Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 /** \eigenManualPage SparseQuickRefPage Quick reference guide for sparse matrices
      3 \eigenAutoToc
      4 
      5 <hr>
      6 
      7 In this page, we give a quick summary of the main operations available for sparse matrices in the class SparseMatrix. First, it is recommended to read  the introductory tutorial at \ref TutorialSparse. The important point to have in mind when working on sparse matrices is how they are stored : 
      8 i.e either row major or column major. The default is column major. Most arithmetic operations on sparse matrices will assert that they have the same storage order. 
      9 
     10 \section SparseMatrixInit Sparse Matrix Initialization
     11 <table class="manual">
     12 <tr><th> Category </th> <th> Operations</th> <th>Notes</th></tr>
     13 <tr><td>Constructor</td>
     14 <td>
     15 \code
     16   SparseMatrix<double> sm1(1000,1000); 
     17   SparseMatrix<std::complex<double>,RowMajor> sm2;
     18 \endcode
     19 </td> <td> Default is ColMajor</td> </tr>
     20 <tr class="alt">
     21 <td> Resize/Reserve</td>
     22 <td> 
     23  \code
     24     sm1.resize(m,n);      //Change sm1 to a m x n matrix. 
     25     sm1.reserve(nnz);     // Allocate room for nnz nonzeros elements.   
     26   \endcode 
     27 </td>
     28 <td> Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase. </td>
     29 </tr>
     30 <tr> 
     31 <td> Assignment </td>
     32 <td> 
     33 \code 
     34   SparseMatrix<double,Colmajor> sm1;
     35  // Initialize sm2 with sm1.
     36   SparseMatrix<double,Rowmajor> sm2(sm1), sm3;        
     37   // Assignment and evaluations modify the storage order.
     38   sm3 = sm1; 
     39  \endcode
     40 </td>
     41 <td> The copy constructor can be used to convert from a storage order to another</td>
     42 </tr>
     43 <tr class="alt">
     44 <td> Element-wise Insertion</td>
     45 <td>
     46 \code 
     47 // Insert a new element; 
     48  sm1.insert(i, j) = v_ij;  
     49 
     50 // Update the value v_ij
     51  sm1.coeffRef(i,j) = v_ij;
     52  sm1.coeffRef(i,j) += v_ij;
     53  sm1.coeffRef(i,j) -= v_ij;
     54 \endcode
     55 </td>
     56 <td> insert() assumes that the element does not already exist; otherwise, use coeffRef()</td>
     57 </tr>
     58 <tr> 
     59 <td> Batch insertion</td>
     60 <td>
     61 \code
     62   std::vector< Eigen::Triplet<double> > tripletList;
     63   tripletList.reserve(estimation_of_entries);
     64   // -- Fill tripletList with nonzero elements...
     65   sm1.setFromTriplets(TripletList.begin(), TripletList.end());
     66 \endcode
     67 </td>
     68 <td>A complete example is available at \link TutorialSparseFilling Triplet Insertion \endlink.</td>
     69 </tr>
     70 <tr class="alt"> 
     71 <td> Constant or Random Insertion</td>
     72 <td>
     73 \code
     74 sm1.setZero(); // Set the matrix with zero elements
     75 sm1.setConstant(val); //Replace all the nonzero values with val
     76 \endcode
     77 </td>
     78 <td> The matrix sm1 should have been created before ???</td>
     79 </tr>
     80 </table>
     81 
     82 
     83 \section SparseBasicInfos Matrix properties
     84 Beyond the basic functions rows() and cols(), there are some useful functions that are available to easily get some informations from the matrix. 
     85 <table class="manual">
     86 <tr>
     87   <td> \code
     88   sm1.rows();         // Number of rows
     89   sm1.cols();         // Number of columns 
     90   sm1.nonZeros();     // Number of non zero values   
     91   sm1.outerSize();    // Number of columns (resp. rows) for a column major (resp. row major )
     92   sm1.innerSize();    // Number of rows (resp. columns) for a row major (resp. column major)
     93   sm1.norm();         // Euclidian norm of the matrix
     94   sm1.squaredNorm();  // Squared norm of the matrix
     95   sm1.blueNorm();
     96   sm1.isVector();     // Check if sm1 is a sparse vector or a sparse matrix
     97   sm1.isCompressed(); // Check if sm1 is in compressed form
     98   ...
     99   \endcode </td>
    100 </tr>
    101 </table>
    102 
    103 \section SparseBasicOps Arithmetic operations
    104 It is easy to perform arithmetic operations on sparse matrices provided that the dimensions are adequate and that the matrices have the same storage order. Note that the evaluation can always be done in a matrix with a different storage order. In the following, \b sm denotes a sparse matrix, \b dm a dense matrix and \b dv a dense vector.
    105 <table class="manual">
    106 <tr><th> Operations </th> <th> Code </th> <th> Notes </th></tr>
    107 
    108 <tr>
    109   <td> add subtract </td> 
    110   <td> \code
    111   sm3 = sm1 + sm2; 
    112   sm3 = sm1 - sm2;
    113   sm2 += sm1; 
    114   sm2 -= sm1; \endcode
    115   </td>
    116   <td> 
    117   sm1 and sm2 should have the same storage order
    118   </td> 
    119 </tr>
    120 
    121 <tr class="alt"><td>
    122   scalar product</td><td>\code
    123   sm3 = sm1 * s1;   sm3 *= s1; 
    124   sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
    125   </td>
    126   <td>
    127     Many combinations are possible if the dimensions and the storage order agree.
    128 </tr>
    129 
    130 <tr>
    131   <td> %Sparse %Product </td>
    132   <td> \code
    133   sm3 = sm1 * sm2;
    134   dm2 = sm1 * dm1;
    135   dv2 = sm1 * dv1;
    136   \endcode </td>
    137   <td>
    138   </td>
    139 </tr> 
    140 
    141 <tr class='alt'>
    142   <td> transposition, adjoint</td>
    143   <td> \code
    144   sm2 = sm1.transpose();
    145   sm2 = sm1.adjoint();
    146   \endcode </td>
    147   <td>
    148   Note that the transposition change the storage order. There is no support for transposeInPlace().
    149   </td>
    150 </tr> 
    151 <tr>
    152 <td> Permutation </td>
    153 <td> 
    154 \code 
    155 perm.indices(); // Reference to the vector of indices
    156 sm1.twistedBy(perm); // Permute rows and columns
    157 sm2 = sm1 * perm; //Permute the columns
    158 sm2 = perm * sm1; // Permute the columns
    159 \endcode 
    160 </td>
    161 <td> 
    162 
    163 </td>
    164 </tr>
    165 <tr>
    166   <td>
    167   Component-wise ops
    168   </td>
    169   <td>\code 
    170   sm1.cwiseProduct(sm2);
    171   sm1.cwiseQuotient(sm2);
    172   sm1.cwiseMin(sm2);
    173   sm1.cwiseMax(sm2);
    174   sm1.cwiseAbs();
    175   sm1.cwiseSqrt();
    176   \endcode</td>
    177   <td>
    178   sm1 and sm2 should have the same storage order
    179   </td>
    180 </tr>
    181 </table>
    182 
    183 \section sparseotherops Other supported operations
    184 <table class="manual">
    185 <tr><th>Operations</th> <th> Code </th> <th> Notes</th> </tr>
    186 <tr>
    187 <td>Sub-matrices</td> 
    188 <td> 
    189 \code 
    190   sm1.block(startRow, startCol, rows, cols); 
    191   sm1.block(startRow, startCol); 
    192   sm1.topLeftCorner(rows, cols); 
    193   sm1.topRightCorner(rows, cols);
    194   sm1.bottomLeftCorner( rows, cols);
    195   sm1.bottomRightCorner( rows, cols);
    196   \endcode
    197 </td> <td>  </td>
    198 </tr>
    199 <tr> 
    200 <td> Range </td>
    201 <td> 
    202 \code 
    203   sm1.innerVector(outer); 
    204   sm1.innerVectors(start, size);
    205   sm1.leftCols(size);
    206   sm2.rightCols(size);
    207   sm1.middleRows(start, numRows);
    208   sm1.middleCols(start, numCols);
    209   sm1.col(j);
    210 \endcode
    211 </td>
    212 <td>A inner vector is either a row (for row-major) or a column (for column-major). As stated earlier, the evaluation can be done in a matrix with different storage order </td>
    213 </tr>
    214 <tr>
    215 <td> Triangular and selfadjoint views</td>
    216 <td> 
    217 \code
    218   sm2 = sm1.triangularview<Lower>();
    219   sm2 = sm1.selfadjointview<Lower>();
    220 \endcode
    221 </td>
    222 <td> Several combination between triangular views and blocks views are possible
    223 \code 
    224   \endcode </td>
    225 </tr>
    226 <tr> 
    227 <td>Triangular solve </td>
    228 <td> 
    229 \code 
    230  dv2 = sm1.triangularView<Upper>().solve(dv1);
    231  dv2 = sm1.topLeftCorner(size, size).triangularView<Lower>().solve(dv1);
    232 \endcode 
    233 </td>
    234 <td> For general sparse solve, Use any suitable module described at \ref TopicSparseSystems </td>
    235 </tr>
    236 <tr>
    237 <td> Low-level API</td>
    238 <td>
    239 \code
    240 sm1.valuePtr(); // Pointer to the values
    241 sm1.innerIndextr(); // Pointer to the indices.
    242 sm1.outerIndexPtr(); //Pointer to the beginning of each inner vector
    243 \endcode
    244 </td>
    245 <td> If the matrix is not in compressed form, makeCompressed() should be called before. Note that these functions are mostly provided for interoperability purposes with external libraries. A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section</td>
    246 </tr>
    247 </table>
    248 */
    249 }
    250