Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_NUMTRAITS_H
     11 #define EIGEN_NUMTRAITS_H
     12 
     13 namespace Eigen {
     14 
     15 /** \class NumTraits
     16   * \ingroup Core_Module
     17   *
     18   * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
     19   *
     20   * \param T the numeric type at hand
     21   *
     22   * This class stores enums, typedefs and static methods giving information about a numeric type.
     23   *
     24   * The provided data consists of:
     25   * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
     26   *     then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
     27   *     is a typedef to \a U.
     28   * \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
     29   *     such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
     30   *     \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
     31   *     take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
     32   *     only intended as a helper for code that needs to explicitly promote types.
     33   * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
     34   *     this means, just use \a T here.
     35   * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
     36   *     type, and to 0 otherwise.
     37   * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int,
     38   *     and to \c 0 otherwise.
     39   * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed
     40   *     to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers.
     41   *     Stay vague here. No need to do architecture-specific stuff.
     42   * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
     43   * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
     44   *     be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
     45   * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
     46   * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
     47   *     value by the fuzzy comparison operators.
     48   * \li highest() and lowest() functions returning the highest and lowest possible values respectively.
     49   */
     50 
     51 template<typename T> struct GenericNumTraits
     52 {
     53   enum {
     54     IsInteger = std::numeric_limits<T>::is_integer,
     55     IsSigned = std::numeric_limits<T>::is_signed,
     56     IsComplex = 0,
     57     RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1,
     58     ReadCost = 1,
     59     AddCost = 1,
     60     MulCost = 1
     61   };
     62 
     63   typedef T Real;
     64   typedef typename internal::conditional<
     65                      IsInteger,
     66                      typename internal::conditional<sizeof(T)<=2, float, double>::type,
     67                      T
     68                    >::type NonInteger;
     69   typedef T Nested;
     70 
     71   static inline Real epsilon() { return std::numeric_limits<T>::epsilon(); }
     72   static inline Real dummy_precision()
     73   {
     74     // make sure to override this for floating-point types
     75     return Real(0);
     76   }
     77   static inline T highest() { return (std::numeric_limits<T>::max)(); }
     78   static inline T lowest()  { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
     79 
     80 #ifdef EIGEN2_SUPPORT
     81   enum {
     82     HasFloatingPoint = !IsInteger
     83   };
     84   typedef NonInteger FloatingPoint;
     85 #endif
     86 };
     87 
     88 template<typename T> struct NumTraits : GenericNumTraits<T>
     89 {};
     90 
     91 template<> struct NumTraits<float>
     92   : GenericNumTraits<float>
     93 {
     94   static inline float dummy_precision() { return 1e-5f; }
     95 };
     96 
     97 template<> struct NumTraits<double> : GenericNumTraits<double>
     98 {
     99   static inline double dummy_precision() { return 1e-12; }
    100 };
    101 
    102 template<> struct NumTraits<long double>
    103   : GenericNumTraits<long double>
    104 {
    105   static inline long double dummy_precision() { return 1e-15l; }
    106 };
    107 
    108 template<typename _Real> struct NumTraits<std::complex<_Real> >
    109   : GenericNumTraits<std::complex<_Real> >
    110 {
    111   typedef _Real Real;
    112   enum {
    113     IsComplex = 1,
    114     RequireInitialization = NumTraits<_Real>::RequireInitialization,
    115     ReadCost = 2 * NumTraits<_Real>::ReadCost,
    116     AddCost = 2 * NumTraits<Real>::AddCost,
    117     MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
    118   };
    119 
    120   static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
    121   static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
    122 };
    123 
    124 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    125 struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
    126 {
    127   typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
    128   typedef typename NumTraits<Scalar>::Real RealScalar;
    129   typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real;
    130   typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
    131   typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
    132   typedef ArrayType & Nested;
    133 
    134   enum {
    135     IsComplex = NumTraits<Scalar>::IsComplex,
    136     IsInteger = NumTraits<Scalar>::IsInteger,
    137     IsSigned  = NumTraits<Scalar>::IsSigned,
    138     RequireInitialization = 1,
    139     ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
    140     AddCost  = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
    141     MulCost  = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
    142   };
    143 
    144   static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
    145   static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
    146 };
    147 
    148 } // end namespace Eigen
    149 
    150 #endif // EIGEN_NUMTRAITS_H
    151