Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/code-factory.h"
      8 #include "src/code-stubs.h"
      9 #include "src/hydrogen-osr.h"
     10 #include "src/ic/ic.h"
     11 #include "src/ic/stub-cache.h"
     12 #include "src/mips64/lithium-codegen-mips64.h"
     13 #include "src/mips64/lithium-gap-resolver-mips64.h"
     14 
     15 namespace v8 {
     16 namespace internal {
     17 
     18 
     19 class SafepointGenerator FINAL  : public CallWrapper {
     20  public:
     21   SafepointGenerator(LCodeGen* codegen,
     22                      LPointerMap* pointers,
     23                      Safepoint::DeoptMode mode)
     24       : codegen_(codegen),
     25         pointers_(pointers),
     26         deopt_mode_(mode) { }
     27   virtual ~SafepointGenerator() {}
     28 
     29   virtual void BeforeCall(int call_size) const OVERRIDE {}
     30 
     31   virtual void AfterCall() const OVERRIDE {
     32     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     33   }
     34 
     35  private:
     36   LCodeGen* codegen_;
     37   LPointerMap* pointers_;
     38   Safepoint::DeoptMode deopt_mode_;
     39 };
     40 
     41 
     42 #define __ masm()->
     43 
     44 bool LCodeGen::GenerateCode() {
     45   LPhase phase("Z_Code generation", chunk());
     46   DCHECK(is_unused());
     47   status_ = GENERATING;
     48 
     49   // Open a frame scope to indicate that there is a frame on the stack.  The
     50   // NONE indicates that the scope shouldn't actually generate code to set up
     51   // the frame (that is done in GeneratePrologue).
     52   FrameScope frame_scope(masm_, StackFrame::NONE);
     53 
     54   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
     55          GenerateJumpTable() && GenerateSafepointTable();
     56 }
     57 
     58 
     59 void LCodeGen::FinishCode(Handle<Code> code) {
     60   DCHECK(is_done());
     61   code->set_stack_slots(GetStackSlotCount());
     62   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
     63   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
     64   PopulateDeoptimizationData(code);
     65 }
     66 
     67 
     68 void LCodeGen::SaveCallerDoubles() {
     69   DCHECK(info()->saves_caller_doubles());
     70   DCHECK(NeedsEagerFrame());
     71   Comment(";;; Save clobbered callee double registers");
     72   int count = 0;
     73   BitVector* doubles = chunk()->allocated_double_registers();
     74   BitVector::Iterator save_iterator(doubles);
     75   while (!save_iterator.Done()) {
     76     __ sdc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
     77             MemOperand(sp, count * kDoubleSize));
     78     save_iterator.Advance();
     79     count++;
     80   }
     81 }
     82 
     83 
     84 void LCodeGen::RestoreCallerDoubles() {
     85   DCHECK(info()->saves_caller_doubles());
     86   DCHECK(NeedsEagerFrame());
     87   Comment(";;; Restore clobbered callee double registers");
     88   BitVector* doubles = chunk()->allocated_double_registers();
     89   BitVector::Iterator save_iterator(doubles);
     90   int count = 0;
     91   while (!save_iterator.Done()) {
     92     __ ldc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
     93             MemOperand(sp, count * kDoubleSize));
     94     save_iterator.Advance();
     95     count++;
     96   }
     97 }
     98 
     99 
    100 bool LCodeGen::GeneratePrologue() {
    101   DCHECK(is_generating());
    102 
    103   if (info()->IsOptimizing()) {
    104     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    105 
    106 #ifdef DEBUG
    107     if (strlen(FLAG_stop_at) > 0 &&
    108         info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
    109       __ stop("stop_at");
    110     }
    111 #endif
    112 
    113     // a1: Callee's JS function.
    114     // cp: Callee's context.
    115     // fp: Caller's frame pointer.
    116     // lr: Caller's pc.
    117 
    118     // Sloppy mode functions and builtins need to replace the receiver with the
    119     // global proxy when called as functions (without an explicit receiver
    120     // object).
    121     if (info_->this_has_uses() &&
    122         info_->strict_mode() == SLOPPY &&
    123         !info_->is_native()) {
    124       Label ok;
    125       int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
    126       __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
    127       __ ld(a2, MemOperand(sp, receiver_offset));
    128       __ Branch(&ok, ne, a2, Operand(at));
    129 
    130       __ ld(a2, GlobalObjectOperand());
    131       __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
    132 
    133       __ sd(a2, MemOperand(sp, receiver_offset));
    134 
    135       __ bind(&ok);
    136     }
    137   }
    138 
    139   info()->set_prologue_offset(masm_->pc_offset());
    140   if (NeedsEagerFrame()) {
    141     if (info()->IsStub()) {
    142       __ StubPrologue();
    143     } else {
    144       __ Prologue(info()->IsCodePreAgingActive());
    145     }
    146     frame_is_built_ = true;
    147     info_->AddNoFrameRange(0, masm_->pc_offset());
    148   }
    149 
    150   // Reserve space for the stack slots needed by the code.
    151   int slots = GetStackSlotCount();
    152   if (slots > 0) {
    153     if (FLAG_debug_code) {
    154       __ Dsubu(sp,  sp, Operand(slots * kPointerSize));
    155       __ Push(a0, a1);
    156       __ Daddu(a0, sp, Operand(slots *  kPointerSize));
    157       __ li(a1, Operand(kSlotsZapValue));
    158       Label loop;
    159       __ bind(&loop);
    160       __ Dsubu(a0, a0, Operand(kPointerSize));
    161       __ sd(a1, MemOperand(a0, 2 * kPointerSize));
    162       __ Branch(&loop, ne, a0, Operand(sp));
    163       __ Pop(a0, a1);
    164     } else {
    165       __ Dsubu(sp, sp, Operand(slots * kPointerSize));
    166     }
    167   }
    168 
    169   if (info()->saves_caller_doubles()) {
    170     SaveCallerDoubles();
    171   }
    172 
    173   // Possibly allocate a local context.
    174   int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    175   if (heap_slots > 0) {
    176     Comment(";;; Allocate local context");
    177     bool need_write_barrier = true;
    178     // Argument to NewContext is the function, which is in a1.
    179     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    180       FastNewContextStub stub(isolate(), heap_slots);
    181       __ CallStub(&stub);
    182       // Result of FastNewContextStub is always in new space.
    183       need_write_barrier = false;
    184     } else {
    185       __ push(a1);
    186       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    187     }
    188     RecordSafepoint(Safepoint::kNoLazyDeopt);
    189     // Context is returned in both v0. It replaces the context passed to us.
    190     // It's saved in the stack and kept live in cp.
    191     __ mov(cp, v0);
    192     __ sd(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
    193     // Copy any necessary parameters into the context.
    194     int num_parameters = scope()->num_parameters();
    195     for (int i = 0; i < num_parameters; i++) {
    196       Variable* var = scope()->parameter(i);
    197       if (var->IsContextSlot()) {
    198         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    199             (num_parameters - 1 - i) * kPointerSize;
    200         // Load parameter from stack.
    201         __ ld(a0, MemOperand(fp, parameter_offset));
    202         // Store it in the context.
    203         MemOperand target = ContextOperand(cp, var->index());
    204         __ sd(a0, target);
    205         // Update the write barrier. This clobbers a3 and a0.
    206         if (need_write_barrier) {
    207           __ RecordWriteContextSlot(
    208               cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
    209         } else if (FLAG_debug_code) {
    210           Label done;
    211           __ JumpIfInNewSpace(cp, a0, &done);
    212           __ Abort(kExpectedNewSpaceObject);
    213           __ bind(&done);
    214         }
    215       }
    216     }
    217     Comment(";;; End allocate local context");
    218   }
    219 
    220   // Trace the call.
    221   if (FLAG_trace && info()->IsOptimizing()) {
    222     // We have not executed any compiled code yet, so cp still holds the
    223     // incoming context.
    224     __ CallRuntime(Runtime::kTraceEnter, 0);
    225   }
    226   return !is_aborted();
    227 }
    228 
    229 
    230 void LCodeGen::GenerateOsrPrologue() {
    231   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    232   // are none, at the OSR entrypoint instruction.
    233   if (osr_pc_offset_ >= 0) return;
    234 
    235   osr_pc_offset_ = masm()->pc_offset();
    236 
    237   // Adjust the frame size, subsuming the unoptimized frame into the
    238   // optimized frame.
    239   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    240   DCHECK(slots >= 0);
    241   __ Dsubu(sp, sp, Operand(slots * kPointerSize));
    242 }
    243 
    244 
    245 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    246   if (instr->IsCall()) {
    247     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    248   }
    249   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    250     safepoints_.BumpLastLazySafepointIndex();
    251   }
    252 }
    253 
    254 
    255 bool LCodeGen::GenerateDeferredCode() {
    256   DCHECK(is_generating());
    257   if (deferred_.length() > 0) {
    258     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
    259       LDeferredCode* code = deferred_[i];
    260 
    261       HValue* value =
    262           instructions_->at(code->instruction_index())->hydrogen_value();
    263       RecordAndWritePosition(
    264           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    265 
    266       Comment(";;; <@%d,#%d> "
    267               "-------------------- Deferred %s --------------------",
    268               code->instruction_index(),
    269               code->instr()->hydrogen_value()->id(),
    270               code->instr()->Mnemonic());
    271       __ bind(code->entry());
    272       if (NeedsDeferredFrame()) {
    273         Comment(";;; Build frame");
    274         DCHECK(!frame_is_built_);
    275         DCHECK(info()->IsStub());
    276         frame_is_built_ = true;
    277         __ MultiPush(cp.bit() | fp.bit() | ra.bit());
    278         __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
    279         __ push(scratch0());
    280         __ Daddu(fp, sp,
    281             Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    282         Comment(";;; Deferred code");
    283       }
    284       code->Generate();
    285       if (NeedsDeferredFrame()) {
    286         Comment(";;; Destroy frame");
    287         DCHECK(frame_is_built_);
    288         __ pop(at);
    289         __ MultiPop(cp.bit() | fp.bit() | ra.bit());
    290         frame_is_built_ = false;
    291       }
    292       __ jmp(code->exit());
    293     }
    294   }
    295   // Deferred code is the last part of the instruction sequence. Mark
    296   // the generated code as done unless we bailed out.
    297   if (!is_aborted()) status_ = DONE;
    298   return !is_aborted();
    299 }
    300 
    301 
    302 bool LCodeGen::GenerateJumpTable() {
    303   if (jump_table_.length() > 0) {
    304     Comment(";;; -------------------- Jump table --------------------");
    305   }
    306   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    307   Label table_start;
    308   __ bind(&table_start);
    309   Label needs_frame;
    310   for (int i = 0; i < jump_table_.length(); i++) {
    311     Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
    312     __ bind(&table_entry->label);
    313     Address entry = table_entry->address;
    314     DeoptComment(table_entry->reason);
    315     __ li(t9, Operand(ExternalReference::ForDeoptEntry(entry)));
    316     if (table_entry->needs_frame) {
    317       DCHECK(!info()->saves_caller_doubles());
    318       if (needs_frame.is_bound()) {
    319         __ Branch(&needs_frame);
    320       } else {
    321         __ bind(&needs_frame);
    322         __ MultiPush(cp.bit() | fp.bit() | ra.bit());
    323         // This variant of deopt can only be used with stubs. Since we don't
    324         // have a function pointer to install in the stack frame that we're
    325         // building, install a special marker there instead.
    326         DCHECK(info()->IsStub());
    327         __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
    328         __ push(scratch0());
    329         __ Daddu(fp, sp,
    330             Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    331         __ Call(t9);
    332       }
    333     } else {
    334       if (info()->saves_caller_doubles()) {
    335         DCHECK(info()->IsStub());
    336         RestoreCallerDoubles();
    337       }
    338       __ Call(t9);
    339     }
    340   }
    341   __ RecordComment("]");
    342 
    343   // The deoptimization jump table is the last part of the instruction
    344   // sequence. Mark the generated code as done unless we bailed out.
    345   if (!is_aborted()) status_ = DONE;
    346   return !is_aborted();
    347 }
    348 
    349 
    350 bool LCodeGen::GenerateSafepointTable() {
    351   DCHECK(is_done());
    352   safepoints_.Emit(masm(), GetStackSlotCount());
    353   return !is_aborted();
    354 }
    355 
    356 
    357 Register LCodeGen::ToRegister(int index) const {
    358   return Register::FromAllocationIndex(index);
    359 }
    360 
    361 
    362 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
    363   return DoubleRegister::FromAllocationIndex(index);
    364 }
    365 
    366 
    367 Register LCodeGen::ToRegister(LOperand* op) const {
    368   DCHECK(op->IsRegister());
    369   return ToRegister(op->index());
    370 }
    371 
    372 
    373 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
    374   if (op->IsRegister()) {
    375     return ToRegister(op->index());
    376   } else if (op->IsConstantOperand()) {
    377     LConstantOperand* const_op = LConstantOperand::cast(op);
    378     HConstant* constant = chunk_->LookupConstant(const_op);
    379     Handle<Object> literal = constant->handle(isolate());
    380     Representation r = chunk_->LookupLiteralRepresentation(const_op);
    381     if (r.IsInteger32()) {
    382       DCHECK(literal->IsNumber());
    383       __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
    384     } else if (r.IsSmi()) {
    385       DCHECK(constant->HasSmiValue());
    386       __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
    387     } else if (r.IsDouble()) {
    388       Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
    389     } else {
    390       DCHECK(r.IsSmiOrTagged());
    391       __ li(scratch, literal);
    392     }
    393     return scratch;
    394   } else if (op->IsStackSlot()) {
    395     __ ld(scratch, ToMemOperand(op));
    396     return scratch;
    397   }
    398   UNREACHABLE();
    399   return scratch;
    400 }
    401 
    402 
    403 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
    404   DCHECK(op->IsDoubleRegister());
    405   return ToDoubleRegister(op->index());
    406 }
    407 
    408 
    409 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
    410                                                 FloatRegister flt_scratch,
    411                                                 DoubleRegister dbl_scratch) {
    412   if (op->IsDoubleRegister()) {
    413     return ToDoubleRegister(op->index());
    414   } else if (op->IsConstantOperand()) {
    415     LConstantOperand* const_op = LConstantOperand::cast(op);
    416     HConstant* constant = chunk_->LookupConstant(const_op);
    417     Handle<Object> literal = constant->handle(isolate());
    418     Representation r = chunk_->LookupLiteralRepresentation(const_op);
    419     if (r.IsInteger32()) {
    420       DCHECK(literal->IsNumber());
    421       __ li(at, Operand(static_cast<int32_t>(literal->Number())));
    422       __ mtc1(at, flt_scratch);
    423       __ cvt_d_w(dbl_scratch, flt_scratch);
    424       return dbl_scratch;
    425     } else if (r.IsDouble()) {
    426       Abort(kUnsupportedDoubleImmediate);
    427     } else if (r.IsTagged()) {
    428       Abort(kUnsupportedTaggedImmediate);
    429     }
    430   } else if (op->IsStackSlot()) {
    431     MemOperand mem_op = ToMemOperand(op);
    432     __ ldc1(dbl_scratch, mem_op);
    433     return dbl_scratch;
    434   }
    435   UNREACHABLE();
    436   return dbl_scratch;
    437 }
    438 
    439 
    440 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
    441   HConstant* constant = chunk_->LookupConstant(op);
    442   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
    443   return constant->handle(isolate());
    444 }
    445 
    446 
    447 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
    448   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
    449 }
    450 
    451 
    452 bool LCodeGen::IsSmi(LConstantOperand* op) const {
    453   return chunk_->LookupLiteralRepresentation(op).IsSmi();
    454 }
    455 
    456 
    457 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
    458   // return ToRepresentation(op, Representation::Integer32());
    459   HConstant* constant = chunk_->LookupConstant(op);
    460   return constant->Integer32Value();
    461 }
    462 
    463 
    464 int32_t LCodeGen::ToRepresentation_donotuse(LConstantOperand* op,
    465                                    const Representation& r) const {
    466   HConstant* constant = chunk_->LookupConstant(op);
    467   int32_t value = constant->Integer32Value();
    468   if (r.IsInteger32()) return value;
    469   DCHECK(r.IsSmiOrTagged());
    470   return reinterpret_cast<int64_t>(Smi::FromInt(value));
    471 }
    472 
    473 
    474 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
    475   HConstant* constant = chunk_->LookupConstant(op);
    476   return Smi::FromInt(constant->Integer32Value());
    477 }
    478 
    479 
    480 double LCodeGen::ToDouble(LConstantOperand* op) const {
    481   HConstant* constant = chunk_->LookupConstant(op);
    482   DCHECK(constant->HasDoubleValue());
    483   return constant->DoubleValue();
    484 }
    485 
    486 
    487 Operand LCodeGen::ToOperand(LOperand* op) {
    488   if (op->IsConstantOperand()) {
    489     LConstantOperand* const_op = LConstantOperand::cast(op);
    490     HConstant* constant = chunk()->LookupConstant(const_op);
    491     Representation r = chunk_->LookupLiteralRepresentation(const_op);
    492     if (r.IsSmi()) {
    493       DCHECK(constant->HasSmiValue());
    494       return Operand(Smi::FromInt(constant->Integer32Value()));
    495     } else if (r.IsInteger32()) {
    496       DCHECK(constant->HasInteger32Value());
    497       return Operand(constant->Integer32Value());
    498     } else if (r.IsDouble()) {
    499       Abort(kToOperandUnsupportedDoubleImmediate);
    500     }
    501     DCHECK(r.IsTagged());
    502     return Operand(constant->handle(isolate()));
    503   } else if (op->IsRegister()) {
    504     return Operand(ToRegister(op));
    505   } else if (op->IsDoubleRegister()) {
    506     Abort(kToOperandIsDoubleRegisterUnimplemented);
    507     return Operand((int64_t)0);
    508   }
    509   // Stack slots not implemented, use ToMemOperand instead.
    510   UNREACHABLE();
    511   return Operand((int64_t)0);
    512 }
    513 
    514 
    515 static int ArgumentsOffsetWithoutFrame(int index) {
    516   DCHECK(index < 0);
    517   return -(index + 1) * kPointerSize;
    518 }
    519 
    520 
    521 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
    522   DCHECK(!op->IsRegister());
    523   DCHECK(!op->IsDoubleRegister());
    524   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
    525   if (NeedsEagerFrame()) {
    526     return MemOperand(fp, StackSlotOffset(op->index()));
    527   } else {
    528     // Retrieve parameter without eager stack-frame relative to the
    529     // stack-pointer.
    530     return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
    531   }
    532 }
    533 
    534 
    535 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
    536   DCHECK(op->IsDoubleStackSlot());
    537   if (NeedsEagerFrame()) {
    538     // return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
    539     return MemOperand(fp, StackSlotOffset(op->index()) + kIntSize);
    540   } else {
    541     // Retrieve parameter without eager stack-frame relative to the
    542     // stack-pointer.
    543     // return MemOperand(
    544     //    sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
    545     return MemOperand(
    546         sp, ArgumentsOffsetWithoutFrame(op->index()) + kIntSize);
    547   }
    548 }
    549 
    550 
    551 void LCodeGen::WriteTranslation(LEnvironment* environment,
    552                                 Translation* translation) {
    553   if (environment == NULL) return;
    554 
    555   // The translation includes one command per value in the environment.
    556   int translation_size = environment->translation_size();
    557   // The output frame height does not include the parameters.
    558   int height = translation_size - environment->parameter_count();
    559 
    560   WriteTranslation(environment->outer(), translation);
    561   bool has_closure_id = !info()->closure().is_null() &&
    562       !info()->closure().is_identical_to(environment->closure());
    563   int closure_id = has_closure_id
    564       ? DefineDeoptimizationLiteral(environment->closure())
    565       : Translation::kSelfLiteralId;
    566 
    567   switch (environment->frame_type()) {
    568     case JS_FUNCTION:
    569       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
    570       break;
    571     case JS_CONSTRUCT:
    572       translation->BeginConstructStubFrame(closure_id, translation_size);
    573       break;
    574     case JS_GETTER:
    575       DCHECK(translation_size == 1);
    576       DCHECK(height == 0);
    577       translation->BeginGetterStubFrame(closure_id);
    578       break;
    579     case JS_SETTER:
    580       DCHECK(translation_size == 2);
    581       DCHECK(height == 0);
    582       translation->BeginSetterStubFrame(closure_id);
    583       break;
    584     case STUB:
    585       translation->BeginCompiledStubFrame();
    586       break;
    587     case ARGUMENTS_ADAPTOR:
    588       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
    589       break;
    590   }
    591 
    592   int object_index = 0;
    593   int dematerialized_index = 0;
    594   for (int i = 0; i < translation_size; ++i) {
    595     LOperand* value = environment->values()->at(i);
    596     AddToTranslation(environment,
    597                      translation,
    598                      value,
    599                      environment->HasTaggedValueAt(i),
    600                      environment->HasUint32ValueAt(i),
    601                      &object_index,
    602                      &dematerialized_index);
    603   }
    604 }
    605 
    606 
    607 void LCodeGen::AddToTranslation(LEnvironment* environment,
    608                                 Translation* translation,
    609                                 LOperand* op,
    610                                 bool is_tagged,
    611                                 bool is_uint32,
    612                                 int* object_index_pointer,
    613                                 int* dematerialized_index_pointer) {
    614   if (op == LEnvironment::materialization_marker()) {
    615     int object_index = (*object_index_pointer)++;
    616     if (environment->ObjectIsDuplicateAt(object_index)) {
    617       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    618       translation->DuplicateObject(dupe_of);
    619       return;
    620     }
    621     int object_length = environment->ObjectLengthAt(object_index);
    622     if (environment->ObjectIsArgumentsAt(object_index)) {
    623       translation->BeginArgumentsObject(object_length);
    624     } else {
    625       translation->BeginCapturedObject(object_length);
    626     }
    627     int dematerialized_index = *dematerialized_index_pointer;
    628     int env_offset = environment->translation_size() + dematerialized_index;
    629     *dematerialized_index_pointer += object_length;
    630     for (int i = 0; i < object_length; ++i) {
    631       LOperand* value = environment->values()->at(env_offset + i);
    632       AddToTranslation(environment,
    633                        translation,
    634                        value,
    635                        environment->HasTaggedValueAt(env_offset + i),
    636                        environment->HasUint32ValueAt(env_offset + i),
    637                        object_index_pointer,
    638                        dematerialized_index_pointer);
    639     }
    640     return;
    641   }
    642 
    643   if (op->IsStackSlot()) {
    644     if (is_tagged) {
    645       translation->StoreStackSlot(op->index());
    646     } else if (is_uint32) {
    647       translation->StoreUint32StackSlot(op->index());
    648     } else {
    649       translation->StoreInt32StackSlot(op->index());
    650     }
    651   } else if (op->IsDoubleStackSlot()) {
    652     translation->StoreDoubleStackSlot(op->index());
    653   } else if (op->IsRegister()) {
    654     Register reg = ToRegister(op);
    655     if (is_tagged) {
    656       translation->StoreRegister(reg);
    657     } else if (is_uint32) {
    658       translation->StoreUint32Register(reg);
    659     } else {
    660       translation->StoreInt32Register(reg);
    661     }
    662   } else if (op->IsDoubleRegister()) {
    663     DoubleRegister reg = ToDoubleRegister(op);
    664     translation->StoreDoubleRegister(reg);
    665   } else if (op->IsConstantOperand()) {
    666     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    667     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    668     translation->StoreLiteral(src_index);
    669   } else {
    670     UNREACHABLE();
    671   }
    672 }
    673 
    674 
    675 void LCodeGen::CallCode(Handle<Code> code,
    676                         RelocInfo::Mode mode,
    677                         LInstruction* instr) {
    678   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
    679 }
    680 
    681 
    682 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    683                                RelocInfo::Mode mode,
    684                                LInstruction* instr,
    685                                SafepointMode safepoint_mode) {
    686   DCHECK(instr != NULL);
    687   __ Call(code, mode);
    688   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    689 }
    690 
    691 
    692 void LCodeGen::CallRuntime(const Runtime::Function* function,
    693                            int num_arguments,
    694                            LInstruction* instr,
    695                            SaveFPRegsMode save_doubles) {
    696   DCHECK(instr != NULL);
    697 
    698   __ CallRuntime(function, num_arguments, save_doubles);
    699 
    700   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
    701 }
    702 
    703 
    704 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
    705   if (context->IsRegister()) {
    706     __ Move(cp, ToRegister(context));
    707   } else if (context->IsStackSlot()) {
    708     __ ld(cp, ToMemOperand(context));
    709   } else if (context->IsConstantOperand()) {
    710     HConstant* constant =
    711         chunk_->LookupConstant(LConstantOperand::cast(context));
    712     __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
    713   } else {
    714     UNREACHABLE();
    715   }
    716 }
    717 
    718 
    719 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
    720                                        int argc,
    721                                        LInstruction* instr,
    722                                        LOperand* context) {
    723   LoadContextFromDeferred(context);
    724   __ CallRuntimeSaveDoubles(id);
    725   RecordSafepointWithRegisters(
    726       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
    727 }
    728 
    729 
    730 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
    731                                                     Safepoint::DeoptMode mode) {
    732   environment->set_has_been_used();
    733   if (!environment->HasBeenRegistered()) {
    734     // Physical stack frame layout:
    735     // -x ............. -4  0 ..................................... y
    736     // [incoming arguments] [spill slots] [pushed outgoing arguments]
    737 
    738     // Layout of the environment:
    739     // 0 ..................................................... size-1
    740     // [parameters] [locals] [expression stack including arguments]
    741 
    742     // Layout of the translation:
    743     // 0 ........................................................ size - 1 + 4
    744     // [expression stack including arguments] [locals] [4 words] [parameters]
    745     // |>------------  translation_size ------------<|
    746 
    747     int frame_count = 0;
    748     int jsframe_count = 0;
    749     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
    750       ++frame_count;
    751       if (e->frame_type() == JS_FUNCTION) {
    752         ++jsframe_count;
    753       }
    754     }
    755     Translation translation(&translations_, frame_count, jsframe_count, zone());
    756     WriteTranslation(environment, &translation);
    757     int deoptimization_index = deoptimizations_.length();
    758     int pc_offset = masm()->pc_offset();
    759     environment->Register(deoptimization_index,
    760                           translation.index(),
    761                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
    762     deoptimizations_.Add(environment, zone());
    763   }
    764 }
    765 
    766 
    767 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
    768                             Deoptimizer::BailoutType bailout_type,
    769                             Register src1, const Operand& src2,
    770                             const char* detail) {
    771   LEnvironment* environment = instr->environment();
    772   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
    773   DCHECK(environment->HasBeenRegistered());
    774   int id = environment->deoptimization_index();
    775   DCHECK(info()->IsOptimizing() || info()->IsStub());
    776   Address entry =
    777       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
    778   if (entry == NULL) {
    779     Abort(kBailoutWasNotPrepared);
    780     return;
    781   }
    782 
    783   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
    784     Register scratch = scratch0();
    785     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
    786     Label no_deopt;
    787     __ Push(a1, scratch);
    788     __ li(scratch, Operand(count));
    789     __ lw(a1, MemOperand(scratch));
    790     __ Subu(a1, a1, Operand(1));
    791     __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
    792     __ li(a1, Operand(FLAG_deopt_every_n_times));
    793     __ sw(a1, MemOperand(scratch));
    794     __ Pop(a1, scratch);
    795 
    796     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
    797     __ bind(&no_deopt);
    798     __ sw(a1, MemOperand(scratch));
    799     __ Pop(a1, scratch);
    800   }
    801 
    802   if (info()->ShouldTrapOnDeopt()) {
    803     Label skip;
    804     if (condition != al) {
    805       __ Branch(&skip, NegateCondition(condition), src1, src2);
    806     }
    807     __ stop("trap_on_deopt");
    808     __ bind(&skip);
    809   }
    810 
    811   Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
    812                              instr->Mnemonic(), detail);
    813   DCHECK(info()->IsStub() || frame_is_built_);
    814   // Go through jump table if we need to handle condition, build frame, or
    815   // restore caller doubles.
    816   if (condition == al && frame_is_built_ &&
    817       !info()->saves_caller_doubles()) {
    818     DeoptComment(reason);
    819     __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
    820   } else {
    821     Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
    822                                             !frame_is_built_);
    823     // We often have several deopts to the same entry, reuse the last
    824     // jump entry if this is the case.
    825     if (jump_table_.is_empty() ||
    826         !table_entry.IsEquivalentTo(jump_table_.last())) {
    827       jump_table_.Add(table_entry, zone());
    828     }
    829     __ Branch(&jump_table_.last().label, condition, src1, src2);
    830   }
    831 }
    832 
    833 
    834 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
    835                             Register src1, const Operand& src2,
    836                             const char* detail) {
    837   Deoptimizer::BailoutType bailout_type = info()->IsStub()
    838       ? Deoptimizer::LAZY
    839       : Deoptimizer::EAGER;
    840   DeoptimizeIf(condition, instr, bailout_type, src1, src2, detail);
    841 }
    842 
    843 
    844 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
    845   int length = deoptimizations_.length();
    846   if (length == 0) return;
    847   Handle<DeoptimizationInputData> data =
    848       DeoptimizationInputData::New(isolate(), length, TENURED);
    849 
    850   Handle<ByteArray> translations =
    851       translations_.CreateByteArray(isolate()->factory());
    852   data->SetTranslationByteArray(*translations);
    853   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
    854   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
    855   if (info_->IsOptimizing()) {
    856     // Reference to shared function info does not change between phases.
    857     AllowDeferredHandleDereference allow_handle_dereference;
    858     data->SetSharedFunctionInfo(*info_->shared_info());
    859   } else {
    860     data->SetSharedFunctionInfo(Smi::FromInt(0));
    861   }
    862 
    863   Handle<FixedArray> literals =
    864       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
    865   { AllowDeferredHandleDereference copy_handles;
    866     for (int i = 0; i < deoptimization_literals_.length(); i++) {
    867       literals->set(i, *deoptimization_literals_[i]);
    868     }
    869     data->SetLiteralArray(*literals);
    870   }
    871 
    872   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
    873   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
    874 
    875   // Populate the deoptimization entries.
    876   for (int i = 0; i < length; i++) {
    877     LEnvironment* env = deoptimizations_[i];
    878     data->SetAstId(i, env->ast_id());
    879     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
    880     data->SetArgumentsStackHeight(i,
    881                                   Smi::FromInt(env->arguments_stack_height()));
    882     data->SetPc(i, Smi::FromInt(env->pc_offset()));
    883   }
    884   code->set_deoptimization_data(*data);
    885 }
    886 
    887 
    888 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
    889   int result = deoptimization_literals_.length();
    890   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
    891     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
    892   }
    893   deoptimization_literals_.Add(literal, zone());
    894   return result;
    895 }
    896 
    897 
    898 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
    899   DCHECK(deoptimization_literals_.length() == 0);
    900 
    901   const ZoneList<Handle<JSFunction> >* inlined_closures =
    902       chunk()->inlined_closures();
    903 
    904   for (int i = 0, length = inlined_closures->length();
    905        i < length;
    906        i++) {
    907     DefineDeoptimizationLiteral(inlined_closures->at(i));
    908   }
    909 
    910   inlined_function_count_ = deoptimization_literals_.length();
    911 }
    912 
    913 
    914 void LCodeGen::RecordSafepointWithLazyDeopt(
    915     LInstruction* instr, SafepointMode safepoint_mode) {
    916   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
    917     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
    918   } else {
    919     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
    920     RecordSafepointWithRegisters(
    921         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
    922   }
    923 }
    924 
    925 
    926 void LCodeGen::RecordSafepoint(
    927     LPointerMap* pointers,
    928     Safepoint::Kind kind,
    929     int arguments,
    930     Safepoint::DeoptMode deopt_mode) {
    931   DCHECK(expected_safepoint_kind_ == kind);
    932 
    933   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
    934   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
    935       kind, arguments, deopt_mode);
    936   for (int i = 0; i < operands->length(); i++) {
    937     LOperand* pointer = operands->at(i);
    938     if (pointer->IsStackSlot()) {
    939       safepoint.DefinePointerSlot(pointer->index(), zone());
    940     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
    941       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
    942     }
    943   }
    944 }
    945 
    946 
    947 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
    948                                Safepoint::DeoptMode deopt_mode) {
    949   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
    950 }
    951 
    952 
    953 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
    954   LPointerMap empty_pointers(zone());
    955   RecordSafepoint(&empty_pointers, deopt_mode);
    956 }
    957 
    958 
    959 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
    960                                             int arguments,
    961                                             Safepoint::DeoptMode deopt_mode) {
    962   RecordSafepoint(
    963       pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
    964 }
    965 
    966 
    967 void LCodeGen::RecordAndWritePosition(int position) {
    968   if (position == RelocInfo::kNoPosition) return;
    969   masm()->positions_recorder()->RecordPosition(position);
    970   masm()->positions_recorder()->WriteRecordedPositions();
    971 }
    972 
    973 
    974 static const char* LabelType(LLabel* label) {
    975   if (label->is_loop_header()) return " (loop header)";
    976   if (label->is_osr_entry()) return " (OSR entry)";
    977   return "";
    978 }
    979 
    980 
    981 void LCodeGen::DoLabel(LLabel* label) {
    982   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
    983           current_instruction_,
    984           label->hydrogen_value()->id(),
    985           label->block_id(),
    986           LabelType(label));
    987   __ bind(label->label());
    988   current_block_ = label->block_id();
    989   DoGap(label);
    990 }
    991 
    992 
    993 void LCodeGen::DoParallelMove(LParallelMove* move) {
    994   resolver_.Resolve(move);
    995 }
    996 
    997 
    998 void LCodeGen::DoGap(LGap* gap) {
    999   for (int i = LGap::FIRST_INNER_POSITION;
   1000        i <= LGap::LAST_INNER_POSITION;
   1001        i++) {
   1002     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1003     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1004     if (move != NULL) DoParallelMove(move);
   1005   }
   1006 }
   1007 
   1008 
   1009 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   1010   DoGap(instr);
   1011 }
   1012 
   1013 
   1014 void LCodeGen::DoParameter(LParameter* instr) {
   1015   // Nothing to do.
   1016 }
   1017 
   1018 
   1019 void LCodeGen::DoCallStub(LCallStub* instr) {
   1020   DCHECK(ToRegister(instr->context()).is(cp));
   1021   DCHECK(ToRegister(instr->result()).is(v0));
   1022   switch (instr->hydrogen()->major_key()) {
   1023     case CodeStub::RegExpExec: {
   1024       RegExpExecStub stub(isolate());
   1025       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1026       break;
   1027     }
   1028     case CodeStub::SubString: {
   1029       SubStringStub stub(isolate());
   1030       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1031       break;
   1032     }
   1033     case CodeStub::StringCompare: {
   1034       StringCompareStub stub(isolate());
   1035       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1036       break;
   1037     }
   1038     default:
   1039       UNREACHABLE();
   1040   }
   1041 }
   1042 
   1043 
   1044 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   1045   GenerateOsrPrologue();
   1046 }
   1047 
   1048 
   1049 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   1050   Register dividend = ToRegister(instr->dividend());
   1051   int32_t divisor = instr->divisor();
   1052   DCHECK(dividend.is(ToRegister(instr->result())));
   1053 
   1054   // Theoretically, a variation of the branch-free code for integer division by
   1055   // a power of 2 (calculating the remainder via an additional multiplication
   1056   // (which gets simplified to an 'and') and subtraction) should be faster, and
   1057   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   1058   // indicate that positive dividends are heavily favored, so the branching
   1059   // version performs better.
   1060   HMod* hmod = instr->hydrogen();
   1061   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1062   Label dividend_is_not_negative, done;
   1063 
   1064   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   1065     __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
   1066     // Note: The code below even works when right contains kMinInt.
   1067     __ dsubu(dividend, zero_reg, dividend);
   1068     __ And(dividend, dividend, Operand(mask));
   1069     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1070       DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
   1071     }
   1072     __ Branch(USE_DELAY_SLOT, &done);
   1073     __ dsubu(dividend, zero_reg, dividend);
   1074   }
   1075 
   1076   __ bind(&dividend_is_not_negative);
   1077   __ And(dividend, dividend, Operand(mask));
   1078   __ bind(&done);
   1079 }
   1080 
   1081 
   1082 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   1083   Register dividend = ToRegister(instr->dividend());
   1084   int32_t divisor = instr->divisor();
   1085   Register result = ToRegister(instr->result());
   1086   DCHECK(!dividend.is(result));
   1087 
   1088   if (divisor == 0) {
   1089     DeoptimizeIf(al, instr);
   1090     return;
   1091   }
   1092 
   1093   __ TruncatingDiv(result, dividend, Abs(divisor));
   1094   __ Dmul(result, result, Operand(Abs(divisor)));
   1095   __ Dsubu(result, dividend, Operand(result));
   1096 
   1097   // Check for negative zero.
   1098   HMod* hmod = instr->hydrogen();
   1099   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1100     Label remainder_not_zero;
   1101     __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
   1102     DeoptimizeIf(lt, instr, dividend, Operand(zero_reg));
   1103     __ bind(&remainder_not_zero);
   1104   }
   1105 }
   1106 
   1107 
   1108 void LCodeGen::DoModI(LModI* instr) {
   1109   HMod* hmod = instr->hydrogen();
   1110   const Register left_reg = ToRegister(instr->left());
   1111   const Register right_reg = ToRegister(instr->right());
   1112   const Register result_reg = ToRegister(instr->result());
   1113 
   1114   // div runs in the background while we check for special cases.
   1115   __ Dmod(result_reg, left_reg, right_reg);
   1116 
   1117   Label done;
   1118   // Check for x % 0, we have to deopt in this case because we can't return a
   1119   // NaN.
   1120   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
   1121     DeoptimizeIf(eq, instr, right_reg, Operand(zero_reg));
   1122   }
   1123 
   1124   // Check for kMinInt % -1, div will return kMinInt, which is not what we
   1125   // want. We have to deopt if we care about -0, because we can't return that.
   1126   if (hmod->CheckFlag(HValue::kCanOverflow)) {
   1127     Label no_overflow_possible;
   1128     __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
   1129     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1130       DeoptimizeIf(eq, instr, right_reg, Operand(-1));
   1131     } else {
   1132       __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
   1133       __ Branch(USE_DELAY_SLOT, &done);
   1134       __ mov(result_reg, zero_reg);
   1135     }
   1136     __ bind(&no_overflow_possible);
   1137   }
   1138 
   1139   // If we care about -0, test if the dividend is <0 and the result is 0.
   1140   __ Branch(&done, ge, left_reg, Operand(zero_reg));
   1141 
   1142   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1143     DeoptimizeIf(eq, instr, result_reg, Operand(zero_reg));
   1144   }
   1145   __ bind(&done);
   1146 }
   1147 
   1148 
   1149 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   1150   Register dividend = ToRegister(instr->dividend());
   1151   int32_t divisor = instr->divisor();
   1152   Register result = ToRegister(instr->result());
   1153   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   1154   DCHECK(!result.is(dividend));
   1155 
   1156   // Check for (0 / -x) that will produce negative zero.
   1157   HDiv* hdiv = instr->hydrogen();
   1158   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1159     DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
   1160   }
   1161   // Check for (kMinInt / -1).
   1162   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   1163     DeoptimizeIf(eq, instr, dividend, Operand(kMinInt));
   1164   }
   1165   // Deoptimize if remainder will not be 0.
   1166   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   1167       divisor != 1 && divisor != -1) {
   1168     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1169     __ And(at, dividend, Operand(mask));
   1170     DeoptimizeIf(ne, instr, at, Operand(zero_reg));
   1171   }
   1172 
   1173   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
   1174     __ Dsubu(result, zero_reg, dividend);
   1175     return;
   1176   }
   1177   uint16_t shift = WhichPowerOf2Abs(divisor);
   1178   if (shift == 0) {
   1179     __ Move(result, dividend);
   1180   } else if (shift == 1) {
   1181     __ dsrl32(result, dividend, 31);
   1182     __ Daddu(result, dividend, Operand(result));
   1183   } else {
   1184     __ dsra32(result, dividend, 31);
   1185     __ dsrl32(result, result, 32 - shift);
   1186     __ Daddu(result, dividend, Operand(result));
   1187   }
   1188   if (shift > 0) __ dsra(result, result, shift);
   1189   if (divisor < 0) __ Dsubu(result, zero_reg, result);
   1190 }
   1191 
   1192 
   1193 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   1194   Register dividend = ToRegister(instr->dividend());
   1195   int32_t divisor = instr->divisor();
   1196   Register result = ToRegister(instr->result());
   1197   DCHECK(!dividend.is(result));
   1198 
   1199   if (divisor == 0) {
   1200     DeoptimizeIf(al, instr);
   1201     return;
   1202   }
   1203 
   1204   // Check for (0 / -x) that will produce negative zero.
   1205   HDiv* hdiv = instr->hydrogen();
   1206   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1207     DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
   1208   }
   1209 
   1210   __ TruncatingDiv(result, dividend, Abs(divisor));
   1211   if (divisor < 0) __ Subu(result, zero_reg, result);
   1212 
   1213   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   1214     __ Dmul(scratch0(), result, Operand(divisor));
   1215     __ Dsubu(scratch0(), scratch0(), dividend);
   1216     DeoptimizeIf(ne, instr, scratch0(), Operand(zero_reg));
   1217   }
   1218 }
   1219 
   1220 
   1221 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   1222 void LCodeGen::DoDivI(LDivI* instr) {
   1223   HBinaryOperation* hdiv = instr->hydrogen();
   1224   Register dividend = ToRegister(instr->dividend());
   1225   Register divisor = ToRegister(instr->divisor());
   1226   const Register result = ToRegister(instr->result());
   1227 
   1228   // On MIPS div is asynchronous - it will run in the background while we
   1229   // check for special cases.
   1230   __ Ddiv(result, dividend, divisor);
   1231 
   1232   // Check for x / 0.
   1233   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1234     DeoptimizeIf(eq, instr, divisor, Operand(zero_reg));
   1235   }
   1236 
   1237   // Check for (0 / -x) that will produce negative zero.
   1238   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1239     Label left_not_zero;
   1240     __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
   1241     DeoptimizeIf(lt, instr, divisor, Operand(zero_reg));
   1242     __ bind(&left_not_zero);
   1243   }
   1244 
   1245   // Check for (kMinInt / -1).
   1246   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
   1247       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1248     Label left_not_min_int;
   1249     __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
   1250     DeoptimizeIf(eq, instr, divisor, Operand(-1));
   1251     __ bind(&left_not_min_int);
   1252   }
   1253 
   1254   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1255     // Calculate remainder.
   1256     Register remainder = ToRegister(instr->temp());
   1257     if (kArchVariant != kMips64r6) {
   1258       __ mfhi(remainder);
   1259     } else {
   1260       __ dmod(remainder, dividend, divisor);
   1261     }
   1262     DeoptimizeIf(ne, instr, remainder, Operand(zero_reg));
   1263   }
   1264 }
   1265 
   1266 
   1267 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
   1268   DoubleRegister addend = ToDoubleRegister(instr->addend());
   1269   DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
   1270   DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
   1271 
   1272   // This is computed in-place.
   1273   DCHECK(addend.is(ToDoubleRegister(instr->result())));
   1274 
   1275   __ Madd_d(addend, addend, multiplier, multiplicand, double_scratch0());
   1276 }
   1277 
   1278 
   1279 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   1280   Register dividend = ToRegister(instr->dividend());
   1281   Register result = ToRegister(instr->result());
   1282   int32_t divisor = instr->divisor();
   1283   Register scratch = result.is(dividend) ? scratch0() : dividend;
   1284   DCHECK(!result.is(dividend) || !scratch.is(dividend));
   1285 
   1286   // If the divisor is 1, return the dividend.
   1287   if (divisor == 1) {
   1288     __ Move(result, dividend);
   1289     return;
   1290   }
   1291 
   1292   // If the divisor is positive, things are easy: There can be no deopts and we
   1293   // can simply do an arithmetic right shift.
   1294   uint16_t shift = WhichPowerOf2Abs(divisor);
   1295   if (divisor > 1) {
   1296     __ dsra(result, dividend, shift);
   1297     return;
   1298   }
   1299 
   1300   // If the divisor is negative, we have to negate and handle edge cases.
   1301   // Dividend can be the same register as result so save the value of it
   1302   // for checking overflow.
   1303   __ Move(scratch, dividend);
   1304 
   1305   __ Dsubu(result, zero_reg, dividend);
   1306   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1307     DeoptimizeIf(eq, instr, result, Operand(zero_reg));
   1308   }
   1309 
   1310   __ Xor(scratch, scratch, result);
   1311   // Dividing by -1 is basically negation, unless we overflow.
   1312   if (divisor == -1) {
   1313     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1314       DeoptimizeIf(gt, instr, result, Operand(kMaxInt));
   1315     }
   1316     return;
   1317   }
   1318 
   1319   // If the negation could not overflow, simply shifting is OK.
   1320   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1321     __ dsra(result, result, shift);
   1322     return;
   1323   }
   1324 
   1325   Label no_overflow, done;
   1326   __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
   1327   __ li(result, Operand(kMinInt / divisor), CONSTANT_SIZE);
   1328   __ Branch(&done);
   1329   __ bind(&no_overflow);
   1330   __ dsra(result, result, shift);
   1331   __ bind(&done);
   1332 }
   1333 
   1334 
   1335 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   1336   Register dividend = ToRegister(instr->dividend());
   1337   int32_t divisor = instr->divisor();
   1338   Register result = ToRegister(instr->result());
   1339   DCHECK(!dividend.is(result));
   1340 
   1341   if (divisor == 0) {
   1342     DeoptimizeIf(al, instr);
   1343     return;
   1344   }
   1345 
   1346   // Check for (0 / -x) that will produce negative zero.
   1347   HMathFloorOfDiv* hdiv = instr->hydrogen();
   1348   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1349     DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
   1350   }
   1351 
   1352   // Easy case: We need no dynamic check for the dividend and the flooring
   1353   // division is the same as the truncating division.
   1354   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   1355       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   1356     __ TruncatingDiv(result, dividend, Abs(divisor));
   1357     if (divisor < 0) __ Dsubu(result, zero_reg, result);
   1358     return;
   1359   }
   1360 
   1361   // In the general case we may need to adjust before and after the truncating
   1362   // division to get a flooring division.
   1363   Register temp = ToRegister(instr->temp());
   1364   DCHECK(!temp.is(dividend) && !temp.is(result));
   1365   Label needs_adjustment, done;
   1366   __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
   1367             dividend, Operand(zero_reg));
   1368   __ TruncatingDiv(result, dividend, Abs(divisor));
   1369   if (divisor < 0) __ Dsubu(result, zero_reg, result);
   1370   __ jmp(&done);
   1371   __ bind(&needs_adjustment);
   1372   __ Daddu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
   1373   __ TruncatingDiv(result, temp, Abs(divisor));
   1374   if (divisor < 0) __ Dsubu(result, zero_reg, result);
   1375   __ Dsubu(result, result, Operand(1));
   1376   __ bind(&done);
   1377 }
   1378 
   1379 
   1380 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   1381 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   1382   HBinaryOperation* hdiv = instr->hydrogen();
   1383   Register dividend = ToRegister(instr->dividend());
   1384   Register divisor = ToRegister(instr->divisor());
   1385   const Register result = ToRegister(instr->result());
   1386 
   1387   // On MIPS div is asynchronous - it will run in the background while we
   1388   // check for special cases.
   1389   __ Ddiv(result, dividend, divisor);
   1390 
   1391   // Check for x / 0.
   1392   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1393     DeoptimizeIf(eq, instr, divisor, Operand(zero_reg));
   1394   }
   1395 
   1396   // Check for (0 / -x) that will produce negative zero.
   1397   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1398     Label left_not_zero;
   1399     __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
   1400     DeoptimizeIf(lt, instr, divisor, Operand(zero_reg));
   1401     __ bind(&left_not_zero);
   1402   }
   1403 
   1404   // Check for (kMinInt / -1).
   1405   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
   1406       !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1407     Label left_not_min_int;
   1408     __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
   1409     DeoptimizeIf(eq, instr, divisor, Operand(-1));
   1410     __ bind(&left_not_min_int);
   1411   }
   1412 
   1413   // We performed a truncating division. Correct the result if necessary.
   1414   Label done;
   1415   Register remainder = scratch0();
   1416   if (kArchVariant != kMips64r6) {
   1417     __ mfhi(remainder);
   1418   } else {
   1419     __ dmod(remainder, dividend, divisor);
   1420   }
   1421   __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
   1422   __ Xor(remainder, remainder, Operand(divisor));
   1423   __ Branch(&done, ge, remainder, Operand(zero_reg));
   1424   __ Dsubu(result, result, Operand(1));
   1425   __ bind(&done);
   1426 }
   1427 
   1428 
   1429 void LCodeGen::DoMulI(LMulI* instr) {
   1430   Register scratch = scratch0();
   1431   Register result = ToRegister(instr->result());
   1432   // Note that result may alias left.
   1433   Register left = ToRegister(instr->left());
   1434   LOperand* right_op = instr->right();
   1435 
   1436   bool bailout_on_minus_zero =
   1437     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
   1438   bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1439 
   1440   if (right_op->IsConstantOperand()) {
   1441     int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
   1442 
   1443     if (bailout_on_minus_zero && (constant < 0)) {
   1444       // The case of a null constant will be handled separately.
   1445       // If constant is negative and left is null, the result should be -0.
   1446       DeoptimizeIf(eq, instr, left, Operand(zero_reg));
   1447     }
   1448 
   1449     switch (constant) {
   1450       case -1:
   1451         if (overflow) {
   1452           __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
   1453           DeoptimizeIf(gt, instr, scratch, Operand(kMaxInt));
   1454         } else {
   1455           __ Dsubu(result, zero_reg, left);
   1456         }
   1457         break;
   1458       case 0:
   1459         if (bailout_on_minus_zero) {
   1460           // If left is strictly negative and the constant is null, the
   1461           // result is -0. Deoptimize if required, otherwise return 0.
   1462           DeoptimizeIf(lt, instr, left, Operand(zero_reg));
   1463         }
   1464         __ mov(result, zero_reg);
   1465         break;
   1466       case 1:
   1467         // Nothing to do.
   1468         __ Move(result, left);
   1469         break;
   1470       default:
   1471         // Multiplying by powers of two and powers of two plus or minus
   1472         // one can be done faster with shifted operands.
   1473         // For other constants we emit standard code.
   1474         int32_t mask = constant >> 31;
   1475         uint32_t constant_abs = (constant + mask) ^ mask;
   1476 
   1477         if (base::bits::IsPowerOfTwo32(constant_abs)) {
   1478           int32_t shift = WhichPowerOf2(constant_abs);
   1479           __ dsll(result, left, shift);
   1480           // Correct the sign of the result if the constant is negative.
   1481           if (constant < 0)  __ Dsubu(result, zero_reg, result);
   1482         } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
   1483           int32_t shift = WhichPowerOf2(constant_abs - 1);
   1484           __ dsll(scratch, left, shift);
   1485           __ Daddu(result, scratch, left);
   1486           // Correct the sign of the result if the constant is negative.
   1487           if (constant < 0)  __ Dsubu(result, zero_reg, result);
   1488         } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
   1489           int32_t shift = WhichPowerOf2(constant_abs + 1);
   1490           __ dsll(scratch, left, shift);
   1491           __ Dsubu(result, scratch, left);
   1492           // Correct the sign of the result if the constant is negative.
   1493           if (constant < 0)  __ Dsubu(result, zero_reg, result);
   1494         } else {
   1495           // Generate standard code.
   1496           __ li(at, constant);
   1497           __ Dmul(result, left, at);
   1498         }
   1499     }
   1500 
   1501   } else {
   1502     DCHECK(right_op->IsRegister());
   1503     Register right = ToRegister(right_op);
   1504 
   1505     if (overflow) {
   1506       // hi:lo = left * right.
   1507       if (instr->hydrogen()->representation().IsSmi()) {
   1508         __ Dmulh(result, left, right);
   1509       } else {
   1510         __ Dmul(result, left, right);
   1511       }
   1512       __ dsra32(scratch, result, 0);
   1513       __ sra(at, result, 31);
   1514       if (instr->hydrogen()->representation().IsSmi()) {
   1515         __ SmiTag(result);
   1516       }
   1517       DeoptimizeIf(ne, instr, scratch, Operand(at));
   1518     } else {
   1519       if (instr->hydrogen()->representation().IsSmi()) {
   1520         __ SmiUntag(result, left);
   1521         __ Dmul(result, result, right);
   1522       } else {
   1523         __ Dmul(result, left, right);
   1524       }
   1525     }
   1526 
   1527     if (bailout_on_minus_zero) {
   1528       Label done;
   1529       __ Xor(at, left, right);
   1530       __ Branch(&done, ge, at, Operand(zero_reg));
   1531       // Bail out if the result is minus zero.
   1532       DeoptimizeIf(eq, instr, result, Operand(zero_reg));
   1533       __ bind(&done);
   1534     }
   1535   }
   1536 }
   1537 
   1538 
   1539 void LCodeGen::DoBitI(LBitI* instr) {
   1540   LOperand* left_op = instr->left();
   1541   LOperand* right_op = instr->right();
   1542   DCHECK(left_op->IsRegister());
   1543   Register left = ToRegister(left_op);
   1544   Register result = ToRegister(instr->result());
   1545   Operand right(no_reg);
   1546 
   1547   if (right_op->IsStackSlot()) {
   1548     right = Operand(EmitLoadRegister(right_op, at));
   1549   } else {
   1550     DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
   1551     right = ToOperand(right_op);
   1552   }
   1553 
   1554   switch (instr->op()) {
   1555     case Token::BIT_AND:
   1556       __ And(result, left, right);
   1557       break;
   1558     case Token::BIT_OR:
   1559       __ Or(result, left, right);
   1560       break;
   1561     case Token::BIT_XOR:
   1562       if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
   1563         __ Nor(result, zero_reg, left);
   1564       } else {
   1565         __ Xor(result, left, right);
   1566       }
   1567       break;
   1568     default:
   1569       UNREACHABLE();
   1570       break;
   1571   }
   1572 }
   1573 
   1574 
   1575 void LCodeGen::DoShiftI(LShiftI* instr) {
   1576   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
   1577   // result may alias either of them.
   1578   LOperand* right_op = instr->right();
   1579   Register left = ToRegister(instr->left());
   1580   Register result = ToRegister(instr->result());
   1581 
   1582   if (right_op->IsRegister()) {
   1583     // No need to mask the right operand on MIPS, it is built into the variable
   1584     // shift instructions.
   1585     switch (instr->op()) {
   1586       case Token::ROR:
   1587         __ Ror(result, left, Operand(ToRegister(right_op)));
   1588         break;
   1589       case Token::SAR:
   1590         __ srav(result, left, ToRegister(right_op));
   1591         break;
   1592       case Token::SHR:
   1593         __ srlv(result, left, ToRegister(right_op));
   1594         if (instr->can_deopt()) {
   1595            // TODO(yy): (-1) >>> 0. anything else?
   1596           DeoptimizeIf(lt, instr, result, Operand(zero_reg));
   1597           DeoptimizeIf(gt, instr, result, Operand(kMaxInt));
   1598         }
   1599         break;
   1600       case Token::SHL:
   1601         __ sllv(result, left, ToRegister(right_op));
   1602         break;
   1603       default:
   1604         UNREACHABLE();
   1605         break;
   1606     }
   1607   } else {
   1608     // Mask the right_op operand.
   1609     int value = ToInteger32(LConstantOperand::cast(right_op));
   1610     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
   1611     switch (instr->op()) {
   1612       case Token::ROR:
   1613         if (shift_count != 0) {
   1614           __ Ror(result, left, Operand(shift_count));
   1615         } else {
   1616           __ Move(result, left);
   1617         }
   1618         break;
   1619       case Token::SAR:
   1620         if (shift_count != 0) {
   1621           __ sra(result, left, shift_count);
   1622         } else {
   1623           __ Move(result, left);
   1624         }
   1625         break;
   1626       case Token::SHR:
   1627         if (shift_count != 0) {
   1628           __ srl(result, left, shift_count);
   1629         } else {
   1630           if (instr->can_deopt()) {
   1631             __ And(at, left, Operand(0x80000000));
   1632             DeoptimizeIf(ne, instr, at, Operand(zero_reg));
   1633           }
   1634           __ Move(result, left);
   1635         }
   1636         break;
   1637       case Token::SHL:
   1638         if (shift_count != 0) {
   1639           if (instr->hydrogen_value()->representation().IsSmi()) {
   1640             __ dsll(result, left, shift_count);
   1641           } else {
   1642             __ sll(result, left, shift_count);
   1643           }
   1644         } else {
   1645           __ Move(result, left);
   1646         }
   1647         break;
   1648       default:
   1649         UNREACHABLE();
   1650         break;
   1651     }
   1652   }
   1653 }
   1654 
   1655 
   1656 void LCodeGen::DoSubI(LSubI* instr) {
   1657   LOperand* left = instr->left();
   1658   LOperand* right = instr->right();
   1659   LOperand* result = instr->result();
   1660   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1661 
   1662   if (!can_overflow) {
   1663     if (right->IsStackSlot()) {
   1664       Register right_reg = EmitLoadRegister(right, at);
   1665       __ Dsubu(ToRegister(result), ToRegister(left), Operand(right_reg));
   1666     } else {
   1667       DCHECK(right->IsRegister() || right->IsConstantOperand());
   1668       __ Dsubu(ToRegister(result), ToRegister(left), ToOperand(right));
   1669     }
   1670   } else {  // can_overflow.
   1671     Register overflow = scratch0();
   1672     Register scratch = scratch1();
   1673     if (right->IsStackSlot() || right->IsConstantOperand()) {
   1674       Register right_reg = EmitLoadRegister(right, scratch);
   1675       __ SubuAndCheckForOverflow(ToRegister(result),
   1676                                  ToRegister(left),
   1677                                  right_reg,
   1678                                  overflow);  // Reg at also used as scratch.
   1679     } else {
   1680       DCHECK(right->IsRegister());
   1681       // Due to overflow check macros not supporting constant operands,
   1682       // handling the IsConstantOperand case was moved to prev if clause.
   1683       __ SubuAndCheckForOverflow(ToRegister(result),
   1684                                  ToRegister(left),
   1685                                  ToRegister(right),
   1686                                  overflow);  // Reg at also used as scratch.
   1687     }
   1688     DeoptimizeIf(lt, instr, overflow, Operand(zero_reg));
   1689     if (!instr->hydrogen()->representation().IsSmi()) {
   1690       DeoptimizeIf(gt, instr, ToRegister(result), Operand(kMaxInt));
   1691       DeoptimizeIf(lt, instr, ToRegister(result), Operand(kMinInt));
   1692     }
   1693   }
   1694 }
   1695 
   1696 
   1697 void LCodeGen::DoConstantI(LConstantI* instr) {
   1698   __ li(ToRegister(instr->result()), Operand(instr->value()));
   1699 }
   1700 
   1701 
   1702 void LCodeGen::DoConstantS(LConstantS* instr) {
   1703   __ li(ToRegister(instr->result()), Operand(instr->value()));
   1704 }
   1705 
   1706 
   1707 void LCodeGen::DoConstantD(LConstantD* instr) {
   1708   DCHECK(instr->result()->IsDoubleRegister());
   1709   DoubleRegister result = ToDoubleRegister(instr->result());
   1710   double v = instr->value();
   1711   __ Move(result, v);
   1712 }
   1713 
   1714 
   1715 void LCodeGen::DoConstantE(LConstantE* instr) {
   1716   __ li(ToRegister(instr->result()), Operand(instr->value()));
   1717 }
   1718 
   1719 
   1720 void LCodeGen::DoConstantT(LConstantT* instr) {
   1721   Handle<Object> object = instr->value(isolate());
   1722   AllowDeferredHandleDereference smi_check;
   1723   __ li(ToRegister(instr->result()), object);
   1724 }
   1725 
   1726 
   1727 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
   1728   Register result = ToRegister(instr->result());
   1729   Register map = ToRegister(instr->value());
   1730   __ EnumLength(result, map);
   1731 }
   1732 
   1733 
   1734 void LCodeGen::DoDateField(LDateField* instr) {
   1735   Register object = ToRegister(instr->date());
   1736   Register result = ToRegister(instr->result());
   1737   Register scratch = ToRegister(instr->temp());
   1738   Smi* index = instr->index();
   1739   Label runtime, done;
   1740   DCHECK(object.is(a0));
   1741   DCHECK(result.is(v0));
   1742   DCHECK(!scratch.is(scratch0()));
   1743   DCHECK(!scratch.is(object));
   1744 
   1745   __ SmiTst(object, at);
   1746   DeoptimizeIf(eq, instr, at, Operand(zero_reg));
   1747   __ GetObjectType(object, scratch, scratch);
   1748   DeoptimizeIf(ne, instr, scratch, Operand(JS_DATE_TYPE));
   1749 
   1750   if (index->value() == 0) {
   1751     __ ld(result, FieldMemOperand(object, JSDate::kValueOffset));
   1752   } else {
   1753     if (index->value() < JSDate::kFirstUncachedField) {
   1754       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   1755       __ li(scratch, Operand(stamp));
   1756       __ ld(scratch, MemOperand(scratch));
   1757       __ ld(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
   1758       __ Branch(&runtime, ne, scratch, Operand(scratch0()));
   1759       __ ld(result, FieldMemOperand(object, JSDate::kValueOffset +
   1760                                             kPointerSize * index->value()));
   1761       __ jmp(&done);
   1762     }
   1763     __ bind(&runtime);
   1764     __ PrepareCallCFunction(2, scratch);
   1765     __ li(a1, Operand(index));
   1766     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   1767     __ bind(&done);
   1768   }
   1769 }
   1770 
   1771 
   1772 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
   1773                                            LOperand* index,
   1774                                            String::Encoding encoding) {
   1775   if (index->IsConstantOperand()) {
   1776     int offset = ToInteger32(LConstantOperand::cast(index));
   1777     if (encoding == String::TWO_BYTE_ENCODING) {
   1778       offset *= kUC16Size;
   1779     }
   1780     STATIC_ASSERT(kCharSize == 1);
   1781     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
   1782   }
   1783   Register scratch = scratch0();
   1784   DCHECK(!scratch.is(string));
   1785   DCHECK(!scratch.is(ToRegister(index)));
   1786   if (encoding == String::ONE_BYTE_ENCODING) {
   1787     __ Daddu(scratch, string, ToRegister(index));
   1788   } else {
   1789     STATIC_ASSERT(kUC16Size == 2);
   1790     __ dsll(scratch, ToRegister(index), 1);
   1791     __ Daddu(scratch, string, scratch);
   1792   }
   1793   return FieldMemOperand(scratch, SeqString::kHeaderSize);
   1794 }
   1795 
   1796 
   1797 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   1798   String::Encoding encoding = instr->hydrogen()->encoding();
   1799   Register string = ToRegister(instr->string());
   1800   Register result = ToRegister(instr->result());
   1801 
   1802   if (FLAG_debug_code) {
   1803     Register scratch = scratch0();
   1804     __ ld(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
   1805     __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   1806 
   1807     __ And(scratch, scratch,
   1808            Operand(kStringRepresentationMask | kStringEncodingMask));
   1809     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1810     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1811     __ Dsubu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
   1812                                 ? one_byte_seq_type : two_byte_seq_type));
   1813     __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
   1814   }
   1815 
   1816   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1817   if (encoding == String::ONE_BYTE_ENCODING) {
   1818     __ lbu(result, operand);
   1819   } else {
   1820     __ lhu(result, operand);
   1821   }
   1822 }
   1823 
   1824 
   1825 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   1826   String::Encoding encoding = instr->hydrogen()->encoding();
   1827   Register string = ToRegister(instr->string());
   1828   Register value = ToRegister(instr->value());
   1829 
   1830   if (FLAG_debug_code) {
   1831     Register scratch = scratch0();
   1832     Register index = ToRegister(instr->index());
   1833     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   1834     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   1835     int encoding_mask =
   1836         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   1837         ? one_byte_seq_type : two_byte_seq_type;
   1838     __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
   1839   }
   1840 
   1841   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   1842   if (encoding == String::ONE_BYTE_ENCODING) {
   1843     __ sb(value, operand);
   1844   } else {
   1845     __ sh(value, operand);
   1846   }
   1847 }
   1848 
   1849 
   1850 void LCodeGen::DoAddI(LAddI* instr) {
   1851   LOperand* left = instr->left();
   1852   LOperand* right = instr->right();
   1853   LOperand* result = instr->result();
   1854   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
   1855 
   1856   if (!can_overflow) {
   1857     if (right->IsStackSlot()) {
   1858       Register right_reg = EmitLoadRegister(right, at);
   1859       __ Daddu(ToRegister(result), ToRegister(left), Operand(right_reg));
   1860     } else {
   1861       DCHECK(right->IsRegister() || right->IsConstantOperand());
   1862       __ Daddu(ToRegister(result), ToRegister(left), ToOperand(right));
   1863     }
   1864   } else {  // can_overflow.
   1865     Register overflow = scratch0();
   1866     Register scratch = scratch1();
   1867     if (right->IsStackSlot() ||
   1868         right->IsConstantOperand()) {
   1869       Register right_reg = EmitLoadRegister(right, scratch);
   1870       __ AdduAndCheckForOverflow(ToRegister(result),
   1871                                  ToRegister(left),
   1872                                  right_reg,
   1873                                  overflow);  // Reg at also used as scratch.
   1874     } else {
   1875       DCHECK(right->IsRegister());
   1876       // Due to overflow check macros not supporting constant operands,
   1877       // handling the IsConstantOperand case was moved to prev if clause.
   1878       __ AdduAndCheckForOverflow(ToRegister(result),
   1879                                  ToRegister(left),
   1880                                  ToRegister(right),
   1881                                  overflow);  // Reg at also used as scratch.
   1882     }
   1883     DeoptimizeIf(lt, instr, overflow, Operand(zero_reg));
   1884     // if not smi, it must int32.
   1885     if (!instr->hydrogen()->representation().IsSmi()) {
   1886       DeoptimizeIf(gt, instr, ToRegister(result), Operand(kMaxInt));
   1887       DeoptimizeIf(lt, instr, ToRegister(result), Operand(kMinInt));
   1888     }
   1889   }
   1890 }
   1891 
   1892 
   1893 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   1894   LOperand* left = instr->left();
   1895   LOperand* right = instr->right();
   1896   HMathMinMax::Operation operation = instr->hydrogen()->operation();
   1897   Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
   1898   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
   1899     Register left_reg = ToRegister(left);
   1900     Register right_reg = EmitLoadRegister(right, scratch0());
   1901     Register result_reg = ToRegister(instr->result());
   1902     Label return_right, done;
   1903     Register scratch = scratch1();
   1904     __ Slt(scratch, left_reg, Operand(right_reg));
   1905     if (condition == ge) {
   1906      __  Movz(result_reg, left_reg, scratch);
   1907      __  Movn(result_reg, right_reg, scratch);
   1908     } else {
   1909      DCHECK(condition == le);
   1910      __  Movn(result_reg, left_reg, scratch);
   1911      __  Movz(result_reg, right_reg, scratch);
   1912     }
   1913   } else {
   1914     DCHECK(instr->hydrogen()->representation().IsDouble());
   1915     FPURegister left_reg = ToDoubleRegister(left);
   1916     FPURegister right_reg = ToDoubleRegister(right);
   1917     FPURegister result_reg = ToDoubleRegister(instr->result());
   1918     Label check_nan_left, check_zero, return_left, return_right, done;
   1919     __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
   1920     __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
   1921     __ Branch(&return_right);
   1922 
   1923     __ bind(&check_zero);
   1924     // left == right != 0.
   1925     __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
   1926     // At this point, both left and right are either 0 or -0.
   1927     if (operation == HMathMinMax::kMathMin) {
   1928       __ neg_d(left_reg, left_reg);
   1929       __ sub_d(result_reg, left_reg, right_reg);
   1930       __ neg_d(result_reg, result_reg);
   1931     } else {
   1932       __ add_d(result_reg, left_reg, right_reg);
   1933     }
   1934     __ Branch(&done);
   1935 
   1936     __ bind(&check_nan_left);
   1937     // left == NaN.
   1938     __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
   1939     __ bind(&return_right);
   1940     if (!right_reg.is(result_reg)) {
   1941       __ mov_d(result_reg, right_reg);
   1942     }
   1943     __ Branch(&done);
   1944 
   1945     __ bind(&return_left);
   1946     if (!left_reg.is(result_reg)) {
   1947       __ mov_d(result_reg, left_reg);
   1948     }
   1949     __ bind(&done);
   1950   }
   1951 }
   1952 
   1953 
   1954 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   1955   DoubleRegister left = ToDoubleRegister(instr->left());
   1956   DoubleRegister right = ToDoubleRegister(instr->right());
   1957   DoubleRegister result = ToDoubleRegister(instr->result());
   1958   switch (instr->op()) {
   1959     case Token::ADD:
   1960       __ add_d(result, left, right);
   1961       break;
   1962     case Token::SUB:
   1963       __ sub_d(result, left, right);
   1964       break;
   1965     case Token::MUL:
   1966       __ mul_d(result, left, right);
   1967       break;
   1968     case Token::DIV:
   1969       __ div_d(result, left, right);
   1970       break;
   1971     case Token::MOD: {
   1972       // Save a0-a3 on the stack.
   1973       RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
   1974       __ MultiPush(saved_regs);
   1975 
   1976       __ PrepareCallCFunction(0, 2, scratch0());
   1977       __ MovToFloatParameters(left, right);
   1978       __ CallCFunction(
   1979           ExternalReference::mod_two_doubles_operation(isolate()),
   1980           0, 2);
   1981       // Move the result in the double result register.
   1982       __ MovFromFloatResult(result);
   1983 
   1984       // Restore saved register.
   1985       __ MultiPop(saved_regs);
   1986       break;
   1987     }
   1988     default:
   1989       UNREACHABLE();
   1990       break;
   1991   }
   1992 }
   1993 
   1994 
   1995 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   1996   DCHECK(ToRegister(instr->context()).is(cp));
   1997   DCHECK(ToRegister(instr->left()).is(a1));
   1998   DCHECK(ToRegister(instr->right()).is(a0));
   1999   DCHECK(ToRegister(instr->result()).is(v0));
   2000 
   2001   Handle<Code> code =
   2002       CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
   2003   CallCode(code, RelocInfo::CODE_TARGET, instr);
   2004   // Other arch use a nop here, to signal that there is no inlined
   2005   // patchable code. Mips does not need the nop, since our marker
   2006   // instruction (andi zero_reg) will never be used in normal code.
   2007 }
   2008 
   2009 
   2010 template<class InstrType>
   2011 void LCodeGen::EmitBranch(InstrType instr,
   2012                           Condition condition,
   2013                           Register src1,
   2014                           const Operand& src2) {
   2015   int left_block = instr->TrueDestination(chunk_);
   2016   int right_block = instr->FalseDestination(chunk_);
   2017 
   2018   int next_block = GetNextEmittedBlock();
   2019   if (right_block == left_block || condition == al) {
   2020     EmitGoto(left_block);
   2021   } else if (left_block == next_block) {
   2022     __ Branch(chunk_->GetAssemblyLabel(right_block),
   2023               NegateCondition(condition), src1, src2);
   2024   } else if (right_block == next_block) {
   2025     __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
   2026   } else {
   2027     __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
   2028     __ Branch(chunk_->GetAssemblyLabel(right_block));
   2029   }
   2030 }
   2031 
   2032 
   2033 template<class InstrType>
   2034 void LCodeGen::EmitBranchF(InstrType instr,
   2035                            Condition condition,
   2036                            FPURegister src1,
   2037                            FPURegister src2) {
   2038   int right_block = instr->FalseDestination(chunk_);
   2039   int left_block = instr->TrueDestination(chunk_);
   2040 
   2041   int next_block = GetNextEmittedBlock();
   2042   if (right_block == left_block) {
   2043     EmitGoto(left_block);
   2044   } else if (left_block == next_block) {
   2045     __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
   2046                NegateCondition(condition), src1, src2);
   2047   } else if (right_block == next_block) {
   2048     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
   2049                condition, src1, src2);
   2050   } else {
   2051     __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
   2052                condition, src1, src2);
   2053     __ Branch(chunk_->GetAssemblyLabel(right_block));
   2054   }
   2055 }
   2056 
   2057 
   2058 template<class InstrType>
   2059 void LCodeGen::EmitFalseBranch(InstrType instr,
   2060                                Condition condition,
   2061                                Register src1,
   2062                                const Operand& src2) {
   2063   int false_block = instr->FalseDestination(chunk_);
   2064   __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
   2065 }
   2066 
   2067 
   2068 template<class InstrType>
   2069 void LCodeGen::EmitFalseBranchF(InstrType instr,
   2070                                 Condition condition,
   2071                                 FPURegister src1,
   2072                                 FPURegister src2) {
   2073   int false_block = instr->FalseDestination(chunk_);
   2074   __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
   2075              condition, src1, src2);
   2076 }
   2077 
   2078 
   2079 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   2080   __ stop("LDebugBreak");
   2081 }
   2082 
   2083 
   2084 void LCodeGen::DoBranch(LBranch* instr) {
   2085   Representation r = instr->hydrogen()->value()->representation();
   2086   if (r.IsInteger32() || r.IsSmi()) {
   2087     DCHECK(!info()->IsStub());
   2088     Register reg = ToRegister(instr->value());
   2089     EmitBranch(instr, ne, reg, Operand(zero_reg));
   2090   } else if (r.IsDouble()) {
   2091     DCHECK(!info()->IsStub());
   2092     DoubleRegister reg = ToDoubleRegister(instr->value());
   2093     // Test the double value. Zero and NaN are false.
   2094     EmitBranchF(instr, nue, reg, kDoubleRegZero);
   2095   } else {
   2096     DCHECK(r.IsTagged());
   2097     Register reg = ToRegister(instr->value());
   2098     HType type = instr->hydrogen()->value()->type();
   2099     if (type.IsBoolean()) {
   2100       DCHECK(!info()->IsStub());
   2101       __ LoadRoot(at, Heap::kTrueValueRootIndex);
   2102       EmitBranch(instr, eq, reg, Operand(at));
   2103     } else if (type.IsSmi()) {
   2104       DCHECK(!info()->IsStub());
   2105       EmitBranch(instr, ne, reg, Operand(zero_reg));
   2106     } else if (type.IsJSArray()) {
   2107       DCHECK(!info()->IsStub());
   2108       EmitBranch(instr, al, zero_reg, Operand(zero_reg));
   2109     } else if (type.IsHeapNumber()) {
   2110       DCHECK(!info()->IsStub());
   2111       DoubleRegister dbl_scratch = double_scratch0();
   2112       __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
   2113       // Test the double value. Zero and NaN are false.
   2114       EmitBranchF(instr, nue, dbl_scratch, kDoubleRegZero);
   2115     } else if (type.IsString()) {
   2116       DCHECK(!info()->IsStub());
   2117       __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
   2118       EmitBranch(instr, ne, at, Operand(zero_reg));
   2119     } else {
   2120       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
   2121       // Avoid deopts in the case where we've never executed this path before.
   2122       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
   2123 
   2124       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
   2125         // undefined -> false.
   2126         __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2127         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
   2128       }
   2129       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
   2130         // Boolean -> its value.
   2131         __ LoadRoot(at, Heap::kTrueValueRootIndex);
   2132         __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
   2133         __ LoadRoot(at, Heap::kFalseValueRootIndex);
   2134         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
   2135       }
   2136       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
   2137         // 'null' -> false.
   2138         __ LoadRoot(at, Heap::kNullValueRootIndex);
   2139         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
   2140       }
   2141 
   2142       if (expected.Contains(ToBooleanStub::SMI)) {
   2143         // Smis: 0 -> false, all other -> true.
   2144         __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
   2145         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
   2146       } else if (expected.NeedsMap()) {
   2147         // If we need a map later and have a Smi -> deopt.
   2148         __ SmiTst(reg, at);
   2149         DeoptimizeIf(eq, instr, at, Operand(zero_reg));
   2150       }
   2151 
   2152       const Register map = scratch0();
   2153       if (expected.NeedsMap()) {
   2154         __ ld(map, FieldMemOperand(reg, HeapObject::kMapOffset));
   2155         if (expected.CanBeUndetectable()) {
   2156           // Undetectable -> false.
   2157           __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
   2158           __ And(at, at, Operand(1 << Map::kIsUndetectable));
   2159           __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
   2160         }
   2161       }
   2162 
   2163       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
   2164         // spec object -> true.
   2165         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
   2166         __ Branch(instr->TrueLabel(chunk_),
   2167                   ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
   2168       }
   2169 
   2170       if (expected.Contains(ToBooleanStub::STRING)) {
   2171         // String value -> false iff empty.
   2172         Label not_string;
   2173         __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
   2174         __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
   2175         __ ld(at, FieldMemOperand(reg, String::kLengthOffset));
   2176         __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
   2177         __ Branch(instr->FalseLabel(chunk_));
   2178         __ bind(&not_string);
   2179       }
   2180 
   2181       if (expected.Contains(ToBooleanStub::SYMBOL)) {
   2182         // Symbol value -> true.
   2183         const Register scratch = scratch1();
   2184         __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
   2185         __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
   2186       }
   2187 
   2188       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
   2189         // heap number -> false iff +0, -0, or NaN.
   2190         DoubleRegister dbl_scratch = double_scratch0();
   2191         Label not_heap_number;
   2192         __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   2193         __ Branch(&not_heap_number, ne, map, Operand(at));
   2194         __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
   2195         __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2196                    ne, dbl_scratch, kDoubleRegZero);
   2197         // Falls through if dbl_scratch == 0.
   2198         __ Branch(instr->FalseLabel(chunk_));
   2199         __ bind(&not_heap_number);
   2200       }
   2201 
   2202       if (!expected.IsGeneric()) {
   2203         // We've seen something for the first time -> deopt.
   2204         // This can only happen if we are not generic already.
   2205         DeoptimizeIf(al, instr, zero_reg, Operand(zero_reg));
   2206       }
   2207     }
   2208   }
   2209 }
   2210 
   2211 
   2212 void LCodeGen::EmitGoto(int block) {
   2213   if (!IsNextEmittedBlock(block)) {
   2214     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2215   }
   2216 }
   2217 
   2218 
   2219 void LCodeGen::DoGoto(LGoto* instr) {
   2220   EmitGoto(instr->block_id());
   2221 }
   2222 
   2223 
   2224 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   2225   Condition cond = kNoCondition;
   2226   switch (op) {
   2227     case Token::EQ:
   2228     case Token::EQ_STRICT:
   2229       cond = eq;
   2230       break;
   2231     case Token::NE:
   2232     case Token::NE_STRICT:
   2233       cond = ne;
   2234       break;
   2235     case Token::LT:
   2236       cond = is_unsigned ? lo : lt;
   2237       break;
   2238     case Token::GT:
   2239       cond = is_unsigned ? hi : gt;
   2240       break;
   2241     case Token::LTE:
   2242       cond = is_unsigned ? ls : le;
   2243       break;
   2244     case Token::GTE:
   2245       cond = is_unsigned ? hs : ge;
   2246       break;
   2247     case Token::IN:
   2248     case Token::INSTANCEOF:
   2249     default:
   2250       UNREACHABLE();
   2251   }
   2252   return cond;
   2253 }
   2254 
   2255 
   2256 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2257   LOperand* left = instr->left();
   2258   LOperand* right = instr->right();
   2259   bool is_unsigned =
   2260       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2261       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2262   Condition cond = TokenToCondition(instr->op(), is_unsigned);
   2263 
   2264   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2265     // We can statically evaluate the comparison.
   2266     double left_val = ToDouble(LConstantOperand::cast(left));
   2267     double right_val = ToDouble(LConstantOperand::cast(right));
   2268     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
   2269         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
   2270     EmitGoto(next_block);
   2271   } else {
   2272     if (instr->is_double()) {
   2273       // Compare left and right as doubles and load the
   2274       // resulting flags into the normal status register.
   2275       FPURegister left_reg = ToDoubleRegister(left);
   2276       FPURegister right_reg = ToDoubleRegister(right);
   2277 
   2278       // If a NaN is involved, i.e. the result is unordered,
   2279       // jump to false block label.
   2280       __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
   2281                  left_reg, right_reg);
   2282 
   2283       EmitBranchF(instr, cond, left_reg, right_reg);
   2284     } else {
   2285       Register cmp_left;
   2286       Operand cmp_right = Operand((int64_t)0);
   2287       if (right->IsConstantOperand()) {
   2288         int32_t value = ToInteger32(LConstantOperand::cast(right));
   2289         if (instr->hydrogen_value()->representation().IsSmi()) {
   2290           cmp_left = ToRegister(left);
   2291           cmp_right = Operand(Smi::FromInt(value));
   2292         } else {
   2293           cmp_left = ToRegister(left);
   2294           cmp_right = Operand(value);
   2295         }
   2296       } else if (left->IsConstantOperand()) {
   2297         int32_t value = ToInteger32(LConstantOperand::cast(left));
   2298         if (instr->hydrogen_value()->representation().IsSmi()) {
   2299           cmp_left = ToRegister(right);
   2300           cmp_right = Operand(Smi::FromInt(value));
   2301         } else {
   2302           cmp_left = ToRegister(right);
   2303           cmp_right = Operand(value);
   2304         }
   2305         // We commuted the operands, so commute the condition.
   2306         cond = CommuteCondition(cond);
   2307       } else {
   2308         cmp_left = ToRegister(left);
   2309         cmp_right = Operand(ToRegister(right));
   2310       }
   2311 
   2312       EmitBranch(instr, cond, cmp_left, cmp_right);
   2313     }
   2314   }
   2315 }
   2316 
   2317 
   2318 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2319   Register left = ToRegister(instr->left());
   2320   Register right = ToRegister(instr->right());
   2321 
   2322   EmitBranch(instr, eq, left, Operand(right));
   2323 }
   2324 
   2325 
   2326 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
   2327   if (instr->hydrogen()->representation().IsTagged()) {
   2328     Register input_reg = ToRegister(instr->object());
   2329     __ li(at, Operand(factory()->the_hole_value()));
   2330     EmitBranch(instr, eq, input_reg, Operand(at));
   2331     return;
   2332   }
   2333 
   2334   DoubleRegister input_reg = ToDoubleRegister(instr->object());
   2335   EmitFalseBranchF(instr, eq, input_reg, input_reg);
   2336 
   2337   Register scratch = scratch0();
   2338   __ FmoveHigh(scratch, input_reg);
   2339   EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
   2340 }
   2341 
   2342 
   2343 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
   2344   Representation rep = instr->hydrogen()->value()->representation();
   2345   DCHECK(!rep.IsInteger32());
   2346   Register scratch = ToRegister(instr->temp());
   2347 
   2348   if (rep.IsDouble()) {
   2349     DoubleRegister value = ToDoubleRegister(instr->value());
   2350     EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
   2351     __ FmoveHigh(scratch, value);
   2352     // Only use low 32-bits of value.
   2353     __ dsll32(scratch, scratch, 0);
   2354     __ dsrl32(scratch, scratch, 0);
   2355     __ li(at, 0x80000000);
   2356   } else {
   2357     Register value = ToRegister(instr->value());
   2358     __ CheckMap(value,
   2359                 scratch,
   2360                 Heap::kHeapNumberMapRootIndex,
   2361                 instr->FalseLabel(chunk()),
   2362                 DO_SMI_CHECK);
   2363     __ lwu(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
   2364     EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
   2365     __ lwu(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
   2366     __ mov(at, zero_reg);
   2367   }
   2368   EmitBranch(instr, eq, scratch, Operand(at));
   2369 }
   2370 
   2371 
   2372 Condition LCodeGen::EmitIsObject(Register input,
   2373                                  Register temp1,
   2374                                  Register temp2,
   2375                                  Label* is_not_object,
   2376                                  Label* is_object) {
   2377   __ JumpIfSmi(input, is_not_object);
   2378 
   2379   __ LoadRoot(temp2, Heap::kNullValueRootIndex);
   2380   __ Branch(is_object, eq, input, Operand(temp2));
   2381 
   2382   // Load map.
   2383   __ ld(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
   2384   // Undetectable objects behave like undefined.
   2385   __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
   2386   __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
   2387   __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
   2388 
   2389   // Load instance type and check that it is in object type range.
   2390   __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
   2391   __ Branch(is_not_object,
   2392             lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2393 
   2394   return le;
   2395 }
   2396 
   2397 
   2398 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
   2399   Register reg = ToRegister(instr->value());
   2400   Register temp1 = ToRegister(instr->temp());
   2401   Register temp2 = scratch0();
   2402 
   2403   Condition true_cond =
   2404       EmitIsObject(reg, temp1, temp2,
   2405           instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
   2406 
   2407   EmitBranch(instr, true_cond, temp2,
   2408              Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2409 }
   2410 
   2411 
   2412 Condition LCodeGen::EmitIsString(Register input,
   2413                                  Register temp1,
   2414                                  Label* is_not_string,
   2415                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2416   if (check_needed == INLINE_SMI_CHECK) {
   2417     __ JumpIfSmi(input, is_not_string);
   2418   }
   2419   __ GetObjectType(input, temp1, temp1);
   2420 
   2421   return lt;
   2422 }
   2423 
   2424 
   2425 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2426   Register reg = ToRegister(instr->value());
   2427   Register temp1 = ToRegister(instr->temp());
   2428 
   2429   SmiCheck check_needed =
   2430       instr->hydrogen()->value()->type().IsHeapObject()
   2431           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2432   Condition true_cond =
   2433       EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
   2434 
   2435   EmitBranch(instr, true_cond, temp1,
   2436              Operand(FIRST_NONSTRING_TYPE));
   2437 }
   2438 
   2439 
   2440 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2441   Register input_reg = EmitLoadRegister(instr->value(), at);
   2442   __ And(at, input_reg, kSmiTagMask);
   2443   EmitBranch(instr, eq, at, Operand(zero_reg));
   2444 }
   2445 
   2446 
   2447 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2448   Register input = ToRegister(instr->value());
   2449   Register temp = ToRegister(instr->temp());
   2450 
   2451   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2452     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2453   }
   2454   __ ld(temp, FieldMemOperand(input, HeapObject::kMapOffset));
   2455   __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
   2456   __ And(at, temp, Operand(1 << Map::kIsUndetectable));
   2457   EmitBranch(instr, ne, at, Operand(zero_reg));
   2458 }
   2459 
   2460 
   2461 static Condition ComputeCompareCondition(Token::Value op) {
   2462   switch (op) {
   2463     case Token::EQ_STRICT:
   2464     case Token::EQ:
   2465       return eq;
   2466     case Token::LT:
   2467       return lt;
   2468     case Token::GT:
   2469       return gt;
   2470     case Token::LTE:
   2471       return le;
   2472     case Token::GTE:
   2473       return ge;
   2474     default:
   2475       UNREACHABLE();
   2476       return kNoCondition;
   2477   }
   2478 }
   2479 
   2480 
   2481 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   2482   DCHECK(ToRegister(instr->context()).is(cp));
   2483   Token::Value op = instr->op();
   2484 
   2485   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2486   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2487 
   2488   Condition condition = ComputeCompareCondition(op);
   2489 
   2490   EmitBranch(instr, condition, v0, Operand(zero_reg));
   2491 }
   2492 
   2493 
   2494 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2495   InstanceType from = instr->from();
   2496   InstanceType to = instr->to();
   2497   if (from == FIRST_TYPE) return to;
   2498   DCHECK(from == to || to == LAST_TYPE);
   2499   return from;
   2500 }
   2501 
   2502 
   2503 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2504   InstanceType from = instr->from();
   2505   InstanceType to = instr->to();
   2506   if (from == to) return eq;
   2507   if (to == LAST_TYPE) return hs;
   2508   if (from == FIRST_TYPE) return ls;
   2509   UNREACHABLE();
   2510   return eq;
   2511 }
   2512 
   2513 
   2514 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2515   Register scratch = scratch0();
   2516   Register input = ToRegister(instr->value());
   2517 
   2518   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2519     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2520   }
   2521 
   2522   __ GetObjectType(input, scratch, scratch);
   2523   EmitBranch(instr,
   2524              BranchCondition(instr->hydrogen()),
   2525              scratch,
   2526              Operand(TestType(instr->hydrogen())));
   2527 }
   2528 
   2529 
   2530 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2531   Register input = ToRegister(instr->value());
   2532   Register result = ToRegister(instr->result());
   2533 
   2534   __ AssertString(input);
   2535 
   2536   __ lwu(result, FieldMemOperand(input, String::kHashFieldOffset));
   2537   __ IndexFromHash(result, result);
   2538 }
   2539 
   2540 
   2541 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2542     LHasCachedArrayIndexAndBranch* instr) {
   2543   Register input = ToRegister(instr->value());
   2544   Register scratch = scratch0();
   2545 
   2546   __ lwu(scratch,
   2547          FieldMemOperand(input, String::kHashFieldOffset));
   2548   __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
   2549   EmitBranch(instr, eq, at, Operand(zero_reg));
   2550 }
   2551 
   2552 
   2553 // Branches to a label or falls through with the answer in flags.  Trashes
   2554 // the temp registers, but not the input.
   2555 void LCodeGen::EmitClassOfTest(Label* is_true,
   2556                                Label* is_false,
   2557                                Handle<String>class_name,
   2558                                Register input,
   2559                                Register temp,
   2560                                Register temp2) {
   2561   DCHECK(!input.is(temp));
   2562   DCHECK(!input.is(temp2));
   2563   DCHECK(!temp.is(temp2));
   2564 
   2565   __ JumpIfSmi(input, is_false);
   2566 
   2567   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2568     // Assuming the following assertions, we can use the same compares to test
   2569     // for both being a function type and being in the object type range.
   2570     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2571     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2572                   FIRST_SPEC_OBJECT_TYPE + 1);
   2573     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2574                   LAST_SPEC_OBJECT_TYPE - 1);
   2575     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   2576 
   2577     __ GetObjectType(input, temp, temp2);
   2578     __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
   2579     __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
   2580     __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
   2581   } else {
   2582     // Faster code path to avoid two compares: subtract lower bound from the
   2583     // actual type and do a signed compare with the width of the type range.
   2584     __ GetObjectType(input, temp, temp2);
   2585     __ Dsubu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2586     __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
   2587                                            FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2588   }
   2589 
   2590   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2591   // Check if the constructor in the map is a function.
   2592   __ ld(temp, FieldMemOperand(temp, Map::kConstructorOffset));
   2593 
   2594   // Objects with a non-function constructor have class 'Object'.
   2595   __ GetObjectType(temp, temp2, temp2);
   2596   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2597     __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
   2598   } else {
   2599     __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
   2600   }
   2601 
   2602   // temp now contains the constructor function. Grab the
   2603   // instance class name from there.
   2604   __ ld(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
   2605   __ ld(temp, FieldMemOperand(temp,
   2606                                SharedFunctionInfo::kInstanceClassNameOffset));
   2607   // The class name we are testing against is internalized since it's a literal.
   2608   // The name in the constructor is internalized because of the way the context
   2609   // is booted.  This routine isn't expected to work for random API-created
   2610   // classes and it doesn't have to because you can't access it with natives
   2611   // syntax.  Since both sides are internalized it is sufficient to use an
   2612   // identity comparison.
   2613 
   2614   // End with the address of this class_name instance in temp register.
   2615   // On MIPS, the caller must do the comparison with Handle<String>class_name.
   2616 }
   2617 
   2618 
   2619 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2620   Register input = ToRegister(instr->value());
   2621   Register temp = scratch0();
   2622   Register temp2 = ToRegister(instr->temp());
   2623   Handle<String> class_name = instr->hydrogen()->class_name();
   2624 
   2625   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2626                   class_name, input, temp, temp2);
   2627 
   2628   EmitBranch(instr, eq, temp, Operand(class_name));
   2629 }
   2630 
   2631 
   2632 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2633   Register reg = ToRegister(instr->value());
   2634   Register temp = ToRegister(instr->temp());
   2635 
   2636   __ ld(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
   2637   EmitBranch(instr, eq, temp, Operand(instr->map()));
   2638 }
   2639 
   2640 
   2641 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
   2642   DCHECK(ToRegister(instr->context()).is(cp));
   2643   Label true_label, done;
   2644   DCHECK(ToRegister(instr->left()).is(a0));  // Object is in a0.
   2645   DCHECK(ToRegister(instr->right()).is(a1));  // Function is in a1.
   2646   Register result = ToRegister(instr->result());
   2647   DCHECK(result.is(v0));
   2648 
   2649   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
   2650   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2651 
   2652   __ Branch(&true_label, eq, result, Operand(zero_reg));
   2653   __ li(result, Operand(factory()->false_value()));
   2654   __ Branch(&done);
   2655   __ bind(&true_label);
   2656   __ li(result, Operand(factory()->true_value()));
   2657   __ bind(&done);
   2658 }
   2659 
   2660 
   2661 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   2662   class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode {
   2663    public:
   2664     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
   2665                                   LInstanceOfKnownGlobal* instr)
   2666         : LDeferredCode(codegen), instr_(instr) { }
   2667     virtual void Generate() OVERRIDE {
   2668       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
   2669     }
   2670     virtual LInstruction* instr() OVERRIDE { return instr_; }
   2671     Label* map_check() { return &map_check_; }
   2672 
   2673    private:
   2674     LInstanceOfKnownGlobal* instr_;
   2675     Label map_check_;
   2676   };
   2677 
   2678   DeferredInstanceOfKnownGlobal* deferred;
   2679   deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
   2680 
   2681   Label done, false_result;
   2682   Register object = ToRegister(instr->value());
   2683   Register temp = ToRegister(instr->temp());
   2684   Register result = ToRegister(instr->result());
   2685 
   2686   DCHECK(object.is(a0));
   2687   DCHECK(result.is(v0));
   2688 
   2689   // A Smi is not instance of anything.
   2690   __ JumpIfSmi(object, &false_result);
   2691 
   2692   // This is the inlined call site instanceof cache. The two occurences of the
   2693   // hole value will be patched to the last map/result pair generated by the
   2694   // instanceof stub.
   2695   Label cache_miss;
   2696   Register map = temp;
   2697   __ ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
   2698 
   2699   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
   2700   __ bind(deferred->map_check());  // Label for calculating code patching.
   2701   // We use Factory::the_hole_value() on purpose instead of loading from the
   2702   // root array to force relocation to be able to later patch with
   2703   // the cached map.
   2704   Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
   2705   __ li(at, Operand(Handle<Object>(cell)));
   2706   __ ld(at, FieldMemOperand(at, PropertyCell::kValueOffset));
   2707   __ BranchShort(&cache_miss, ne, map, Operand(at));
   2708   // We use Factory::the_hole_value() on purpose instead of loading from the
   2709   // root array to force relocation to be able to later patch
   2710   // with true or false. The distance from map check has to be constant.
   2711   __ li(result, Operand(factory()->the_hole_value()));
   2712   __ Branch(&done);
   2713 
   2714   // The inlined call site cache did not match. Check null and string before
   2715   // calling the deferred code.
   2716   __ bind(&cache_miss);
   2717   // Null is not instance of anything.
   2718   __ LoadRoot(temp, Heap::kNullValueRootIndex);
   2719   __ Branch(&false_result, eq, object, Operand(temp));
   2720 
   2721   // String values is not instance of anything.
   2722   Condition cc = __ IsObjectStringType(object, temp, temp);
   2723   __ Branch(&false_result, cc, temp, Operand(zero_reg));
   2724 
   2725   // Go to the deferred code.
   2726   __ Branch(deferred->entry());
   2727 
   2728   __ bind(&false_result);
   2729   __ LoadRoot(result, Heap::kFalseValueRootIndex);
   2730 
   2731   // Here result has either true or false. Deferred code also produces true or
   2732   // false object.
   2733   __ bind(deferred->exit());
   2734   __ bind(&done);
   2735 }
   2736 
   2737 
   2738 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
   2739                                                Label* map_check) {
   2740   Register result = ToRegister(instr->result());
   2741   DCHECK(result.is(v0));
   2742 
   2743   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
   2744   flags = static_cast<InstanceofStub::Flags>(
   2745       flags | InstanceofStub::kArgsInRegisters);
   2746   flags = static_cast<InstanceofStub::Flags>(
   2747       flags | InstanceofStub::kCallSiteInlineCheck);
   2748   flags = static_cast<InstanceofStub::Flags>(
   2749       flags | InstanceofStub::kReturnTrueFalseObject);
   2750   InstanceofStub stub(isolate(), flags);
   2751 
   2752   PushSafepointRegistersScope scope(this);
   2753   LoadContextFromDeferred(instr->context());
   2754 
   2755   // Get the temp register reserved by the instruction. This needs to be a4 as
   2756   // its slot of the pushing of safepoint registers is used to communicate the
   2757   // offset to the location of the map check.
   2758   Register temp = ToRegister(instr->temp());
   2759   DCHECK(temp.is(a4));
   2760   __ li(InstanceofStub::right(), instr->function());
   2761   static const int kAdditionalDelta = 13;
   2762   int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
   2763   Label before_push_delta;
   2764   __ bind(&before_push_delta);
   2765   {
   2766     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
   2767     __ li(temp, Operand(delta * kIntSize), CONSTANT_SIZE);
   2768     __ StoreToSafepointRegisterSlot(temp, temp);
   2769   }
   2770   CallCodeGeneric(stub.GetCode(),
   2771                   RelocInfo::CODE_TARGET,
   2772                   instr,
   2773                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   2774   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
   2775   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   2776   // Put the result value into the result register slot and
   2777   // restore all registers.
   2778   __ StoreToSafepointRegisterSlot(result, result);
   2779 }
   2780 
   2781 
   2782 void LCodeGen::DoCmpT(LCmpT* instr) {
   2783   DCHECK(ToRegister(instr->context()).is(cp));
   2784   Token::Value op = instr->op();
   2785 
   2786   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2787   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2788   // On MIPS there is no need for a "no inlined smi code" marker (nop).
   2789 
   2790   Condition condition = ComputeCompareCondition(op);
   2791   // A minor optimization that relies on LoadRoot always emitting one
   2792   // instruction.
   2793   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
   2794   Label done, check;
   2795   __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
   2796   __ bind(&check);
   2797   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
   2798   DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
   2799   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
   2800   __ bind(&done);
   2801 }
   2802 
   2803 
   2804 void LCodeGen::DoReturn(LReturn* instr) {
   2805   if (FLAG_trace && info()->IsOptimizing()) {
   2806     // Push the return value on the stack as the parameter.
   2807     // Runtime::TraceExit returns its parameter in v0. We're leaving the code
   2808     // managed by the register allocator and tearing down the frame, it's
   2809     // safe to write to the context register.
   2810     __ push(v0);
   2811     __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2812     __ CallRuntime(Runtime::kTraceExit, 1);
   2813   }
   2814   if (info()->saves_caller_doubles()) {
   2815     RestoreCallerDoubles();
   2816   }
   2817   int no_frame_start = -1;
   2818   if (NeedsEagerFrame()) {
   2819     __ mov(sp, fp);
   2820     no_frame_start = masm_->pc_offset();
   2821     __ Pop(ra, fp);
   2822   }
   2823   if (instr->has_constant_parameter_count()) {
   2824     int parameter_count = ToInteger32(instr->constant_parameter_count());
   2825     int32_t sp_delta = (parameter_count + 1) * kPointerSize;
   2826     if (sp_delta != 0) {
   2827       __ Daddu(sp, sp, Operand(sp_delta));
   2828     }
   2829   } else {
   2830     Register reg = ToRegister(instr->parameter_count());
   2831     // The argument count parameter is a smi
   2832     __ SmiUntag(reg);
   2833     __ dsll(at, reg, kPointerSizeLog2);
   2834     __ Daddu(sp, sp, at);
   2835   }
   2836 
   2837   __ Jump(ra);
   2838 
   2839   if (no_frame_start != -1) {
   2840     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
   2841   }
   2842 }
   2843 
   2844 
   2845 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
   2846   Register result = ToRegister(instr->result());
   2847   __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
   2848   __ ld(result, FieldMemOperand(at, Cell::kValueOffset));
   2849   if (instr->hydrogen()->RequiresHoleCheck()) {
   2850     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   2851     DeoptimizeIf(eq, instr, result, Operand(at));
   2852   }
   2853 }
   2854 
   2855 
   2856 template <class T>
   2857 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   2858   DCHECK(FLAG_vector_ics);
   2859   Register vector = ToRegister(instr->temp_vector());
   2860   DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister()));
   2861   __ li(vector, instr->hydrogen()->feedback_vector());
   2862   // No need to allocate this register.
   2863   DCHECK(VectorLoadICDescriptor::SlotRegister().is(a0));
   2864   __ li(VectorLoadICDescriptor::SlotRegister(),
   2865         Operand(Smi::FromInt(instr->hydrogen()->slot())));
   2866 }
   2867 
   2868 
   2869 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   2870   DCHECK(ToRegister(instr->context()).is(cp));
   2871   DCHECK(ToRegister(instr->global_object())
   2872             .is(LoadDescriptor::ReceiverRegister()));
   2873   DCHECK(ToRegister(instr->result()).is(v0));
   2874 
   2875   __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
   2876   if (FLAG_vector_ics) {
   2877     EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   2878   }
   2879   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
   2880   Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code();
   2881   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2882 }
   2883 
   2884 
   2885 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
   2886   Register value = ToRegister(instr->value());
   2887   Register cell = scratch0();
   2888 
   2889   // Load the cell.
   2890   __ li(cell, Operand(instr->hydrogen()->cell().handle()));
   2891 
   2892   // If the cell we are storing to contains the hole it could have
   2893   // been deleted from the property dictionary. In that case, we need
   2894   // to update the property details in the property dictionary to mark
   2895   // it as no longer deleted.
   2896   if (instr->hydrogen()->RequiresHoleCheck()) {
   2897     // We use a temp to check the payload.
   2898     Register payload = ToRegister(instr->temp());
   2899     __ ld(payload, FieldMemOperand(cell, Cell::kValueOffset));
   2900     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   2901     DeoptimizeIf(eq, instr, payload, Operand(at));
   2902   }
   2903 
   2904   // Store the value.
   2905   __ sd(value, FieldMemOperand(cell, Cell::kValueOffset));
   2906   // Cells are always rescanned, so no write barrier here.
   2907 }
   2908 
   2909 
   2910 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   2911   Register context = ToRegister(instr->context());
   2912   Register result = ToRegister(instr->result());
   2913 
   2914   __ ld(result, ContextOperand(context, instr->slot_index()));
   2915   if (instr->hydrogen()->RequiresHoleCheck()) {
   2916     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   2917 
   2918     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2919       DeoptimizeIf(eq, instr, result, Operand(at));
   2920     } else {
   2921       Label is_not_hole;
   2922       __ Branch(&is_not_hole, ne, result, Operand(at));
   2923       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
   2924       __ bind(&is_not_hole);
   2925     }
   2926   }
   2927 }
   2928 
   2929 
   2930 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   2931   Register context = ToRegister(instr->context());
   2932   Register value = ToRegister(instr->value());
   2933   Register scratch = scratch0();
   2934   MemOperand target = ContextOperand(context, instr->slot_index());
   2935 
   2936   Label skip_assignment;
   2937 
   2938   if (instr->hydrogen()->RequiresHoleCheck()) {
   2939     __ ld(scratch, target);
   2940     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   2941 
   2942     if (instr->hydrogen()->DeoptimizesOnHole()) {
   2943       DeoptimizeIf(eq, instr, scratch, Operand(at));
   2944     } else {
   2945       __ Branch(&skip_assignment, ne, scratch, Operand(at));
   2946     }
   2947   }
   2948 
   2949   __ sd(value, target);
   2950   if (instr->hydrogen()->NeedsWriteBarrier()) {
   2951     SmiCheck check_needed =
   2952         instr->hydrogen()->value()->type().IsHeapObject()
   2953             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2954     __ RecordWriteContextSlot(context,
   2955                               target.offset(),
   2956                               value,
   2957                               scratch0(),
   2958                               GetRAState(),
   2959                               kSaveFPRegs,
   2960                               EMIT_REMEMBERED_SET,
   2961                               check_needed);
   2962   }
   2963 
   2964   __ bind(&skip_assignment);
   2965 }
   2966 
   2967 
   2968 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   2969   HObjectAccess access = instr->hydrogen()->access();
   2970   int offset = access.offset();
   2971   Register object = ToRegister(instr->object());
   2972   if (access.IsExternalMemory()) {
   2973     Register result = ToRegister(instr->result());
   2974     MemOperand operand = MemOperand(object, offset);
   2975     __ Load(result, operand, access.representation());
   2976     return;
   2977   }
   2978 
   2979   if (instr->hydrogen()->representation().IsDouble()) {
   2980     DoubleRegister result = ToDoubleRegister(instr->result());
   2981     __ ldc1(result, FieldMemOperand(object, offset));
   2982     return;
   2983   }
   2984 
   2985   Register result = ToRegister(instr->result());
   2986   if (!access.IsInobject()) {
   2987     __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   2988     object = result;
   2989   }
   2990 
   2991   Representation representation = access.representation();
   2992   if (representation.IsSmi() && SmiValuesAre32Bits() &&
   2993       instr->hydrogen()->representation().IsInteger32()) {
   2994     if (FLAG_debug_code) {
   2995       // Verify this is really an Smi.
   2996       Register scratch = scratch0();
   2997       __ Load(scratch, FieldMemOperand(object, offset), representation);
   2998       __ AssertSmi(scratch);
   2999     }
   3000 
   3001     // Read int value directly from upper half of the smi.
   3002     STATIC_ASSERT(kSmiTag == 0);
   3003     STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   3004     offset += kPointerSize / 2;
   3005     representation = Representation::Integer32();
   3006   }
   3007   __ Load(result, FieldMemOperand(object, offset), representation);
   3008 }
   3009 
   3010 
   3011 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   3012   DCHECK(ToRegister(instr->context()).is(cp));
   3013   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3014   DCHECK(ToRegister(instr->result()).is(v0));
   3015 
   3016   // Name is always in a2.
   3017   __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
   3018   if (FLAG_vector_ics) {
   3019     EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   3020   }
   3021   Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code();
   3022   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3023 }
   3024 
   3025 
   3026 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   3027   Register scratch = scratch0();
   3028   Register function = ToRegister(instr->function());
   3029   Register result = ToRegister(instr->result());
   3030 
   3031   // Get the prototype or initial map from the function.
   3032   __ ld(result,
   3033          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   3034 
   3035   // Check that the function has a prototype or an initial map.
   3036   __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   3037   DeoptimizeIf(eq, instr, result, Operand(at));
   3038 
   3039   // If the function does not have an initial map, we're done.
   3040   Label done;
   3041   __ GetObjectType(result, scratch, scratch);
   3042   __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
   3043 
   3044   // Get the prototype from the initial map.
   3045   __ ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
   3046 
   3047   // All done.
   3048   __ bind(&done);
   3049 }
   3050 
   3051 
   3052 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3053   Register result = ToRegister(instr->result());
   3054   __ LoadRoot(result, instr->index());
   3055 }
   3056 
   3057 
   3058 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   3059   Register arguments = ToRegister(instr->arguments());
   3060   Register result = ToRegister(instr->result());
   3061   // There are two words between the frame pointer and the last argument.
   3062   // Subtracting from length accounts for one of them add one more.
   3063   if (instr->length()->IsConstantOperand()) {
   3064     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
   3065     if (instr->index()->IsConstantOperand()) {
   3066       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   3067       int index = (const_length - const_index) + 1;
   3068       __ ld(result, MemOperand(arguments, index * kPointerSize));
   3069     } else {
   3070       Register index = ToRegister(instr->index());
   3071       __ li(at, Operand(const_length + 1));
   3072       __ Dsubu(result, at, index);
   3073       __ dsll(at, result, kPointerSizeLog2);
   3074       __ Daddu(at, arguments, at);
   3075       __ ld(result, MemOperand(at));
   3076     }
   3077   } else if (instr->index()->IsConstantOperand()) {
   3078     Register length = ToRegister(instr->length());
   3079     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   3080     int loc = const_index - 1;
   3081     if (loc != 0) {
   3082       __ Dsubu(result, length, Operand(loc));
   3083       __ dsll(at, result, kPointerSizeLog2);
   3084       __ Daddu(at, arguments, at);
   3085       __ ld(result, MemOperand(at));
   3086     } else {
   3087       __ dsll(at, length, kPointerSizeLog2);
   3088       __ Daddu(at, arguments, at);
   3089       __ ld(result, MemOperand(at));
   3090     }
   3091   } else {
   3092     Register length = ToRegister(instr->length());
   3093     Register index = ToRegister(instr->index());
   3094     __ Dsubu(result, length, index);
   3095     __ Daddu(result, result, 1);
   3096     __ dsll(at, result, kPointerSizeLog2);
   3097     __ Daddu(at, arguments, at);
   3098     __ ld(result, MemOperand(at));
   3099   }
   3100 }
   3101 
   3102 
   3103 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
   3104   Register external_pointer = ToRegister(instr->elements());
   3105   Register key = no_reg;
   3106   ElementsKind elements_kind = instr->elements_kind();
   3107   bool key_is_constant = instr->key()->IsConstantOperand();
   3108   int constant_key = 0;
   3109   if (key_is_constant) {
   3110     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3111     if (constant_key & 0xF0000000) {
   3112       Abort(kArrayIndexConstantValueTooBig);
   3113     }
   3114   } else {
   3115     key = ToRegister(instr->key());
   3116   }
   3117   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   3118   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
   3119       ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
   3120       : element_size_shift;
   3121   int base_offset = instr->base_offset();
   3122 
   3123   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   3124       elements_kind == FLOAT32_ELEMENTS ||
   3125       elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   3126       elements_kind == FLOAT64_ELEMENTS) {
   3127     int base_offset = instr->base_offset();
   3128     FPURegister result = ToDoubleRegister(instr->result());
   3129     if (key_is_constant) {
   3130       __ Daddu(scratch0(), external_pointer,
   3131           constant_key << element_size_shift);
   3132     } else {
   3133       if (shift_size < 0) {
   3134          if (shift_size == -32) {
   3135            __ dsra32(scratch0(), key, 0);
   3136          } else {
   3137            __ dsra(scratch0(), key, -shift_size);
   3138          }
   3139       } else {
   3140         __ dsll(scratch0(), key, shift_size);
   3141       }
   3142       __ Daddu(scratch0(), scratch0(), external_pointer);
   3143     }
   3144     if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   3145         elements_kind == FLOAT32_ELEMENTS) {
   3146       __ lwc1(result, MemOperand(scratch0(), base_offset));
   3147       __ cvt_d_s(result, result);
   3148     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
   3149       __ ldc1(result, MemOperand(scratch0(), base_offset));
   3150     }
   3151   } else {
   3152     Register result = ToRegister(instr->result());
   3153     MemOperand mem_operand = PrepareKeyedOperand(
   3154         key, external_pointer, key_is_constant, constant_key,
   3155         element_size_shift, shift_size, base_offset);
   3156     switch (elements_kind) {
   3157       case EXTERNAL_INT8_ELEMENTS:
   3158       case INT8_ELEMENTS:
   3159         __ lb(result, mem_operand);
   3160         break;
   3161       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3162       case EXTERNAL_UINT8_ELEMENTS:
   3163       case UINT8_ELEMENTS:
   3164       case UINT8_CLAMPED_ELEMENTS:
   3165         __ lbu(result, mem_operand);
   3166         break;
   3167       case EXTERNAL_INT16_ELEMENTS:
   3168       case INT16_ELEMENTS:
   3169         __ lh(result, mem_operand);
   3170         break;
   3171       case EXTERNAL_UINT16_ELEMENTS:
   3172       case UINT16_ELEMENTS:
   3173         __ lhu(result, mem_operand);
   3174         break;
   3175       case EXTERNAL_INT32_ELEMENTS:
   3176       case INT32_ELEMENTS:
   3177         __ lw(result, mem_operand);
   3178         break;
   3179       case EXTERNAL_UINT32_ELEMENTS:
   3180       case UINT32_ELEMENTS:
   3181         __ lw(result, mem_operand);
   3182         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3183           DeoptimizeIf(Ugreater_equal, instr, result, Operand(0x80000000));
   3184         }
   3185         break;
   3186       case FLOAT32_ELEMENTS:
   3187       case FLOAT64_ELEMENTS:
   3188       case EXTERNAL_FLOAT32_ELEMENTS:
   3189       case EXTERNAL_FLOAT64_ELEMENTS:
   3190       case FAST_DOUBLE_ELEMENTS:
   3191       case FAST_ELEMENTS:
   3192       case FAST_SMI_ELEMENTS:
   3193       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3194       case FAST_HOLEY_ELEMENTS:
   3195       case FAST_HOLEY_SMI_ELEMENTS:
   3196       case DICTIONARY_ELEMENTS:
   3197       case SLOPPY_ARGUMENTS_ELEMENTS:
   3198         UNREACHABLE();
   3199         break;
   3200     }
   3201   }
   3202 }
   3203 
   3204 
   3205 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
   3206   Register elements = ToRegister(instr->elements());
   3207   bool key_is_constant = instr->key()->IsConstantOperand();
   3208   Register key = no_reg;
   3209   DoubleRegister result = ToDoubleRegister(instr->result());
   3210   Register scratch = scratch0();
   3211 
   3212   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
   3213 
   3214   int base_offset = instr->base_offset();
   3215   if (key_is_constant) {
   3216     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   3217     if (constant_key & 0xF0000000) {
   3218       Abort(kArrayIndexConstantValueTooBig);
   3219     }
   3220     base_offset += constant_key * kDoubleSize;
   3221   }
   3222   __ Daddu(scratch, elements, Operand(base_offset));
   3223 
   3224   if (!key_is_constant) {
   3225     key = ToRegister(instr->key());
   3226     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
   3227         ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
   3228         : element_size_shift;
   3229     if (shift_size > 0) {
   3230       __ dsll(at, key, shift_size);
   3231     } else if (shift_size == -32) {
   3232       __ dsra32(at, key, 0);
   3233     } else {
   3234       __ dsra(at, key, -shift_size);
   3235     }
   3236     __ Daddu(scratch, scratch, at);
   3237   }
   3238 
   3239   __ ldc1(result, MemOperand(scratch));
   3240 
   3241   if (instr->hydrogen()->RequiresHoleCheck()) {
   3242     __ lw(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
   3243     DeoptimizeIf(eq, instr, scratch, Operand(kHoleNanUpper32));
   3244   }
   3245 }
   3246 
   3247 
   3248 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
   3249   HLoadKeyed* hinstr = instr->hydrogen();
   3250   Register elements = ToRegister(instr->elements());
   3251   Register result = ToRegister(instr->result());
   3252   Register scratch = scratch0();
   3253   Register store_base = scratch;
   3254   int offset = instr->base_offset();
   3255 
   3256   if (instr->key()->IsConstantOperand()) {
   3257     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   3258     offset += ToInteger32(const_operand) * kPointerSize;
   3259     store_base = elements;
   3260   } else {
   3261     Register key = ToRegister(instr->key());
   3262     // Even though the HLoadKeyed instruction forces the input
   3263     // representation for the key to be an integer, the input gets replaced
   3264     // during bound check elimination with the index argument to the bounds
   3265     // check, which can be tagged, so that case must be handled here, too.
   3266     if (instr->hydrogen()->key()->representation().IsSmi()) {
   3267     __ SmiScale(scratch, key, kPointerSizeLog2);
   3268     __ daddu(scratch, elements, scratch);
   3269     } else {
   3270       __ dsll(scratch, key, kPointerSizeLog2);
   3271       __ daddu(scratch, elements, scratch);
   3272     }
   3273   }
   3274 
   3275   Representation representation = hinstr->representation();
   3276   if (representation.IsInteger32() && SmiValuesAre32Bits() &&
   3277       hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
   3278     DCHECK(!hinstr->RequiresHoleCheck());
   3279     if (FLAG_debug_code) {
   3280       Register temp = scratch1();
   3281       __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
   3282       __ AssertSmi(temp);
   3283     }
   3284 
   3285     // Read int value directly from upper half of the smi.
   3286     STATIC_ASSERT(kSmiTag == 0);
   3287     STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   3288     offset += kPointerSize / 2;
   3289   }
   3290 
   3291   __ Load(result, MemOperand(store_base, offset), representation);
   3292 
   3293   // Check for the hole value.
   3294   if (hinstr->RequiresHoleCheck()) {
   3295     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3296       __ SmiTst(result, scratch);
   3297       DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
   3298     } else {
   3299       __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
   3300       DeoptimizeIf(eq, instr, result, Operand(scratch));
   3301     }
   3302   }
   3303 }
   3304 
   3305 
   3306 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
   3307   if (instr->is_typed_elements()) {
   3308     DoLoadKeyedExternalArray(instr);
   3309   } else if (instr->hydrogen()->representation().IsDouble()) {
   3310     DoLoadKeyedFixedDoubleArray(instr);
   3311   } else {
   3312     DoLoadKeyedFixedArray(instr);
   3313   }
   3314 }
   3315 
   3316 
   3317 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
   3318                                          Register base,
   3319                                          bool key_is_constant,
   3320                                          int constant_key,
   3321                                          int element_size,
   3322                                          int shift_size,
   3323                                          int base_offset) {
   3324   if (key_is_constant) {
   3325     return MemOperand(base, (constant_key << element_size) + base_offset);
   3326   }
   3327 
   3328   if (base_offset == 0) {
   3329     if (shift_size >= 0) {
   3330       __ dsll(scratch0(), key, shift_size);
   3331       __ Daddu(scratch0(), base, scratch0());
   3332       return MemOperand(scratch0());
   3333     } else {
   3334       if (shift_size == -32) {
   3335         __ dsra32(scratch0(), key, 0);
   3336       } else {
   3337         __ dsra(scratch0(), key, -shift_size);
   3338       }
   3339       __ Daddu(scratch0(), base, scratch0());
   3340       return MemOperand(scratch0());
   3341     }
   3342   }
   3343 
   3344   if (shift_size >= 0) {
   3345     __ dsll(scratch0(), key, shift_size);
   3346     __ Daddu(scratch0(), base, scratch0());
   3347     return MemOperand(scratch0(), base_offset);
   3348   } else {
   3349     if (shift_size == -32) {
   3350        __ dsra32(scratch0(), key, 0);
   3351     } else {
   3352       __ dsra(scratch0(), key, -shift_size);
   3353     }
   3354     __ Daddu(scratch0(), base, scratch0());
   3355     return MemOperand(scratch0(), base_offset);
   3356   }
   3357 }
   3358 
   3359 
   3360 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3361   DCHECK(ToRegister(instr->context()).is(cp));
   3362   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3363   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   3364 
   3365   if (FLAG_vector_ics) {
   3366     EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   3367   }
   3368 
   3369   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
   3370   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3371 }
   3372 
   3373 
   3374 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   3375   Register scratch = scratch0();
   3376   Register temp = scratch1();
   3377   Register result = ToRegister(instr->result());
   3378 
   3379   if (instr->hydrogen()->from_inlined()) {
   3380     __ Dsubu(result, sp, 2 * kPointerSize);
   3381   } else {
   3382     // Check if the calling frame is an arguments adaptor frame.
   3383     Label done, adapted;
   3384     __ ld(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3385     __ ld(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
   3386     __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3387 
   3388     // Result is the frame pointer for the frame if not adapted and for the real
   3389     // frame below the adaptor frame if adapted.
   3390     __ Movn(result, fp, temp);  // Move only if temp is not equal to zero (ne).
   3391     __ Movz(result, scratch, temp);  // Move only if temp is equal to zero (eq).
   3392   }
   3393 }
   3394 
   3395 
   3396 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   3397   Register elem = ToRegister(instr->elements());
   3398   Register result = ToRegister(instr->result());
   3399 
   3400   Label done;
   3401 
   3402   // If no arguments adaptor frame the number of arguments is fixed.
   3403   __ Daddu(result, zero_reg, Operand(scope()->num_parameters()));
   3404   __ Branch(&done, eq, fp, Operand(elem));
   3405 
   3406   // Arguments adaptor frame present. Get argument length from there.
   3407   __ ld(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   3408   __ ld(result,
   3409         MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
   3410   __ SmiUntag(result);
   3411 
   3412   // Argument length is in result register.
   3413   __ bind(&done);
   3414 }
   3415 
   3416 
   3417 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   3418   Register receiver = ToRegister(instr->receiver());
   3419   Register function = ToRegister(instr->function());
   3420   Register result = ToRegister(instr->result());
   3421   Register scratch = scratch0();
   3422 
   3423   // If the receiver is null or undefined, we have to pass the global
   3424   // object as a receiver to normal functions. Values have to be
   3425   // passed unchanged to builtins and strict-mode functions.
   3426   Label global_object, result_in_receiver;
   3427 
   3428   if (!instr->hydrogen()->known_function()) {
   3429     // Do not transform the receiver to object for strict mode functions.
   3430     __ ld(scratch,
   3431            FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3432 
   3433     // Do not transform the receiver to object for builtins.
   3434     int32_t strict_mode_function_mask =
   3435         1 <<  SharedFunctionInfo::kStrictModeBitWithinByte;
   3436     int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
   3437 
   3438     __ lbu(at,
   3439            FieldMemOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset));
   3440     __ And(at, at, Operand(strict_mode_function_mask));
   3441     __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
   3442     __ lbu(at,
   3443            FieldMemOperand(scratch, SharedFunctionInfo::kNativeByteOffset));
   3444     __ And(at, at, Operand(native_mask));
   3445     __ Branch(&result_in_receiver, ne, at, Operand(zero_reg));
   3446   }
   3447 
   3448   // Normal function. Replace undefined or null with global receiver.
   3449   __ LoadRoot(scratch, Heap::kNullValueRootIndex);
   3450   __ Branch(&global_object, eq, receiver, Operand(scratch));
   3451   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   3452   __ Branch(&global_object, eq, receiver, Operand(scratch));
   3453 
   3454   // Deoptimize if the receiver is not a JS object.
   3455   __ SmiTst(receiver, scratch);
   3456   DeoptimizeIf(eq, instr, scratch, Operand(zero_reg));
   3457 
   3458   __ GetObjectType(receiver, scratch, scratch);
   3459   DeoptimizeIf(lt, instr, scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
   3460   __ Branch(&result_in_receiver);
   3461 
   3462   __ bind(&global_object);
   3463   __ ld(result, FieldMemOperand(function, JSFunction::kContextOffset));
   3464   __ ld(result,
   3465         ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
   3466   __ ld(result,
   3467         FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
   3468 
   3469   if (result.is(receiver)) {
   3470     __ bind(&result_in_receiver);
   3471   } else {
   3472     Label result_ok;
   3473     __ Branch(&result_ok);
   3474     __ bind(&result_in_receiver);
   3475     __ mov(result, receiver);
   3476     __ bind(&result_ok);
   3477   }
   3478 }
   3479 
   3480 
   3481 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   3482   Register receiver = ToRegister(instr->receiver());
   3483   Register function = ToRegister(instr->function());
   3484   Register length = ToRegister(instr->length());
   3485   Register elements = ToRegister(instr->elements());
   3486   Register scratch = scratch0();
   3487   DCHECK(receiver.is(a0));  // Used for parameter count.
   3488   DCHECK(function.is(a1));  // Required by InvokeFunction.
   3489   DCHECK(ToRegister(instr->result()).is(v0));
   3490 
   3491   // Copy the arguments to this function possibly from the
   3492   // adaptor frame below it.
   3493   const uint32_t kArgumentsLimit = 1 * KB;
   3494   DeoptimizeIf(hi, instr, length, Operand(kArgumentsLimit));
   3495 
   3496   // Push the receiver and use the register to keep the original
   3497   // number of arguments.
   3498   __ push(receiver);
   3499   __ Move(receiver, length);
   3500   // The arguments are at a one pointer size offset from elements.
   3501   __ Daddu(elements, elements, Operand(1 * kPointerSize));
   3502 
   3503   // Loop through the arguments pushing them onto the execution
   3504   // stack.
   3505   Label invoke, loop;
   3506   // length is a small non-negative integer, due to the test above.
   3507   __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
   3508   __ dsll(scratch, length, kPointerSizeLog2);
   3509   __ bind(&loop);
   3510   __ Daddu(scratch, elements, scratch);
   3511   __ ld(scratch, MemOperand(scratch));
   3512   __ push(scratch);
   3513   __ Dsubu(length, length, Operand(1));
   3514   __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
   3515   __ dsll(scratch, length, kPointerSizeLog2);
   3516 
   3517   __ bind(&invoke);
   3518   DCHECK(instr->HasPointerMap());
   3519   LPointerMap* pointers = instr->pointer_map();
   3520   SafepointGenerator safepoint_generator(
   3521       this, pointers, Safepoint::kLazyDeopt);
   3522   // The number of arguments is stored in receiver which is a0, as expected
   3523   // by InvokeFunction.
   3524   ParameterCount actual(receiver);
   3525   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
   3526 }
   3527 
   3528 
   3529 void LCodeGen::DoPushArgument(LPushArgument* instr) {
   3530   LOperand* argument = instr->value();
   3531   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
   3532     Abort(kDoPushArgumentNotImplementedForDoubleType);
   3533   } else {
   3534     Register argument_reg = EmitLoadRegister(argument, at);
   3535     __ push(argument_reg);
   3536   }
   3537 }
   3538 
   3539 
   3540 void LCodeGen::DoDrop(LDrop* instr) {
   3541   __ Drop(instr->count());
   3542 }
   3543 
   3544 
   3545 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   3546   Register result = ToRegister(instr->result());
   3547   __ ld(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   3548 }
   3549 
   3550 
   3551 void LCodeGen::DoContext(LContext* instr) {
   3552   // If there is a non-return use, the context must be moved to a register.
   3553   Register result = ToRegister(instr->result());
   3554   if (info()->IsOptimizing()) {
   3555     __ ld(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
   3556   } else {
   3557     // If there is no frame, the context must be in cp.
   3558     DCHECK(result.is(cp));
   3559   }
   3560 }
   3561 
   3562 
   3563 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   3564   DCHECK(ToRegister(instr->context()).is(cp));
   3565   __ li(scratch0(), instr->hydrogen()->pairs());
   3566   __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
   3567   // The context is the first argument.
   3568   __ Push(cp, scratch0(), scratch1());
   3569   CallRuntime(Runtime::kDeclareGlobals, 3, instr);
   3570 }
   3571 
   3572 
   3573 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   3574                                  int formal_parameter_count,
   3575                                  int arity,
   3576                                  LInstruction* instr,
   3577                                  A1State a1_state) {
   3578   bool dont_adapt_arguments =
   3579       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3580   bool can_invoke_directly =
   3581       dont_adapt_arguments || formal_parameter_count == arity;
   3582 
   3583   LPointerMap* pointers = instr->pointer_map();
   3584 
   3585   if (can_invoke_directly) {
   3586     if (a1_state == A1_UNINITIALIZED) {
   3587       __ li(a1, function);
   3588     }
   3589 
   3590     // Change context.
   3591     __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   3592 
   3593     // Set r0 to arguments count if adaption is not needed. Assumes that r0
   3594     // is available to write to at this point.
   3595     if (dont_adapt_arguments) {
   3596       __ li(a0, Operand(arity));
   3597     }
   3598 
   3599     // Invoke function.
   3600     __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   3601     __ Call(at);
   3602 
   3603     // Set up deoptimization.
   3604     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3605   } else {
   3606     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3607     ParameterCount count(arity);
   3608     ParameterCount expected(formal_parameter_count);
   3609     __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
   3610   }
   3611 }
   3612 
   3613 
   3614 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
   3615   DCHECK(instr->context() != NULL);
   3616   DCHECK(ToRegister(instr->context()).is(cp));
   3617   Register input = ToRegister(instr->value());
   3618   Register result = ToRegister(instr->result());
   3619   Register scratch = scratch0();
   3620 
   3621   // Deoptimize if not a heap number.
   3622   __ ld(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
   3623   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   3624   DeoptimizeIf(ne, instr, scratch, Operand(at));
   3625 
   3626   Label done;
   3627   Register exponent = scratch0();
   3628   scratch = no_reg;
   3629   __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
   3630   // Check the sign of the argument. If the argument is positive, just
   3631   // return it.
   3632   __ Move(result, input);
   3633   __ And(at, exponent, Operand(HeapNumber::kSignMask));
   3634   __ Branch(&done, eq, at, Operand(zero_reg));
   3635 
   3636   // Input is negative. Reverse its sign.
   3637   // Preserve the value of all registers.
   3638   {
   3639     PushSafepointRegistersScope scope(this);
   3640 
   3641     // Registers were saved at the safepoint, so we can use
   3642     // many scratch registers.
   3643     Register tmp1 = input.is(a1) ? a0 : a1;
   3644     Register tmp2 = input.is(a2) ? a0 : a2;
   3645     Register tmp3 = input.is(a3) ? a0 : a3;
   3646     Register tmp4 = input.is(a4) ? a0 : a4;
   3647 
   3648     // exponent: floating point exponent value.
   3649 
   3650     Label allocated, slow;
   3651     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
   3652     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
   3653     __ Branch(&allocated);
   3654 
   3655     // Slow case: Call the runtime system to do the number allocation.
   3656     __ bind(&slow);
   3657 
   3658     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
   3659                             instr->context());
   3660     // Set the pointer to the new heap number in tmp.
   3661     if (!tmp1.is(v0))
   3662       __ mov(tmp1, v0);
   3663     // Restore input_reg after call to runtime.
   3664     __ LoadFromSafepointRegisterSlot(input, input);
   3665     __ lwu(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
   3666 
   3667     __ bind(&allocated);
   3668     // exponent: floating point exponent value.
   3669     // tmp1: allocated heap number.
   3670     __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
   3671     __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
   3672     __ lwu(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
   3673     __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
   3674 
   3675     __ StoreToSafepointRegisterSlot(tmp1, result);
   3676   }
   3677 
   3678   __ bind(&done);
   3679 }
   3680 
   3681 
   3682 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
   3683   Register input = ToRegister(instr->value());
   3684   Register result = ToRegister(instr->result());
   3685   Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
   3686   Label done;
   3687   __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
   3688   __ mov(result, input);
   3689   __ dsubu(result, zero_reg, input);
   3690   // Overflow if result is still negative, i.e. 0x80000000.
   3691   DeoptimizeIf(lt, instr, result, Operand(zero_reg));
   3692   __ bind(&done);
   3693 }
   3694 
   3695 
   3696 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3697   // Class for deferred case.
   3698   class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode {
   3699    public:
   3700     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
   3701         : LDeferredCode(codegen), instr_(instr) { }
   3702     virtual void Generate() OVERRIDE {
   3703       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
   3704     }
   3705     virtual LInstruction* instr() OVERRIDE { return instr_; }
   3706    private:
   3707     LMathAbs* instr_;
   3708   };
   3709 
   3710   Representation r = instr->hydrogen()->value()->representation();
   3711   if (r.IsDouble()) {
   3712     FPURegister input = ToDoubleRegister(instr->value());
   3713     FPURegister result = ToDoubleRegister(instr->result());
   3714     __ abs_d(result, input);
   3715   } else if (r.IsSmiOrInteger32()) {
   3716     EmitIntegerMathAbs(instr);
   3717   } else {
   3718     // Representation is tagged.
   3719     DeferredMathAbsTaggedHeapNumber* deferred =
   3720         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
   3721     Register input = ToRegister(instr->value());
   3722     // Smi check.
   3723     __ JumpIfNotSmi(input, deferred->entry());
   3724     // If smi, handle it directly.
   3725     EmitIntegerMathAbs(instr);
   3726     __ bind(deferred->exit());
   3727   }
   3728 }
   3729 
   3730 
   3731 void LCodeGen::DoMathFloor(LMathFloor* instr) {
   3732   DoubleRegister input = ToDoubleRegister(instr->value());
   3733   Register result = ToRegister(instr->result());
   3734   Register scratch1 = scratch0();
   3735   Register except_flag = ToRegister(instr->temp());
   3736 
   3737   __ EmitFPUTruncate(kRoundToMinusInf,
   3738                      result,
   3739                      input,
   3740                      scratch1,
   3741                      double_scratch0(),
   3742                      except_flag);
   3743 
   3744   // Deopt if the operation did not succeed.
   3745   DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
   3746 
   3747   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3748     // Test for -0.
   3749     Label done;
   3750     __ Branch(&done, ne, result, Operand(zero_reg));
   3751     __ mfhc1(scratch1, input);  // Get exponent/sign bits.
   3752     __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
   3753     DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
   3754     __ bind(&done);
   3755   }
   3756 }
   3757 
   3758 
   3759 void LCodeGen::DoMathRound(LMathRound* instr) {
   3760   DoubleRegister input = ToDoubleRegister(instr->value());
   3761   Register result = ToRegister(instr->result());
   3762   DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
   3763   Register scratch = scratch0();
   3764   Label done, check_sign_on_zero;
   3765 
   3766   // Extract exponent bits.
   3767   __ mfhc1(result, input);
   3768   __ Ext(scratch,
   3769          result,
   3770          HeapNumber::kExponentShift,
   3771          HeapNumber::kExponentBits);
   3772 
   3773   // If the number is in ]-0.5, +0.5[, the result is +/- 0.
   3774   Label skip1;
   3775   __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
   3776   __ mov(result, zero_reg);
   3777   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3778     __ Branch(&check_sign_on_zero);
   3779   } else {
   3780     __ Branch(&done);
   3781   }
   3782   __ bind(&skip1);
   3783 
   3784   // The following conversion will not work with numbers
   3785   // outside of ]-2^32, 2^32[.
   3786   DeoptimizeIf(ge, instr, scratch, Operand(HeapNumber::kExponentBias + 32));
   3787 
   3788   // Save the original sign for later comparison.
   3789   __ And(scratch, result, Operand(HeapNumber::kSignMask));
   3790 
   3791   __ Move(double_scratch0(), 0.5);
   3792   __ add_d(double_scratch0(), input, double_scratch0());
   3793 
   3794   // Check sign of the result: if the sign changed, the input
   3795   // value was in ]0.5, 0[ and the result should be -0.
   3796   __ mfhc1(result, double_scratch0());
   3797   // mfhc1 sign-extends, clear the upper bits.
   3798   __ dsll32(result, result, 0);
   3799   __ dsrl32(result, result, 0);
   3800   __ Xor(result, result, Operand(scratch));
   3801   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3802     // ARM uses 'mi' here, which is 'lt'
   3803     DeoptimizeIf(lt, instr, result, Operand(zero_reg));
   3804   } else {
   3805     Label skip2;
   3806     // ARM uses 'mi' here, which is 'lt'
   3807     // Negating it results in 'ge'
   3808     __ Branch(&skip2, ge, result, Operand(zero_reg));
   3809     __ mov(result, zero_reg);
   3810     __ Branch(&done);
   3811     __ bind(&skip2);
   3812   }
   3813 
   3814   Register except_flag = scratch;
   3815   __ EmitFPUTruncate(kRoundToMinusInf,
   3816                      result,
   3817                      double_scratch0(),
   3818                      at,
   3819                      double_scratch1,
   3820                      except_flag);
   3821 
   3822   DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
   3823 
   3824   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3825     // Test for -0.
   3826     __ Branch(&done, ne, result, Operand(zero_reg));
   3827     __ bind(&check_sign_on_zero);
   3828     __ mfhc1(scratch, input);  // Get exponent/sign bits.
   3829     __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
   3830     DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
   3831   }
   3832   __ bind(&done);
   3833 }
   3834 
   3835 
   3836 void LCodeGen::DoMathFround(LMathFround* instr) {
   3837   DoubleRegister input = ToDoubleRegister(instr->value());
   3838   DoubleRegister result = ToDoubleRegister(instr->result());
   3839   __ cvt_s_d(result, input);
   3840   __ cvt_d_s(result, result);
   3841 }
   3842 
   3843 
   3844 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   3845   DoubleRegister input = ToDoubleRegister(instr->value());
   3846   DoubleRegister result = ToDoubleRegister(instr->result());
   3847   __ sqrt_d(result, input);
   3848 }
   3849 
   3850 
   3851 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   3852   DoubleRegister input = ToDoubleRegister(instr->value());
   3853   DoubleRegister result = ToDoubleRegister(instr->result());
   3854   DoubleRegister temp = ToDoubleRegister(instr->temp());
   3855 
   3856   DCHECK(!input.is(result));
   3857 
   3858   // Note that according to ECMA-262 15.8.2.13:
   3859   // Math.pow(-Infinity, 0.5) == Infinity
   3860   // Math.sqrt(-Infinity) == NaN
   3861   Label done;
   3862   __ Move(temp, -V8_INFINITY);
   3863   __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
   3864   // Set up Infinity in the delay slot.
   3865   // result is overwritten if the branch is not taken.
   3866   __ neg_d(result, temp);
   3867 
   3868   // Add +0 to convert -0 to +0.
   3869   __ add_d(result, input, kDoubleRegZero);
   3870   __ sqrt_d(result, result);
   3871   __ bind(&done);
   3872 }
   3873 
   3874 
   3875 void LCodeGen::DoPower(LPower* instr) {
   3876   Representation exponent_type = instr->hydrogen()->right()->representation();
   3877   // Having marked this as a call, we can use any registers.
   3878   // Just make sure that the input/output registers are the expected ones.
   3879   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
   3880   DCHECK(!instr->right()->IsDoubleRegister() ||
   3881          ToDoubleRegister(instr->right()).is(f4));
   3882   DCHECK(!instr->right()->IsRegister() ||
   3883          ToRegister(instr->right()).is(tagged_exponent));
   3884   DCHECK(ToDoubleRegister(instr->left()).is(f2));
   3885   DCHECK(ToDoubleRegister(instr->result()).is(f0));
   3886 
   3887   if (exponent_type.IsSmi()) {
   3888     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3889     __ CallStub(&stub);
   3890   } else if (exponent_type.IsTagged()) {
   3891     Label no_deopt;
   3892     __ JumpIfSmi(tagged_exponent, &no_deopt);
   3893     DCHECK(!a7.is(tagged_exponent));
   3894     __ lw(a7, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
   3895     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   3896     DeoptimizeIf(ne, instr, a7, Operand(at));
   3897     __ bind(&no_deopt);
   3898     MathPowStub stub(isolate(), MathPowStub::TAGGED);
   3899     __ CallStub(&stub);
   3900   } else if (exponent_type.IsInteger32()) {
   3901     MathPowStub stub(isolate(), MathPowStub::INTEGER);
   3902     __ CallStub(&stub);
   3903   } else {
   3904     DCHECK(exponent_type.IsDouble());
   3905     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
   3906     __ CallStub(&stub);
   3907   }
   3908 }
   3909 
   3910 
   3911 void LCodeGen::DoMathExp(LMathExp* instr) {
   3912   DoubleRegister input = ToDoubleRegister(instr->value());
   3913   DoubleRegister result = ToDoubleRegister(instr->result());
   3914   DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
   3915   DoubleRegister double_scratch2 = double_scratch0();
   3916   Register temp1 = ToRegister(instr->temp1());
   3917   Register temp2 = ToRegister(instr->temp2());
   3918 
   3919   MathExpGenerator::EmitMathExp(
   3920       masm(), input, result, double_scratch1, double_scratch2,
   3921       temp1, temp2, scratch0());
   3922 }
   3923 
   3924 
   3925 void LCodeGen::DoMathLog(LMathLog* instr) {
   3926   __ PrepareCallCFunction(0, 1, scratch0());
   3927   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
   3928   __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
   3929                    0, 1);
   3930   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
   3931 }
   3932 
   3933 
   3934 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   3935   Register input = ToRegister(instr->value());
   3936   Register result = ToRegister(instr->result());
   3937   __ Clz(result, input);
   3938 }
   3939 
   3940 
   3941 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   3942   DCHECK(ToRegister(instr->context()).is(cp));
   3943   DCHECK(ToRegister(instr->function()).is(a1));
   3944   DCHECK(instr->HasPointerMap());
   3945 
   3946   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
   3947   if (known_function.is_null()) {
   3948     LPointerMap* pointers = instr->pointer_map();
   3949     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3950     ParameterCount count(instr->arity());
   3951     __ InvokeFunction(a1, count, CALL_FUNCTION, generator);
   3952   } else {
   3953     CallKnownFunction(known_function,
   3954                       instr->hydrogen()->formal_parameter_count(),
   3955                       instr->arity(),
   3956                       instr,
   3957                       A1_CONTAINS_TARGET);
   3958   }
   3959 }
   3960 
   3961 
   3962 void LCodeGen::DoTailCallThroughMegamorphicCache(
   3963     LTailCallThroughMegamorphicCache* instr) {
   3964   Register receiver = ToRegister(instr->receiver());
   3965   Register name = ToRegister(instr->name());
   3966   DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
   3967   DCHECK(name.is(LoadDescriptor::NameRegister()));
   3968   DCHECK(receiver.is(a1));
   3969   DCHECK(name.is(a2));
   3970 
   3971   Register scratch = a3;
   3972   Register extra = a4;
   3973   Register extra2 = a5;
   3974   Register extra3 = a6;
   3975 
   3976   // Important for the tail-call.
   3977   bool must_teardown_frame = NeedsEagerFrame();
   3978 
   3979   // The probe will tail call to a handler if found.
   3980   isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(),
   3981                                          must_teardown_frame, receiver, name,
   3982                                          scratch, extra, extra2, extra3);
   3983 
   3984   // Tail call to miss if we ended up here.
   3985   if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL);
   3986   LoadIC::GenerateMiss(masm());
   3987 }
   3988 
   3989 
   3990 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   3991   DCHECK(ToRegister(instr->result()).is(v0));
   3992 
   3993   LPointerMap* pointers = instr->pointer_map();
   3994   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3995 
   3996   if (instr->target()->IsConstantOperand()) {
   3997     LConstantOperand* target = LConstantOperand::cast(instr->target());
   3998     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3999     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   4000     __ Call(code, RelocInfo::CODE_TARGET);
   4001   } else {
   4002     DCHECK(instr->target()->IsRegister());
   4003     Register target = ToRegister(instr->target());
   4004     generator.BeforeCall(__ CallSize(target));
   4005     __ Daddu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
   4006     __ Call(target);
   4007   }
   4008   generator.AfterCall();
   4009 }
   4010 
   4011 
   4012 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
   4013   DCHECK(ToRegister(instr->function()).is(a1));
   4014   DCHECK(ToRegister(instr->result()).is(v0));
   4015 
   4016   if (instr->hydrogen()->pass_argument_count()) {
   4017     __ li(a0, Operand(instr->arity()));
   4018   }
   4019 
   4020   // Change context.
   4021   __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   4022 
   4023   // Load the code entry address
   4024   __ ld(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   4025   __ Call(at);
   4026 
   4027   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   4028 }
   4029 
   4030 
   4031 void LCodeGen::DoCallFunction(LCallFunction* instr) {
   4032   DCHECK(ToRegister(instr->context()).is(cp));
   4033   DCHECK(ToRegister(instr->function()).is(a1));
   4034   DCHECK(ToRegister(instr->result()).is(v0));
   4035 
   4036   int arity = instr->arity();
   4037   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
   4038   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4039 }
   4040 
   4041 
   4042 void LCodeGen::DoCallNew(LCallNew* instr) {
   4043   DCHECK(ToRegister(instr->context()).is(cp));
   4044   DCHECK(ToRegister(instr->constructor()).is(a1));
   4045   DCHECK(ToRegister(instr->result()).is(v0));
   4046 
   4047   __ li(a0, Operand(instr->arity()));
   4048   // No cell in a2 for construct type feedback in optimized code
   4049   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   4050   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
   4051   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4052 }
   4053 
   4054 
   4055 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
   4056   DCHECK(ToRegister(instr->context()).is(cp));
   4057   DCHECK(ToRegister(instr->constructor()).is(a1));
   4058   DCHECK(ToRegister(instr->result()).is(v0));
   4059 
   4060   __ li(a0, Operand(instr->arity()));
   4061   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   4062   ElementsKind kind = instr->hydrogen()->elements_kind();
   4063   AllocationSiteOverrideMode override_mode =
   4064       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
   4065           ? DISABLE_ALLOCATION_SITES
   4066           : DONT_OVERRIDE;
   4067 
   4068   if (instr->arity() == 0) {
   4069     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
   4070     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4071   } else if (instr->arity() == 1) {
   4072     Label done;
   4073     if (IsFastPackedElementsKind(kind)) {
   4074       Label packed_case;
   4075       // We might need a change here,
   4076       // look at the first argument.
   4077       __ ld(a5, MemOperand(sp, 0));
   4078       __ Branch(&packed_case, eq, a5, Operand(zero_reg));
   4079 
   4080       ElementsKind holey_kind = GetHoleyElementsKind(kind);
   4081       ArraySingleArgumentConstructorStub stub(isolate(),
   4082                                               holey_kind,
   4083                                               override_mode);
   4084       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4085       __ jmp(&done);
   4086       __ bind(&packed_case);
   4087     }
   4088 
   4089     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
   4090     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4091     __ bind(&done);
   4092   } else {
   4093     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
   4094     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4095   }
   4096 }
   4097 
   4098 
   4099 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   4100   CallRuntime(instr->function(), instr->arity(), instr);
   4101 }
   4102 
   4103 
   4104 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   4105   Register function = ToRegister(instr->function());
   4106   Register code_object = ToRegister(instr->code_object());
   4107   __ Daddu(code_object, code_object,
   4108           Operand(Code::kHeaderSize - kHeapObjectTag));
   4109   __ sd(code_object,
   4110         FieldMemOperand(function, JSFunction::kCodeEntryOffset));
   4111 }
   4112 
   4113 
   4114 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   4115   Register result = ToRegister(instr->result());
   4116   Register base = ToRegister(instr->base_object());
   4117   if (instr->offset()->IsConstantOperand()) {
   4118     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
   4119     __ Daddu(result, base, Operand(ToInteger32(offset)));
   4120   } else {
   4121     Register offset = ToRegister(instr->offset());
   4122     __ Daddu(result, base, offset);
   4123   }
   4124 }
   4125 
   4126 
   4127 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   4128   Representation representation = instr->representation();
   4129 
   4130   Register object = ToRegister(instr->object());
   4131   Register scratch2 = scratch1();
   4132   Register scratch1 = scratch0();
   4133   HObjectAccess access = instr->hydrogen()->access();
   4134   int offset = access.offset();
   4135   if (access.IsExternalMemory()) {
   4136     Register value = ToRegister(instr->value());
   4137     MemOperand operand = MemOperand(object, offset);
   4138     __ Store(value, operand, representation);
   4139     return;
   4140   }
   4141 
   4142   __ AssertNotSmi(object);
   4143 
   4144   DCHECK(!representation.IsSmi() ||
   4145          !instr->value()->IsConstantOperand() ||
   4146          IsSmi(LConstantOperand::cast(instr->value())));
   4147   if (representation.IsDouble()) {
   4148     DCHECK(access.IsInobject());
   4149     DCHECK(!instr->hydrogen()->has_transition());
   4150     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4151     DoubleRegister value = ToDoubleRegister(instr->value());
   4152     __ sdc1(value, FieldMemOperand(object, offset));
   4153     return;
   4154   }
   4155 
   4156   if (instr->hydrogen()->has_transition()) {
   4157     Handle<Map> transition = instr->hydrogen()->transition_map();
   4158     AddDeprecationDependency(transition);
   4159     __ li(scratch1, Operand(transition));
   4160     __ sd(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
   4161     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   4162       Register temp = ToRegister(instr->temp());
   4163       // Update the write barrier for the map field.
   4164       __ RecordWriteForMap(object,
   4165                            scratch1,
   4166                            temp,
   4167                            GetRAState(),
   4168                            kSaveFPRegs);
   4169     }
   4170   }
   4171 
   4172   // Do the store.
   4173   Register destination = object;
   4174   if (!access.IsInobject()) {
   4175        destination = scratch1;
   4176     __ ld(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
   4177   }
   4178   Register value = ToRegister(instr->value());
   4179   if (representation.IsSmi() && SmiValuesAre32Bits() &&
   4180       instr->hydrogen()->value()->representation().IsInteger32()) {
   4181     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   4182     if (FLAG_debug_code) {
   4183       __ Load(scratch2, FieldMemOperand(destination, offset), representation);
   4184       __ AssertSmi(scratch2);
   4185     }
   4186 
   4187     // Store int value directly to upper half of the smi.
   4188     offset += kPointerSize / 2;
   4189     representation = Representation::Integer32();
   4190   }
   4191 
   4192   MemOperand operand = FieldMemOperand(destination, offset);
   4193   __ Store(value, operand, representation);
   4194   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4195     // Update the write barrier for the object for in-object properties.
   4196     __ RecordWriteField(destination,
   4197                         offset,
   4198                         value,
   4199                         scratch2,
   4200                         GetRAState(),
   4201                         kSaveFPRegs,
   4202                         EMIT_REMEMBERED_SET,
   4203                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   4204                         instr->hydrogen()->PointersToHereCheckForValue());
   4205   }
   4206 }
   4207 
   4208 
   4209 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   4210   DCHECK(ToRegister(instr->context()).is(cp));
   4211   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4212   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4213 
   4214   __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
   4215   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
   4216   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4217 }
   4218 
   4219 
   4220 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
   4221   Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
   4222   Operand operand((int64_t)0);
   4223   Register reg;
   4224   if (instr->index()->IsConstantOperand()) {
   4225     operand = ToOperand(instr->index());
   4226     reg = ToRegister(instr->length());
   4227     cc = CommuteCondition(cc);
   4228   } else {
   4229     reg = ToRegister(instr->index());
   4230     operand = ToOperand(instr->length());
   4231   }
   4232   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   4233     Label done;
   4234     __ Branch(&done, NegateCondition(cc), reg, operand);
   4235     __ stop("eliminated bounds check failed");
   4236     __ bind(&done);
   4237   } else {
   4238     DeoptimizeIf(cc, instr, reg, operand);
   4239   }
   4240 }
   4241 
   4242 
   4243 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
   4244   Register external_pointer = ToRegister(instr->elements());
   4245   Register key = no_reg;
   4246   ElementsKind elements_kind = instr->elements_kind();
   4247   bool key_is_constant = instr->key()->IsConstantOperand();
   4248   int constant_key = 0;
   4249   if (key_is_constant) {
   4250     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   4251     if (constant_key & 0xF0000000) {
   4252       Abort(kArrayIndexConstantValueTooBig);
   4253     }
   4254   } else {
   4255     key = ToRegister(instr->key());
   4256   }
   4257   int element_size_shift = ElementsKindToShiftSize(elements_kind);
   4258   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
   4259       ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
   4260       : element_size_shift;
   4261   int base_offset = instr->base_offset();
   4262 
   4263   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   4264       elements_kind == FLOAT32_ELEMENTS ||
   4265       elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   4266       elements_kind == FLOAT64_ELEMENTS) {
   4267     Register address = scratch0();
   4268     FPURegister value(ToDoubleRegister(instr->value()));
   4269     if (key_is_constant) {
   4270       if (constant_key != 0) {
   4271         __ Daddu(address, external_pointer,
   4272                 Operand(constant_key << element_size_shift));
   4273       } else {
   4274         address = external_pointer;
   4275       }
   4276     } else {
   4277       if (shift_size < 0) {
   4278         if (shift_size == -32) {
   4279           __ dsra32(address, key, 0);
   4280         } else {
   4281           __ dsra(address, key, -shift_size);
   4282         }
   4283       } else {
   4284         __ dsll(address, key, shift_size);
   4285       }
   4286       __ Daddu(address, external_pointer, address);
   4287     }
   4288 
   4289     if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   4290         elements_kind == FLOAT32_ELEMENTS) {
   4291       __ cvt_s_d(double_scratch0(), value);
   4292       __ swc1(double_scratch0(), MemOperand(address, base_offset));
   4293     } else {  // Storing doubles, not floats.
   4294       __ sdc1(value, MemOperand(address, base_offset));
   4295     }
   4296   } else {
   4297     Register value(ToRegister(instr->value()));
   4298     MemOperand mem_operand = PrepareKeyedOperand(
   4299         key, external_pointer, key_is_constant, constant_key,
   4300         element_size_shift, shift_size,
   4301         base_offset);
   4302     switch (elements_kind) {
   4303       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   4304       case EXTERNAL_INT8_ELEMENTS:
   4305       case EXTERNAL_UINT8_ELEMENTS:
   4306       case UINT8_ELEMENTS:
   4307       case UINT8_CLAMPED_ELEMENTS:
   4308       case INT8_ELEMENTS:
   4309         __ sb(value, mem_operand);
   4310         break;
   4311       case EXTERNAL_INT16_ELEMENTS:
   4312       case EXTERNAL_UINT16_ELEMENTS:
   4313       case INT16_ELEMENTS:
   4314       case UINT16_ELEMENTS:
   4315         __ sh(value, mem_operand);
   4316         break;
   4317       case EXTERNAL_INT32_ELEMENTS:
   4318       case EXTERNAL_UINT32_ELEMENTS:
   4319       case INT32_ELEMENTS:
   4320       case UINT32_ELEMENTS:
   4321         __ sw(value, mem_operand);
   4322         break;
   4323       case FLOAT32_ELEMENTS:
   4324       case FLOAT64_ELEMENTS:
   4325       case EXTERNAL_FLOAT32_ELEMENTS:
   4326       case EXTERNAL_FLOAT64_ELEMENTS:
   4327       case FAST_DOUBLE_ELEMENTS:
   4328       case FAST_ELEMENTS:
   4329       case FAST_SMI_ELEMENTS:
   4330       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4331       case FAST_HOLEY_ELEMENTS:
   4332       case FAST_HOLEY_SMI_ELEMENTS:
   4333       case DICTIONARY_ELEMENTS:
   4334       case SLOPPY_ARGUMENTS_ELEMENTS:
   4335         UNREACHABLE();
   4336         break;
   4337     }
   4338   }
   4339 }
   4340 
   4341 
   4342 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
   4343   DoubleRegister value = ToDoubleRegister(instr->value());
   4344   Register elements = ToRegister(instr->elements());
   4345   Register scratch = scratch0();
   4346   DoubleRegister double_scratch = double_scratch0();
   4347   bool key_is_constant = instr->key()->IsConstantOperand();
   4348   int base_offset = instr->base_offset();
   4349   Label not_nan, done;
   4350 
   4351   // Calculate the effective address of the slot in the array to store the
   4352   // double value.
   4353   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
   4354   if (key_is_constant) {
   4355     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
   4356     if (constant_key & 0xF0000000) {
   4357       Abort(kArrayIndexConstantValueTooBig);
   4358     }
   4359     __ Daddu(scratch, elements,
   4360              Operand((constant_key << element_size_shift) + base_offset));
   4361   } else {
   4362     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
   4363         ? (element_size_shift - (kSmiTagSize + kSmiShiftSize))
   4364         : element_size_shift;
   4365     __ Daddu(scratch, elements, Operand(base_offset));
   4366     DCHECK((shift_size == 3) || (shift_size == -29));
   4367     if (shift_size == 3) {
   4368       __ dsll(at, ToRegister(instr->key()), 3);
   4369     } else if (shift_size == -29) {
   4370       __ dsra(at, ToRegister(instr->key()), 29);
   4371     }
   4372     __ Daddu(scratch, scratch, at);
   4373   }
   4374 
   4375   if (instr->NeedsCanonicalization()) {
   4376     Label is_nan;
   4377     // Check for NaN. All NaNs must be canonicalized.
   4378     __ BranchF(NULL, &is_nan, eq, value, value);
   4379     __ Branch(&not_nan);
   4380 
   4381     // Only load canonical NaN if the comparison above set the overflow.
   4382     __ bind(&is_nan);
   4383     __ LoadRoot(at, Heap::kNanValueRootIndex);
   4384     __ ldc1(double_scratch, FieldMemOperand(at, HeapNumber::kValueOffset));
   4385     __ sdc1(double_scratch, MemOperand(scratch, 0));
   4386     __ Branch(&done);
   4387   }
   4388 
   4389   __ bind(&not_nan);
   4390   __ sdc1(value, MemOperand(scratch, 0));
   4391   __ bind(&done);
   4392 }
   4393 
   4394 
   4395 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
   4396   Register value = ToRegister(instr->value());
   4397   Register elements = ToRegister(instr->elements());
   4398   Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
   4399       : no_reg;
   4400   Register scratch = scratch0();
   4401   Register store_base = scratch;
   4402   int offset = instr->base_offset();
   4403 
   4404   // Do the store.
   4405   if (instr->key()->IsConstantOperand()) {
   4406     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4407     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
   4408     offset += ToInteger32(const_operand) * kPointerSize;
   4409     store_base = elements;
   4410   } else {
   4411     // Even though the HLoadKeyed instruction forces the input
   4412     // representation for the key to be an integer, the input gets replaced
   4413     // during bound check elimination with the index argument to the bounds
   4414     // check, which can be tagged, so that case must be handled here, too.
   4415     if (instr->hydrogen()->key()->representation().IsSmi()) {
   4416       __ SmiScale(scratch, key, kPointerSizeLog2);
   4417       __ daddu(store_base, elements, scratch);
   4418     } else {
   4419       __ dsll(scratch, key, kPointerSizeLog2);
   4420       __ daddu(store_base, elements, scratch);
   4421     }
   4422   }
   4423 
   4424   Representation representation = instr->hydrogen()->value()->representation();
   4425   if (representation.IsInteger32() && SmiValuesAre32Bits()) {
   4426     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
   4427     DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
   4428     if (FLAG_debug_code) {
   4429       Register temp = scratch1();
   4430       __ Load(temp, MemOperand(store_base, offset), Representation::Smi());
   4431       __ AssertSmi(temp);
   4432     }
   4433 
   4434     // Store int value directly to upper half of the smi.
   4435     STATIC_ASSERT(kSmiTag == 0);
   4436     STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
   4437     offset += kPointerSize / 2;
   4438     representation = Representation::Integer32();
   4439   }
   4440 
   4441   __ Store(value, MemOperand(store_base, offset), representation);
   4442 
   4443   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4444     SmiCheck check_needed =
   4445         instr->hydrogen()->value()->type().IsHeapObject()
   4446             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4447     // Compute address of modified element and store it into key register.
   4448     __ Daddu(key, store_base, Operand(offset));
   4449     __ RecordWrite(elements,
   4450                    key,
   4451                    value,
   4452                    GetRAState(),
   4453                    kSaveFPRegs,
   4454                    EMIT_REMEMBERED_SET,
   4455                    check_needed,
   4456                    instr->hydrogen()->PointersToHereCheckForValue());
   4457   }
   4458 }
   4459 
   4460 
   4461 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
   4462   // By cases: external, fast double
   4463   if (instr->is_typed_elements()) {
   4464     DoStoreKeyedExternalArray(instr);
   4465   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
   4466     DoStoreKeyedFixedDoubleArray(instr);
   4467   } else {
   4468     DoStoreKeyedFixedArray(instr);
   4469   }
   4470 }
   4471 
   4472 
   4473 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4474   DCHECK(ToRegister(instr->context()).is(cp));
   4475   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4476   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   4477   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4478 
   4479   Handle<Code> ic =
   4480       CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
   4481   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4482 }
   4483 
   4484 
   4485 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   4486   Register object_reg = ToRegister(instr->object());
   4487   Register scratch = scratch0();
   4488 
   4489   Handle<Map> from_map = instr->original_map();
   4490   Handle<Map> to_map = instr->transitioned_map();
   4491   ElementsKind from_kind = instr->from_kind();
   4492   ElementsKind to_kind = instr->to_kind();
   4493 
   4494   Label not_applicable;
   4495   __ ld(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
   4496   __ Branch(&not_applicable, ne, scratch, Operand(from_map));
   4497 
   4498   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
   4499     Register new_map_reg = ToRegister(instr->new_map_temp());
   4500     __ li(new_map_reg, Operand(to_map));
   4501     __ sd(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
   4502     // Write barrier.
   4503     __ RecordWriteForMap(object_reg,
   4504                          new_map_reg,
   4505                          scratch,
   4506                          GetRAState(),
   4507                          kDontSaveFPRegs);
   4508   } else {
   4509     DCHECK(object_reg.is(a0));
   4510     DCHECK(ToRegister(instr->context()).is(cp));
   4511     PushSafepointRegistersScope scope(this);
   4512     __ li(a1, Operand(to_map));
   4513     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
   4514     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
   4515     __ CallStub(&stub);
   4516     RecordSafepointWithRegisters(
   4517         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   4518   }
   4519   __ bind(&not_applicable);
   4520 }
   4521 
   4522 
   4523 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   4524   Register object = ToRegister(instr->object());
   4525   Register temp = ToRegister(instr->temp());
   4526   Label no_memento_found;
   4527   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
   4528                                      ne, &no_memento_found);
   4529   DeoptimizeIf(al, instr);
   4530   __ bind(&no_memento_found);
   4531 }
   4532 
   4533 
   4534 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   4535   DCHECK(ToRegister(instr->context()).is(cp));
   4536   DCHECK(ToRegister(instr->left()).is(a1));
   4537   DCHECK(ToRegister(instr->right()).is(a0));
   4538   StringAddStub stub(isolate(),
   4539                      instr->hydrogen()->flags(),
   4540                      instr->hydrogen()->pretenure_flag());
   4541   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4542 }
   4543 
   4544 
   4545 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   4546   class DeferredStringCharCodeAt FINAL : public LDeferredCode {
   4547    public:
   4548     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
   4549         : LDeferredCode(codegen), instr_(instr) { }
   4550     virtual void Generate() OVERRIDE {
   4551       codegen()->DoDeferredStringCharCodeAt(instr_);
   4552     }
   4553     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4554    private:
   4555     LStringCharCodeAt* instr_;
   4556   };
   4557 
   4558   DeferredStringCharCodeAt* deferred =
   4559       new(zone()) DeferredStringCharCodeAt(this, instr);
   4560   StringCharLoadGenerator::Generate(masm(),
   4561                                     ToRegister(instr->string()),
   4562                                     ToRegister(instr->index()),
   4563                                     ToRegister(instr->result()),
   4564                                     deferred->entry());
   4565   __ bind(deferred->exit());
   4566 }
   4567 
   4568 
   4569 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   4570   Register string = ToRegister(instr->string());
   4571   Register result = ToRegister(instr->result());
   4572   Register scratch = scratch0();
   4573 
   4574   // TODO(3095996): Get rid of this. For now, we need to make the
   4575   // result register contain a valid pointer because it is already
   4576   // contained in the register pointer map.
   4577   __ mov(result, zero_reg);
   4578 
   4579   PushSafepointRegistersScope scope(this);
   4580   __ push(string);
   4581   // Push the index as a smi. This is safe because of the checks in
   4582   // DoStringCharCodeAt above.
   4583   if (instr->index()->IsConstantOperand()) {
   4584     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   4585     __ Daddu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
   4586     __ push(scratch);
   4587   } else {
   4588     Register index = ToRegister(instr->index());
   4589     __ SmiTag(index);
   4590     __ push(index);
   4591   }
   4592   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
   4593                           instr->context());
   4594   __ AssertSmi(v0);
   4595   __ SmiUntag(v0);
   4596   __ StoreToSafepointRegisterSlot(v0, result);
   4597 }
   4598 
   4599 
   4600 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   4601   class DeferredStringCharFromCode FINAL : public LDeferredCode {
   4602    public:
   4603     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
   4604         : LDeferredCode(codegen), instr_(instr) { }
   4605     virtual void Generate() OVERRIDE {
   4606       codegen()->DoDeferredStringCharFromCode(instr_);
   4607     }
   4608     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4609    private:
   4610     LStringCharFromCode* instr_;
   4611   };
   4612 
   4613   DeferredStringCharFromCode* deferred =
   4614       new(zone()) DeferredStringCharFromCode(this, instr);
   4615 
   4616   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   4617   Register char_code = ToRegister(instr->char_code());
   4618   Register result = ToRegister(instr->result());
   4619   Register scratch = scratch0();
   4620   DCHECK(!char_code.is(result));
   4621 
   4622   __ Branch(deferred->entry(), hi,
   4623             char_code, Operand(String::kMaxOneByteCharCode));
   4624   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
   4625   __ dsll(scratch, char_code, kPointerSizeLog2);
   4626   __ Daddu(result, result, scratch);
   4627   __ ld(result, FieldMemOperand(result, FixedArray::kHeaderSize));
   4628   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   4629   __ Branch(deferred->entry(), eq, result, Operand(scratch));
   4630   __ bind(deferred->exit());
   4631 }
   4632 
   4633 
   4634 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   4635   Register char_code = ToRegister(instr->char_code());
   4636   Register result = ToRegister(instr->result());
   4637 
   4638   // TODO(3095996): Get rid of this. For now, we need to make the
   4639   // result register contain a valid pointer because it is already
   4640   // contained in the register pointer map.
   4641   __ mov(result, zero_reg);
   4642 
   4643   PushSafepointRegistersScope scope(this);
   4644   __ SmiTag(char_code);
   4645   __ push(char_code);
   4646   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
   4647   __ StoreToSafepointRegisterSlot(v0, result);
   4648 }
   4649 
   4650 
   4651 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   4652   LOperand* input = instr->value();
   4653   DCHECK(input->IsRegister() || input->IsStackSlot());
   4654   LOperand* output = instr->result();
   4655   DCHECK(output->IsDoubleRegister());
   4656   FPURegister single_scratch = double_scratch0().low();
   4657   if (input->IsStackSlot()) {
   4658     Register scratch = scratch0();
   4659     __ ld(scratch, ToMemOperand(input));
   4660     __ mtc1(scratch, single_scratch);
   4661   } else {
   4662     __ mtc1(ToRegister(input), single_scratch);
   4663   }
   4664   __ cvt_d_w(ToDoubleRegister(output), single_scratch);
   4665 }
   4666 
   4667 
   4668 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   4669   LOperand* input = instr->value();
   4670   LOperand* output = instr->result();
   4671 
   4672   FPURegister dbl_scratch = double_scratch0();
   4673   __ mtc1(ToRegister(input), dbl_scratch);
   4674   __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22);  // TODO(plind): f22?
   4675 }
   4676 
   4677 
   4678 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4679   class DeferredNumberTagU FINAL : public LDeferredCode {
   4680    public:
   4681     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
   4682         : LDeferredCode(codegen), instr_(instr) { }
   4683     virtual void Generate() OVERRIDE {
   4684       codegen()->DoDeferredNumberTagIU(instr_,
   4685                                        instr_->value(),
   4686                                        instr_->temp1(),
   4687                                        instr_->temp2(),
   4688                                        UNSIGNED_INT32);
   4689     }
   4690     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4691    private:
   4692     LNumberTagU* instr_;
   4693   };
   4694 
   4695   Register input = ToRegister(instr->value());
   4696   Register result = ToRegister(instr->result());
   4697 
   4698   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
   4699   __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
   4700   __ SmiTag(result, input);
   4701   __ bind(deferred->exit());
   4702 }
   4703 
   4704 
   4705 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
   4706                                      LOperand* value,
   4707                                      LOperand* temp1,
   4708                                      LOperand* temp2,
   4709                                      IntegerSignedness signedness) {
   4710   Label done, slow;
   4711   Register src = ToRegister(value);
   4712   Register dst = ToRegister(instr->result());
   4713   Register tmp1 = scratch0();
   4714   Register tmp2 = ToRegister(temp1);
   4715   Register tmp3 = ToRegister(temp2);
   4716   DoubleRegister dbl_scratch = double_scratch0();
   4717 
   4718   if (signedness == SIGNED_INT32) {
   4719     // There was overflow, so bits 30 and 31 of the original integer
   4720     // disagree. Try to allocate a heap number in new space and store
   4721     // the value in there. If that fails, call the runtime system.
   4722     if (dst.is(src)) {
   4723       __ SmiUntag(src, dst);
   4724       __ Xor(src, src, Operand(0x80000000));
   4725     }
   4726     __ mtc1(src, dbl_scratch);
   4727     __ cvt_d_w(dbl_scratch, dbl_scratch);
   4728   } else {
   4729     __ mtc1(src, dbl_scratch);
   4730     __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22);
   4731   }
   4732 
   4733   if (FLAG_inline_new) {
   4734     __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
   4735     __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, TAG_RESULT);
   4736     __ Branch(&done);
   4737   }
   4738 
   4739   // Slow case: Call the runtime system to do the number allocation.
   4740   __ bind(&slow);
   4741   {
   4742     // TODO(3095996): Put a valid pointer value in the stack slot where the
   4743     // result register is stored, as this register is in the pointer map, but
   4744     // contains an integer value.
   4745     __ mov(dst, zero_reg);
   4746     // Preserve the value of all registers.
   4747     PushSafepointRegistersScope scope(this);
   4748 
   4749     // NumberTagI and NumberTagD use the context from the frame, rather than
   4750     // the environment's HContext or HInlinedContext value.
   4751     // They only call Runtime::kAllocateHeapNumber.
   4752     // The corresponding HChange instructions are added in a phase that does
   4753     // not have easy access to the local context.
   4754     __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4755     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4756     RecordSafepointWithRegisters(
   4757         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4758     __ StoreToSafepointRegisterSlot(v0, dst);
   4759   }
   4760 
   4761   // Done. Put the value in dbl_scratch into the value of the allocated heap
   4762   // number.
   4763   __ bind(&done);
   4764   __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
   4765 }
   4766 
   4767 
   4768 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   4769   class DeferredNumberTagD FINAL : public LDeferredCode {
   4770    public:
   4771     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
   4772         : LDeferredCode(codegen), instr_(instr) { }
   4773     virtual void Generate() OVERRIDE {
   4774       codegen()->DoDeferredNumberTagD(instr_);
   4775     }
   4776     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4777    private:
   4778     LNumberTagD* instr_;
   4779   };
   4780 
   4781   DoubleRegister input_reg = ToDoubleRegister(instr->value());
   4782   Register scratch = scratch0();
   4783   Register reg = ToRegister(instr->result());
   4784   Register temp1 = ToRegister(instr->temp());
   4785   Register temp2 = ToRegister(instr->temp2());
   4786 
   4787   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
   4788   if (FLAG_inline_new) {
   4789     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
   4790     // We want the untagged address first for performance
   4791     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
   4792                           DONT_TAG_RESULT);
   4793   } else {
   4794     __ Branch(deferred->entry());
   4795   }
   4796   __ bind(deferred->exit());
   4797   __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
   4798   // Now that we have finished with the object's real address tag it
   4799   __ Daddu(reg, reg, kHeapObjectTag);
   4800 }
   4801 
   4802 
   4803 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   4804   // TODO(3095996): Get rid of this. For now, we need to make the
   4805   // result register contain a valid pointer because it is already
   4806   // contained in the register pointer map.
   4807   Register reg = ToRegister(instr->result());
   4808   __ mov(reg, zero_reg);
   4809 
   4810   PushSafepointRegistersScope scope(this);
   4811   // NumberTagI and NumberTagD use the context from the frame, rather than
   4812   // the environment's HContext or HInlinedContext value.
   4813   // They only call Runtime::kAllocateHeapNumber.
   4814   // The corresponding HChange instructions are added in a phase that does
   4815   // not have easy access to the local context.
   4816   __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   4817   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4818   RecordSafepointWithRegisters(
   4819       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4820   __ Dsubu(v0, v0, kHeapObjectTag);
   4821   __ StoreToSafepointRegisterSlot(v0, reg);
   4822 }
   4823 
   4824 
   4825 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   4826   HChange* hchange = instr->hydrogen();
   4827   Register input = ToRegister(instr->value());
   4828   Register output = ToRegister(instr->result());
   4829   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4830       hchange->value()->CheckFlag(HValue::kUint32)) {
   4831     __ And(at, input, Operand(0x80000000));
   4832     DeoptimizeIf(ne, instr, at, Operand(zero_reg));
   4833   }
   4834   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   4835       !hchange->value()->CheckFlag(HValue::kUint32)) {
   4836     __ SmiTagCheckOverflow(output, input, at);
   4837     DeoptimizeIf(lt, instr, at, Operand(zero_reg));
   4838   } else {
   4839     __ SmiTag(output, input);
   4840   }
   4841 }
   4842 
   4843 
   4844 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   4845   Register scratch = scratch0();
   4846   Register input = ToRegister(instr->value());
   4847   Register result = ToRegister(instr->result());
   4848   if (instr->needs_check()) {
   4849     STATIC_ASSERT(kHeapObjectTag == 1);
   4850     // If the input is a HeapObject, value of scratch won't be zero.
   4851     __ And(scratch, input, Operand(kHeapObjectTag));
   4852     __ SmiUntag(result, input);
   4853     DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
   4854   } else {
   4855     __ SmiUntag(result, input);
   4856   }
   4857 }
   4858 
   4859 
   4860 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
   4861                                 DoubleRegister result_reg,
   4862                                 NumberUntagDMode mode) {
   4863   bool can_convert_undefined_to_nan =
   4864       instr->hydrogen()->can_convert_undefined_to_nan();
   4865   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
   4866 
   4867   Register scratch = scratch0();
   4868   Label convert, load_smi, done;
   4869   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   4870     // Smi check.
   4871     __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
   4872     // Heap number map check.
   4873     __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
   4874     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   4875     if (can_convert_undefined_to_nan) {
   4876       __ Branch(&convert, ne, scratch, Operand(at));
   4877     } else {
   4878       DeoptimizeIf(ne, instr, scratch, Operand(at));
   4879     }
   4880     // Load heap number.
   4881     __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
   4882     if (deoptimize_on_minus_zero) {
   4883       __ mfc1(at, result_reg);
   4884       __ Branch(&done, ne, at, Operand(zero_reg));
   4885       __ mfhc1(scratch, result_reg);  // Get exponent/sign bits.
   4886       DeoptimizeIf(eq, instr, scratch, Operand(HeapNumber::kSignMask));
   4887     }
   4888     __ Branch(&done);
   4889     if (can_convert_undefined_to_nan) {
   4890       __ bind(&convert);
   4891       // Convert undefined (and hole) to NaN.
   4892       __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4893       DeoptimizeIf(ne, instr, input_reg, Operand(at));
   4894       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
   4895       __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
   4896       __ Branch(&done);
   4897     }
   4898   } else {
   4899     __ SmiUntag(scratch, input_reg);
   4900     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   4901   }
   4902   // Smi to double register conversion
   4903   __ bind(&load_smi);
   4904   // scratch: untagged value of input_reg
   4905   __ mtc1(scratch, result_reg);
   4906   __ cvt_d_w(result_reg, result_reg);
   4907   __ bind(&done);
   4908 }
   4909 
   4910 
   4911 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
   4912   Register input_reg = ToRegister(instr->value());
   4913   Register scratch1 = scratch0();
   4914   Register scratch2 = ToRegister(instr->temp());
   4915   DoubleRegister double_scratch = double_scratch0();
   4916   DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
   4917 
   4918   DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
   4919   DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
   4920 
   4921   Label done;
   4922 
   4923   // The input is a tagged HeapObject.
   4924   // Heap number map check.
   4925   __ ld(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
   4926   __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   4927   // This 'at' value and scratch1 map value are used for tests in both clauses
   4928   // of the if.
   4929 
   4930   if (instr->truncating()) {
   4931     // Performs a truncating conversion of a floating point number as used by
   4932     // the JS bitwise operations.
   4933     Label no_heap_number, check_bools, check_false;
   4934     // Check HeapNumber map.
   4935     __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
   4936     __ mov(scratch2, input_reg);  // In delay slot.
   4937     __ TruncateHeapNumberToI(input_reg, scratch2);
   4938     __ Branch(&done);
   4939 
   4940     // Check for Oddballs. Undefined/False is converted to zero and True to one
   4941     // for truncating conversions.
   4942     __ bind(&no_heap_number);
   4943     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4944     __ Branch(&check_bools, ne, input_reg, Operand(at));
   4945     DCHECK(ToRegister(instr->result()).is(input_reg));
   4946     __ Branch(USE_DELAY_SLOT, &done);
   4947     __ mov(input_reg, zero_reg);  // In delay slot.
   4948 
   4949     __ bind(&check_bools);
   4950     __ LoadRoot(at, Heap::kTrueValueRootIndex);
   4951     __ Branch(&check_false, ne, scratch2, Operand(at));
   4952     __ Branch(USE_DELAY_SLOT, &done);
   4953     __ li(input_reg, Operand(1));  // In delay slot.
   4954 
   4955     __ bind(&check_false);
   4956     __ LoadRoot(at, Heap::kFalseValueRootIndex);
   4957     DeoptimizeIf(ne, instr, scratch2, Operand(at), "cannot truncate");
   4958     __ Branch(USE_DELAY_SLOT, &done);
   4959     __ mov(input_reg, zero_reg);  // In delay slot.
   4960   } else {
   4961     DeoptimizeIf(ne, instr, scratch1, Operand(at), "not a heap number");
   4962 
   4963     // Load the double value.
   4964     __ ldc1(double_scratch,
   4965             FieldMemOperand(input_reg, HeapNumber::kValueOffset));
   4966 
   4967     Register except_flag = scratch2;
   4968     __ EmitFPUTruncate(kRoundToZero,
   4969                        input_reg,
   4970                        double_scratch,
   4971                        scratch1,
   4972                        double_scratch2,
   4973                        except_flag,
   4974                        kCheckForInexactConversion);
   4975 
   4976     DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg),
   4977                  "lost precision or NaN");
   4978 
   4979     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   4980       __ Branch(&done, ne, input_reg, Operand(zero_reg));
   4981 
   4982       __ mfhc1(scratch1, double_scratch);  // Get exponent/sign bits.
   4983       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
   4984       DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg), "minus zero");
   4985     }
   4986   }
   4987   __ bind(&done);
   4988 }
   4989 
   4990 
   4991 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   4992   class DeferredTaggedToI FINAL : public LDeferredCode {
   4993    public:
   4994     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
   4995         : LDeferredCode(codegen), instr_(instr) { }
   4996     virtual void Generate() OVERRIDE {
   4997       codegen()->DoDeferredTaggedToI(instr_);
   4998     }
   4999     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5000    private:
   5001     LTaggedToI* instr_;
   5002   };
   5003 
   5004   LOperand* input = instr->value();
   5005   DCHECK(input->IsRegister());
   5006   DCHECK(input->Equals(instr->result()));
   5007 
   5008   Register input_reg = ToRegister(input);
   5009 
   5010   if (instr->hydrogen()->value()->representation().IsSmi()) {
   5011     __ SmiUntag(input_reg);
   5012   } else {
   5013     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
   5014 
   5015     // Let the deferred code handle the HeapObject case.
   5016     __ JumpIfNotSmi(input_reg, deferred->entry());
   5017 
   5018     // Smi to int32 conversion.
   5019     __ SmiUntag(input_reg);
   5020     __ bind(deferred->exit());
   5021   }
   5022 }
   5023 
   5024 
   5025 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   5026   LOperand* input = instr->value();
   5027   DCHECK(input->IsRegister());
   5028   LOperand* result = instr->result();
   5029   DCHECK(result->IsDoubleRegister());
   5030 
   5031   Register input_reg = ToRegister(input);
   5032   DoubleRegister result_reg = ToDoubleRegister(result);
   5033 
   5034   HValue* value = instr->hydrogen()->value();
   5035   NumberUntagDMode mode = value->representation().IsSmi()
   5036       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   5037 
   5038   EmitNumberUntagD(instr, input_reg, result_reg, mode);
   5039 }
   5040 
   5041 
   5042 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
   5043   Register result_reg = ToRegister(instr->result());
   5044   Register scratch1 = scratch0();
   5045   DoubleRegister double_input = ToDoubleRegister(instr->value());
   5046 
   5047   if (instr->truncating()) {
   5048     __ TruncateDoubleToI(result_reg, double_input);
   5049   } else {
   5050     Register except_flag = LCodeGen::scratch1();
   5051 
   5052     __ EmitFPUTruncate(kRoundToMinusInf,
   5053                        result_reg,
   5054                        double_input,
   5055                        scratch1,
   5056                        double_scratch0(),
   5057                        except_flag,
   5058                        kCheckForInexactConversion);
   5059 
   5060     // Deopt if the operation did not succeed (except_flag != 0).
   5061     DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
   5062 
   5063     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   5064       Label done;
   5065       __ Branch(&done, ne, result_reg, Operand(zero_reg));
   5066       __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
   5067       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
   5068       DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
   5069       __ bind(&done);
   5070     }
   5071   }
   5072 }
   5073 
   5074 
   5075 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
   5076   Register result_reg = ToRegister(instr->result());
   5077   Register scratch1 = LCodeGen::scratch0();
   5078   DoubleRegister double_input = ToDoubleRegister(instr->value());
   5079 
   5080   if (instr->truncating()) {
   5081     __ TruncateDoubleToI(result_reg, double_input);
   5082   } else {
   5083     Register except_flag = LCodeGen::scratch1();
   5084 
   5085     __ EmitFPUTruncate(kRoundToMinusInf,
   5086                        result_reg,
   5087                        double_input,
   5088                        scratch1,
   5089                        double_scratch0(),
   5090                        except_flag,
   5091                        kCheckForInexactConversion);
   5092 
   5093     // Deopt if the operation did not succeed (except_flag != 0).
   5094     DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
   5095 
   5096     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   5097       Label done;
   5098       __ Branch(&done, ne, result_reg, Operand(zero_reg));
   5099       __ mfhc1(scratch1, double_input);  // Get exponent/sign bits.
   5100       __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
   5101       DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
   5102       __ bind(&done);
   5103     }
   5104   }
   5105   __ SmiTag(result_reg, result_reg);
   5106 }
   5107 
   5108 
   5109 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   5110   LOperand* input = instr->value();
   5111   __ SmiTst(ToRegister(input), at);
   5112   DeoptimizeIf(ne, instr, at, Operand(zero_reg));
   5113 }
   5114 
   5115 
   5116 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   5117   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   5118     LOperand* input = instr->value();
   5119     __ SmiTst(ToRegister(input), at);
   5120     DeoptimizeIf(eq, instr, at, Operand(zero_reg));
   5121   }
   5122 }
   5123 
   5124 
   5125 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   5126   Register input = ToRegister(instr->value());
   5127   Register scratch = scratch0();
   5128 
   5129   __ GetObjectType(input, scratch, scratch);
   5130 
   5131   if (instr->hydrogen()->is_interval_check()) {
   5132     InstanceType first;
   5133     InstanceType last;
   5134     instr->hydrogen()->GetCheckInterval(&first, &last);
   5135 
   5136     // If there is only one type in the interval check for equality.
   5137     if (first == last) {
   5138       DeoptimizeIf(ne, instr, scratch, Operand(first));
   5139     } else {
   5140       DeoptimizeIf(lo, instr, scratch, Operand(first));
   5141       // Omit check for the last type.
   5142       if (last != LAST_TYPE) {
   5143         DeoptimizeIf(hi, instr, scratch, Operand(last));
   5144       }
   5145     }
   5146   } else {
   5147     uint8_t mask;
   5148     uint8_t tag;
   5149     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   5150 
   5151     if (base::bits::IsPowerOfTwo32(mask)) {
   5152       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
   5153       __ And(at, scratch, mask);
   5154       DeoptimizeIf(tag == 0 ? ne : eq, instr, at, Operand(zero_reg));
   5155     } else {
   5156       __ And(scratch, scratch, Operand(mask));
   5157       DeoptimizeIf(ne, instr, scratch, Operand(tag));
   5158     }
   5159   }
   5160 }
   5161 
   5162 
   5163 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   5164   Register reg = ToRegister(instr->value());
   5165   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   5166   AllowDeferredHandleDereference smi_check;
   5167   if (isolate()->heap()->InNewSpace(*object)) {
   5168     Register reg = ToRegister(instr->value());
   5169     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   5170     __ li(at, Operand(Handle<Object>(cell)));
   5171     __ ld(at, FieldMemOperand(at, Cell::kValueOffset));
   5172     DeoptimizeIf(ne, instr, reg, Operand(at));
   5173   } else {
   5174     DeoptimizeIf(ne, instr, reg, Operand(object));
   5175   }
   5176 }
   5177 
   5178 
   5179 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   5180   {
   5181     PushSafepointRegistersScope scope(this);
   5182     __ push(object);
   5183     __ mov(cp, zero_reg);
   5184     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   5185     RecordSafepointWithRegisters(
   5186         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   5187     __ StoreToSafepointRegisterSlot(v0, scratch0());
   5188   }
   5189   __ SmiTst(scratch0(), at);
   5190   DeoptimizeIf(eq, instr, at, Operand(zero_reg));
   5191 }
   5192 
   5193 
   5194 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   5195   class DeferredCheckMaps FINAL : public LDeferredCode {
   5196    public:
   5197     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
   5198         : LDeferredCode(codegen), instr_(instr), object_(object) {
   5199       SetExit(check_maps());
   5200     }
   5201     virtual void Generate() OVERRIDE {
   5202       codegen()->DoDeferredInstanceMigration(instr_, object_);
   5203     }
   5204     Label* check_maps() { return &check_maps_; }
   5205     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5206    private:
   5207     LCheckMaps* instr_;
   5208     Label check_maps_;
   5209     Register object_;
   5210   };
   5211 
   5212   if (instr->hydrogen()->IsStabilityCheck()) {
   5213     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5214     for (int i = 0; i < maps->size(); ++i) {
   5215       AddStabilityDependency(maps->at(i).handle());
   5216     }
   5217     return;
   5218   }
   5219 
   5220   Register map_reg = scratch0();
   5221   LOperand* input = instr->value();
   5222   DCHECK(input->IsRegister());
   5223   Register reg = ToRegister(input);
   5224   __ ld(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
   5225 
   5226   DeferredCheckMaps* deferred = NULL;
   5227   if (instr->hydrogen()->HasMigrationTarget()) {
   5228     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
   5229     __ bind(deferred->check_maps());
   5230   }
   5231 
   5232   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5233   Label success;
   5234   for (int i = 0; i < maps->size() - 1; i++) {
   5235     Handle<Map> map = maps->at(i).handle();
   5236     __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
   5237   }
   5238   Handle<Map> map = maps->at(maps->size() - 1).handle();
   5239   // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
   5240   if (instr->hydrogen()->HasMigrationTarget()) {
   5241     __ Branch(deferred->entry(), ne, map_reg, Operand(map));
   5242   } else {
   5243     DeoptimizeIf(ne, instr, map_reg, Operand(map));
   5244   }
   5245 
   5246   __ bind(&success);
   5247 }
   5248 
   5249 
   5250 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   5251   DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
   5252   Register result_reg = ToRegister(instr->result());
   5253   DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
   5254   __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
   5255 }
   5256 
   5257 
   5258 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   5259   Register unclamped_reg = ToRegister(instr->unclamped());
   5260   Register result_reg = ToRegister(instr->result());
   5261   __ ClampUint8(result_reg, unclamped_reg);
   5262 }
   5263 
   5264 
   5265 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
   5266   Register scratch = scratch0();
   5267   Register input_reg = ToRegister(instr->unclamped());
   5268   Register result_reg = ToRegister(instr->result());
   5269   DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
   5270   Label is_smi, done, heap_number;
   5271 
   5272   // Both smi and heap number cases are handled.
   5273   __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
   5274 
   5275   // Check for heap number
   5276   __ ld(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
   5277   __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
   5278 
   5279   // Check for undefined. Undefined is converted to zero for clamping
   5280   // conversions.
   5281   DeoptimizeIf(ne, instr, input_reg, Operand(factory()->undefined_value()));
   5282   __ mov(result_reg, zero_reg);
   5283   __ jmp(&done);
   5284 
   5285   // Heap number
   5286   __ bind(&heap_number);
   5287   __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
   5288                                              HeapNumber::kValueOffset));
   5289   __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
   5290   __ jmp(&done);
   5291 
   5292   __ bind(&is_smi);
   5293   __ ClampUint8(result_reg, scratch);
   5294 
   5295   __ bind(&done);
   5296 }
   5297 
   5298 
   5299 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   5300   DoubleRegister value_reg = ToDoubleRegister(instr->value());
   5301   Register result_reg = ToRegister(instr->result());
   5302   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   5303     __ FmoveHigh(result_reg, value_reg);
   5304   } else {
   5305     __ FmoveLow(result_reg, value_reg);
   5306   }
   5307 }
   5308 
   5309 
   5310 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
   5311   Register hi_reg = ToRegister(instr->hi());
   5312   Register lo_reg = ToRegister(instr->lo());
   5313   DoubleRegister result_reg = ToDoubleRegister(instr->result());
   5314   __ Move(result_reg, lo_reg, hi_reg);
   5315 }
   5316 
   5317 
   5318 void LCodeGen::DoAllocate(LAllocate* instr) {
   5319   class DeferredAllocate FINAL : public LDeferredCode {
   5320    public:
   5321     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
   5322         : LDeferredCode(codegen), instr_(instr) { }
   5323     virtual void Generate() OVERRIDE {
   5324       codegen()->DoDeferredAllocate(instr_);
   5325     }
   5326     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5327    private:
   5328     LAllocate* instr_;
   5329   };
   5330 
   5331   DeferredAllocate* deferred =
   5332       new(zone()) DeferredAllocate(this, instr);
   5333 
   5334   Register result = ToRegister(instr->result());
   5335   Register scratch = ToRegister(instr->temp1());
   5336   Register scratch2 = ToRegister(instr->temp2());
   5337 
   5338   // Allocate memory for the object.
   5339   AllocationFlags flags = TAG_OBJECT;
   5340   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5341     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5342   }
   5343   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5344     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5345     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5346     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
   5347   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5348     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5349     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
   5350   }
   5351   if (instr->size()->IsConstantOperand()) {
   5352     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5353     if (size <= Page::kMaxRegularHeapObjectSize) {
   5354       __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
   5355     } else {
   5356       __ jmp(deferred->entry());
   5357     }
   5358   } else {
   5359     Register size = ToRegister(instr->size());
   5360     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
   5361   }
   5362 
   5363   __ bind(deferred->exit());
   5364 
   5365   if (instr->hydrogen()->MustPrefillWithFiller()) {
   5366     STATIC_ASSERT(kHeapObjectTag == 1);
   5367     if (instr->size()->IsConstantOperand()) {
   5368       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5369       __ li(scratch, Operand(size - kHeapObjectTag));
   5370     } else {
   5371       __ Dsubu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
   5372     }
   5373     __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
   5374     Label loop;
   5375     __ bind(&loop);
   5376     __ Dsubu(scratch, scratch, Operand(kPointerSize));
   5377     __ Daddu(at, result, Operand(scratch));
   5378     __ sd(scratch2, MemOperand(at));
   5379     __ Branch(&loop, ge, scratch, Operand(zero_reg));
   5380   }
   5381 }
   5382 
   5383 
   5384 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   5385   Register result = ToRegister(instr->result());
   5386 
   5387   // TODO(3095996): Get rid of this. For now, we need to make the
   5388   // result register contain a valid pointer because it is already
   5389   // contained in the register pointer map.
   5390   __ mov(result, zero_reg);
   5391 
   5392   PushSafepointRegistersScope scope(this);
   5393   if (instr->size()->IsRegister()) {
   5394     Register size = ToRegister(instr->size());
   5395     DCHECK(!size.is(result));
   5396     __ SmiTag(size);
   5397     __ push(size);
   5398   } else {
   5399     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5400     if (size >= 0 && size <= Smi::kMaxValue) {
   5401       __ li(v0, Operand(Smi::FromInt(size)));
   5402       __ Push(v0);
   5403     } else {
   5404       // We should never get here at runtime => abort
   5405       __ stop("invalid allocation size");
   5406       return;
   5407     }
   5408   }
   5409 
   5410   int flags = AllocateDoubleAlignFlag::encode(
   5411       instr->hydrogen()->MustAllocateDoubleAligned());
   5412   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5413     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5414     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5415     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
   5416   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5417     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5418     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
   5419   } else {
   5420     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   5421   }
   5422   __ li(v0, Operand(Smi::FromInt(flags)));
   5423   __ Push(v0);
   5424 
   5425   CallRuntimeFromDeferred(
   5426       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   5427   __ StoreToSafepointRegisterSlot(v0, result);
   5428 }
   5429 
   5430 
   5431 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
   5432   DCHECK(ToRegister(instr->value()).is(a0));
   5433   DCHECK(ToRegister(instr->result()).is(v0));
   5434   __ push(a0);
   5435   CallRuntime(Runtime::kToFastProperties, 1, instr);
   5436 }
   5437 
   5438 
   5439 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
   5440   DCHECK(ToRegister(instr->context()).is(cp));
   5441   Label materialized;
   5442   // Registers will be used as follows:
   5443   // a7 = literals array.
   5444   // a1 = regexp literal.
   5445   // a0 = regexp literal clone.
   5446   // a2 and a4-a6 are used as temporaries.
   5447   int literal_offset =
   5448       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
   5449   __ li(a7, instr->hydrogen()->literals());
   5450   __ ld(a1, FieldMemOperand(a7, literal_offset));
   5451   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   5452   __ Branch(&materialized, ne, a1, Operand(at));
   5453 
   5454   // Create regexp literal using runtime function
   5455   // Result will be in v0.
   5456   __ li(a6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
   5457   __ li(a5, Operand(instr->hydrogen()->pattern()));
   5458   __ li(a4, Operand(instr->hydrogen()->flags()));
   5459   __ Push(a7, a6, a5, a4);
   5460   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
   5461   __ mov(a1, v0);
   5462 
   5463   __ bind(&materialized);
   5464   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   5465   Label allocated, runtime_allocate;
   5466 
   5467   __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
   5468   __ jmp(&allocated);
   5469 
   5470   __ bind(&runtime_allocate);
   5471   __ li(a0, Operand(Smi::FromInt(size)));
   5472   __ Push(a1, a0);
   5473   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
   5474   __ pop(a1);
   5475 
   5476   __ bind(&allocated);
   5477   // Copy the content into the newly allocated memory.
   5478   // (Unroll copy loop once for better throughput).
   5479   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
   5480     __ ld(a3, FieldMemOperand(a1, i));
   5481     __ ld(a2, FieldMemOperand(a1, i + kPointerSize));
   5482     __ sd(a3, FieldMemOperand(v0, i));
   5483     __ sd(a2, FieldMemOperand(v0, i + kPointerSize));
   5484   }
   5485   if ((size % (2 * kPointerSize)) != 0) {
   5486     __ ld(a3, FieldMemOperand(a1, size - kPointerSize));
   5487     __ sd(a3, FieldMemOperand(v0, size - kPointerSize));
   5488   }
   5489 }
   5490 
   5491 
   5492 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
   5493   DCHECK(ToRegister(instr->context()).is(cp));
   5494   // Use the fast case closure allocation code that allocates in new
   5495   // space for nested functions that don't need literals cloning.
   5496   bool pretenure = instr->hydrogen()->pretenure();
   5497   if (!pretenure && instr->hydrogen()->has_no_literals()) {
   5498     FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
   5499                             instr->hydrogen()->kind());
   5500     __ li(a2, Operand(instr->hydrogen()->shared_info()));
   5501     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5502   } else {
   5503     __ li(a2, Operand(instr->hydrogen()->shared_info()));
   5504     __ li(a1, Operand(pretenure ? factory()->true_value()
   5505                                 : factory()->false_value()));
   5506     __ Push(cp, a2, a1);
   5507     CallRuntime(Runtime::kNewClosure, 3, instr);
   5508   }
   5509 }
   5510 
   5511 
   5512 void LCodeGen::DoTypeof(LTypeof* instr) {
   5513   DCHECK(ToRegister(instr->result()).is(v0));
   5514   Register input = ToRegister(instr->value());
   5515   __ push(input);
   5516   CallRuntime(Runtime::kTypeof, 1, instr);
   5517 }
   5518 
   5519 
   5520 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5521   Register input = ToRegister(instr->value());
   5522 
   5523   Register cmp1 = no_reg;
   5524   Operand cmp2 = Operand(no_reg);
   5525 
   5526   Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
   5527                                                   instr->FalseLabel(chunk_),
   5528                                                   input,
   5529                                                   instr->type_literal(),
   5530                                                   &cmp1,
   5531                                                   &cmp2);
   5532 
   5533   DCHECK(cmp1.is_valid());
   5534   DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
   5535 
   5536   if (final_branch_condition != kNoCondition) {
   5537     EmitBranch(instr, final_branch_condition, cmp1, cmp2);
   5538   }
   5539 }
   5540 
   5541 
   5542 Condition LCodeGen::EmitTypeofIs(Label* true_label,
   5543                                  Label* false_label,
   5544                                  Register input,
   5545                                  Handle<String> type_name,
   5546                                  Register* cmp1,
   5547                                  Operand* cmp2) {
   5548   // This function utilizes the delay slot heavily. This is used to load
   5549   // values that are always usable without depending on the type of the input
   5550   // register.
   5551   Condition final_branch_condition = kNoCondition;
   5552   Register scratch = scratch0();
   5553   Factory* factory = isolate()->factory();
   5554   if (String::Equals(type_name, factory->number_string())) {
   5555     __ JumpIfSmi(input, true_label);
   5556     __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
   5557     __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
   5558     *cmp1 = input;
   5559     *cmp2 = Operand(at);
   5560     final_branch_condition = eq;
   5561 
   5562   } else if (String::Equals(type_name, factory->string_string())) {
   5563     __ JumpIfSmi(input, false_label);
   5564     __ GetObjectType(input, input, scratch);
   5565     __ Branch(USE_DELAY_SLOT, false_label,
   5566               ge, scratch, Operand(FIRST_NONSTRING_TYPE));
   5567     // input is an object so we can load the BitFieldOffset even if we take the
   5568     // other branch.
   5569     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
   5570     __ And(at, at, 1 << Map::kIsUndetectable);
   5571     *cmp1 = at;
   5572     *cmp2 = Operand(zero_reg);
   5573     final_branch_condition = eq;
   5574 
   5575   } else if (String::Equals(type_name, factory->symbol_string())) {
   5576     __ JumpIfSmi(input, false_label);
   5577     __ GetObjectType(input, input, scratch);
   5578     *cmp1 = scratch;
   5579     *cmp2 = Operand(SYMBOL_TYPE);
   5580     final_branch_condition = eq;
   5581 
   5582   } else if (String::Equals(type_name, factory->boolean_string())) {
   5583     __ LoadRoot(at, Heap::kTrueValueRootIndex);
   5584     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
   5585     __ LoadRoot(at, Heap::kFalseValueRootIndex);
   5586     *cmp1 = at;
   5587     *cmp2 = Operand(input);
   5588     final_branch_condition = eq;
   5589 
   5590   } else if (String::Equals(type_name, factory->undefined_string())) {
   5591     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   5592     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
   5593     // The first instruction of JumpIfSmi is an And - it is safe in the delay
   5594     // slot.
   5595     __ JumpIfSmi(input, false_label);
   5596     // Check for undetectable objects => true.
   5597     __ ld(input, FieldMemOperand(input, HeapObject::kMapOffset));
   5598     __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
   5599     __ And(at, at, 1 << Map::kIsUndetectable);
   5600     *cmp1 = at;
   5601     *cmp2 = Operand(zero_reg);
   5602     final_branch_condition = ne;
   5603 
   5604   } else if (String::Equals(type_name, factory->function_string())) {
   5605     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   5606     __ JumpIfSmi(input, false_label);
   5607     __ GetObjectType(input, scratch, input);
   5608     __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
   5609     *cmp1 = input;
   5610     *cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
   5611     final_branch_condition = eq;
   5612 
   5613   } else if (String::Equals(type_name, factory->object_string())) {
   5614     __ JumpIfSmi(input, false_label);
   5615     __ LoadRoot(at, Heap::kNullValueRootIndex);
   5616     __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
   5617     Register map = input;
   5618     __ GetObjectType(input, map, scratch);
   5619     __ Branch(false_label,
   5620               lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   5621     __ Branch(USE_DELAY_SLOT, false_label,
   5622               gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   5623     // map is still valid, so the BitField can be loaded in delay slot.
   5624     // Check for undetectable objects => false.
   5625     __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
   5626     __ And(at, at, 1 << Map::kIsUndetectable);
   5627     *cmp1 = at;
   5628     *cmp2 = Operand(zero_reg);
   5629     final_branch_condition = eq;
   5630 
   5631   } else {
   5632     *cmp1 = at;
   5633     *cmp2 = Operand(zero_reg);  // Set to valid regs, to avoid caller assertion.
   5634     __ Branch(false_label);
   5635   }
   5636 
   5637   return final_branch_condition;
   5638 }
   5639 
   5640 
   5641 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
   5642   Register temp1 = ToRegister(instr->temp());
   5643 
   5644   EmitIsConstructCall(temp1, scratch0());
   5645 
   5646   EmitBranch(instr, eq, temp1,
   5647              Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
   5648 }
   5649 
   5650 
   5651 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
   5652   DCHECK(!temp1.is(temp2));
   5653   // Get the frame pointer for the calling frame.
   5654   __ ld(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   5655 
   5656   // Skip the arguments adaptor frame if it exists.
   5657   Label check_frame_marker;
   5658   __ ld(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
   5659   __ Branch(&check_frame_marker, ne, temp2,
   5660             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   5661   __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
   5662 
   5663   // Check the marker in the calling frame.
   5664   __ bind(&check_frame_marker);
   5665   __ ld(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
   5666 }
   5667 
   5668 
   5669 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   5670   if (!info()->IsStub()) {
   5671     // Ensure that we have enough space after the previous lazy-bailout
   5672     // instruction for patching the code here.
   5673     int current_pc = masm()->pc_offset();
   5674     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
   5675       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   5676       DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
   5677       while (padding_size > 0) {
   5678         __ nop();
   5679         padding_size -= Assembler::kInstrSize;
   5680       }
   5681     }
   5682   }
   5683   last_lazy_deopt_pc_ = masm()->pc_offset();
   5684 }
   5685 
   5686 
   5687 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   5688   last_lazy_deopt_pc_ = masm()->pc_offset();
   5689   DCHECK(instr->HasEnvironment());
   5690   LEnvironment* env = instr->environment();
   5691   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5692   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5693 }
   5694 
   5695 
   5696 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   5697   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   5698   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   5699   // needed return address), even though the implementation of LAZY and EAGER is
   5700   // now identical. When LAZY is eventually completely folded into EAGER, remove
   5701   // the special case below.
   5702   if (info()->IsStub() && type == Deoptimizer::EAGER) {
   5703     type = Deoptimizer::LAZY;
   5704   }
   5705 
   5706   DeoptimizeIf(al, instr, type, zero_reg, Operand(zero_reg),
   5707                instr->hydrogen()->reason());
   5708 }
   5709 
   5710 
   5711 void LCodeGen::DoDummy(LDummy* instr) {
   5712   // Nothing to see here, move on!
   5713 }
   5714 
   5715 
   5716 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   5717   // Nothing to see here, move on!
   5718 }
   5719 
   5720 
   5721 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   5722   PushSafepointRegistersScope scope(this);
   5723   LoadContextFromDeferred(instr->context());
   5724   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   5725   RecordSafepointWithLazyDeopt(
   5726       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   5727   DCHECK(instr->HasEnvironment());
   5728   LEnvironment* env = instr->environment();
   5729   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   5730 }
   5731 
   5732 
   5733 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   5734   class DeferredStackCheck FINAL : public LDeferredCode {
   5735    public:
   5736     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
   5737         : LDeferredCode(codegen), instr_(instr) { }
   5738     virtual void Generate() OVERRIDE {
   5739       codegen()->DoDeferredStackCheck(instr_);
   5740     }
   5741     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5742    private:
   5743     LStackCheck* instr_;
   5744   };
   5745 
   5746   DCHECK(instr->HasEnvironment());
   5747   LEnvironment* env = instr->environment();
   5748   // There is no LLazyBailout instruction for stack-checks. We have to
   5749   // prepare for lazy deoptimization explicitly here.
   5750   if (instr->hydrogen()->is_function_entry()) {
   5751     // Perform stack overflow check.
   5752     Label done;
   5753     __ LoadRoot(at, Heap::kStackLimitRootIndex);
   5754     __ Branch(&done, hs, sp, Operand(at));
   5755     DCHECK(instr->context()->IsRegister());
   5756     DCHECK(ToRegister(instr->context()).is(cp));
   5757     CallCode(isolate()->builtins()->StackCheck(),
   5758              RelocInfo::CODE_TARGET,
   5759              instr);
   5760     __ bind(&done);
   5761   } else {
   5762     DCHECK(instr->hydrogen()->is_backwards_branch());
   5763     // Perform stack overflow check if this goto needs it before jumping.
   5764     DeferredStackCheck* deferred_stack_check =
   5765         new(zone()) DeferredStackCheck(this, instr);
   5766     __ LoadRoot(at, Heap::kStackLimitRootIndex);
   5767     __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
   5768     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   5769     __ bind(instr->done_label());
   5770     deferred_stack_check->SetExit(instr->done_label());
   5771     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   5772     // Don't record a deoptimization index for the safepoint here.
   5773     // This will be done explicitly when emitting call and the safepoint in
   5774     // the deferred code.
   5775   }
   5776 }
   5777 
   5778 
   5779 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   5780   // This is a pseudo-instruction that ensures that the environment here is
   5781   // properly registered for deoptimization and records the assembler's PC
   5782   // offset.
   5783   LEnvironment* environment = instr->environment();
   5784 
   5785   // If the environment were already registered, we would have no way of
   5786   // backpatching it with the spill slot operands.
   5787   DCHECK(!environment->HasBeenRegistered());
   5788   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   5789 
   5790   GenerateOsrPrologue();
   5791 }
   5792 
   5793 
   5794 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   5795   Register result = ToRegister(instr->result());
   5796   Register object = ToRegister(instr->object());
   5797   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   5798   DeoptimizeIf(eq, instr, object, Operand(at));
   5799 
   5800   Register null_value = a5;
   5801   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
   5802   DeoptimizeIf(eq, instr, object, Operand(null_value));
   5803 
   5804   __ And(at, object, kSmiTagMask);
   5805   DeoptimizeIf(eq, instr, at, Operand(zero_reg));
   5806 
   5807   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   5808   __ GetObjectType(object, a1, a1);
   5809   DeoptimizeIf(le, instr, a1, Operand(LAST_JS_PROXY_TYPE));
   5810 
   5811   Label use_cache, call_runtime;
   5812   DCHECK(object.is(a0));
   5813   __ CheckEnumCache(null_value, &call_runtime);
   5814 
   5815   __ ld(result, FieldMemOperand(object, HeapObject::kMapOffset));
   5816   __ Branch(&use_cache);
   5817 
   5818   // Get the set of properties to enumerate.
   5819   __ bind(&call_runtime);
   5820   __ push(object);
   5821   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
   5822 
   5823   __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   5824   DCHECK(result.is(v0));
   5825   __ LoadRoot(at, Heap::kMetaMapRootIndex);
   5826   DeoptimizeIf(ne, instr, a1, Operand(at));
   5827   __ bind(&use_cache);
   5828 }
   5829 
   5830 
   5831 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   5832   Register map = ToRegister(instr->map());
   5833   Register result = ToRegister(instr->result());
   5834   Label load_cache, done;
   5835   __ EnumLength(result, map);
   5836   __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
   5837   __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
   5838   __ jmp(&done);
   5839 
   5840   __ bind(&load_cache);
   5841   __ LoadInstanceDescriptors(map, result);
   5842   __ ld(result,
   5843         FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
   5844   __ ld(result,
   5845         FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
   5846   DeoptimizeIf(eq, instr, result, Operand(zero_reg));
   5847 
   5848   __ bind(&done);
   5849 }
   5850 
   5851 
   5852 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   5853   Register object = ToRegister(instr->value());
   5854   Register map = ToRegister(instr->map());
   5855   __ ld(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
   5856   DeoptimizeIf(ne, instr, map, Operand(scratch0()));
   5857 }
   5858 
   5859 
   5860 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   5861                                            Register result,
   5862                                            Register object,
   5863                                            Register index) {
   5864   PushSafepointRegistersScope scope(this);
   5865   __ Push(object, index);
   5866   __ mov(cp, zero_reg);
   5867   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   5868   RecordSafepointWithRegisters(
   5869      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   5870   __ StoreToSafepointRegisterSlot(v0, result);
   5871 }
   5872 
   5873 
   5874 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   5875   class DeferredLoadMutableDouble FINAL : public LDeferredCode {
   5876    public:
   5877     DeferredLoadMutableDouble(LCodeGen* codegen,
   5878                               LLoadFieldByIndex* instr,
   5879                               Register result,
   5880                               Register object,
   5881                               Register index)
   5882         : LDeferredCode(codegen),
   5883           instr_(instr),
   5884           result_(result),
   5885           object_(object),
   5886           index_(index) {
   5887     }
   5888     virtual void Generate() OVERRIDE {
   5889       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
   5890     }
   5891     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5892    private:
   5893     LLoadFieldByIndex* instr_;
   5894     Register result_;
   5895     Register object_;
   5896     Register index_;
   5897   };
   5898 
   5899   Register object = ToRegister(instr->object());
   5900   Register index = ToRegister(instr->index());
   5901   Register result = ToRegister(instr->result());
   5902   Register scratch = scratch0();
   5903 
   5904   DeferredLoadMutableDouble* deferred;
   5905   deferred = new(zone()) DeferredLoadMutableDouble(
   5906       this, instr, result, object, index);
   5907 
   5908   Label out_of_object, done;
   5909 
   5910   __ And(scratch, index, Operand(Smi::FromInt(1)));
   5911   __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
   5912   __ dsra(index, index, 1);
   5913 
   5914   __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
   5915   __ SmiScale(scratch, index, kPointerSizeLog2);  // In delay slot.
   5916   __ Daddu(scratch, object, scratch);
   5917   __ ld(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
   5918 
   5919   __ Branch(&done);
   5920 
   5921   __ bind(&out_of_object);
   5922   __ ld(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
   5923   // Index is equal to negated out of object property index plus 1.
   5924   __ Dsubu(scratch, result, scratch);
   5925   __ ld(result, FieldMemOperand(scratch,
   5926                                 FixedArray::kHeaderSize - kPointerSize));
   5927   __ bind(deferred->exit());
   5928   __ bind(&done);
   5929 }
   5930 
   5931 
   5932 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
   5933   Register context = ToRegister(instr->context());
   5934   __ sd(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
   5935 }
   5936 
   5937 
   5938 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
   5939   Handle<ScopeInfo> scope_info = instr->scope_info();
   5940   __ li(at, scope_info);
   5941   __ Push(at, ToRegister(instr->function()));
   5942   CallRuntime(Runtime::kPushBlockContext, 2, instr);
   5943   RecordSafepoint(Safepoint::kNoLazyDeopt);
   5944 }
   5945 
   5946 
   5947 #undef __
   5948 
   5949 } }  // namespace v8::internal
   5950