Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stdarg.h>
      6 #include <cmath>
      7 
      8 #include "src/v8.h"
      9 
     10 #include "src/bignum.h"
     11 #include "src/cached-powers.h"
     12 #include "src/double.h"
     13 #include "src/globals.h"
     14 #include "src/strtod.h"
     15 #include "src/utils.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 
     20 // 2^53 = 9007199254740992.
     21 // Any integer with at most 15 decimal digits will hence fit into a double
     22 // (which has a 53bit significand) without loss of precision.
     23 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
     24 // 2^64 = 18446744073709551616 > 10^19
     25 static const int kMaxUint64DecimalDigits = 19;
     26 
     27 // Max double: 1.7976931348623157 x 10^308
     28 // Min non-zero double: 4.9406564584124654 x 10^-324
     29 // Any x >= 10^309 is interpreted as +infinity.
     30 // Any x <= 10^-324 is interpreted as 0.
     31 // Note that 2.5e-324 (despite being smaller than the min double) will be read
     32 // as non-zero (equal to the min non-zero double).
     33 static const int kMaxDecimalPower = 309;
     34 static const int kMinDecimalPower = -324;
     35 
     36 // 2^64 = 18446744073709551616
     37 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
     38 
     39 
     40 static const double exact_powers_of_ten[] = {
     41   1.0,  // 10^0
     42   10.0,
     43   100.0,
     44   1000.0,
     45   10000.0,
     46   100000.0,
     47   1000000.0,
     48   10000000.0,
     49   100000000.0,
     50   1000000000.0,
     51   10000000000.0,  // 10^10
     52   100000000000.0,
     53   1000000000000.0,
     54   10000000000000.0,
     55   100000000000000.0,
     56   1000000000000000.0,
     57   10000000000000000.0,
     58   100000000000000000.0,
     59   1000000000000000000.0,
     60   10000000000000000000.0,
     61   100000000000000000000.0,  // 10^20
     62   1000000000000000000000.0,
     63   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
     64   10000000000000000000000.0
     65 };
     66 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
     67 
     68 // Maximum number of significant digits in the decimal representation.
     69 // In fact the value is 772 (see conversions.cc), but to give us some margin
     70 // we round up to 780.
     71 static const int kMaxSignificantDecimalDigits = 780;
     72 
     73 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
     74   for (int i = 0; i < buffer.length(); i++) {
     75     if (buffer[i] != '0') {
     76       return buffer.SubVector(i, buffer.length());
     77     }
     78   }
     79   return Vector<const char>(buffer.start(), 0);
     80 }
     81 
     82 
     83 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
     84   for (int i = buffer.length() - 1; i >= 0; --i) {
     85     if (buffer[i] != '0') {
     86       return buffer.SubVector(0, i + 1);
     87     }
     88   }
     89   return Vector<const char>(buffer.start(), 0);
     90 }
     91 
     92 
     93 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
     94                                        int exponent,
     95                                        char* significant_buffer,
     96                                        int* significant_exponent) {
     97   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
     98     significant_buffer[i] = buffer[i];
     99   }
    100   // The input buffer has been trimmed. Therefore the last digit must be
    101   // different from '0'.
    102   DCHECK(buffer[buffer.length() - 1] != '0');
    103   // Set the last digit to be non-zero. This is sufficient to guarantee
    104   // correct rounding.
    105   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
    106   *significant_exponent =
    107       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
    108 }
    109 
    110 
    111 // Reads digits from the buffer and converts them to a uint64.
    112 // Reads in as many digits as fit into a uint64.
    113 // When the string starts with "1844674407370955161" no further digit is read.
    114 // Since 2^64 = 18446744073709551616 it would still be possible read another
    115 // digit if it was less or equal than 6, but this would complicate the code.
    116 static uint64_t ReadUint64(Vector<const char> buffer,
    117                            int* number_of_read_digits) {
    118   uint64_t result = 0;
    119   int i = 0;
    120   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
    121     int digit = buffer[i++] - '0';
    122     DCHECK(0 <= digit && digit <= 9);
    123     result = 10 * result + digit;
    124   }
    125   *number_of_read_digits = i;
    126   return result;
    127 }
    128 
    129 
    130 // Reads a DiyFp from the buffer.
    131 // The returned DiyFp is not necessarily normalized.
    132 // If remaining_decimals is zero then the returned DiyFp is accurate.
    133 // Otherwise it has been rounded and has error of at most 1/2 ulp.
    134 static void ReadDiyFp(Vector<const char> buffer,
    135                       DiyFp* result,
    136                       int* remaining_decimals) {
    137   int read_digits;
    138   uint64_t significand = ReadUint64(buffer, &read_digits);
    139   if (buffer.length() == read_digits) {
    140     *result = DiyFp(significand, 0);
    141     *remaining_decimals = 0;
    142   } else {
    143     // Round the significand.
    144     if (buffer[read_digits] >= '5') {
    145       significand++;
    146     }
    147     // Compute the binary exponent.
    148     int exponent = 0;
    149     *result = DiyFp(significand, exponent);
    150     *remaining_decimals = buffer.length() - read_digits;
    151   }
    152 }
    153 
    154 
    155 static bool DoubleStrtod(Vector<const char> trimmed,
    156                          int exponent,
    157                          double* result) {
    158 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
    159     !defined(_MSC_VER)
    160   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
    161   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
    162   // result is not accurate.
    163   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
    164   // therefore accurate.
    165   // Note that the ARM and MIPS simulators are compiled for 32bits. They
    166   // therefore exhibit the same problem.
    167   return false;
    168 #endif
    169   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
    170     int read_digits;
    171     // The trimmed input fits into a double.
    172     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
    173     // can compute the result-double simply by multiplying (resp. dividing) the
    174     // two numbers.
    175     // This is possible because IEEE guarantees that floating-point operations
    176     // return the best possible approximation.
    177     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
    178       // 10^-exponent fits into a double.
    179       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    180       DCHECK(read_digits == trimmed.length());
    181       *result /= exact_powers_of_ten[-exponent];
    182       return true;
    183     }
    184     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
    185       // 10^exponent fits into a double.
    186       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    187       DCHECK(read_digits == trimmed.length());
    188       *result *= exact_powers_of_ten[exponent];
    189       return true;
    190     }
    191     int remaining_digits =
    192         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
    193     if ((0 <= exponent) &&
    194         (exponent - remaining_digits < kExactPowersOfTenSize)) {
    195       // The trimmed string was short and we can multiply it with
    196       // 10^remaining_digits. As a result the remaining exponent now fits
    197       // into a double too.
    198       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
    199       DCHECK(read_digits == trimmed.length());
    200       *result *= exact_powers_of_ten[remaining_digits];
    201       *result *= exact_powers_of_ten[exponent - remaining_digits];
    202       return true;
    203     }
    204   }
    205   return false;
    206 }
    207 
    208 
    209 // Returns 10^exponent as an exact DiyFp.
    210 // The given exponent must be in the range [1; kDecimalExponentDistance[.
    211 static DiyFp AdjustmentPowerOfTen(int exponent) {
    212   DCHECK(0 < exponent);
    213   DCHECK(exponent < PowersOfTenCache::kDecimalExponentDistance);
    214   // Simply hardcode the remaining powers for the given decimal exponent
    215   // distance.
    216   DCHECK(PowersOfTenCache::kDecimalExponentDistance == 8);
    217   switch (exponent) {
    218     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
    219     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
    220     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
    221     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
    222     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
    223     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
    224     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
    225     default:
    226       UNREACHABLE();
    227       return DiyFp(0, 0);
    228   }
    229 }
    230 
    231 
    232 // If the function returns true then the result is the correct double.
    233 // Otherwise it is either the correct double or the double that is just below
    234 // the correct double.
    235 static bool DiyFpStrtod(Vector<const char> buffer,
    236                         int exponent,
    237                         double* result) {
    238   DiyFp input;
    239   int remaining_decimals;
    240   ReadDiyFp(buffer, &input, &remaining_decimals);
    241   // Since we may have dropped some digits the input is not accurate.
    242   // If remaining_decimals is different than 0 than the error is at most
    243   // .5 ulp (unit in the last place).
    244   // We don't want to deal with fractions and therefore keep a common
    245   // denominator.
    246   const int kDenominatorLog = 3;
    247   const int kDenominator = 1 << kDenominatorLog;
    248   // Move the remaining decimals into the exponent.
    249   exponent += remaining_decimals;
    250   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
    251 
    252   int old_e = input.e();
    253   input.Normalize();
    254   error <<= old_e - input.e();
    255 
    256   DCHECK(exponent <= PowersOfTenCache::kMaxDecimalExponent);
    257   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
    258     *result = 0.0;
    259     return true;
    260   }
    261   DiyFp cached_power;
    262   int cached_decimal_exponent;
    263   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
    264                                                      &cached_power,
    265                                                      &cached_decimal_exponent);
    266 
    267   if (cached_decimal_exponent != exponent) {
    268     int adjustment_exponent = exponent - cached_decimal_exponent;
    269     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
    270     input.Multiply(adjustment_power);
    271     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
    272       // The product of input with the adjustment power fits into a 64 bit
    273       // integer.
    274       DCHECK(DiyFp::kSignificandSize == 64);
    275     } else {
    276       // The adjustment power is exact. There is hence only an error of 0.5.
    277       error += kDenominator / 2;
    278     }
    279   }
    280 
    281   input.Multiply(cached_power);
    282   // The error introduced by a multiplication of a*b equals
    283   //   error_a + error_b + error_a*error_b/2^64 + 0.5
    284   // Substituting a with 'input' and b with 'cached_power' we have
    285   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
    286   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
    287   int error_b = kDenominator / 2;
    288   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
    289   int fixed_error = kDenominator / 2;
    290   error += error_b + error_ab + fixed_error;
    291 
    292   old_e = input.e();
    293   input.Normalize();
    294   error <<= old_e - input.e();
    295 
    296   // See if the double's significand changes if we add/subtract the error.
    297   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
    298   int effective_significand_size =
    299       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
    300   int precision_digits_count =
    301       DiyFp::kSignificandSize - effective_significand_size;
    302   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
    303     // This can only happen for very small denormals. In this case the
    304     // half-way multiplied by the denominator exceeds the range of an uint64.
    305     // Simply shift everything to the right.
    306     int shift_amount = (precision_digits_count + kDenominatorLog) -
    307         DiyFp::kSignificandSize + 1;
    308     input.set_f(input.f() >> shift_amount);
    309     input.set_e(input.e() + shift_amount);
    310     // We add 1 for the lost precision of error, and kDenominator for
    311     // the lost precision of input.f().
    312     error = (error >> shift_amount) + 1 + kDenominator;
    313     precision_digits_count -= shift_amount;
    314   }
    315   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
    316   DCHECK(DiyFp::kSignificandSize == 64);
    317   DCHECK(precision_digits_count < 64);
    318   uint64_t one64 = 1;
    319   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
    320   uint64_t precision_bits = input.f() & precision_bits_mask;
    321   uint64_t half_way = one64 << (precision_digits_count - 1);
    322   precision_bits *= kDenominator;
    323   half_way *= kDenominator;
    324   DiyFp rounded_input(input.f() >> precision_digits_count,
    325                       input.e() + precision_digits_count);
    326   if (precision_bits >= half_way + error) {
    327     rounded_input.set_f(rounded_input.f() + 1);
    328   }
    329   // If the last_bits are too close to the half-way case than we are too
    330   // inaccurate and round down. In this case we return false so that we can
    331   // fall back to a more precise algorithm.
    332 
    333   *result = Double(rounded_input).value();
    334   if (half_way - error < precision_bits && precision_bits < half_way + error) {
    335     // Too imprecise. The caller will have to fall back to a slower version.
    336     // However the returned number is guaranteed to be either the correct
    337     // double, or the next-lower double.
    338     return false;
    339   } else {
    340     return true;
    341   }
    342 }
    343 
    344 
    345 // Returns the correct double for the buffer*10^exponent.
    346 // The variable guess should be a close guess that is either the correct double
    347 // or its lower neighbor (the nearest double less than the correct one).
    348 // Preconditions:
    349 //   buffer.length() + exponent <= kMaxDecimalPower + 1
    350 //   buffer.length() + exponent > kMinDecimalPower
    351 //   buffer.length() <= kMaxDecimalSignificantDigits
    352 static double BignumStrtod(Vector<const char> buffer,
    353                            int exponent,
    354                            double guess) {
    355   if (guess == V8_INFINITY) {
    356     return guess;
    357   }
    358 
    359   DiyFp upper_boundary = Double(guess).UpperBoundary();
    360 
    361   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
    362   DCHECK(buffer.length() + exponent > kMinDecimalPower);
    363   DCHECK(buffer.length() <= kMaxSignificantDecimalDigits);
    364   // Make sure that the Bignum will be able to hold all our numbers.
    365   // Our Bignum implementation has a separate field for exponents. Shifts will
    366   // consume at most one bigit (< 64 bits).
    367   // ln(10) == 3.3219...
    368   DCHECK(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
    369   Bignum input;
    370   Bignum boundary;
    371   input.AssignDecimalString(buffer);
    372   boundary.AssignUInt64(upper_boundary.f());
    373   if (exponent >= 0) {
    374     input.MultiplyByPowerOfTen(exponent);
    375   } else {
    376     boundary.MultiplyByPowerOfTen(-exponent);
    377   }
    378   if (upper_boundary.e() > 0) {
    379     boundary.ShiftLeft(upper_boundary.e());
    380   } else {
    381     input.ShiftLeft(-upper_boundary.e());
    382   }
    383   int comparison = Bignum::Compare(input, boundary);
    384   if (comparison < 0) {
    385     return guess;
    386   } else if (comparison > 0) {
    387     return Double(guess).NextDouble();
    388   } else if ((Double(guess).Significand() & 1) == 0) {
    389     // Round towards even.
    390     return guess;
    391   } else {
    392     return Double(guess).NextDouble();
    393   }
    394 }
    395 
    396 
    397 double Strtod(Vector<const char> buffer, int exponent) {
    398   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
    399   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
    400   exponent += left_trimmed.length() - trimmed.length();
    401   if (trimmed.length() == 0) return 0.0;
    402   if (trimmed.length() > kMaxSignificantDecimalDigits) {
    403     char significant_buffer[kMaxSignificantDecimalDigits];
    404     int significant_exponent;
    405     TrimToMaxSignificantDigits(trimmed, exponent,
    406                                significant_buffer, &significant_exponent);
    407     return Strtod(Vector<const char>(significant_buffer,
    408                                      kMaxSignificantDecimalDigits),
    409                   significant_exponent);
    410   }
    411   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
    412   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
    413 
    414   double guess;
    415   if (DoubleStrtod(trimmed, exponent, &guess) ||
    416       DiyFpStrtod(trimmed, exponent, &guess)) {
    417     return guess;
    418   }
    419   return BignumStrtod(trimmed, exponent, guess);
    420 }
    421 
    422 } }  // namespace v8::internal
    423