the state.
   2521   __ Branch(&done, eq, a4, Operand(a1));
   2522 
   2523   if (!FLAG_pretenuring_call_new) {
   2524     // If we came here, we need to see if we are the array function.
   2525     // If we didn't have a matching function, and we didn't find the megamorph
   2526     // sentinel, then we have in the slot either some other function or an
   2527     // AllocationSite. Do a map check on the object in a3.
   2528     __ ld(a5, FieldMemOperand(a4, 0));
   2529     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2530     __ Branch(&miss, ne, a5, Operand(at));
   2531 
   2532     // Make sure the function is the Array() function
   2533     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
   2534     __ Branch(&megamorphic, ne, a1, Operand(a4));
   2535     __ jmp(&done);
   2536   }
   2537 
   2538   __ bind(&miss);
   2539 
   2540   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   2541   // megamorphic.
   2542   __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
   2543   __ Branch(&initialize, eq, a4, Operand(at));
   2544   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   2545   // write-barrier is needed.
   2546   __ bind(&megamorphic);
   2547   __ dsrl(a4, a3, 32- kPointerSizeLog2);
   2548   __ Daddu(a4, a2, Operand(a4));
   2549   __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
   2550   __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2551   __ jmp(&done);
   2552 
   2553   // An uninitialized cache is patched with the function.
   2554   __ bind(&initialize);
   2555   if (!FLAG_pretenuring_call_new) {
   2556     // Make sure the function is the Array() function.
   2557     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
   2558     __ Branch(&not_array_function, ne, a1, Operand(a4));
   2559 
   2560     // The target function is the Array constructor,
   2561     // Create an AllocationSite if we don't already have it, store it in the
   2562     // slot.
   2563     {
   2564       FrameScope scope(masm, StackFrame::INTERNAL);
   2565       const RegList kSavedRegs =
   2566           1 << 4  |  // a0
   2567           1 << 5  |  // a1
   2568           1 << 6  |  // a2
   2569           1 << 7;    // a3
   2570 
   2571       // Arguments register must be smi-tagged to call out.
   2572       __ SmiTag(a0);
   2573       __ MultiPush(kSavedRegs);
   2574 
   2575       CreateAllocationSiteStub create_stub(masm->isolate());
   2576       __ CallStub(&create_stub);
   2577 
   2578       __ MultiPop(kSavedRegs);
   2579       __ SmiUntag(a0);
   2580     }
   2581     __ Branch(&done);
   2582 
   2583     __ bind(&not_array_function);
   2584   }
   2585 
   2586   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2587   __ Daddu(a4, a2, Operand(a4));
   2588   __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   2589   __ sd(a1, MemOperand(a4, 0));
   2590 
   2591   __ Push(a4, a2, a1);
   2592   __ RecordWrite(a2, a4, a1, kRAHasNotBeenSaved, kDontSaveFPRegs,
   2593                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   2594   __ Pop(a4, a2, a1);
   2595 
   2596   __ bind(&done);
   2597 }
   2598 
   2599 
   2600 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   2601   __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   2602 
   2603   // Do not transform the receiver for strict mode functions.
   2604   int32_t strict_mode_function_mask =
   2605       1 <<  SharedFunctionInfo::kStrictModeBitWithinByte ;
   2606   // Do not transform the receiver for native (Compilerhints already in a3).
   2607   int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
   2608 
   2609   __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kStrictModeByteOffset));
   2610   __ And(at, a4, Operand(strict_mode_function_mask));
   2611   __ Branch(cont, ne, at, Operand(zero_reg));
   2612   __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kNativeByteOffset));
   2613   __ And(at, a4, Operand(native_mask));
   2614   __ Branch(cont, ne, at, Operand(zero_reg));
   2615 }
   2616 
   2617 
   2618 static void EmitSlowCase(MacroAssembler* masm,
   2619                          int argc,
   2620                          Label* non_function) {
   2621   // Check for function proxy.
   2622   __ Branch(non_function, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
   2623   __ push(a1);  // put proxy as additional argument
   2624   __ li(a0, Operand(argc + 1, RelocInfo::NONE32));
   2625   __ mov(a2, zero_reg);
   2626   __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
   2627   {
   2628     Handle<Code> adaptor =
   2629         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
   2630     __ Jump(adaptor, RelocInfo::CODE_TARGET);
   2631   }
   2632 
   2633   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   2634   // of the original receiver from the call site).
   2635   __ bind(non_function);
   2636   __ sd(a1, MemOperand(sp, argc * kPointerSize));
   2637   __ li(a0, Operand(argc));  // Set up the number of arguments.
   2638   __ mov(a2, zero_reg);
   2639   __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
   2640   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   2641           RelocInfo::CODE_TARGET);
   2642 }
   2643 
   2644 
   2645 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
   2646   // Wrap the receiver and patch it back onto the stack.
   2647   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
   2648     __ Push(a1, a3);
   2649     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   2650     __ pop(a1);
   2651   }
   2652   __ Branch(USE_DELAY_SLOT, cont);
   2653   __ sd(v0, MemOperand(sp, argc * kPointerSize));
   2654 }
   2655 
   2656 
   2657 static void CallFunctionNoFeedback(MacroAssembler* masm,
   2658                                    int argc, bool needs_checks,
   2659                                    bool call_as_method) {
   2660   // a1 : the function to call
   2661   Label slow, non_function, wrap, cont;
   2662 
   2663   if (needs_checks) {
   2664     // Check that the function is really a JavaScript function.
   2665     // a1: pushed function (to be verified)
   2666     __ JumpIfSmi(a1, &non_function);
   2667 
   2668     // Goto slow case if we do not have a function.
   2669     __ GetObjectType(a1, a4, a4);
   2670     __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
   2671   }
   2672 
   2673   // Fast-case: Invoke the function now.
   2674   // a1: pushed function
   2675   ParameterCount actual(argc);
   2676 
   2677   if (call_as_method) {
   2678     if (needs_checks) {
   2679       EmitContinueIfStrictOrNative(masm, &cont);
   2680     }
   2681 
   2682     // Compute the receiver in sloppy mode.
   2683     __ ld(a3, MemOperand(sp, argc * kPointerSize));
   2684 
   2685     if (needs_checks) {
   2686       __ JumpIfSmi(a3, &wrap);
   2687       __ GetObjectType(a3, a4, a4);
   2688       __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
   2689     } else {
   2690       __ jmp(&wrap);
   2691     }
   2692 
   2693     __ bind(&cont);
   2694   }
   2695   __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
   2696 
   2697   if (needs_checks) {
   2698     // Slow-case: Non-function called.
   2699     __ bind(&slow);
   2700     EmitSlowCase(masm, argc, &non_function);
   2701   }
   2702 
   2703   if (call_as_method) {
   2704     __ bind(&wrap);
   2705     // Wrap the receiver and patch it back onto the stack.
   2706     EmitWrapCase(masm, argc, &cont);
   2707   }
   2708 }
   2709 
   2710 
   2711 void CallFunctionStub::Generate(MacroAssembler* masm) {
   2712   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
   2713 }
   2714 
   2715 
   2716 void CallConstructStub::Generate(MacroAssembler* masm) {
   2717   // a0 : number of arguments
   2718   // a1 : the function to call
   2719   // a2 : feedback vector
   2720   // a3 : (only if a2 is not undefined) slot in feedback vector (Smi)
   2721   Label slow, non_function_call;
   2722   // Check that the function is not a smi.
   2723   __ JumpIfSmi(a1, &non_function_call);
   2724   // Check that the function is a JSFunction.
   2725   __ GetObjectType(a1, a4, a4);
   2726   __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
   2727 
   2728   if (RecordCallTarget()) {
   2729     GenerateRecordCallTarget(masm);
   2730 
   2731     __ dsrl(at, a3, 32 - kPointerSizeLog2);
   2732     __ Daddu(a5, a2, at);
   2733     if (FLAG_pretenuring_call_new) {
   2734       // Put the AllocationSite from the feedback vector into a2.
   2735       // By adding kPointerSize we encode that we know the AllocationSite
   2736       // entry is at the feedback vector slot given by a3 + 1.
   2737       __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
   2738     } else {
   2739       Label feedback_register_initialized;
   2740       // Put the AllocationSite from the feedback vector into a2, or undefined.
   2741       __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
   2742       __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
   2743       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2744       __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
   2745       __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   2746       __ bind(&feedback_register_initialized);
   2747     }
   2748 
   2749     __ AssertUndefinedOrAllocationSite(a2, a5);
   2750   }
   2751 
   2752   // Jump to the function-specific construct stub.
   2753   Register jmp_reg = a4;
   2754   __ ld(jmp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   2755   __ ld(jmp_reg, FieldMemOperand(jmp_reg,
   2756                                  SharedFunctionInfo::kConstructStubOffset));
   2757   __ Daddu(at, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
   2758   __ Jump(at);
   2759 
   2760   // a0: number of arguments
   2761   // a1: called object
   2762   // a4: object type
   2763   Label do_call;
   2764   __ bind(&slow);
   2765   __ Branch(&non_function_call, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
   2766   __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   2767   __ jmp(&do_call);
   2768 
   2769   __ bind(&non_function_call);
   2770   __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   2771   __ bind(&do_call);
   2772   // Set expected number of arguments to zero (not changing r0).
   2773   __ li(a2, Operand(0, RelocInfo::NONE32));
   2774   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   2775            RelocInfo::CODE_TARGET);
   2776 }
   2777 
   2778 
   2779 // StringCharCodeAtGenerator.
   2780 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2781   DCHECK(!a4.is(index_));
   2782   DCHECK(!a4.is(result_));
   2783   DCHECK(!a4.is(object_));
   2784 
   2785   // If the receiver is a smi trigger the non-string case.
   2786   __ JumpIfSmi(object_, receiver_not_string_);
   2787 
   2788   // Fetch the instance type of the receiver into result register.
   2789   __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2790   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2791   // If the receiver is not a string trigger the non-string case.
   2792   __ And(a4, result_, Operand(kIsNotStringMask));
   2793   __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
   2794 
   2795   // If the index is non-smi trigger the non-smi case.
   2796   __ JumpIfNotSmi(index_, &index_not_smi_);
   2797 
   2798   __ bind(&got_smi_index_);
   2799 
   2800   // Check for index out of range.
   2801   __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
   2802   __ Branch(index_out_of_range_, ls, a4, Operand(index_));
   2803 
   2804   __ SmiUntag(index_);
   2805 
   2806   StringCharLoadGenerator::Generate(masm,
   2807                                     object_,
   2808                                     index_,
   2809                                     result_,
   2810                                     &call_runtime_);
   2811 
   2812   __ SmiTag(result_);
   2813   __ bind(&exit_);
   2814 }
   2815 
   2816 
   2817 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   2818   __ ld(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   2819   __ ld(vector, FieldMemOperand(vector,
   2820                                 JSFunction::kSharedFunctionInfoOffset));
   2821   __ ld(vector, FieldMemOperand(vector,
   2822                                 SharedFunctionInfo::kFeedbackVectorOffset));
   2823 }
   2824 
   2825 
   2826 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   2827   // a1 - function
   2828   // a3 - slot id
   2829   Label miss;
   2830 
   2831   EmitLoadTypeFeedbackVector(masm, a2);
   2832 
   2833   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, at);
   2834   __ Branch(&miss, ne, a1, Operand(at));
   2835 
   2836   __ li(a0, Operand(arg_count()));
   2837   __ dsrl(at, a3, 32 - kPointerSizeLog2);
   2838   __ Daddu(at, a2, Operand(at));
   2839   __ ld(a4, FieldMemOperand(at, FixedArray::kHeaderSize));
   2840 
   2841   // Verify that a4 contains an AllocationSite
   2842   __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
   2843   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2844   __ Branch(&miss, ne, a5, Operand(at));
   2845 
   2846   __ mov(a2, a4);
   2847   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2848   __ TailCallStub(&stub);
   2849 
   2850   __ bind(&miss);
   2851   GenerateMiss(masm);
   2852 
   2853   // The slow case, we need this no matter what to complete a call after a miss.
   2854   CallFunctionNoFeedback(masm,
   2855                          arg_count(),
   2856                          true,
   2857                          CallAsMethod());
   2858 
   2859   // Unreachable.
   2860   __ stop("Unexpected code address");
   2861 }
   2862 
   2863 
   2864 void CallICStub::Generate(MacroAssembler* masm) {
   2865   // a1 - function
   2866   // a3 - slot id (Smi)
   2867   Label extra_checks_or_miss, slow_start;
   2868   Label slow, non_function, wrap, cont;
   2869   Label have_js_function;
   2870   int argc = arg_count();
   2871   ParameterCount actual(argc);
   2872 
   2873   EmitLoadTypeFeedbackVector(masm, a2);
   2874 
   2875   // The checks. First, does r1 match the recorded monomorphic target?
   2876   __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2877   __ Daddu(a4, a2, Operand(a4));
   2878   __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2879   __ Branch(&extra_checks_or_miss, ne, a1, Operand(a4));
   2880 
   2881   __ bind(&have_js_function);
   2882   if (CallAsMethod()) {
   2883     EmitContinueIfStrictOrNative(masm, &cont);
   2884     // Compute the receiver in sloppy mode.
   2885     __ ld(a3, MemOperand(sp, argc * kPointerSize));
   2886 
   2887     __ JumpIfSmi(a3, &wrap);
   2888     __ GetObjectType(a3, a4, a4);
   2889     __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
   2890 
   2891     __ bind(&cont);
   2892   }
   2893 
   2894   __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
   2895 
   2896   __ bind(&slow);
   2897   EmitSlowCase(masm, argc, &non_function);
   2898 
   2899   if (CallAsMethod()) {
   2900     __ bind(&wrap);
   2901     EmitWrapCase(masm, argc, &cont);
   2902   }
   2903 
   2904   __ bind(&extra_checks_or_miss);
   2905   Label miss;
   2906 
   2907   __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
   2908   __ Branch(&slow_start, eq, a4, Operand(at));
   2909   __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
   2910   __ Branch(&miss, eq, a4, Operand(at));
   2911 
   2912   if (!FLAG_trace_ic) {
   2913     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2914     // to handle it here. More complex cases are dealt with in the runtime.
   2915     __ AssertNotSmi(a4);
   2916     __ GetObjectType(a4, a5, a5);
   2917     __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
   2918     __ dsrl(a4, a3, 32 - kPointerSizeLog2);
   2919     __ Daddu(a4, a2, Operand(a4));
   2920     __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
   2921     __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
   2922     __ Branch(&slow_start);
   2923   }
   2924 
   2925   // We are here because tracing is on or we are going monomorphic.
   2926   __ bind(&miss);
   2927   GenerateMiss(masm);
   2928 
   2929   // the slow case
   2930   __ bind(&slow_start);
   2931   // Check that the function is really a JavaScript function.
   2932   // r1: pushed function (to be verified)
   2933   __ JumpIfSmi(a1, &non_function);
   2934 
   2935   // Goto slow case if we do not have a function.
   2936   __ GetObjectType(a1, a4, a4);
   2937   __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
   2938   __ Branch(&have_js_function);
   2939 }
   2940 
   2941 
   2942 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2943   // Get the receiver of the function from the stack; 1 ~ return address.
   2944   __ ld(a4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
   2945 
   2946   {
   2947     FrameScope scope(masm, StackFrame::INTERNAL);
   2948 
   2949     // Push the receiver and the function and feedback info.
   2950     __ Push(a4, a1, a2, a3);
   2951 
   2952     // Call the entry.
   2953     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
   2954                                                : IC::kCallIC_Customization_Miss;
   2955 
   2956     ExternalReference miss = ExternalReference(IC_Utility(id),
   2957                                                masm->isolate());
   2958     __ CallExternalReference(miss, 4);
   2959 
   2960     // Move result to a1 and exit the internal frame.
   2961     __ mov(a1, v0);
   2962   }
   2963 }
   2964 
   2965 
   2966 void StringCharCodeAtGenerator::GenerateSlow(
   2967     MacroAssembler* masm,
   2968     const RuntimeCallHelper& call_helper) {
   2969   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2970 
   2971   // Index is not a smi.
   2972   __ bind(&index_not_smi_);
   2973   // If index is a heap number, try converting it to an integer.
   2974   __ CheckMap(index_,
   2975               result_,
   2976               Heap::kHeapNumberMapRootIndex,
   2977               index_not_number_,
   2978               DONT_DO_SMI_CHECK);
   2979   call_helper.BeforeCall(masm);
   2980   // Consumed by runtime conversion function:
   2981   __ Push(object_, index_);
   2982   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2983     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   2984   } else {
   2985     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2986     // NumberToSmi discards numbers that are not exact integers.
   2987     __ CallRuntime(Runtime::kNumberToSmi, 1);
   2988   }
   2989 
   2990   // Save the conversion result before the pop instructions below
   2991   // have a chance to overwrite it.
   2992 
   2993   __ Move(index_, v0);
   2994   __ pop(object_);
   2995   // Reload the instance type.
   2996   __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2997   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2998   call_helper.AfterCall(masm);
   2999   // If index is still not a smi, it must be out of range.
   3000   __ JumpIfNotSmi(index_, index_out_of_range_);
   3001   // Otherwise, return to the fast path.
   3002   __ Branch(&got_smi_index_);
   3003 
   3004   // Call runtime. We get here when the receiver is a string and the
   3005   // index is a number, but the code of getting the actual character
   3006   // is too complex (e.g., when the string needs to be flattened).
   3007   __ bind(&call_runtime_);
   3008   call_helper.BeforeCall(masm);
   3009   __ SmiTag(index_);
   3010   __ Push(object_, index_);
   3011   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
   3012 
   3013   __ Move(result_, v0);
   3014 
   3015   call_helper.AfterCall(masm);
   3016   __ jmp(&exit_);
   3017 
   3018   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   3019 }
   3020 
   3021 
   3022 // -------------------------------------------------------------------------
   3023 // StringCharFromCodeGenerator
   3024 
   3025 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   3026   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   3027 
   3028   DCHECK(!a4.is(result_));
   3029   DCHECK(!a4.is(code_));
   3030 
   3031   STATIC_ASSERT(kSmiTag == 0);
   3032   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
   3033   __ And(a4,
   3034          code_,
   3035          Operand(kSmiTagMask |
   3036                  ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
   3037   __ Branch(&slow_case_, ne, a4, Operand(zero_reg));
   3038 
   3039 
   3040   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   3041   // At this point code register contains smi tagged one_byte char code.
   3042   STATIC_ASSERT(kSmiTag == 0);
   3043   __ SmiScale(a4, code_, kPointerSizeLog2);
   3044   __ Daddu(result_, result_, a4);
   3045   __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
   3046   __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
   3047   __ Branch(&slow_case_, eq, result_, Operand(a4));
   3048   __ bind(&exit_);
   3049 }
   3050 
   3051 
   3052 void StringCharFromCodeGenerator::GenerateSlow(
   3053     MacroAssembler* masm,
   3054     const RuntimeCallHelper& call_helper) {
   3055   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   3056 
   3057   __ bind(&slow_case_);
   3058   call_helper.BeforeCall(masm);
   3059   __ push(code_);
   3060   __ CallRuntime(Runtime::kCharFromCode, 1);
   3061   __ Move(result_, v0);
   3062 
   3063   call_helper.AfterCall(masm);
   3064   __ Branch(&exit_);
   3065 
   3066   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   3067 }
   3068 
   3069 
   3070 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
   3071 
   3072 
   3073 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   3074                                           Register dest,
   3075                                           Register src,
   3076                                           Register count,
   3077                                           Register scratch,
   3078                                           String::Encoding encoding) {
   3079   if (FLAG_debug_code) {
   3080     // Check that destination is word aligned.
   3081     __ And(scratch, dest, Operand(kPointerAlignmentMask));
   3082     __ Check(eq,
   3083              kDestinationOfCopyNotAligned,
   3084              scratch,
   3085              Operand(zero_reg));
   3086   }
   3087 
   3088   // Assumes word reads and writes are little endian.
   3089   // Nothing to do for zero characters.
   3090   Label done;
   3091 
   3092   if (encoding == String::TWO_BYTE_ENCODING) {
   3093     __ Daddu(count, count, count);
   3094   }
   3095 
   3096   Register limit = count;  // Read until dest equals this.
   3097   __ Daddu(limit, dest, Operand(count));
   3098 
   3099   Label loop_entry, loop;
   3100   // Copy bytes from src to dest until dest hits limit.
   3101   __ Branch(&loop_entry);
   3102   __ bind(&loop);
   3103   __ lbu(scratch, MemOperand(src));
   3104   __ daddiu(src, src, 1);
   3105   __ sb(scratch, MemOperand(dest));
   3106   __ daddiu(dest, dest, 1);
   3107   __ bind(&loop_entry);
   3108   __ Branch(&loop, lt, dest, Operand(limit));
   3109 
   3110   __ bind(&done);
   3111 }
   3112 
   3113 
   3114 void SubStringStub::Generate(MacroAssembler* masm) {
   3115   Label runtime;
   3116   // Stack frame on entry.
   3117   //  ra: return address
   3118   //  sp[0]: to
   3119   //  sp[4]: from
   3120   //  sp[8]: string
   3121 
   3122   // This stub is called from the native-call %_SubString(...), so
   3123   // nothing can be assumed about the arguments. It is tested that:
   3124   //  "string" is a sequential string,
   3125   //  both "from" and "to" are smis, and
   3126   //  0 <= from <= to <= string.length.
   3127   // If any of these assumptions fail, we call the runtime system.
   3128 
   3129   const int kToOffset = 0 * kPointerSize;
   3130   const int kFromOffset = 1 * kPointerSize;
   3131   const int kStringOffset = 2 * kPointerSize;
   3132 
   3133   __ ld(a2, MemOperand(sp, kToOffset));
   3134   __ ld(a3, MemOperand(sp, kFromOffset));
   3135 // Does not needed?
   3136 //  STATIC_ASSERT(kFromOffset == kToOffset + 4);
   3137   STATIC_ASSERT(kSmiTag == 0);
   3138 // Does not needed?
   3139 // STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   3140 
   3141   // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
   3142   // safe in this case.
   3143   __ JumpIfNotSmi(a2, &runtime);
   3144   __ JumpIfNotSmi(a3, &runtime);
   3145   // Both a2 and a3 are untagged integers.
   3146 
   3147   __ SmiUntag(a2, a2);
   3148   __ SmiUntag(a3, a3);
   3149   __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
   3150 
   3151   __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
   3152   __ Dsubu(a2, a2, a3);
   3153 
   3154   // Make sure first argument is a string.
   3155   __ ld(v0, MemOperand(sp, kStringOffset));
   3156   __ JumpIfSmi(v0, &runtime);
   3157   __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   3158   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3159   __ And(a4, a1, Operand(kIsNotStringMask));
   3160 
   3161   __ Branch(&runtime, ne, a4, Operand(zero_reg));
   3162 
   3163   Label single_char;
   3164   __ Branch(&single_char, eq, a2, Operand(1));
   3165 
   3166   // Short-cut for the case of trivial substring.
   3167   Label return_v0;
   3168   // v0: original string
   3169   // a2: result string length
   3170   __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
   3171   __ SmiUntag(a4);
   3172   // Return original string.
   3173   __ Branch(&return_v0, eq, a2, Operand(a4));
   3174   // Longer than original string's length or negative: unsafe arguments.
   3175   __ Branch(&runtime, hi, a2, Operand(a4));
   3176   // Shorter than original string's length: an actual substring.
   3177 
   3178   // Deal with different string types: update the index if necessary
   3179   // and put the underlying string into a5.
   3180   // v0: original string
   3181   // a1: instance type
   3182   // a2: length
   3183   // a3: from index (untagged)
   3184   Label underlying_unpacked, sliced_string, seq_or_external_string;
   3185   // If the string is not indirect, it can only be sequential or external.
   3186   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   3187   STATIC_ASSERT(kIsIndirectStringMask != 0);
   3188   __ And(a4, a1, Operand(kIsIndirectStringMask));
   3189   __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
   3190   // a4 is used as a scratch register and can be overwritten in either case.
   3191   __ And(a4, a1, Operand(kSlicedNotConsMask));
   3192   __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
   3193   // Cons string.  Check whether it is flat, then fetch first part.
   3194   __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
   3195   __ LoadRoot(a4, Heap::kempty_stringRootIndex);
   3196   __ Branch(&runtime, ne, a5, Operand(a4));
   3197   __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
   3198   // Update instance type.
   3199   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
   3200   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3201   __ jmp(&underlying_unpacked);
   3202 
   3203   __ bind(&sliced_string);
   3204   // Sliced string.  Fetch parent and correct start index by offset.
   3205   __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
   3206   __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   3207   __ SmiUntag(a4);  // Add offset to index.
   3208   __ Daddu(a3, a3, a4);
   3209   // Update instance type.
   3210   __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
   3211   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3212   __ jmp(&underlying_unpacked);
   3213 
   3214   __ bind(&seq_or_external_string);
   3215   // Sequential or external string.  Just move string to the expected register.
   3216   __ mov(a5, v0);
   3217 
   3218   __ bind(&underlying_unpacked);
   3219 
   3220   if (FLAG_string_slices) {
   3221     Label copy_routine;
   3222     // a5: underlying subject string
   3223     // a1: instance type of underlying subject string
   3224     // a2: length
   3225     // a3: adjusted start index (untagged)
   3226     // Short slice.  Copy instead of slicing.
   3227     __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
   3228     // Allocate new sliced string.  At this point we do not reload the instance
   3229     // type including the string encoding because we simply rely on the info
   3230     // provided by the original string.  It does not matter if the original
   3231     // string's encoding is wrong because we always have to recheck encoding of
   3232     // the newly created string's parent anyways due to externalized strings.
   3233     Label two_byte_slice, set_slice_header;
   3234     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3235     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3236     __ And(a4, a1, Operand(kStringEncodingMask));
   3237     __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
   3238     __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
   3239     __ jmp(&set_slice_header);
   3240     __ bind(&two_byte_slice);
   3241     __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
   3242     __ bind(&set_slice_header);
   3243     __ SmiTag(a3);
   3244     __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
   3245     __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   3246     __ jmp(&return_v0);
   3247 
   3248     __ bind(&copy_routine);
   3249   }
   3250 
   3251   // a5: underlying subject string
   3252   // a1: instance type of underlying subject string
   3253   // a2: length
   3254   // a3: adjusted start index (untagged)
   3255   Label two_byte_sequential, sequential_string, allocate_result;
   3256   STATIC_ASSERT(kExternalStringTag != 0);
   3257   STATIC_ASSERT(kSeqStringTag == 0);
   3258   __ And(a4, a1, Operand(kExternalStringTag));
   3259   __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
   3260 
   3261   // Handle external string.
   3262   // Rule out short external strings.
   3263   STATIC_ASSERT(kShortExternalStringTag != 0);
   3264   __ And(a4, a1, Operand(kShortExternalStringTag));
   3265   __ Branch(&runtime, ne, a4, Operand(zero_reg));
   3266   __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
   3267   // a5 already points to the first character of underlying string.
   3268   __ jmp(&allocate_result);
   3269 
   3270   __ bind(&sequential_string);
   3271   // Locate first character of underlying subject string.
   3272   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3273   __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3274 
   3275   __ bind(&allocate_result);
   3276   // Sequential acii string.  Allocate the result.
   3277   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3278   __ And(a4, a1, Operand(kStringEncodingMask));
   3279   __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
   3280 
   3281   // Allocate and copy the resulting one_byte string.
   3282   __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
   3283 
   3284   // Locate first character of substring to copy.
   3285   __ Daddu(a5, a5, a3);
   3286 
   3287   // Locate first character of result.
   3288   __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3289 
   3290   // v0: result string
   3291   // a1: first character of result string
   3292   // a2: result string length
   3293   // a5: first character of substring to copy
   3294   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3295   StringHelper::GenerateCopyCharacters(
   3296       masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
   3297   __ jmp(&return_v0);
   3298 
   3299   // Allocate and copy the resulting two-byte string.
   3300   __ bind(&two_byte_sequential);
   3301   __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
   3302 
   3303   // Locate first character of substring to copy.
   3304   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   3305   __ dsll(a4, a3, 1);
   3306   __ Daddu(a5, a5, a4);
   3307   // Locate first character of result.
   3308   __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3309 
   3310   // v0: result string.
   3311   // a1: first character of result.
   3312   // a2: result length.
   3313   // a5: first character of substring to copy.
   3314   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3315   StringHelper::GenerateCopyCharacters(
   3316       masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
   3317 
   3318   __ bind(&return_v0);
   3319   Counters* counters = isolate()->counters();
   3320   __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
   3321   __ DropAndRet(3);
   3322 
   3323   // Just jump to runtime to create the sub string.
   3324   __ bind(&runtime);
   3325   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   3326 
   3327   __ bind(&single_char);
   3328   // v0: original string
   3329   // a1: instance type
   3330   // a2: length
   3331   // a3: from index (untagged)
   3332   StringCharAtGenerator generator(
   3333       v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   3334   generator.GenerateFast(masm);
   3335   __ DropAndRet(3);
   3336   generator.SkipSlow(masm, &runtime);
   3337 }
   3338 
   3339 
   3340 void StringHelper::GenerateFlatOneByteStringEquals(
   3341     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3342     Register scratch2, Register scratch3) {
   3343   Register length = scratch1;
   3344 
   3345   // Compare lengths.
   3346   Label strings_not_equal, check_zero_length;
   3347   __ ld(length, FieldMemOperand(left, String::kLengthOffset));
   3348   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3349   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
   3350   __ bind(&strings_not_equal);
   3351   // Can not put li in delayslot, it has multi instructions.
   3352   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
   3353   __ Ret();
   3354 
   3355   // Check if the length is zero.
   3356   Label compare_chars;
   3357   __ bind(&check_zero_length);
   3358   STATIC_ASSERT(kSmiTag == 0);
   3359   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
   3360   DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
   3361   __ Ret(USE_DELAY_SLOT);
   3362   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3363 
   3364   // Compare characters.
   3365   __ bind(&compare_chars);
   3366 
   3367   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   3368                                   v0, &strings_not_equal);
   3369 
   3370   // Characters are equal.
   3371   __ Ret(USE_DELAY_SLOT);
   3372   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3373 }
   3374 
   3375 
   3376 void StringHelper::GenerateCompareFlatOneByteStrings(
   3377     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3378     Register scratch2, Register scratch3, Register scratch4) {
   3379   Label result_not_equal, compare_lengths;
   3380   // Find minimum length and length difference.
   3381   __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
   3382   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3383   __ Dsubu(scratch3, scratch1, Operand(scratch2));
   3384   Register length_delta = scratch3;
   3385   __ slt(scratch4, scratch2, scratch1);
   3386   __ Movn(scratch1, scratch2, scratch4);
   3387   Register min_length = scratch1;
   3388   STATIC_ASSERT(kSmiTag == 0);
   3389   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
   3390 
   3391   // Compare loop.
   3392   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   3393                                   scratch4, v0, &result_not_equal);
   3394 
   3395   // Compare lengths - strings up to min-length are equal.
   3396   __ bind(&compare_lengths);
   3397   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   3398   // Use length_delta as result if it's zero.
   3399   __ mov(scratch2, length_delta);
   3400   __ mov(scratch4, zero_reg);
   3401   __ mov(v0, zero_reg);
   3402 
   3403   __ bind(&result_not_equal);
   3404   // Conditionally update the result based either on length_delta or
   3405   // the last comparion performed in the loop above.
   3406   Label ret;
   3407   __ Branch(&ret, eq, scratch2, Operand(scratch4));
   3408   __ li(v0, Operand(Smi::FromInt(GREATER)));
   3409   __ Branch(&ret, gt, scratch2, Operand(scratch4));
   3410   __ li(v0, Operand(Smi::FromInt(LESS)));
   3411   __ bind(&ret);
   3412   __ Ret();
   3413 }
   3414 
   3415 
   3416 void StringHelper::GenerateOneByteCharsCompareLoop(
   3417     MacroAssembler* masm, Register left, Register right, Register length,
   3418     Register scratch1, Register scratch2, Register scratch3,
   3419     Label* chars_not_equal) {
   3420   // Change index to run from -length to -1 by adding length to string
   3421   // start. This means that loop ends when index reaches zero, which
   3422   // doesn't need an additional compare.
   3423   __ SmiUntag(length);
   3424   __ Daddu(scratch1, length,
   3425           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3426   __ Daddu(left, left, Operand(scratch1));
   3427   __ Daddu(right, right, Operand(scratch1));
   3428   __ Dsubu(length, zero_reg, length);
   3429   Register index = length;  // index = -length;
   3430 
   3431 
   3432   // Compare loop.
   3433   Label loop;
   3434   __ bind(&loop);
   3435   __ Daddu(scratch3, left, index);
   3436   __ lbu(scratch1, MemOperand(scratch3));
   3437   __ Daddu(scratch3, right, index);
   3438   __ lbu(scratch2, MemOperand(scratch3));
   3439   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
   3440   __ Daddu(index, index, 1);
   3441   __ Branch(&loop, ne, index, Operand(zero_reg));
   3442 }
   3443 
   3444 
   3445 void StringCompareStub::Generate(MacroAssembler* masm) {
   3446   Label runtime;
   3447 
   3448   Counters* counters = isolate()->counters();
   3449 
   3450   // Stack frame on entry.
   3451   //  sp[0]: right string
   3452   //  sp[4]: left string
   3453   __ ld(a1, MemOperand(sp, 1 * kPointerSize));  // Left.
   3454   __ ld(a0, MemOperand(sp, 0 * kPointerSize));  // Right.
   3455 
   3456   Label not_same;
   3457   __ Branch(&not_same, ne, a0, Operand(a1));
   3458   STATIC_ASSERT(EQUAL == 0);
   3459   STATIC_ASSERT(kSmiTag == 0);
   3460   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3461   __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
   3462   __ DropAndRet(2);
   3463 
   3464   __ bind(&not_same);
   3465 
   3466   // Check that both objects are sequential one_byte strings.
   3467   __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
   3468 
   3469   // Compare flat one_byte strings natively. Remove arguments from stack first.
   3470   __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
   3471   __ Daddu(sp, sp, Operand(2 * kPointerSize));
   3472   StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, a4, a5);
   3473 
   3474   __ bind(&runtime);
   3475   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3476 }
   3477 
   3478 
   3479 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3480   // ----------- S t a t e -------------
   3481   //  -- a1    : left
   3482   //  -- a0    : right
   3483   //  -- ra    : return address
   3484   // -----------------------------------
   3485 
   3486   // Load a2 with the allocation site. We stick an undefined dummy value here
   3487   // and replace it with the real allocation site later when we instantiate this
   3488   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3489   __ li(a2, handle(isolate()->heap()->undefined_value()));
   3490 
   3491   // Make sure that we actually patched the allocation site.
   3492   if (FLAG_debug_code) {
   3493     __ And(at, a2, Operand(kSmiTagMask));
   3494     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
   3495     __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
   3496     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   3497     __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
   3498   }
   3499 
   3500   // Tail call into the stub that handles binary operations with allocation
   3501   // sites.
   3502   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3503   __ TailCallStub(&stub);
   3504 }
   3505 
   3506 
   3507 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3508   DCHECK(state() == CompareICState::SMI);
   3509   Label miss;
   3510   __ Or(a2, a1, a0);
   3511   __ JumpIfNotSmi(a2, &miss);
   3512 
   3513   if (GetCondition() == eq) {
   3514     // For equality we do not care about the sign of the result.
   3515     __ Ret(USE_DELAY_SLOT);
   3516     __ Dsubu(v0, a0, a1);
   3517   } else {
   3518     // Untag before subtracting to avoid handling overflow.
   3519     __ SmiUntag(a1);
   3520     __ SmiUntag(a0);
   3521     __ Ret(USE_DELAY_SLOT);
   3522     __ Dsubu(v0, a1, a0);
   3523   }
   3524 
   3525   __ bind(&miss);
   3526   GenerateMiss(masm);
   3527 }
   3528 
   3529 
   3530 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3531   DCHECK(state() == CompareICState::NUMBER);
   3532 
   3533   Label generic_stub;
   3534   Label unordered, maybe_undefined1, maybe_undefined2;
   3535   Label miss;
   3536 
   3537   if (left() == CompareICState::SMI) {
   3538     __ JumpIfNotSmi(a1, &miss);
   3539   }
   3540   if (right() == CompareICState::SMI) {
   3541     __ JumpIfNotSmi(a0, &miss);
   3542   }
   3543 
   3544   // Inlining the double comparison and falling back to the general compare
   3545   // stub if NaN is involved.
   3546   // Load left and right operand.
   3547   Label done, left, left_smi, right_smi;
   3548   __ JumpIfSmi(a0, &right_smi);
   3549   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   3550               DONT_DO_SMI_CHECK);
   3551   __ Dsubu(a2, a0, Operand(kHeapObjectTag));
   3552   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
   3553   __ Branch(&left);
   3554   __ bind(&right_smi);
   3555   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
   3556   FPURegister single_scratch = f6;
   3557   __ mtc1(a2, single_scratch);
   3558   __ cvt_d_w(f2, single_scratch);
   3559 
   3560   __ bind(&left);
   3561   __ JumpIfSmi(a1, &left_smi);
   3562   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   3563               DONT_DO_SMI_CHECK);
   3564   __ Dsubu(a2, a1, Operand(kHeapObjectTag));
   3565   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
   3566   __ Branch(&done);
   3567   __ bind(&left_smi);
   3568   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
   3569   single_scratch = f8;
   3570   __ mtc1(a2, single_scratch);
   3571   __ cvt_d_w(f0, single_scratch);
   3572 
   3573   __ bind(&done);
   3574 
   3575   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
   3576   Label fpu_eq, fpu_lt;
   3577   // Test if equal, and also handle the unordered/NaN case.
   3578   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
   3579 
   3580   // Test if less (unordered case is already handled).
   3581   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
   3582 
   3583   // Otherwise it's greater, so just fall thru, and return.
   3584   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
   3585   __ Ret(USE_DELAY_SLOT);
   3586   __ li(v0, Operand(GREATER));
   3587 
   3588   __ bind(&fpu_eq);
   3589   __ Ret(USE_DELAY_SLOT);
   3590   __ li(v0, Operand(EQUAL));
   3591 
   3592   __ bind(&fpu_lt);
   3593   __ Ret(USE_DELAY_SLOT);
   3594   __ li(v0, Operand(LESS));
   3595 
   3596   __ bind(&unordered);
   3597   __ bind(&generic_stub);
   3598   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   3599                      CompareICState::GENERIC, CompareICState::GENERIC);
   3600   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   3601 
   3602   __ bind(&maybe_undefined1);
   3603   if (Token::IsOrderedRelationalCompareOp(op())) {
   3604     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   3605     __ Branch(&miss, ne, a0, Operand(at));
   3606     __ JumpIfSmi(a1, &unordered);
   3607     __ GetObjectType(a1, a2, a2);
   3608     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
   3609     __ jmp(&unordered);
   3610   }
   3611 
   3612   __ bind(&maybe_undefined2);
   3613   if (Token::IsOrderedRelationalCompareOp(op())) {
   3614     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   3615     __ Branch(&unordered, eq, a1, Operand(at));
   3616   }
   3617 
   3618   __ bind(&miss);
   3619   GenerateMiss(masm);
   3620 }
   3621 
   3622 
   3623 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3624   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3625   Label miss;
   3626 
   3627   // Registers containing left and right operands respectively.
   3628   Register left = a1;
   3629   Register right = a0;
   3630   Register tmp1 = a2;
   3631   Register tmp2 = a3;
   3632 
   3633   // Check that both operands are heap objects.
   3634   __ JumpIfEitherSmi(left, right, &miss);
   3635 
   3636   // Check that both operands are internalized strings.
   3637   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3638   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3639   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3640   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3641   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3642   __ Or(tmp1, tmp1, Operand(tmp2));
   3643   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   3644   __ Branch(&miss, ne, at, Operand(zero_reg));
   3645 
   3646   // Make sure a0 is non-zero. At this point input operands are
   3647   // guaranteed to be non-zero.
   3648   DCHECK(right.is(a0));
   3649   STATIC_ASSERT(EQUAL == 0);
   3650   STATIC_ASSERT(kSmiTag == 0);
   3651   __ mov(v0, right);
   3652   // Internalized strings are compared by identity.
   3653   __ Ret(ne, left, Operand(right));
   3654   DCHECK(is_int16(EQUAL));
   3655   __ Ret(USE_DELAY_SLOT);
   3656   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3657 
   3658   __ bind(&miss);
   3659   GenerateMiss(masm);
   3660 }
   3661 
   3662 
   3663 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3664   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3665   DCHECK(GetCondition() == eq);
   3666   Label miss;
   3667 
   3668   // Registers containing left and right operands respectively.
   3669   Register left = a1;
   3670   Register right = a0;
   3671   Register tmp1 = a2;
   3672   Register tmp2 = a3;
   3673 
   3674   // Check that both operands are heap objects.
   3675   __ JumpIfEitherSmi(left, right, &miss);
   3676 
   3677   // Check that both operands are unique names. This leaves the instance
   3678   // types loaded in tmp1 and tmp2.
   3679   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3680   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3681   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3682   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3683 
   3684   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   3685   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   3686 
   3687   // Use a0 as result
   3688   __ mov(v0, a0);
   3689 
   3690   // Unique names are compared by identity.
   3691   Label done;
   3692   __ Branch(&done, ne, left, Operand(right));
   3693   // Make sure a0 is non-zero. At this point input operands are
   3694   // guaranteed to be non-zero.
   3695   DCHECK(right.is(a0));
   3696   STATIC_ASSERT(EQUAL == 0);
   3697   STATIC_ASSERT(kSmiTag == 0);
   3698   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3699   __ bind(&done);
   3700   __ Ret();
   3701 
   3702   __ bind(&miss);
   3703   GenerateMiss(masm);
   3704 }
   3705 
   3706 
   3707 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3708   DCHECK(state() == CompareICState::STRING);
   3709   Label miss;
   3710 
   3711   bool equality = Token::IsEqualityOp(op());
   3712 
   3713   // Registers containing left and right operands respectively.
   3714   Register left = a1;
   3715   Register right = a0;
   3716   Register tmp1 = a2;
   3717   Register tmp2 = a3;
   3718   Register tmp3 = a4;
   3719   Register tmp4 = a5;
   3720   Register tmp5 = a6;
   3721 
   3722   // Check that both operands are heap objects.
   3723   __ JumpIfEitherSmi(left, right, &miss);
   3724 
   3725   // Check that both operands are strings. This leaves the instance
   3726   // types loaded in tmp1 and tmp2.
   3727   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3728   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3729   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3730   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3731   STATIC_ASSERT(kNotStringTag != 0);
   3732   __ Or(tmp3, tmp1, tmp2);
   3733   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
   3734   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
   3735 
   3736   // Fast check for identical strings.
   3737   Label left_ne_right;
   3738   STATIC_ASSERT(EQUAL == 0);
   3739   STATIC_ASSERT(kSmiTag == 0);
   3740   __ Branch(&left_ne_right, ne, left, Operand(right));
   3741   __ Ret(USE_DELAY_SLOT);
   3742   __ mov(v0, zero_reg);  // In the delay slot.
   3743   __ bind(&left_ne_right);
   3744 
   3745   // Handle not identical strings.
   3746 
   3747   // Check that both strings are internalized strings. If they are, we're done
   3748   // because we already know they are not identical. We know they are both
   3749   // strings.
   3750   if (equality) {
   3751     DCHECK(GetCondition() == eq);
   3752     STATIC_ASSERT(kInternalizedTag == 0);
   3753     __ Or(tmp3, tmp1, Operand(tmp2));
   3754     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
   3755     Label is_symbol;
   3756     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
   3757     // Make sure a0 is non-zero. At this point input operands are
   3758     // guaranteed to be non-zero.
   3759     DCHECK(right.is(a0));
   3760     __ Ret(USE_DELAY_SLOT);
   3761     __ mov(v0, a0);  // In the delay slot.
   3762     __ bind(&is_symbol);
   3763   }
   3764 
   3765   // Check that both strings are sequential one_byte.
   3766   Label runtime;
   3767   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   3768                                                     &runtime);
   3769 
   3770   // Compare flat one_byte strings. Returns when done.
   3771   if (equality) {
   3772     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   3773                                                   tmp3);
   3774   } else {
   3775     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3776                                                     tmp2, tmp3, tmp4);
   3777   }
   3778 
   3779   // Handle more complex cases in runtime.
   3780   __ bind(&runtime);
   3781   __ Push(left, right);
   3782   if (equality) {
   3783     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   3784   } else {
   3785     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3786   }
   3787 
   3788   __ bind(&miss);
   3789   GenerateMiss(masm);
   3790 }
   3791 
   3792 
   3793 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
   3794   DCHECK(state() == CompareICState::OBJECT);
   3795   Label miss;
   3796   __ And(a2, a1, Operand(a0));
   3797   __ JumpIfSmi(a2, &miss);
   3798 
   3799   __ GetObjectType(a0, a2, a2);
   3800   __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
   3801   __ GetObjectType(a1, a2, a2);
   3802   __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
   3803 
   3804   DCHECK(GetCondition() == eq);
   3805   __ Ret(USE_DELAY_SLOT);
   3806   __ dsubu(v0, a0, a1);
   3807 
   3808   __ bind(&miss);
   3809   GenerateMiss(masm);
   3810 }
   3811 
   3812 
   3813 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
   3814   Label miss;
   3815   __ And(a2, a1, a0);
   3816   __ JumpIfSmi(a2, &miss);
   3817   __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
   3818   __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
   3819   __ Branch(&miss, ne, a2, Operand(known_map_));
   3820   __ Branch(&miss, ne, a3, Operand(known_map_));
   3821 
   3822   __ Ret(USE_DELAY_SLOT);
   3823   __ dsubu(v0, a0, a1);
   3824 
   3825   __ bind(&miss);
   3826   GenerateMiss(masm);
   3827 }
   3828 
   3829 
   3830 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3831   {
   3832     // Call the runtime system in a fresh internal frame.
   3833     ExternalReference miss =
   3834         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
   3835     FrameScope scope(masm, StackFrame::INTERNAL);
   3836     __ Push(a1, a0);
   3837     __ Push(ra, a1, a0);
   3838     __ li(a4, Operand(Smi::FromInt(op())));
   3839     __ daddiu(sp, sp, -kPointerSize);
   3840     __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
   3841     __ sd(a4, MemOperand(sp));  // In the delay slot.
   3842     // Compute the entry point of the rewritten stub.
   3843     __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
   3844     // Restore registers.
   3845     __ Pop(a1, a0, ra);
   3846   }
   3847   __ Jump(a2);
   3848 }
   3849 
   3850 
   3851 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   3852   // Make place for arguments to fit C calling convention. Most of the callers
   3853   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
   3854   // so they handle stack restoring and we don't have to do that here.
   3855   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
   3856   // kCArgsSlotsSize stack space after the call.
   3857   __ daddiu(sp, sp, -kCArgsSlotsSize);
   3858   // Place the return address on the stack, making the call
   3859   // GC safe. The RegExp backend also relies on this.
   3860   __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
   3861   __ Call(t9);  // Call the C++ function.
   3862   __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
   3863 
   3864   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
   3865     // In case of an error the return address may point to a memory area
   3866     // filled with kZapValue by the GC.
   3867     // Dereference the address and check for this.
   3868     __ Uld(a4, MemOperand(t9));
   3869     __ Assert(ne, kReceivedInvalidReturnAddress, a4,
   3870         Operand(reinterpret_cast<uint64_t>(kZapValue)));
   3871   }
   3872   __ Jump(t9);
   3873 }
   3874 
   3875 
   3876 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   3877                                     Register target) {
   3878   intptr_t loc =
   3879       reinterpret_cast<intptr_t>(GetCode().location());
   3880   __ Move(t9, target);
   3881   __ li(ra, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
   3882   __ Call(ra);
   3883 }
   3884 
   3885 
   3886 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3887                                                       Label* miss,
   3888                                                       Label* done,
   3889                                                       Register receiver,
   3890                                                       Register properties,
   3891                                                       Handle<Name> name,
   3892                                                       Register scratch0) {
   3893   DCHECK(name->IsUniqueName());
   3894   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3895   // not equal to the name and kProbes-th slot is not used (its name is the
   3896   // undefined value), it guarantees the hash table doesn't contain the
   3897   // property. It's true even if some slots represent deleted properties
   3898   // (their names are the hole value).
   3899   for (int i = 0; i < kInlinedProbes; i++) {
   3900     // scratch0 points to properties hash.
   3901     // Compute the masked index: (hash + i + i * i) & mask.
   3902     Register index = scratch0;
   3903     // Capacity is smi 2^n.
   3904     __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
   3905     __ Dsubu(index, index, Operand(1));
   3906     __ And(index, index,
   3907            Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
   3908 
   3909     // Scale the index by multiplying by the entry size.
   3910     DCHECK(NameDictionary::kEntrySize == 3);
   3911     __ dsll(at, index, 1);
   3912     __ Daddu(index, index, at);  // index *= 3.
   3913 
   3914     Register entity_name = scratch0;
   3915     // Having undefined at this place means the name is not contained.
   3916     DCHECK_EQ(kSmiTagSize, 1);
   3917     Register tmp = properties;
   3918 
   3919     __ dsll(scratch0, index, kPointerSizeLog2);
   3920     __ Daddu(tmp, properties, scratch0);
   3921     __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   3922 
   3923     DCHECK(!tmp.is(entity_name));
   3924     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   3925     __ Branch(done, eq, entity_name, Operand(tmp));
   3926 
   3927     // Load the hole ready for use below:
   3928     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   3929 
   3930     // Stop if found the property.
   3931     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
   3932 
   3933     Label good;
   3934     __ Branch(&good, eq, entity_name, Operand(tmp));
   3935 
   3936     // Check if the entry name is not a unique name.
   3937     __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   3938     __ lbu(entity_name,
   3939            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   3940     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   3941     __ bind(&good);
   3942 
   3943     // Restore the properties.
   3944     __ ld(properties,
   3945           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3946   }
   3947 
   3948   const int spill_mask =
   3949       (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
   3950        a2.bit() | a1.bit() | a0.bit() | v0.bit());
   3951 
   3952   __ MultiPush(spill_mask);
   3953   __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3954   __ li(a1, Operand(Handle<Name>(name)));
   3955   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   3956   __ CallStub(&stub);
   3957   __ mov(at, v0);
   3958   __ MultiPop(spill_mask);
   3959 
   3960   __ Branch(done, eq, at, Operand(zero_reg));
   3961   __ Branch(miss, ne, at, Operand(zero_reg));
   3962 }
   3963 
   3964 
   3965 // Probe the name dictionary in the |elements| register. Jump to the
   3966 // |done| label if a property with the given name is found. Jump to
   3967 // the |miss| label otherwise.
   3968 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
   3969 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3970                                                       Label* miss,
   3971                                                       Label* done,
   3972                                                       Register elements,
   3973                                                       Register name,
   3974                                                       Register scratch1,
   3975                                                       Register scratch2) {
   3976   DCHECK(!elements.is(scratch1));
   3977   DCHECK(!elements.is(scratch2));
   3978   DCHECK(!name.is(scratch1));
   3979   DCHECK(!name.is(scratch2));
   3980 
   3981   __ AssertName(name);
   3982 
   3983   // Compute the capacity mask.
   3984   __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
   3985   __ SmiUntag(scratch1);
   3986   __ Dsubu(scratch1, scratch1, Operand(1));
   3987 
   3988   // Generate an unrolled loop that performs a few probes before
   3989   // giving up. Measurements done on Gmail indicate that 2 probes
   3990   // cover ~93% of loads from dictionaries.
   3991   for (int i = 0; i < kInlinedProbes; i++) {
   3992     // Compute the masked index: (hash + i + i * i) & mask.
   3993     __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
   3994     if (i > 0) {
   3995       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3996       // the hash in a separate instruction. The value hash + i + i * i is right
   3997       // shifted in the following and instruction.
   3998       DCHECK(NameDictionary::GetProbeOffset(i) <
   3999              1 << (32 - Name::kHashFieldOffset));
   4000       __ Daddu(scratch2, scratch2, Operand(
   4001           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   4002     }
   4003     __ dsrl(scratch2, scratch2, Name::kHashShift);
   4004     __ And(scratch2, scratch1, scratch2);
   4005 
   4006     // Scale the index by multiplying by the element size.
   4007     DCHECK(NameDictionary::kEntrySize == 3);
   4008     // scratch2 = scratch2 * 3.
   4009 
   4010     __ dsll(at, scratch2, 1);
   4011     __ Daddu(scratch2, scratch2, at);
   4012 
   4013     // Check if the key is identical to the name.
   4014     __ dsll(at, scratch2, kPointerSizeLog2);
   4015     __ Daddu(scratch2, elements, at);
   4016     __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
   4017     __ Branch(done, eq, name, Operand(at));
   4018   }
   4019 
   4020   const int spill_mask =
   4021       (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
   4022        a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
   4023       ~(scratch1.bit() | scratch2.bit());
   4024 
   4025   __ MultiPush(spill_mask);
   4026   if (name.is(a0)) {
   4027     DCHECK(!elements.is(a1));
   4028     __ Move(a1, name);
   4029     __ Move(a0, elements);
   4030   } else {
   4031     __ Move(a0, elements);
   4032     __ Move(a1, name);
   4033   }
   4034   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
   4035   __ CallStub(&stub);
   4036   __ mov(scratch2, a2);
   4037   __ mov(at, v0);
   4038   __ MultiPop(spill_mask);
   4039 
   4040   __ Branch(done, ne, at, Operand(zero_reg));
   4041   __ Branch(miss, eq, at, Operand(zero_reg));
   4042 }
   4043 
   4044 
   4045 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   4046   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   4047   // we cannot call anything that could cause a GC from this stub.
   4048   // Registers:
   4049   //  result: NameDictionary to probe
   4050   //  a1: key
   4051   //  dictionary: NameDictionary to probe.
   4052   //  index: will hold an index of entry if lookup is successful.
   4053   //         might alias with result_.
   4054   // Returns:
   4055   //  result_ is zero if lookup failed, non zero otherwise.
   4056 
   4057   Register result = v0;
   4058   Register dictionary = a0;
   4059   Register key = a1;
   4060   Register index = a2;
   4061   Register mask = a3;
   4062   Register hash = a4;
   4063   Register undefined = a5;
   4064   Register entry_key = a6;
   4065 
   4066   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   4067 
   4068   __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
   4069   __ SmiUntag(mask);
   4070   __ Dsubu(mask, mask, Operand(1));
   4071 
   4072   __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   4073 
   4074   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   4075 
   4076   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   4077     // Compute the masked index: (hash + i + i * i) & mask.
   4078     // Capacity is smi 2^n.
   4079     if (i > 0) {
   4080       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   4081       // the hash in a separate instruction. The value hash + i + i * i is right
   4082       // shifted in the following and instruction.
   4083       DCHECK(NameDictionary::GetProbeOffset(i) <
   4084              1 << (32 - Name::kHashFieldOffset));
   4085       __ Daddu(index, hash, Operand(
   4086           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   4087     } else {
   4088       __ mov(index, hash);
   4089     }
   4090     __ dsrl(index, index, Name::kHashShift);
   4091     __ And(index, mask, index);
   4092 
   4093     // Scale the index by multiplying by the entry size.
   4094     DCHECK(NameDictionary::kEntrySize == 3);
   4095     // index *= 3.
   4096     __ mov(at, index);
   4097     __ dsll(index, index, 1);
   4098     __ Daddu(index, index, at);
   4099 
   4100 
   4101     DCHECK_EQ(kSmiTagSize, 1);
   4102     __ dsll(index, index, kPointerSizeLog2);
   4103     __ Daddu(index, index, dictionary);
   4104     __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
   4105 
   4106     // Having undefined at this place means the name is not contained.
   4107     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
   4108 
   4109     // Stop if found the property.
   4110     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
   4111 
   4112     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   4113       // Check if the entry name is not a unique name.
   4114       __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   4115       __ lbu(entry_key,
   4116              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   4117       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   4118     }
   4119   }
   4120 
   4121   __ bind(&maybe_in_dictionary);
   4122   // If we are doing negative lookup then probing failure should be
   4123   // treated as a lookup success. For positive lookup probing failure
   4124   // should be treated as lookup failure.
   4125   if (mode() == POSITIVE_LOOKUP) {
   4126     __ Ret(USE_DELAY_SLOT);
   4127     __ mov(result, zero_reg);
   4128   }
   4129 
   4130   __ bind(&in_dictionary);
   4131   __ Ret(USE_DELAY_SLOT);
   4132   __ li(result, 1);
   4133 
   4134   __ bind(&not_in_dictionary);
   4135   __ Ret(USE_DELAY_SLOT);
   4136   __ mov(result, zero_reg);
   4137 }
   4138 
   4139 
   4140 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   4141     Isolate* isolate) {
   4142   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   4143   stub1.GetCode();
   4144   // Hydrogen code stubs need stub2 at snapshot time.
   4145   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   4146   stub2.GetCode();
   4147 }
   4148 
   4149 
   4150 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   4151 // the value has just been written into the object, now this stub makes sure
   4152 // we keep the GC informed.  The word in the object where the value has been
   4153 // written is in the address register.
   4154 void RecordWriteStub::Generate(MacroAssembler* masm) {
   4155   Label skip_to_incremental_noncompacting;
   4156   Label skip_to_incremental_compacting;
   4157 
   4158   // The first two branch+nop instructions are generated with labels so as to
   4159   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
   4160   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
   4161   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
   4162   // incremental heap marking.
   4163   // See RecordWriteStub::Patch for details.
   4164   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
   4165   __ nop();
   4166   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
   4167   __ nop();
   4168 
   4169   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   4170     __ RememberedSetHelper(object(),
   4171                            address(),
   4172                            value(),
   4173                            save_fp_regs_mode(),
   4174                            MacroAssembler::kReturnAtEnd);
   4175   }
   4176   __ Ret();
   4177 
   4178   __ bind(&skip_to_incremental_noncompacting);
   4179   GenerateIncremental(masm, INCREMENTAL);
   4180 
   4181   __ bind(&skip_to_incremental_compacting);
   4182   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   4183 
   4184   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   4185   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   4186 
   4187   PatchBranchIntoNop(masm, 0);
   4188   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
   4189 }
   4190 
   4191 
   4192 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   4193   regs_.Save(masm);
   4194 
   4195   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   4196     Label dont_need_remembered_set;
   4197 
   4198     __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   4199     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   4200                            regs_.scratch0(),
   4201                            &dont_need_remembered_set);
   4202 
   4203     __ CheckPageFlag(regs_.object(),
   4204                      regs_.scratch0(),
   4205                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   4206                      ne,
   4207                      &dont_need_remembered_set);
   4208 
   4209     // First notify the incremental marker if necessary, then update the
   4210     // remembered set.
   4211     CheckNeedsToInformIncrementalMarker(
   4212         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   4213     InformIncrementalMarker(masm);
   4214     regs_.Restore(masm);
   4215     __ RememberedSetHelper(object(),
   4216                            address(),
   4217                            value(),
   4218                            save_fp_regs_mode(),
   4219                            MacroAssembler::kReturnAtEnd);
   4220 
   4221     __ bind(&dont_need_remembered_set);
   4222   }
   4223 
   4224   CheckNeedsToInformIncrementalMarker(
   4225       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   4226   InformIncrementalMarker(masm);
   4227   regs_.Restore(masm);
   4228   __ Ret();
   4229 }
   4230 
   4231 
   4232 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   4233   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   4234   int argument_count = 3;
   4235   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   4236   Register address =
   4237       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   4238   DCHECK(!address.is(regs_.object()));
   4239   DCHECK(!address.is(a0));
   4240   __ Move(address, regs_.address());
   4241   __ Move(a0, regs_.object());
   4242   __ Move(a1, address);
   4243   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   4244 
   4245   AllowExternalCallThatCantCauseGC scope(masm);
   4246   __ CallCFunction(
   4247       ExternalReference::incremental_marking_record_write_function(isolate()),
   4248       argument_count);
   4249   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   4250 }
   4251 
   4252 
   4253 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   4254     MacroAssembler* masm,
   4255     OnNoNeedToInformIncrementalMarker on_no_need,
   4256     Mode mode) {
   4257   Label on_black;
   4258   Label need_incremental;
   4259   Label need_incremental_pop_scratch;
   4260 
   4261   __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
   4262   __ ld(regs_.scratch1(),
   4263         MemOperand(regs_.scratch0(),
   4264                    MemoryChunk::kWriteBarrierCounterOffset));
   4265   __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
   4266   __ sd(regs_.scratch1(),
   4267          MemOperand(regs_.scratch0(),
   4268                     MemoryChunk::kWriteBarrierCounterOffset));
   4269   __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
   4270 
   4271   // Let's look at the color of the object:  If it is not black we don't have
   4272   // to inform the incremental marker.
   4273   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   4274 
   4275   regs_.Restore(masm);
   4276   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4277     __ RememberedSetHelper(object(),
   4278                            address(),
   4279                            value(),
   4280                            save_fp_regs_mode(),
   4281                            MacroAssembler::kReturnAtEnd);
   4282   } else {
   4283     __ Ret();
   4284   }
   4285 
   4286   __ bind(&on_black);
   4287 
   4288   // Get the value from the slot.
   4289   __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   4290 
   4291   if (mode == INCREMENTAL_COMPACTION) {
   4292     Label ensure_not_white;
   4293 
   4294     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   4295                      regs_.scratch1(),  // Scratch.
   4296                      MemoryChunk::kEvacuationCandidateMask,
   4297                      eq,
   4298                      &ensure_not_white);
   4299 
   4300     __ CheckPageFlag(regs_.object(),
   4301                      regs_.scratch1(),  // Scratch.
   4302                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   4303                      eq,
   4304                      &need_incremental);
   4305 
   4306     __ bind(&ensure_not_white);
   4307   }
   4308 
   4309   // We need extra registers for this, so we push the object and the address
   4310   // register temporarily.
   4311   __ Push(regs_.object(), regs_.address());
   4312   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   4313                     regs_.scratch1(),  // Scratch.
   4314                     regs_.object(),  // Scratch.
   4315                     regs_.address(),  // Scratch.
   4316                     &need_incremental_pop_scratch);
   4317   __ Pop(regs_.object(), regs_.address());
   4318 
   4319   regs_.Restore(masm);
   4320   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4321     __ RememberedSetHelper(object(),
   4322                            address(),
   4323                            value(),
   4324                            save_fp_regs_mode(),
   4325                            MacroAssembler::kReturnAtEnd);
   4326   } else {
   4327     __ Ret();
   4328   }
   4329 
   4330   __ bind(&need_incremental_pop_scratch);
   4331   __ Pop(regs_.object(), regs_.address());
   4332 
   4333   __ bind(&need_incremental);
   4334 
   4335   // Fall through when we need to inform the incremental marker.
   4336 }
   4337 
   4338 
   4339 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   4340   // ----------- S t a t e -------------
   4341   //  -- a0    : element value to store
   4342   //  -- a3    : element index as smi
   4343   //  -- sp[0] : array literal index in function as smi
   4344   //  -- sp[4] : array literal
   4345   // clobbers a1, a2, a4
   4346   // -----------------------------------
   4347 
   4348   Label element_done;
   4349   Label double_elements;
   4350   Label smi_element;
   4351   Label slow_elements;
   4352   Label fast_elements;
   4353 
   4354   // Get array literal index, array literal and its map.
   4355   __ ld(a4, MemOperand(sp, 0 * kPointerSize));
   4356   __ ld(a1, MemOperand(sp, 1 * kPointerSize));
   4357   __ ld(a2, FieldMemOperand(a1, JSObject::kMapOffset));
   4358 
   4359   __ CheckFastElements(a2, a5, &double_elements);
   4360   // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
   4361   __ JumpIfSmi(a0, &smi_element);
   4362   __ CheckFastSmiElements(a2, a5, &fast_elements);
   4363 
   4364   // Store into the array literal requires a elements transition. Call into
   4365   // the runtime.
   4366   __ bind(&slow_elements);
   4367   // call.
   4368   __ Push(a1, a3, a0);
   4369   __ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   4370   __ ld(a5, FieldMemOperand(a5, JSFunction::kLiteralsOffset));
   4371   __ Push(a5, a4);
   4372   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   4373 
   4374   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   4375   __ bind(&fast_elements);
   4376   __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
   4377   __ SmiScale(a6, a3, kPointerSizeLog2);
   4378   __ Daddu(a6, a5, a6);
   4379   __ Daddu(a6, a6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4380   __ sd(a0, MemOperand(a6, 0));
   4381   // Update the write barrier for the array store.
   4382   __ RecordWrite(a5, a6, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
   4383                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   4384   __ Ret(USE_DELAY_SLOT);
   4385   __ mov(v0, a0);
   4386 
   4387   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
   4388   // and value is Smi.
   4389   __ bind(&smi_element);
   4390   __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
   4391   __ SmiScale(a6, a3, kPointerSizeLog2);
   4392   __ Daddu(a6, a5, a6);
   4393   __ sd(a0, FieldMemOperand(a6, FixedArray::kHeaderSize));
   4394   __ Ret(USE_DELAY_SLOT);
   4395   __ mov(v0, a0);
   4396 
   4397   // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
   4398   __ bind(&double_elements);
   4399   __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
   4400   __ StoreNumberToDoubleElements(a0, a3, a5, a7, t1, a2, &slow_elements);
   4401   __ Ret(USE_DELAY_SLOT);
   4402   __ mov(v0, a0);
   4403 }
   4404 
   4405 
   4406 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4407   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4408   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4409   int parameter_count_offset =
   4410       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4411   __ ld(a1, MemOperand(fp, parameter_count_offset));
   4412   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   4413     __ Daddu(a1, a1, Operand(1));
   4414   }
   4415   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4416   __ dsll(a1, a1, kPointerSizeLog2);
   4417   __ Ret(USE_DELAY_SLOT);
   4418   __ Daddu(sp, sp, a1);
   4419 }
   4420 
   4421 
   4422 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4423   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4424   VectorLoadStub stub(isolate(), state());
   4425   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   4426 }
   4427 
   4428 
   4429 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4430   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4431   VectorKeyedLoadStub stub(isolate());
   4432   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   4433 }
   4434 
   4435 
   4436 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4437   if (masm->isolate()->function_entry_hook() != NULL) {
   4438     ProfileEntryHookStub stub(masm->isolate());
   4439     __ push(ra);
   4440     __ CallStub(&stub);
   4441     __ pop(ra);
   4442   }
   4443 }
   4444 
   4445 
   4446 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4447   // The entry hook is a "push ra" instruction, followed by a call.
   4448   // Note: on MIPS "push" is 2 instruction
   4449   const int32_t kReturnAddressDistanceFromFunctionStart =
   4450       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
   4451 
   4452   // This should contain all kJSCallerSaved registers.
   4453   const RegList kSavedRegs =
   4454      kJSCallerSaved |  // Caller saved registers.
   4455      s5.bit();         // Saved stack pointer.
   4456 
   4457   // We also save ra, so the count here is one higher than the mask indicates.
   4458   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
   4459 
   4460   // Save all caller-save registers as this may be called from anywhere.
   4461   __ MultiPush(kSavedRegs | ra.bit());
   4462 
   4463   // Compute the function's address for the first argument.
   4464   __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
   4465 
   4466   // The caller's return address is above the saved temporaries.
   4467   // Grab that for the second argument to the hook.
   4468   __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
   4469 
   4470   // Align the stack if necessary.
   4471   int frame_alignment = masm->ActivationFrameAlignment();
   4472   if (frame_alignment > kPointerSize) {
   4473     __ mov(s5, sp);
   4474     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4475     __ And(sp, sp, Operand(-frame_alignment));
   4476   }
   4477 
   4478   __ Dsubu(sp, sp, kCArgsSlotsSize);
   4479 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
   4480   int64_t entry_hook =
   4481       reinterpret_cast<int64_t>(isolate()->function_entry_hook());
   4482   __ li(t9, Operand(entry_hook));
   4483 #else
   4484   // Under the simulator we need to indirect the entry hook through a
   4485   // trampoline function at a known address.
   4486   // It additionally takes an isolate as a third parameter.
   4487   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   4488 
   4489   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   4490   __ li(t9, Operand(ExternalReference(&dispatcher,
   4491                                       ExternalReference::BUILTIN_CALL,
   4492                                       isolate())));
   4493 #endif
   4494   // Call C function through t9 to conform ABI for PIC.
   4495   __ Call(t9);
   4496 
   4497   // Restore the stack pointer if needed.
   4498   if (frame_alignment > kPointerSize) {
   4499     __ mov(sp, s5);
   4500   } else {
   4501     __ Daddu(sp, sp, kCArgsSlotsSize);
   4502   }
   4503 
   4504   // Also pop ra to get Ret(0).
   4505   __ MultiPop(kSavedRegs | ra.bit());
   4506   __ Ret();
   4507 }
   4508 
   4509 
   4510 template<class T>
   4511 static void CreateArrayDispatch(MacroAssembler* masm,
   4512                                 AllocationSiteOverrideMode mode) {
   4513   if (mode == DISABLE_ALLOCATION_SITES) {
   4514     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   4515     __ TailCallStub(&stub);
   4516   } else if (mode == DONT_OVERRIDE) {
   4517     int last_index = GetSequenceIndexFromFastElementsKind(
   4518         TERMINAL_FAST_ELEMENTS_KIND);
   4519     for (int i = 0; i <= last_index; ++i) {
   4520       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4521       T stub(masm->isolate(), kind);
   4522       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4523     }
   4524 
   4525     // If we reached this point there is a problem.
   4526     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4527   } else {
   4528     UNREACHABLE();
   4529   }
   4530 }
   4531 
   4532 
   4533 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4534                                            AllocationSiteOverrideMode mode) {
   4535   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4536   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   4537   // a0 - number of arguments
   4538   // a1 - constructor?
   4539   // sp[0] - last argument
   4540   Label normal_sequence;
   4541   if (mode == DONT_OVERRIDE) {
   4542     DCHECK(FAST_SMI_ELEMENTS == 0);
   4543     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
   4544     DCHECK(FAST_ELEMENTS == 2);
   4545     DCHECK(FAST_HOLEY_ELEMENTS == 3);
   4546     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
   4547     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4548 
   4549     // is the low bit set? If so, we are holey and that is good.
   4550     __ And(at, a3, Operand(1));
   4551     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
   4552   }
   4553   // look at the first argument
   4554   __ ld(a5, MemOperand(sp, 0));
   4555   __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
   4556 
   4557   if (mode == DISABLE_ALLOCATION_SITES) {
   4558     ElementsKind initial = GetInitialFastElementsKind();
   4559     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4560 
   4561     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4562                                                   holey_initial,
   4563                                                   DISABLE_ALLOCATION_SITES);
   4564     __ TailCallStub(&stub_holey);
   4565 
   4566     __ bind(&normal_sequence);
   4567     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4568                                             initial,
   4569                                             DISABLE_ALLOCATION_SITES);
   4570     __ TailCallStub(&stub);
   4571   } else if (mode == DONT_OVERRIDE) {
   4572     // We are going to create a holey array, but our kind is non-holey.
   4573     // Fix kind and retry (only if we have an allocation site in the slot).
   4574     __ Daddu(a3, a3, Operand(1));
   4575 
   4576     if (FLAG_debug_code) {
   4577       __ ld(a5, FieldMemOperand(a2, 0));
   4578       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   4579       __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
   4580     }
   4581 
   4582     // Save the resulting elements kind in type info. We can't just store a3
   4583     // in the AllocationSite::transition_info field because elements kind is
   4584     // restricted to a portion of the field...upper bits need to be left alone.
   4585     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4586     __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4587     __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4588     __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4589 
   4590 
   4591     __ bind(&normal_sequence);
   4592     int last_index = GetSequenceIndexFromFastElementsKind(
   4593         TERMINAL_FAST_ELEMENTS_KIND);
   4594     for (int i = 0; i <= last_index; ++i) {
   4595       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4596       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4597       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4598     }
   4599 
   4600     // If we reached this point there is a problem.
   4601     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4602   } else {
   4603     UNREACHABLE();
   4604   }
   4605 }
   4606 
   4607 
   4608 template<class T>
   4609 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4610   int to_index = GetSequenceIndexFromFastElementsKind(
   4611       TERMINAL_FAST_ELEMENTS_KIND);
   4612   for (int i = 0; i <= to_index; ++i) {
   4613     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4614     T stub(isolate, kind);
   4615     stub.GetCode();
   4616     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4617       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4618       stub1.GetCode();
   4619     }
   4620   }
   4621 }
   4622 
   4623 
   4624 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4625   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4626       isolate);
   4627   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4628       isolate);
   4629   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4630       isolate);
   4631 }
   4632 
   4633 
   4634 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4635     Isolate* isolate) {
   4636   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4637   for (int i = 0; i < 2; i++) {
   4638     // For internal arrays we only need a few things.
   4639     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4640     stubh1.GetCode();
   4641     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4642     stubh2.GetCode();
   4643     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4644     stubh3.GetCode();
   4645   }
   4646 }
   4647 
   4648 
   4649 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4650     MacroAssembler* masm,
   4651     AllocationSiteOverrideMode mode) {
   4652   if (argument_count() == ANY) {
   4653     Label not_zero_case, not_one_case;
   4654     __ And(at, a0, a0);
   4655     __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
   4656     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4657 
   4658     __ bind(&not_zero_case);
   4659     __ Branch(&not_one_case, gt, a0, Operand(1));
   4660     CreateArrayDispatchOneArgument(masm, mode);
   4661 
   4662     __ bind(&not_one_case);
   4663     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4664   } else if (argument_count() == NONE) {
   4665     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4666   } else if (argument_count() == ONE) {
   4667     CreateArrayDispatchOneArgument(masm, mode);
   4668   } else if (argument_count() == MORE_THAN_ONE) {
   4669     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4670   } else {
   4671     UNREACHABLE();
   4672   }
   4673 }
   4674 
   4675 
   4676 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4677   // ----------- S t a t e -------------
   4678   //  -- a0 : argc (only if argument_count() == ANY)
   4679   //  -- a1 : constructor
   4680   //  -- a2 : AllocationSite or undefined
   4681   //  -- sp[0] : return address
   4682   //  -- sp[4] : last argument
   4683   // -----------------------------------
   4684 
   4685   if (FLAG_debug_code) {
   4686     // The array construct code is only set for the global and natives
   4687     // builtin Array functions which always have maps.
   4688 
   4689     // Initial map for the builtin Array function should be a map.
   4690     __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4691     // Will both indicate a NULL and a Smi.
   4692     __ SmiTst(a4, at);
   4693     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   4694         at, Operand(zero_reg));
   4695     __ GetObjectType(a4, a4, a5);
   4696     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   4697         a5, Operand(MAP_TYPE));
   4698 
   4699     // We should either have undefined in a2 or a valid AllocationSite
   4700     __ AssertUndefinedOrAllocationSite(a2, a4);
   4701   }
   4702 
   4703   Label no_info;
   4704   // Get the elements kind and case on that.
   4705   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4706   __ Branch(&no_info, eq, a2, Operand(at));
   4707 
   4708   __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4709   __ SmiUntag(a3);
   4710   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4711   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
   4712   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4713 
   4714   __ bind(&no_info);
   4715   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4716 }
   4717 
   4718 
   4719 void InternalArrayConstructorStub::GenerateCase(
   4720     MacroAssembler* masm, ElementsKind kind) {
   4721 
   4722   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4723   __ TailCallStub(&stub0, lo, a0, Operand(1));
   4724 
   4725   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4726   __ TailCallStub(&stubN, hi, a0, Operand(1));
   4727 
   4728   if (IsFastPackedElementsKind(kind)) {
   4729     // We might need to create a holey array
   4730     // look at the first argument.
   4731     __ ld(at, MemOperand(sp, 0));
   4732 
   4733     InternalArraySingleArgumentConstructorStub
   4734         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4735     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
   4736   }
   4737 
   4738   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4739   __ TailCallStub(&stub1);
   4740 }
   4741 
   4742 
   4743 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4744   // ----------- S t a t e -------------
   4745   //  -- a0 : argc
   4746   //  -- a1 : constructor
   4747   //  -- sp[0] : return address
   4748   //  -- sp[4] : last argument
   4749   // -----------------------------------
   4750 
   4751   if (FLAG_debug_code) {
   4752     // The array construct code is only set for the global and natives
   4753     // builtin Array functions which always have maps.
   4754 
   4755     // Initial map for the builtin Array function should be a map.
   4756     __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4757     // Will both indicate a NULL and a Smi.
   4758     __ SmiTst(a3, at);
   4759     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   4760         at, Operand(zero_reg));
   4761     __ GetObjectType(a3, a3, a4);
   4762     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   4763         a4, Operand(MAP_TYPE));
   4764   }
   4765 
   4766   // Figure out the right elements kind.
   4767   __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   4768 
   4769   // Load the map's "bit field 2" into a3. We only need the first byte,
   4770   // but the following bit field extraction takes care of that anyway.
   4771   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
   4772   // Retrieve elements_kind from bit field 2.
   4773   __ DecodeField<Map::ElementsKindBits>(a3);
   4774 
   4775   if (FLAG_debug_code) {
   4776     Label done;
   4777     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
   4778     __ Assert(
   4779         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
   4780         a3, Operand(FAST_HOLEY_ELEMENTS));
   4781     __ bind(&done);
   4782   }
   4783 
   4784   Label fast_elements_case;
   4785   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
   4786   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4787 
   4788   __ bind(&fast_elements_case);
   4789   GenerateCase(masm, FAST_ELEMENTS);
   4790 }
   4791 
   4792 
   4793 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4794   // ----------- S t a t e -------------
   4795   //  -- a0                  : callee
   4796   //  -- a4                  : call_data
   4797   //  -- a2                  : holder
   4798   //  -- a1                  : api_function_address
   4799   //  -- cp                  : context
   4800   //  --
   4801   //  -- sp[0]               : last argument
   4802   //  -- ...
   4803   //  -- sp[(argc - 1)* 4]   : first argument
   4804   //  -- sp[argc * 4]        : receiver
   4805   // -----------------------------------
   4806 
   4807   Register callee = a0;
   4808   Register call_data = a4;
   4809   Register holder = a2;
   4810   Register api_function_address = a1;
   4811   Register context = cp;
   4812 
   4813   int argc = this->argc();
   4814   bool is_store = this->is_store();
   4815   bool call_data_undefined = this->call_data_undefined();
   4816 
   4817   typedef FunctionCallbackArguments FCA;
   4818 
   4819   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4820   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4821   STATIC_ASSERT(FCA::kDataIndex == 4);
   4822   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4823   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4824   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4825   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4826   STATIC_ASSERT(FCA::kArgsLength == 7);
   4827 
   4828   // Save context, callee and call data.
   4829   __ Push(context, callee, call_data);
   4830   // Load context from callee.
   4831   __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   4832 
   4833   Register scratch = call_data;
   4834   if (!call_data_undefined) {
   4835     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   4836   }
   4837   // Push return value and default return value.
   4838   __ Push(scratch, scratch);
   4839   __ li(scratch,
   4840         Operand(ExternalReference::isolate_address(isolate())));
   4841   // Push isolate and holder.
   4842   __ Push(scratch, holder);
   4843 
   4844   // Prepare arguments.
   4845   __ mov(scratch, sp);
   4846 
   4847   // Allocate the v8::Arguments structure in the arguments' space since
   4848   // it's not controlled by GC.
   4849   const int kApiStackSpace = 4;
   4850 
   4851   FrameScope frame_scope(masm, StackFrame::MANUAL);
   4852   __ EnterExitFrame(false, kApiStackSpace);
   4853 
   4854   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
   4855   // a0 = FunctionCallbackInfo&
   4856   // Arguments is after the return address.
   4857   __ Daddu(a0, sp, Operand(1 * kPointerSize));
   4858   // FunctionCallbackInfo::implicit_args_
   4859   __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
   4860   // FunctionCallbackInfo::values_
   4861   __ Daddu(at, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
   4862   __ sd(at, MemOperand(a0, 1 * kPointerSize));
   4863   // FunctionCallbackInfo::length_ = argc
   4864   __ li(at, Operand(argc));
   4865   __ sd(at, MemOperand(a0, 2 * kPointerSize));
   4866   // FunctionCallbackInfo::is_construct_call = 0
   4867   __ sd(zero_reg, MemOperand(a0, 3 * kPointerSize));
   4868 
   4869   const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
   4870   ExternalReference thunk_ref =
   4871       ExternalReference::invoke_function_callback(isolate());
   4872 
   4873   AllowExternalCallThatCantCauseGC scope(masm);
   4874   MemOperand context_restore_operand(
   4875       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   4876   // Stores return the first js argument.
   4877   int return_value_offset = 0;
   4878   if (is_store) {
   4879     return_value_offset = 2 + FCA::kArgsLength;
   4880   } else {
   4881     return_value_offset = 2 + FCA::kReturnValueOffset;
   4882   }
   4883   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   4884 
   4885   __ CallApiFunctionAndReturn(api_function_address,
   4886                               thunk_ref,
   4887                               kStackUnwindSpace,
   4888                               return_value_operand,
   4889                               &context_restore_operand);
   4890 }
   4891 
   4892 
   4893 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   4894   // ----------- S t a t e -------------
   4895   //  -- sp[0]                  : name
   4896   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
   4897   //  -- ...
   4898   //  -- a2                     : api_function_address
   4899   // -----------------------------------
   4900 
   4901   Register api_function_address = ApiGetterDescriptor::function_address();
   4902   DCHECK(api_function_address.is(a2));
   4903 
   4904   __ mov(a0, sp);  // a0 = Handle<Name>
   4905   __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = PCA
   4906 
   4907   const int kApiStackSpace = 1;
   4908   FrameScope frame_scope(masm, StackFrame::MANUAL);
   4909   __ EnterExitFrame(false, kApiStackSpace);
   4910 
   4911   // Create PropertyAccessorInfo instance on the stack above the exit frame with
   4912   // a1 (internal::Object** args_) as the data.
   4913   __ sd(a1, MemOperand(sp, 1 * kPointerSize));
   4914   __ Daddu(a1, sp, Operand(1 * kPointerSize));  // a1 = AccessorInfo&
   4915 
   4916   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   4917 
   4918   ExternalReference thunk_ref =
   4919       ExternalReference::invoke_accessor_getter_callback(isolate());
   4920   __ CallApiFunctionAndReturn(api_function_address,
   4921                               thunk_ref,
   4922                               kStackUnwindSpace,
   4923                               MemOperand(fp, 6 * kPointerSize),
   4924                               NULL);
   4925 }
   4926 
   4927 
   4928 #undef __
   4929 
   4930 } }  // namespace v8::internal
   4931 
   4932 #endif  // V8_TARGET_ARCH_MIPS64
   4933