Home | History | Annotate | Download | only in libxml2
      1 /*
      2  * regexp.c: generic and extensible Regular Expression engine
      3  *
      4  * Basically designed with the purpose of compiling regexps for
      5  * the variety of validation/shemas mechanisms now available in
      6  * XML related specifications these include:
      7  *    - XML-1.0 DTD validation
      8  *    - XML Schemas structure part 1
      9  *    - XML Schemas Datatypes part 2 especially Appendix F
     10  *    - RELAX-NG/TREX i.e. the counter proposal
     11  *
     12  * See Copyright for the status of this software.
     13  *
     14  * Daniel Veillard <veillard (at) redhat.com>
     15  */
     16 
     17 #define IN_LIBXML
     18 #include "libxml.h"
     19 
     20 #ifdef LIBXML_REGEXP_ENABLED
     21 
     22 /* #define DEBUG_ERR */
     23 
     24 #include <stdio.h>
     25 #include <string.h>
     26 #ifdef HAVE_LIMITS_H
     27 #include <limits.h>
     28 #endif
     29 
     30 #include <libxml/tree.h>
     31 #include <libxml/parserInternals.h>
     32 #include <libxml/xmlregexp.h>
     33 #include <libxml/xmlautomata.h>
     34 #include <libxml/xmlunicode.h>
     35 
     36 #ifndef INT_MAX
     37 #define INT_MAX 123456789 /* easy to flag and big enough for our needs */
     38 #endif
     39 
     40 /* #define DEBUG_REGEXP_GRAPH */
     41 /* #define DEBUG_REGEXP_EXEC */
     42 /* #define DEBUG_PUSH */
     43 /* #define DEBUG_COMPACTION */
     44 
     45 #define MAX_PUSH 10000000
     46 
     47 #ifdef ERROR
     48 #undef ERROR
     49 #endif
     50 #define ERROR(str)							\
     51     ctxt->error = XML_REGEXP_COMPILE_ERROR;				\
     52     xmlRegexpErrCompile(ctxt, str);
     53 #define NEXT ctxt->cur++
     54 #define CUR (*(ctxt->cur))
     55 #define NXT(index) (ctxt->cur[index])
     56 
     57 #define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l)
     58 #define NEXTL(l) ctxt->cur += l;
     59 #define XML_REG_STRING_SEPARATOR '|'
     60 /*
     61  * Need PREV to check on a '-' within a Character Group. May only be used
     62  * when it's guaranteed that cur is not at the beginning of ctxt->string!
     63  */
     64 #define PREV (ctxt->cur[-1])
     65 
     66 /**
     67  * TODO:
     68  *
     69  * macro to flag unimplemented blocks
     70  */
     71 #define TODO								\
     72     xmlGenericError(xmlGenericErrorContext,				\
     73 	    "Unimplemented block at %s:%d\n",				\
     74             __FILE__, __LINE__);
     75 
     76 /************************************************************************
     77  *									*
     78  *			Datatypes and structures			*
     79  *									*
     80  ************************************************************************/
     81 
     82 /*
     83  * Note: the order of the enums below is significant, do not shuffle
     84  */
     85 typedef enum {
     86     XML_REGEXP_EPSILON = 1,
     87     XML_REGEXP_CHARVAL,
     88     XML_REGEXP_RANGES,
     89     XML_REGEXP_SUBREG,  /* used for () sub regexps */
     90     XML_REGEXP_STRING,
     91     XML_REGEXP_ANYCHAR, /* . */
     92     XML_REGEXP_ANYSPACE, /* \s */
     93     XML_REGEXP_NOTSPACE, /* \S */
     94     XML_REGEXP_INITNAME, /* \l */
     95     XML_REGEXP_NOTINITNAME, /* \L */
     96     XML_REGEXP_NAMECHAR, /* \c */
     97     XML_REGEXP_NOTNAMECHAR, /* \C */
     98     XML_REGEXP_DECIMAL, /* \d */
     99     XML_REGEXP_NOTDECIMAL, /* \D */
    100     XML_REGEXP_REALCHAR, /* \w */
    101     XML_REGEXP_NOTREALCHAR, /* \W */
    102     XML_REGEXP_LETTER = 100,
    103     XML_REGEXP_LETTER_UPPERCASE,
    104     XML_REGEXP_LETTER_LOWERCASE,
    105     XML_REGEXP_LETTER_TITLECASE,
    106     XML_REGEXP_LETTER_MODIFIER,
    107     XML_REGEXP_LETTER_OTHERS,
    108     XML_REGEXP_MARK,
    109     XML_REGEXP_MARK_NONSPACING,
    110     XML_REGEXP_MARK_SPACECOMBINING,
    111     XML_REGEXP_MARK_ENCLOSING,
    112     XML_REGEXP_NUMBER,
    113     XML_REGEXP_NUMBER_DECIMAL,
    114     XML_REGEXP_NUMBER_LETTER,
    115     XML_REGEXP_NUMBER_OTHERS,
    116     XML_REGEXP_PUNCT,
    117     XML_REGEXP_PUNCT_CONNECTOR,
    118     XML_REGEXP_PUNCT_DASH,
    119     XML_REGEXP_PUNCT_OPEN,
    120     XML_REGEXP_PUNCT_CLOSE,
    121     XML_REGEXP_PUNCT_INITQUOTE,
    122     XML_REGEXP_PUNCT_FINQUOTE,
    123     XML_REGEXP_PUNCT_OTHERS,
    124     XML_REGEXP_SEPAR,
    125     XML_REGEXP_SEPAR_SPACE,
    126     XML_REGEXP_SEPAR_LINE,
    127     XML_REGEXP_SEPAR_PARA,
    128     XML_REGEXP_SYMBOL,
    129     XML_REGEXP_SYMBOL_MATH,
    130     XML_REGEXP_SYMBOL_CURRENCY,
    131     XML_REGEXP_SYMBOL_MODIFIER,
    132     XML_REGEXP_SYMBOL_OTHERS,
    133     XML_REGEXP_OTHER,
    134     XML_REGEXP_OTHER_CONTROL,
    135     XML_REGEXP_OTHER_FORMAT,
    136     XML_REGEXP_OTHER_PRIVATE,
    137     XML_REGEXP_OTHER_NA,
    138     XML_REGEXP_BLOCK_NAME
    139 } xmlRegAtomType;
    140 
    141 typedef enum {
    142     XML_REGEXP_QUANT_EPSILON = 1,
    143     XML_REGEXP_QUANT_ONCE,
    144     XML_REGEXP_QUANT_OPT,
    145     XML_REGEXP_QUANT_MULT,
    146     XML_REGEXP_QUANT_PLUS,
    147     XML_REGEXP_QUANT_ONCEONLY,
    148     XML_REGEXP_QUANT_ALL,
    149     XML_REGEXP_QUANT_RANGE
    150 } xmlRegQuantType;
    151 
    152 typedef enum {
    153     XML_REGEXP_START_STATE = 1,
    154     XML_REGEXP_FINAL_STATE,
    155     XML_REGEXP_TRANS_STATE,
    156     XML_REGEXP_SINK_STATE,
    157     XML_REGEXP_UNREACH_STATE
    158 } xmlRegStateType;
    159 
    160 typedef enum {
    161     XML_REGEXP_MARK_NORMAL = 0,
    162     XML_REGEXP_MARK_START,
    163     XML_REGEXP_MARK_VISITED
    164 } xmlRegMarkedType;
    165 
    166 typedef struct _xmlRegRange xmlRegRange;
    167 typedef xmlRegRange *xmlRegRangePtr;
    168 
    169 struct _xmlRegRange {
    170     int neg;		/* 0 normal, 1 not, 2 exclude */
    171     xmlRegAtomType type;
    172     int start;
    173     int end;
    174     xmlChar *blockName;
    175 };
    176 
    177 typedef struct _xmlRegAtom xmlRegAtom;
    178 typedef xmlRegAtom *xmlRegAtomPtr;
    179 
    180 typedef struct _xmlAutomataState xmlRegState;
    181 typedef xmlRegState *xmlRegStatePtr;
    182 
    183 struct _xmlRegAtom {
    184     int no;
    185     xmlRegAtomType type;
    186     xmlRegQuantType quant;
    187     int min;
    188     int max;
    189 
    190     void *valuep;
    191     void *valuep2;
    192     int neg;
    193     int codepoint;
    194     xmlRegStatePtr start;
    195     xmlRegStatePtr start0;
    196     xmlRegStatePtr stop;
    197     int maxRanges;
    198     int nbRanges;
    199     xmlRegRangePtr *ranges;
    200     void *data;
    201 };
    202 
    203 typedef struct _xmlRegCounter xmlRegCounter;
    204 typedef xmlRegCounter *xmlRegCounterPtr;
    205 
    206 struct _xmlRegCounter {
    207     int min;
    208     int max;
    209 };
    210 
    211 typedef struct _xmlRegTrans xmlRegTrans;
    212 typedef xmlRegTrans *xmlRegTransPtr;
    213 
    214 struct _xmlRegTrans {
    215     xmlRegAtomPtr atom;
    216     int to;
    217     int counter;
    218     int count;
    219     int nd;
    220 };
    221 
    222 struct _xmlAutomataState {
    223     xmlRegStateType type;
    224     xmlRegMarkedType mark;
    225     xmlRegMarkedType markd;
    226     xmlRegMarkedType reached;
    227     int no;
    228     int maxTrans;
    229     int nbTrans;
    230     xmlRegTrans *trans;
    231     /*  knowing states ponting to us can speed things up */
    232     int maxTransTo;
    233     int nbTransTo;
    234     int *transTo;
    235 };
    236 
    237 typedef struct _xmlAutomata xmlRegParserCtxt;
    238 typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
    239 
    240 #define AM_AUTOMATA_RNG 1
    241 
    242 struct _xmlAutomata {
    243     xmlChar *string;
    244     xmlChar *cur;
    245 
    246     int error;
    247     int neg;
    248 
    249     xmlRegStatePtr start;
    250     xmlRegStatePtr end;
    251     xmlRegStatePtr state;
    252 
    253     xmlRegAtomPtr atom;
    254 
    255     int maxAtoms;
    256     int nbAtoms;
    257     xmlRegAtomPtr *atoms;
    258 
    259     int maxStates;
    260     int nbStates;
    261     xmlRegStatePtr *states;
    262 
    263     int maxCounters;
    264     int nbCounters;
    265     xmlRegCounter *counters;
    266 
    267     int determinist;
    268     int negs;
    269     int flags;
    270 };
    271 
    272 struct _xmlRegexp {
    273     xmlChar *string;
    274     int nbStates;
    275     xmlRegStatePtr *states;
    276     int nbAtoms;
    277     xmlRegAtomPtr *atoms;
    278     int nbCounters;
    279     xmlRegCounter *counters;
    280     int determinist;
    281     int flags;
    282     /*
    283      * That's the compact form for determinists automatas
    284      */
    285     int nbstates;
    286     int *compact;
    287     void **transdata;
    288     int nbstrings;
    289     xmlChar **stringMap;
    290 };
    291 
    292 typedef struct _xmlRegExecRollback xmlRegExecRollback;
    293 typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
    294 
    295 struct _xmlRegExecRollback {
    296     xmlRegStatePtr state;/* the current state */
    297     int index;		/* the index in the input stack */
    298     int nextbranch;	/* the next transition to explore in that state */
    299     int *counts;	/* save the automata state if it has some */
    300 };
    301 
    302 typedef struct _xmlRegInputToken xmlRegInputToken;
    303 typedef xmlRegInputToken *xmlRegInputTokenPtr;
    304 
    305 struct _xmlRegInputToken {
    306     xmlChar *value;
    307     void *data;
    308 };
    309 
    310 struct _xmlRegExecCtxt {
    311     int status;		/* execution status != 0 indicate an error */
    312     int determinist;	/* did we find an indeterministic behaviour */
    313     xmlRegexpPtr comp;	/* the compiled regexp */
    314     xmlRegExecCallbacks callback;
    315     void *data;
    316 
    317     xmlRegStatePtr state;/* the current state */
    318     int transno;	/* the current transition on that state */
    319     int transcount;	/* the number of chars in char counted transitions */
    320 
    321     /*
    322      * A stack of rollback states
    323      */
    324     int maxRollbacks;
    325     int nbRollbacks;
    326     xmlRegExecRollback *rollbacks;
    327 
    328     /*
    329      * The state of the automata if any
    330      */
    331     int *counts;
    332 
    333     /*
    334      * The input stack
    335      */
    336     int inputStackMax;
    337     int inputStackNr;
    338     int index;
    339     int *charStack;
    340     const xmlChar *inputString; /* when operating on characters */
    341     xmlRegInputTokenPtr inputStack;/* when operating on strings */
    342 
    343     /*
    344      * error handling
    345      */
    346     int errStateNo;		/* the error state number */
    347     xmlRegStatePtr errState;    /* the error state */
    348     xmlChar *errString;		/* the string raising the error */
    349     int *errCounts;		/* counters at the error state */
    350     int nbPush;
    351 };
    352 
    353 #define REGEXP_ALL_COUNTER	0x123456
    354 #define REGEXP_ALL_LAX_COUNTER	0x123457
    355 
    356 static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
    357 static void xmlRegFreeState(xmlRegStatePtr state);
    358 static void xmlRegFreeAtom(xmlRegAtomPtr atom);
    359 static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
    360 static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
    361 static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
    362                   int neg, int start, int end, const xmlChar *blockName);
    363 
    364 void xmlAutomataSetFlags(xmlAutomataPtr am, int flags);
    365 
    366 /************************************************************************
    367  *									*
    368  *		Regexp memory error handler				*
    369  *									*
    370  ************************************************************************/
    371 /**
    372  * xmlRegexpErrMemory:
    373  * @extra:  extra information
    374  *
    375  * Handle an out of memory condition
    376  */
    377 static void
    378 xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
    379 {
    380     const char *regexp = NULL;
    381     if (ctxt != NULL) {
    382         regexp = (const char *) ctxt->string;
    383 	ctxt->error = XML_ERR_NO_MEMORY;
    384     }
    385     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
    386 		    XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
    387 		    regexp, NULL, 0, 0,
    388 		    "Memory allocation failed : %s\n", extra);
    389 }
    390 
    391 /**
    392  * xmlRegexpErrCompile:
    393  * @extra:  extra information
    394  *
    395  * Handle a compilation failure
    396  */
    397 static void
    398 xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
    399 {
    400     const char *regexp = NULL;
    401     int idx = 0;
    402 
    403     if (ctxt != NULL) {
    404         regexp = (const char *) ctxt->string;
    405 	idx = ctxt->cur - ctxt->string;
    406 	ctxt->error = XML_REGEXP_COMPILE_ERROR;
    407     }
    408     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
    409 		    XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
    410 		    regexp, NULL, idx, 0,
    411 		    "failed to compile: %s\n", extra);
    412 }
    413 
    414 /************************************************************************
    415  *									*
    416  *			Allocation/Deallocation				*
    417  *									*
    418  ************************************************************************/
    419 
    420 static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
    421 /**
    422  * xmlRegEpxFromParse:
    423  * @ctxt:  the parser context used to build it
    424  *
    425  * Allocate a new regexp and fill it with the result from the parser
    426  *
    427  * Returns the new regexp or NULL in case of error
    428  */
    429 static xmlRegexpPtr
    430 xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
    431     xmlRegexpPtr ret;
    432 
    433     ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
    434     if (ret == NULL) {
    435 	xmlRegexpErrMemory(ctxt, "compiling regexp");
    436 	return(NULL);
    437     }
    438     memset(ret, 0, sizeof(xmlRegexp));
    439     ret->string = ctxt->string;
    440     ret->nbStates = ctxt->nbStates;
    441     ret->states = ctxt->states;
    442     ret->nbAtoms = ctxt->nbAtoms;
    443     ret->atoms = ctxt->atoms;
    444     ret->nbCounters = ctxt->nbCounters;
    445     ret->counters = ctxt->counters;
    446     ret->determinist = ctxt->determinist;
    447     ret->flags = ctxt->flags;
    448     if (ret->determinist == -1) {
    449         xmlRegexpIsDeterminist(ret);
    450     }
    451 
    452     if ((ret->determinist != 0) &&
    453 	(ret->nbCounters == 0) &&
    454 	(ctxt->negs == 0) &&
    455 	(ret->atoms != NULL) &&
    456 	(ret->atoms[0] != NULL) &&
    457 	(ret->atoms[0]->type == XML_REGEXP_STRING)) {
    458 	int i, j, nbstates = 0, nbatoms = 0;
    459 	int *stateRemap;
    460 	int *stringRemap;
    461 	int *transitions;
    462 	void **transdata;
    463 	xmlChar **stringMap;
    464         xmlChar *value;
    465 
    466 	/*
    467 	 * Switch to a compact representation
    468 	 * 1/ counting the effective number of states left
    469 	 * 2/ counting the unique number of atoms, and check that
    470 	 *    they are all of the string type
    471 	 * 3/ build a table state x atom for the transitions
    472 	 */
    473 
    474 	stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
    475 	if (stateRemap == NULL) {
    476 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    477 	    xmlFree(ret);
    478 	    return(NULL);
    479 	}
    480 	for (i = 0;i < ret->nbStates;i++) {
    481 	    if (ret->states[i] != NULL) {
    482 		stateRemap[i] = nbstates;
    483 		nbstates++;
    484 	    } else {
    485 		stateRemap[i] = -1;
    486 	    }
    487 	}
    488 #ifdef DEBUG_COMPACTION
    489 	printf("Final: %d states\n", nbstates);
    490 #endif
    491 	stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
    492 	if (stringMap == NULL) {
    493 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    494 	    xmlFree(stateRemap);
    495 	    xmlFree(ret);
    496 	    return(NULL);
    497 	}
    498 	stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
    499 	if (stringRemap == NULL) {
    500 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    501 	    xmlFree(stringMap);
    502 	    xmlFree(stateRemap);
    503 	    xmlFree(ret);
    504 	    return(NULL);
    505 	}
    506 	for (i = 0;i < ret->nbAtoms;i++) {
    507 	    if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
    508 		(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
    509 		value = ret->atoms[i]->valuep;
    510                 for (j = 0;j < nbatoms;j++) {
    511 		    if (xmlStrEqual(stringMap[j], value)) {
    512 			stringRemap[i] = j;
    513 			break;
    514 		    }
    515 		}
    516 		if (j >= nbatoms) {
    517 		    stringRemap[i] = nbatoms;
    518 		    stringMap[nbatoms] = xmlStrdup(value);
    519 		    if (stringMap[nbatoms] == NULL) {
    520 			for (i = 0;i < nbatoms;i++)
    521 			    xmlFree(stringMap[i]);
    522 			xmlFree(stringRemap);
    523 			xmlFree(stringMap);
    524 			xmlFree(stateRemap);
    525 			xmlFree(ret);
    526 			return(NULL);
    527 		    }
    528 		    nbatoms++;
    529 		}
    530 	    } else {
    531 		xmlFree(stateRemap);
    532 		xmlFree(stringRemap);
    533 		for (i = 0;i < nbatoms;i++)
    534 		    xmlFree(stringMap[i]);
    535 		xmlFree(stringMap);
    536 		xmlFree(ret);
    537 		return(NULL);
    538 	    }
    539 	}
    540 #ifdef DEBUG_COMPACTION
    541 	printf("Final: %d atoms\n", nbatoms);
    542 #endif
    543 	transitions = (int *) xmlMalloc((nbstates + 1) *
    544 	                                (nbatoms + 1) * sizeof(int));
    545 	if (transitions == NULL) {
    546 	    xmlFree(stateRemap);
    547 	    xmlFree(stringRemap);
    548 	    xmlFree(stringMap);
    549 	    xmlFree(ret);
    550 	    return(NULL);
    551 	}
    552 	memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int));
    553 
    554 	/*
    555 	 * Allocate the transition table. The first entry for each
    556 	 * state corresponds to the state type.
    557 	 */
    558 	transdata = NULL;
    559 
    560 	for (i = 0;i < ret->nbStates;i++) {
    561 	    int stateno, atomno, targetno, prev;
    562 	    xmlRegStatePtr state;
    563 	    xmlRegTransPtr trans;
    564 
    565 	    stateno = stateRemap[i];
    566 	    if (stateno == -1)
    567 		continue;
    568 	    state = ret->states[i];
    569 
    570 	    transitions[stateno * (nbatoms + 1)] = state->type;
    571 
    572 	    for (j = 0;j < state->nbTrans;j++) {
    573 		trans = &(state->trans[j]);
    574 		if ((trans->to == -1) || (trans->atom == NULL))
    575 		    continue;
    576                 atomno = stringRemap[trans->atom->no];
    577 		if ((trans->atom->data != NULL) && (transdata == NULL)) {
    578 		    transdata = (void **) xmlMalloc(nbstates * nbatoms *
    579 			                            sizeof(void *));
    580 		    if (transdata != NULL)
    581 			memset(transdata, 0,
    582 			       nbstates * nbatoms * sizeof(void *));
    583 		    else {
    584 			xmlRegexpErrMemory(ctxt, "compiling regexp");
    585 			break;
    586 		    }
    587 		}
    588 		targetno = stateRemap[trans->to];
    589 		/*
    590 		 * if the same atom can generate transitions to 2 different
    591 		 * states then it means the automata is not determinist and
    592 		 * the compact form can't be used !
    593 		 */
    594 		prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
    595 		if (prev != 0) {
    596 		    if (prev != targetno + 1) {
    597 			ret->determinist = 0;
    598 #ifdef DEBUG_COMPACTION
    599 			printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n",
    600 			       i, j, trans->atom->no, trans->to, atomno, targetno);
    601 			printf("       previous to is %d\n", prev);
    602 #endif
    603 			if (transdata != NULL)
    604 			    xmlFree(transdata);
    605 			xmlFree(transitions);
    606 			xmlFree(stateRemap);
    607 			xmlFree(stringRemap);
    608 			for (i = 0;i < nbatoms;i++)
    609 			    xmlFree(stringMap[i]);
    610 			xmlFree(stringMap);
    611 			goto not_determ;
    612 		    }
    613 		} else {
    614 #if 0
    615 		    printf("State %d trans %d: atom %d to %d : %d to %d\n",
    616 			   i, j, trans->atom->no, trans->to, atomno, targetno);
    617 #endif
    618 		    transitions[stateno * (nbatoms + 1) + atomno + 1] =
    619 			targetno + 1; /* to avoid 0 */
    620 		    if (transdata != NULL)
    621 			transdata[stateno * nbatoms + atomno] =
    622 			    trans->atom->data;
    623 		}
    624 	    }
    625 	}
    626 	ret->determinist = 1;
    627 #ifdef DEBUG_COMPACTION
    628 	/*
    629 	 * Debug
    630 	 */
    631 	for (i = 0;i < nbstates;i++) {
    632 	    for (j = 0;j < nbatoms + 1;j++) {
    633                 printf("%02d ", transitions[i * (nbatoms + 1) + j]);
    634 	    }
    635 	    printf("\n");
    636 	}
    637 	printf("\n");
    638 #endif
    639 	/*
    640 	 * Cleanup of the old data
    641 	 */
    642 	if (ret->states != NULL) {
    643 	    for (i = 0;i < ret->nbStates;i++)
    644 		xmlRegFreeState(ret->states[i]);
    645 	    xmlFree(ret->states);
    646 	}
    647 	ret->states = NULL;
    648 	ret->nbStates = 0;
    649 	if (ret->atoms != NULL) {
    650 	    for (i = 0;i < ret->nbAtoms;i++)
    651 		xmlRegFreeAtom(ret->atoms[i]);
    652 	    xmlFree(ret->atoms);
    653 	}
    654 	ret->atoms = NULL;
    655 	ret->nbAtoms = 0;
    656 
    657 	ret->compact = transitions;
    658 	ret->transdata = transdata;
    659 	ret->stringMap = stringMap;
    660 	ret->nbstrings = nbatoms;
    661 	ret->nbstates = nbstates;
    662 	xmlFree(stateRemap);
    663 	xmlFree(stringRemap);
    664     }
    665 not_determ:
    666     ctxt->string = NULL;
    667     ctxt->nbStates = 0;
    668     ctxt->states = NULL;
    669     ctxt->nbAtoms = 0;
    670     ctxt->atoms = NULL;
    671     ctxt->nbCounters = 0;
    672     ctxt->counters = NULL;
    673     return(ret);
    674 }
    675 
    676 /**
    677  * xmlRegNewParserCtxt:
    678  * @string:  the string to parse
    679  *
    680  * Allocate a new regexp parser context
    681  *
    682  * Returns the new context or NULL in case of error
    683  */
    684 static xmlRegParserCtxtPtr
    685 xmlRegNewParserCtxt(const xmlChar *string) {
    686     xmlRegParserCtxtPtr ret;
    687 
    688     ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
    689     if (ret == NULL)
    690 	return(NULL);
    691     memset(ret, 0, sizeof(xmlRegParserCtxt));
    692     if (string != NULL)
    693 	ret->string = xmlStrdup(string);
    694     ret->cur = ret->string;
    695     ret->neg = 0;
    696     ret->negs = 0;
    697     ret->error = 0;
    698     ret->determinist = -1;
    699     return(ret);
    700 }
    701 
    702 /**
    703  * xmlRegNewRange:
    704  * @ctxt:  the regexp parser context
    705  * @neg:  is that negative
    706  * @type:  the type of range
    707  * @start:  the start codepoint
    708  * @end:  the end codepoint
    709  *
    710  * Allocate a new regexp range
    711  *
    712  * Returns the new range or NULL in case of error
    713  */
    714 static xmlRegRangePtr
    715 xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
    716 	       int neg, xmlRegAtomType type, int start, int end) {
    717     xmlRegRangePtr ret;
    718 
    719     ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
    720     if (ret == NULL) {
    721 	xmlRegexpErrMemory(ctxt, "allocating range");
    722 	return(NULL);
    723     }
    724     ret->neg = neg;
    725     ret->type = type;
    726     ret->start = start;
    727     ret->end = end;
    728     return(ret);
    729 }
    730 
    731 /**
    732  * xmlRegFreeRange:
    733  * @range:  the regexp range
    734  *
    735  * Free a regexp range
    736  */
    737 static void
    738 xmlRegFreeRange(xmlRegRangePtr range) {
    739     if (range == NULL)
    740 	return;
    741 
    742     if (range->blockName != NULL)
    743 	xmlFree(range->blockName);
    744     xmlFree(range);
    745 }
    746 
    747 /**
    748  * xmlRegCopyRange:
    749  * @range:  the regexp range
    750  *
    751  * Copy a regexp range
    752  *
    753  * Returns the new copy or NULL in case of error.
    754  */
    755 static xmlRegRangePtr
    756 xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
    757     xmlRegRangePtr ret;
    758 
    759     if (range == NULL)
    760 	return(NULL);
    761 
    762     ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
    763                          range->end);
    764     if (ret == NULL)
    765         return(NULL);
    766     if (range->blockName != NULL) {
    767 	ret->blockName = xmlStrdup(range->blockName);
    768 	if (ret->blockName == NULL) {
    769 	    xmlRegexpErrMemory(ctxt, "allocating range");
    770 	    xmlRegFreeRange(ret);
    771 	    return(NULL);
    772 	}
    773     }
    774     return(ret);
    775 }
    776 
    777 /**
    778  * xmlRegNewAtom:
    779  * @ctxt:  the regexp parser context
    780  * @type:  the type of atom
    781  *
    782  * Allocate a new atom
    783  *
    784  * Returns the new atom or NULL in case of error
    785  */
    786 static xmlRegAtomPtr
    787 xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
    788     xmlRegAtomPtr ret;
    789 
    790     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
    791     if (ret == NULL) {
    792 	xmlRegexpErrMemory(ctxt, "allocating atom");
    793 	return(NULL);
    794     }
    795     memset(ret, 0, sizeof(xmlRegAtom));
    796     ret->type = type;
    797     ret->quant = XML_REGEXP_QUANT_ONCE;
    798     ret->min = 0;
    799     ret->max = 0;
    800     return(ret);
    801 }
    802 
    803 /**
    804  * xmlRegFreeAtom:
    805  * @atom:  the regexp atom
    806  *
    807  * Free a regexp atom
    808  */
    809 static void
    810 xmlRegFreeAtom(xmlRegAtomPtr atom) {
    811     int i;
    812 
    813     if (atom == NULL)
    814 	return;
    815 
    816     for (i = 0;i < atom->nbRanges;i++)
    817 	xmlRegFreeRange(atom->ranges[i]);
    818     if (atom->ranges != NULL)
    819 	xmlFree(atom->ranges);
    820     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
    821 	xmlFree(atom->valuep);
    822     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
    823 	xmlFree(atom->valuep2);
    824     if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
    825 	xmlFree(atom->valuep);
    826     xmlFree(atom);
    827 }
    828 
    829 /**
    830  * xmlRegCopyAtom:
    831  * @ctxt:  the regexp parser context
    832  * @atom:  the oiginal atom
    833  *
    834  * Allocate a new regexp range
    835  *
    836  * Returns the new atom or NULL in case of error
    837  */
    838 static xmlRegAtomPtr
    839 xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
    840     xmlRegAtomPtr ret;
    841 
    842     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
    843     if (ret == NULL) {
    844 	xmlRegexpErrMemory(ctxt, "copying atom");
    845 	return(NULL);
    846     }
    847     memset(ret, 0, sizeof(xmlRegAtom));
    848     ret->type = atom->type;
    849     ret->quant = atom->quant;
    850     ret->min = atom->min;
    851     ret->max = atom->max;
    852     if (atom->nbRanges > 0) {
    853         int i;
    854 
    855         ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
    856 	                                           atom->nbRanges);
    857 	if (ret->ranges == NULL) {
    858 	    xmlRegexpErrMemory(ctxt, "copying atom");
    859 	    goto error;
    860 	}
    861 	for (i = 0;i < atom->nbRanges;i++) {
    862 	    ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
    863 	    if (ret->ranges[i] == NULL)
    864 	        goto error;
    865 	    ret->nbRanges = i + 1;
    866 	}
    867     }
    868     return(ret);
    869 
    870 error:
    871     xmlRegFreeAtom(ret);
    872     return(NULL);
    873 }
    874 
    875 static xmlRegStatePtr
    876 xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
    877     xmlRegStatePtr ret;
    878 
    879     ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
    880     if (ret == NULL) {
    881 	xmlRegexpErrMemory(ctxt, "allocating state");
    882 	return(NULL);
    883     }
    884     memset(ret, 0, sizeof(xmlRegState));
    885     ret->type = XML_REGEXP_TRANS_STATE;
    886     ret->mark = XML_REGEXP_MARK_NORMAL;
    887     return(ret);
    888 }
    889 
    890 /**
    891  * xmlRegFreeState:
    892  * @state:  the regexp state
    893  *
    894  * Free a regexp state
    895  */
    896 static void
    897 xmlRegFreeState(xmlRegStatePtr state) {
    898     if (state == NULL)
    899 	return;
    900 
    901     if (state->trans != NULL)
    902 	xmlFree(state->trans);
    903     if (state->transTo != NULL)
    904 	xmlFree(state->transTo);
    905     xmlFree(state);
    906 }
    907 
    908 /**
    909  * xmlRegFreeParserCtxt:
    910  * @ctxt:  the regexp parser context
    911  *
    912  * Free a regexp parser context
    913  */
    914 static void
    915 xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
    916     int i;
    917     if (ctxt == NULL)
    918 	return;
    919 
    920     if (ctxt->string != NULL)
    921 	xmlFree(ctxt->string);
    922     if (ctxt->states != NULL) {
    923 	for (i = 0;i < ctxt->nbStates;i++)
    924 	    xmlRegFreeState(ctxt->states[i]);
    925 	xmlFree(ctxt->states);
    926     }
    927     if (ctxt->atoms != NULL) {
    928 	for (i = 0;i < ctxt->nbAtoms;i++)
    929 	    xmlRegFreeAtom(ctxt->atoms[i]);
    930 	xmlFree(ctxt->atoms);
    931     }
    932     if (ctxt->counters != NULL)
    933 	xmlFree(ctxt->counters);
    934     xmlFree(ctxt);
    935 }
    936 
    937 /************************************************************************
    938  *									*
    939  *			Display of Data structures			*
    940  *									*
    941  ************************************************************************/
    942 
    943 static void
    944 xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
    945     switch (type) {
    946         case XML_REGEXP_EPSILON:
    947 	    fprintf(output, "epsilon "); break;
    948         case XML_REGEXP_CHARVAL:
    949 	    fprintf(output, "charval "); break;
    950         case XML_REGEXP_RANGES:
    951 	    fprintf(output, "ranges "); break;
    952         case XML_REGEXP_SUBREG:
    953 	    fprintf(output, "subexpr "); break;
    954         case XML_REGEXP_STRING:
    955 	    fprintf(output, "string "); break;
    956         case XML_REGEXP_ANYCHAR:
    957 	    fprintf(output, "anychar "); break;
    958         case XML_REGEXP_ANYSPACE:
    959 	    fprintf(output, "anyspace "); break;
    960         case XML_REGEXP_NOTSPACE:
    961 	    fprintf(output, "notspace "); break;
    962         case XML_REGEXP_INITNAME:
    963 	    fprintf(output, "initname "); break;
    964         case XML_REGEXP_NOTINITNAME:
    965 	    fprintf(output, "notinitname "); break;
    966         case XML_REGEXP_NAMECHAR:
    967 	    fprintf(output, "namechar "); break;
    968         case XML_REGEXP_NOTNAMECHAR:
    969 	    fprintf(output, "notnamechar "); break;
    970         case XML_REGEXP_DECIMAL:
    971 	    fprintf(output, "decimal "); break;
    972         case XML_REGEXP_NOTDECIMAL:
    973 	    fprintf(output, "notdecimal "); break;
    974         case XML_REGEXP_REALCHAR:
    975 	    fprintf(output, "realchar "); break;
    976         case XML_REGEXP_NOTREALCHAR:
    977 	    fprintf(output, "notrealchar "); break;
    978         case XML_REGEXP_LETTER:
    979             fprintf(output, "LETTER "); break;
    980         case XML_REGEXP_LETTER_UPPERCASE:
    981             fprintf(output, "LETTER_UPPERCASE "); break;
    982         case XML_REGEXP_LETTER_LOWERCASE:
    983             fprintf(output, "LETTER_LOWERCASE "); break;
    984         case XML_REGEXP_LETTER_TITLECASE:
    985             fprintf(output, "LETTER_TITLECASE "); break;
    986         case XML_REGEXP_LETTER_MODIFIER:
    987             fprintf(output, "LETTER_MODIFIER "); break;
    988         case XML_REGEXP_LETTER_OTHERS:
    989             fprintf(output, "LETTER_OTHERS "); break;
    990         case XML_REGEXP_MARK:
    991             fprintf(output, "MARK "); break;
    992         case XML_REGEXP_MARK_NONSPACING:
    993             fprintf(output, "MARK_NONSPACING "); break;
    994         case XML_REGEXP_MARK_SPACECOMBINING:
    995             fprintf(output, "MARK_SPACECOMBINING "); break;
    996         case XML_REGEXP_MARK_ENCLOSING:
    997             fprintf(output, "MARK_ENCLOSING "); break;
    998         case XML_REGEXP_NUMBER:
    999             fprintf(output, "NUMBER "); break;
   1000         case XML_REGEXP_NUMBER_DECIMAL:
   1001             fprintf(output, "NUMBER_DECIMAL "); break;
   1002         case XML_REGEXP_NUMBER_LETTER:
   1003             fprintf(output, "NUMBER_LETTER "); break;
   1004         case XML_REGEXP_NUMBER_OTHERS:
   1005             fprintf(output, "NUMBER_OTHERS "); break;
   1006         case XML_REGEXP_PUNCT:
   1007             fprintf(output, "PUNCT "); break;
   1008         case XML_REGEXP_PUNCT_CONNECTOR:
   1009             fprintf(output, "PUNCT_CONNECTOR "); break;
   1010         case XML_REGEXP_PUNCT_DASH:
   1011             fprintf(output, "PUNCT_DASH "); break;
   1012         case XML_REGEXP_PUNCT_OPEN:
   1013             fprintf(output, "PUNCT_OPEN "); break;
   1014         case XML_REGEXP_PUNCT_CLOSE:
   1015             fprintf(output, "PUNCT_CLOSE "); break;
   1016         case XML_REGEXP_PUNCT_INITQUOTE:
   1017             fprintf(output, "PUNCT_INITQUOTE "); break;
   1018         case XML_REGEXP_PUNCT_FINQUOTE:
   1019             fprintf(output, "PUNCT_FINQUOTE "); break;
   1020         case XML_REGEXP_PUNCT_OTHERS:
   1021             fprintf(output, "PUNCT_OTHERS "); break;
   1022         case XML_REGEXP_SEPAR:
   1023             fprintf(output, "SEPAR "); break;
   1024         case XML_REGEXP_SEPAR_SPACE:
   1025             fprintf(output, "SEPAR_SPACE "); break;
   1026         case XML_REGEXP_SEPAR_LINE:
   1027             fprintf(output, "SEPAR_LINE "); break;
   1028         case XML_REGEXP_SEPAR_PARA:
   1029             fprintf(output, "SEPAR_PARA "); break;
   1030         case XML_REGEXP_SYMBOL:
   1031             fprintf(output, "SYMBOL "); break;
   1032         case XML_REGEXP_SYMBOL_MATH:
   1033             fprintf(output, "SYMBOL_MATH "); break;
   1034         case XML_REGEXP_SYMBOL_CURRENCY:
   1035             fprintf(output, "SYMBOL_CURRENCY "); break;
   1036         case XML_REGEXP_SYMBOL_MODIFIER:
   1037             fprintf(output, "SYMBOL_MODIFIER "); break;
   1038         case XML_REGEXP_SYMBOL_OTHERS:
   1039             fprintf(output, "SYMBOL_OTHERS "); break;
   1040         case XML_REGEXP_OTHER:
   1041             fprintf(output, "OTHER "); break;
   1042         case XML_REGEXP_OTHER_CONTROL:
   1043             fprintf(output, "OTHER_CONTROL "); break;
   1044         case XML_REGEXP_OTHER_FORMAT:
   1045             fprintf(output, "OTHER_FORMAT "); break;
   1046         case XML_REGEXP_OTHER_PRIVATE:
   1047             fprintf(output, "OTHER_PRIVATE "); break;
   1048         case XML_REGEXP_OTHER_NA:
   1049             fprintf(output, "OTHER_NA "); break;
   1050         case XML_REGEXP_BLOCK_NAME:
   1051 	    fprintf(output, "BLOCK "); break;
   1052     }
   1053 }
   1054 
   1055 static void
   1056 xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
   1057     switch (type) {
   1058         case XML_REGEXP_QUANT_EPSILON:
   1059 	    fprintf(output, "epsilon "); break;
   1060         case XML_REGEXP_QUANT_ONCE:
   1061 	    fprintf(output, "once "); break;
   1062         case XML_REGEXP_QUANT_OPT:
   1063 	    fprintf(output, "? "); break;
   1064         case XML_REGEXP_QUANT_MULT:
   1065 	    fprintf(output, "* "); break;
   1066         case XML_REGEXP_QUANT_PLUS:
   1067 	    fprintf(output, "+ "); break;
   1068 	case XML_REGEXP_QUANT_RANGE:
   1069 	    fprintf(output, "range "); break;
   1070 	case XML_REGEXP_QUANT_ONCEONLY:
   1071 	    fprintf(output, "onceonly "); break;
   1072 	case XML_REGEXP_QUANT_ALL:
   1073 	    fprintf(output, "all "); break;
   1074     }
   1075 }
   1076 static void
   1077 xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
   1078     fprintf(output, "  range: ");
   1079     if (range->neg)
   1080 	fprintf(output, "negative ");
   1081     xmlRegPrintAtomType(output, range->type);
   1082     fprintf(output, "%c - %c\n", range->start, range->end);
   1083 }
   1084 
   1085 static void
   1086 xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
   1087     fprintf(output, " atom: ");
   1088     if (atom == NULL) {
   1089 	fprintf(output, "NULL\n");
   1090 	return;
   1091     }
   1092     if (atom->neg)
   1093         fprintf(output, "not ");
   1094     xmlRegPrintAtomType(output, atom->type);
   1095     xmlRegPrintQuantType(output, atom->quant);
   1096     if (atom->quant == XML_REGEXP_QUANT_RANGE)
   1097 	fprintf(output, "%d-%d ", atom->min, atom->max);
   1098     if (atom->type == XML_REGEXP_STRING)
   1099 	fprintf(output, "'%s' ", (char *) atom->valuep);
   1100     if (atom->type == XML_REGEXP_CHARVAL)
   1101 	fprintf(output, "char %c\n", atom->codepoint);
   1102     else if (atom->type == XML_REGEXP_RANGES) {
   1103 	int i;
   1104 	fprintf(output, "%d entries\n", atom->nbRanges);
   1105 	for (i = 0; i < atom->nbRanges;i++)
   1106 	    xmlRegPrintRange(output, atom->ranges[i]);
   1107     } else if (atom->type == XML_REGEXP_SUBREG) {
   1108 	fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
   1109     } else {
   1110 	fprintf(output, "\n");
   1111     }
   1112 }
   1113 
   1114 static void
   1115 xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
   1116     fprintf(output, "  trans: ");
   1117     if (trans == NULL) {
   1118 	fprintf(output, "NULL\n");
   1119 	return;
   1120     }
   1121     if (trans->to < 0) {
   1122 	fprintf(output, "removed\n");
   1123 	return;
   1124     }
   1125     if (trans->nd != 0) {
   1126 	if (trans->nd == 2)
   1127 	    fprintf(output, "last not determinist, ");
   1128 	else
   1129 	    fprintf(output, "not determinist, ");
   1130     }
   1131     if (trans->counter >= 0) {
   1132 	fprintf(output, "counted %d, ", trans->counter);
   1133     }
   1134     if (trans->count == REGEXP_ALL_COUNTER) {
   1135 	fprintf(output, "all transition, ");
   1136     } else if (trans->count >= 0) {
   1137 	fprintf(output, "count based %d, ", trans->count);
   1138     }
   1139     if (trans->atom == NULL) {
   1140 	fprintf(output, "epsilon to %d\n", trans->to);
   1141 	return;
   1142     }
   1143     if (trans->atom->type == XML_REGEXP_CHARVAL)
   1144 	fprintf(output, "char %c ", trans->atom->codepoint);
   1145     fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
   1146 }
   1147 
   1148 static void
   1149 xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
   1150     int i;
   1151 
   1152     fprintf(output, " state: ");
   1153     if (state == NULL) {
   1154 	fprintf(output, "NULL\n");
   1155 	return;
   1156     }
   1157     if (state->type == XML_REGEXP_START_STATE)
   1158 	fprintf(output, "START ");
   1159     if (state->type == XML_REGEXP_FINAL_STATE)
   1160 	fprintf(output, "FINAL ");
   1161 
   1162     fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
   1163     for (i = 0;i < state->nbTrans; i++) {
   1164 	xmlRegPrintTrans(output, &(state->trans[i]));
   1165     }
   1166 }
   1167 
   1168 #ifdef DEBUG_REGEXP_GRAPH
   1169 static void
   1170 xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) {
   1171     int i;
   1172 
   1173     fprintf(output, " ctxt: ");
   1174     if (ctxt == NULL) {
   1175 	fprintf(output, "NULL\n");
   1176 	return;
   1177     }
   1178     fprintf(output, "'%s' ", ctxt->string);
   1179     if (ctxt->error)
   1180 	fprintf(output, "error ");
   1181     if (ctxt->neg)
   1182 	fprintf(output, "neg ");
   1183     fprintf(output, "\n");
   1184     fprintf(output, "%d atoms:\n", ctxt->nbAtoms);
   1185     for (i = 0;i < ctxt->nbAtoms; i++) {
   1186 	fprintf(output, " %02d ", i);
   1187 	xmlRegPrintAtom(output, ctxt->atoms[i]);
   1188     }
   1189     if (ctxt->atom != NULL) {
   1190 	fprintf(output, "current atom:\n");
   1191 	xmlRegPrintAtom(output, ctxt->atom);
   1192     }
   1193     fprintf(output, "%d states:", ctxt->nbStates);
   1194     if (ctxt->start != NULL)
   1195 	fprintf(output, " start: %d", ctxt->start->no);
   1196     if (ctxt->end != NULL)
   1197 	fprintf(output, " end: %d", ctxt->end->no);
   1198     fprintf(output, "\n");
   1199     for (i = 0;i < ctxt->nbStates; i++) {
   1200 	xmlRegPrintState(output, ctxt->states[i]);
   1201     }
   1202     fprintf(output, "%d counters:\n", ctxt->nbCounters);
   1203     for (i = 0;i < ctxt->nbCounters; i++) {
   1204 	fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min,
   1205 		                                ctxt->counters[i].max);
   1206     }
   1207 }
   1208 #endif
   1209 
   1210 /************************************************************************
   1211  *									*
   1212  *		 Finite Automata structures manipulations		*
   1213  *									*
   1214  ************************************************************************/
   1215 
   1216 static void
   1217 xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
   1218 	           int neg, xmlRegAtomType type, int start, int end,
   1219 		   xmlChar *blockName) {
   1220     xmlRegRangePtr range;
   1221 
   1222     if (atom == NULL) {
   1223 	ERROR("add range: atom is NULL");
   1224 	return;
   1225     }
   1226     if (atom->type != XML_REGEXP_RANGES) {
   1227 	ERROR("add range: atom is not ranges");
   1228 	return;
   1229     }
   1230     if (atom->maxRanges == 0) {
   1231 	atom->maxRanges = 4;
   1232 	atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
   1233 		                             sizeof(xmlRegRangePtr));
   1234 	if (atom->ranges == NULL) {
   1235 	    xmlRegexpErrMemory(ctxt, "adding ranges");
   1236 	    atom->maxRanges = 0;
   1237 	    return;
   1238 	}
   1239     } else if (atom->nbRanges >= atom->maxRanges) {
   1240 	xmlRegRangePtr *tmp;
   1241 	atom->maxRanges *= 2;
   1242 	tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
   1243 		                             sizeof(xmlRegRangePtr));
   1244 	if (tmp == NULL) {
   1245 	    xmlRegexpErrMemory(ctxt, "adding ranges");
   1246 	    atom->maxRanges /= 2;
   1247 	    return;
   1248 	}
   1249 	atom->ranges = tmp;
   1250     }
   1251     range = xmlRegNewRange(ctxt, neg, type, start, end);
   1252     if (range == NULL)
   1253 	return;
   1254     range->blockName = blockName;
   1255     atom->ranges[atom->nbRanges++] = range;
   1256 
   1257 }
   1258 
   1259 static int
   1260 xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
   1261     if (ctxt->maxCounters == 0) {
   1262 	ctxt->maxCounters = 4;
   1263 	ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
   1264 		                             sizeof(xmlRegCounter));
   1265 	if (ctxt->counters == NULL) {
   1266 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1267 	    ctxt->maxCounters = 0;
   1268 	    return(-1);
   1269 	}
   1270     } else if (ctxt->nbCounters >= ctxt->maxCounters) {
   1271 	xmlRegCounter *tmp;
   1272 	ctxt->maxCounters *= 2;
   1273 	tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
   1274 		                           sizeof(xmlRegCounter));
   1275 	if (tmp == NULL) {
   1276 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1277 	    ctxt->maxCounters /= 2;
   1278 	    return(-1);
   1279 	}
   1280 	ctxt->counters = tmp;
   1281     }
   1282     ctxt->counters[ctxt->nbCounters].min = -1;
   1283     ctxt->counters[ctxt->nbCounters].max = -1;
   1284     return(ctxt->nbCounters++);
   1285 }
   1286 
   1287 static int
   1288 xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
   1289     if (atom == NULL) {
   1290 	ERROR("atom push: atom is NULL");
   1291 	return(-1);
   1292     }
   1293     if (ctxt->maxAtoms == 0) {
   1294 	ctxt->maxAtoms = 4;
   1295 	ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms *
   1296 		                             sizeof(xmlRegAtomPtr));
   1297 	if (ctxt->atoms == NULL) {
   1298 	    xmlRegexpErrMemory(ctxt, "pushing atom");
   1299 	    ctxt->maxAtoms = 0;
   1300 	    return(-1);
   1301 	}
   1302     } else if (ctxt->nbAtoms >= ctxt->maxAtoms) {
   1303 	xmlRegAtomPtr *tmp;
   1304 	ctxt->maxAtoms *= 2;
   1305 	tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms *
   1306 		                             sizeof(xmlRegAtomPtr));
   1307 	if (tmp == NULL) {
   1308 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1309 	    ctxt->maxAtoms /= 2;
   1310 	    return(-1);
   1311 	}
   1312 	ctxt->atoms = tmp;
   1313     }
   1314     atom->no = ctxt->nbAtoms;
   1315     ctxt->atoms[ctxt->nbAtoms++] = atom;
   1316     return(0);
   1317 }
   1318 
   1319 static void
   1320 xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
   1321                       int from) {
   1322     if (target->maxTransTo == 0) {
   1323 	target->maxTransTo = 8;
   1324 	target->transTo = (int *) xmlMalloc(target->maxTransTo *
   1325 		                             sizeof(int));
   1326 	if (target->transTo == NULL) {
   1327 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1328 	    target->maxTransTo = 0;
   1329 	    return;
   1330 	}
   1331     } else if (target->nbTransTo >= target->maxTransTo) {
   1332 	int *tmp;
   1333 	target->maxTransTo *= 2;
   1334 	tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
   1335 		                             sizeof(int));
   1336 	if (tmp == NULL) {
   1337 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1338 	    target->maxTransTo /= 2;
   1339 	    return;
   1340 	}
   1341 	target->transTo = tmp;
   1342     }
   1343     target->transTo[target->nbTransTo] = from;
   1344     target->nbTransTo++;
   1345 }
   1346 
   1347 static void
   1348 xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
   1349 	            xmlRegAtomPtr atom, xmlRegStatePtr target,
   1350 		    int counter, int count) {
   1351 
   1352     int nrtrans;
   1353 
   1354     if (state == NULL) {
   1355 	ERROR("add state: state is NULL");
   1356 	return;
   1357     }
   1358     if (target == NULL) {
   1359 	ERROR("add state: target is NULL");
   1360 	return;
   1361     }
   1362     /*
   1363      * Other routines follow the philosophy 'When in doubt, add a transition'
   1364      * so we check here whether such a transition is already present and, if
   1365      * so, silently ignore this request.
   1366      */
   1367 
   1368     for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
   1369 	xmlRegTransPtr trans = &(state->trans[nrtrans]);
   1370 	if ((trans->atom == atom) &&
   1371 	    (trans->to == target->no) &&
   1372 	    (trans->counter == counter) &&
   1373 	    (trans->count == count)) {
   1374 #ifdef DEBUG_REGEXP_GRAPH
   1375 	    printf("Ignoring duplicate transition from %d to %d\n",
   1376 		    state->no, target->no);
   1377 #endif
   1378 	    return;
   1379 	}
   1380     }
   1381 
   1382     if (state->maxTrans == 0) {
   1383 	state->maxTrans = 8;
   1384 	state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
   1385 		                             sizeof(xmlRegTrans));
   1386 	if (state->trans == NULL) {
   1387 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1388 	    state->maxTrans = 0;
   1389 	    return;
   1390 	}
   1391     } else if (state->nbTrans >= state->maxTrans) {
   1392 	xmlRegTrans *tmp;
   1393 	state->maxTrans *= 2;
   1394 	tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
   1395 		                             sizeof(xmlRegTrans));
   1396 	if (tmp == NULL) {
   1397 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1398 	    state->maxTrans /= 2;
   1399 	    return;
   1400 	}
   1401 	state->trans = tmp;
   1402     }
   1403 #ifdef DEBUG_REGEXP_GRAPH
   1404     printf("Add trans from %d to %d ", state->no, target->no);
   1405     if (count == REGEXP_ALL_COUNTER)
   1406 	printf("all transition\n");
   1407     else if (count >= 0)
   1408 	printf("count based %d\n", count);
   1409     else if (counter >= 0)
   1410 	printf("counted %d\n", counter);
   1411     else if (atom == NULL)
   1412 	printf("epsilon transition\n");
   1413     else if (atom != NULL)
   1414         xmlRegPrintAtom(stdout, atom);
   1415 #endif
   1416 
   1417     state->trans[state->nbTrans].atom = atom;
   1418     state->trans[state->nbTrans].to = target->no;
   1419     state->trans[state->nbTrans].counter = counter;
   1420     state->trans[state->nbTrans].count = count;
   1421     state->trans[state->nbTrans].nd = 0;
   1422     state->nbTrans++;
   1423     xmlRegStateAddTransTo(ctxt, target, state->no);
   1424 }
   1425 
   1426 static int
   1427 xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
   1428     if (state == NULL) return(-1);
   1429     if (ctxt->maxStates == 0) {
   1430 	ctxt->maxStates = 4;
   1431 	ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates *
   1432 		                             sizeof(xmlRegStatePtr));
   1433 	if (ctxt->states == NULL) {
   1434 	    xmlRegexpErrMemory(ctxt, "adding state");
   1435 	    ctxt->maxStates = 0;
   1436 	    return(-1);
   1437 	}
   1438     } else if (ctxt->nbStates >= ctxt->maxStates) {
   1439 	xmlRegStatePtr *tmp;
   1440 	ctxt->maxStates *= 2;
   1441 	tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates *
   1442 		                             sizeof(xmlRegStatePtr));
   1443 	if (tmp == NULL) {
   1444 	    xmlRegexpErrMemory(ctxt, "adding state");
   1445 	    ctxt->maxStates /= 2;
   1446 	    return(-1);
   1447 	}
   1448 	ctxt->states = tmp;
   1449     }
   1450     state->no = ctxt->nbStates;
   1451     ctxt->states[ctxt->nbStates++] = state;
   1452     return(0);
   1453 }
   1454 
   1455 /**
   1456  * xmlFAGenerateAllTransition:
   1457  * @ctxt:  a regexp parser context
   1458  * @from:  the from state
   1459  * @to:  the target state or NULL for building a new one
   1460  * @lax:
   1461  *
   1462  */
   1463 static void
   1464 xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
   1465 			   xmlRegStatePtr from, xmlRegStatePtr to,
   1466 			   int lax) {
   1467     if (to == NULL) {
   1468 	to = xmlRegNewState(ctxt);
   1469 	xmlRegStatePush(ctxt, to);
   1470 	ctxt->state = to;
   1471     }
   1472     if (lax)
   1473 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
   1474     else
   1475 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
   1476 }
   1477 
   1478 /**
   1479  * xmlFAGenerateEpsilonTransition:
   1480  * @ctxt:  a regexp parser context
   1481  * @from:  the from state
   1482  * @to:  the target state or NULL for building a new one
   1483  *
   1484  */
   1485 static void
   1486 xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
   1487 			       xmlRegStatePtr from, xmlRegStatePtr to) {
   1488     if (to == NULL) {
   1489 	to = xmlRegNewState(ctxt);
   1490 	xmlRegStatePush(ctxt, to);
   1491 	ctxt->state = to;
   1492     }
   1493     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
   1494 }
   1495 
   1496 /**
   1497  * xmlFAGenerateCountedEpsilonTransition:
   1498  * @ctxt:  a regexp parser context
   1499  * @from:  the from state
   1500  * @to:  the target state or NULL for building a new one
   1501  * counter:  the counter for that transition
   1502  *
   1503  */
   1504 static void
   1505 xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
   1506 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
   1507     if (to == NULL) {
   1508 	to = xmlRegNewState(ctxt);
   1509 	xmlRegStatePush(ctxt, to);
   1510 	ctxt->state = to;
   1511     }
   1512     xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
   1513 }
   1514 
   1515 /**
   1516  * xmlFAGenerateCountedTransition:
   1517  * @ctxt:  a regexp parser context
   1518  * @from:  the from state
   1519  * @to:  the target state or NULL for building a new one
   1520  * counter:  the counter for that transition
   1521  *
   1522  */
   1523 static void
   1524 xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
   1525 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
   1526     if (to == NULL) {
   1527 	to = xmlRegNewState(ctxt);
   1528 	xmlRegStatePush(ctxt, to);
   1529 	ctxt->state = to;
   1530     }
   1531     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
   1532 }
   1533 
   1534 /**
   1535  * xmlFAGenerateTransitions:
   1536  * @ctxt:  a regexp parser context
   1537  * @from:  the from state
   1538  * @to:  the target state or NULL for building a new one
   1539  * @atom:  the atom generating the transition
   1540  *
   1541  * Returns 0 if success and -1 in case of error.
   1542  */
   1543 static int
   1544 xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
   1545 	                 xmlRegStatePtr to, xmlRegAtomPtr atom) {
   1546     xmlRegStatePtr end;
   1547 
   1548     if (atom == NULL) {
   1549 	ERROR("genrate transition: atom == NULL");
   1550 	return(-1);
   1551     }
   1552     if (atom->type == XML_REGEXP_SUBREG) {
   1553 	/*
   1554 	 * this is a subexpression handling one should not need to
   1555 	 * create a new node except for XML_REGEXP_QUANT_RANGE.
   1556 	 */
   1557 	if (xmlRegAtomPush(ctxt, atom) < 0) {
   1558 	    return(-1);
   1559 	}
   1560 	if ((to != NULL) && (atom->stop != to) &&
   1561 	    (atom->quant != XML_REGEXP_QUANT_RANGE)) {
   1562 	    /*
   1563 	     * Generate an epsilon transition to link to the target
   1564 	     */
   1565 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
   1566 #ifdef DV
   1567 	} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
   1568 		   (atom->quant != XML_REGEXP_QUANT_ONCE)) {
   1569 	    to = xmlRegNewState(ctxt);
   1570 	    xmlRegStatePush(ctxt, to);
   1571 	    ctxt->state = to;
   1572 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
   1573 #endif
   1574 	}
   1575 	switch (atom->quant) {
   1576 	    case XML_REGEXP_QUANT_OPT:
   1577 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1578 		/*
   1579 		 * transition done to the state after end of atom.
   1580 		 *      1. set transition from atom start to new state
   1581 		 *      2. set transition from atom end to this state.
   1582 		 */
   1583                 if (to == NULL) {
   1584                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
   1585                     xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
   1586                                                    ctxt->state);
   1587                 } else {
   1588                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
   1589                 }
   1590 		break;
   1591 	    case XML_REGEXP_QUANT_MULT:
   1592 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1593 		xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
   1594 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
   1595 		break;
   1596 	    case XML_REGEXP_QUANT_PLUS:
   1597 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1598 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
   1599 		break;
   1600 	    case XML_REGEXP_QUANT_RANGE: {
   1601 		int counter;
   1602 		xmlRegStatePtr inter, newstate;
   1603 
   1604 		/*
   1605 		 * create the final state now if needed
   1606 		 */
   1607 		if (to != NULL) {
   1608 		    newstate = to;
   1609 		} else {
   1610 		    newstate = xmlRegNewState(ctxt);
   1611 		    xmlRegStatePush(ctxt, newstate);
   1612 		}
   1613 
   1614 		/*
   1615 		 * The principle here is to use counted transition
   1616 		 * to avoid explosion in the number of states in the
   1617 		 * graph. This is clearly more complex but should not
   1618 		 * be exploitable at runtime.
   1619 		 */
   1620 		if ((atom->min == 0) && (atom->start0 == NULL)) {
   1621 		    xmlRegAtomPtr copy;
   1622 		    /*
   1623 		     * duplicate a transition based on atom to count next
   1624 		     * occurences after 1. We cannot loop to atom->start
   1625 		     * directly because we need an epsilon transition to
   1626 		     * newstate.
   1627 		     */
   1628 		     /* ???? For some reason it seems we never reach that
   1629 		        case, I suppose this got optimized out before when
   1630 			building the automata */
   1631 		    copy = xmlRegCopyAtom(ctxt, atom);
   1632 		    if (copy == NULL)
   1633 		        return(-1);
   1634 		    copy->quant = XML_REGEXP_QUANT_ONCE;
   1635 		    copy->min = 0;
   1636 		    copy->max = 0;
   1637 
   1638 		    if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
   1639 		        < 0)
   1640 			return(-1);
   1641 		    inter = ctxt->state;
   1642 		    counter = xmlRegGetCounter(ctxt);
   1643 		    ctxt->counters[counter].min = atom->min - 1;
   1644 		    ctxt->counters[counter].max = atom->max - 1;
   1645 		    /* count the number of times we see it again */
   1646 		    xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
   1647 						   atom->stop, counter);
   1648 		    /* allow a way out based on the count */
   1649 		    xmlFAGenerateCountedTransition(ctxt, inter,
   1650 			                           newstate, counter);
   1651 		    /* and also allow a direct exit for 0 */
   1652 		    xmlFAGenerateEpsilonTransition(ctxt, atom->start,
   1653 		                                   newstate);
   1654 		} else {
   1655 		    /*
   1656 		     * either we need the atom at least once or there
   1657 		     * is an atom->start0 allowing to easilly plug the
   1658 		     * epsilon transition.
   1659 		     */
   1660 		    counter = xmlRegGetCounter(ctxt);
   1661 		    ctxt->counters[counter].min = atom->min - 1;
   1662 		    ctxt->counters[counter].max = atom->max - 1;
   1663 		    /* count the number of times we see it again */
   1664 		    xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
   1665 						   atom->start, counter);
   1666 		    /* allow a way out based on the count */
   1667 		    xmlFAGenerateCountedTransition(ctxt, atom->stop,
   1668 			                           newstate, counter);
   1669 		    /* and if needed allow a direct exit for 0 */
   1670 		    if (atom->min == 0)
   1671 			xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
   1672 						       newstate);
   1673 
   1674 		}
   1675 		atom->min = 0;
   1676 		atom->max = 0;
   1677 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1678 		ctxt->state = newstate;
   1679 	    }
   1680 	    default:
   1681 		break;
   1682 	}
   1683 	return(0);
   1684     }
   1685     if ((atom->min == 0) && (atom->max == 0) &&
   1686                (atom->quant == XML_REGEXP_QUANT_RANGE)) {
   1687         /*
   1688 	 * we can discard the atom and generate an epsilon transition instead
   1689 	 */
   1690 	if (to == NULL) {
   1691 	    to = xmlRegNewState(ctxt);
   1692 	    if (to != NULL)
   1693 		xmlRegStatePush(ctxt, to);
   1694 	    else {
   1695 		return(-1);
   1696 	    }
   1697 	}
   1698 	xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1699 	ctxt->state = to;
   1700 	xmlRegFreeAtom(atom);
   1701 	return(0);
   1702     }
   1703     if (to == NULL) {
   1704 	to = xmlRegNewState(ctxt);
   1705 	if (to != NULL)
   1706 	    xmlRegStatePush(ctxt, to);
   1707 	else {
   1708 	    return(-1);
   1709 	}
   1710     }
   1711     end = to;
   1712     if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
   1713         (atom->quant == XML_REGEXP_QUANT_PLUS)) {
   1714 	/*
   1715 	 * Do not pollute the target state by adding transitions from
   1716 	 * it as it is likely to be the shared target of multiple branches.
   1717 	 * So isolate with an epsilon transition.
   1718 	 */
   1719         xmlRegStatePtr tmp;
   1720 
   1721 	tmp = xmlRegNewState(ctxt);
   1722 	if (tmp != NULL)
   1723 	    xmlRegStatePush(ctxt, tmp);
   1724 	else {
   1725 	    return(-1);
   1726 	}
   1727 	xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
   1728 	to = tmp;
   1729     }
   1730     if (xmlRegAtomPush(ctxt, atom) < 0) {
   1731 	return(-1);
   1732     }
   1733     xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
   1734     ctxt->state = end;
   1735     switch (atom->quant) {
   1736 	case XML_REGEXP_QUANT_OPT:
   1737 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1738 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1739 	    break;
   1740 	case XML_REGEXP_QUANT_MULT:
   1741 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1742 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1743 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
   1744 	    break;
   1745 	case XML_REGEXP_QUANT_PLUS:
   1746 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1747 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
   1748 	    break;
   1749 	case XML_REGEXP_QUANT_RANGE:
   1750 #if DV_test
   1751 	    if (atom->min == 0) {
   1752 		xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1753 	    }
   1754 #endif
   1755 	    break;
   1756 	default:
   1757 	    break;
   1758     }
   1759     return(0);
   1760 }
   1761 
   1762 /**
   1763  * xmlFAReduceEpsilonTransitions:
   1764  * @ctxt:  a regexp parser context
   1765  * @fromnr:  the from state
   1766  * @tonr:  the to state
   1767  * @counter:  should that transition be associated to a counted
   1768  *
   1769  */
   1770 static void
   1771 xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
   1772 	                      int tonr, int counter) {
   1773     int transnr;
   1774     xmlRegStatePtr from;
   1775     xmlRegStatePtr to;
   1776 
   1777 #ifdef DEBUG_REGEXP_GRAPH
   1778     printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr);
   1779 #endif
   1780     from = ctxt->states[fromnr];
   1781     if (from == NULL)
   1782 	return;
   1783     to = ctxt->states[tonr];
   1784     if (to == NULL)
   1785 	return;
   1786     if ((to->mark == XML_REGEXP_MARK_START) ||
   1787 	(to->mark == XML_REGEXP_MARK_VISITED))
   1788 	return;
   1789 
   1790     to->mark = XML_REGEXP_MARK_VISITED;
   1791     if (to->type == XML_REGEXP_FINAL_STATE) {
   1792 #ifdef DEBUG_REGEXP_GRAPH
   1793 	printf("State %d is final, so %d becomes final\n", tonr, fromnr);
   1794 #endif
   1795 	from->type = XML_REGEXP_FINAL_STATE;
   1796     }
   1797     for (transnr = 0;transnr < to->nbTrans;transnr++) {
   1798         if (to->trans[transnr].to < 0)
   1799 	    continue;
   1800 	if (to->trans[transnr].atom == NULL) {
   1801 	    /*
   1802 	     * Don't remove counted transitions
   1803 	     * Don't loop either
   1804 	     */
   1805 	    if (to->trans[transnr].to != fromnr) {
   1806 		if (to->trans[transnr].count >= 0) {
   1807 		    int newto = to->trans[transnr].to;
   1808 
   1809 		    xmlRegStateAddTrans(ctxt, from, NULL,
   1810 					ctxt->states[newto],
   1811 					-1, to->trans[transnr].count);
   1812 		} else {
   1813 #ifdef DEBUG_REGEXP_GRAPH
   1814 		    printf("Found epsilon trans %d from %d to %d\n",
   1815 			   transnr, tonr, to->trans[transnr].to);
   1816 #endif
   1817 		    if (to->trans[transnr].counter >= 0) {
   1818 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
   1819 					      to->trans[transnr].to,
   1820 					      to->trans[transnr].counter);
   1821 		    } else {
   1822 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
   1823 					      to->trans[transnr].to,
   1824 					      counter);
   1825 		    }
   1826 		}
   1827 	    }
   1828 	} else {
   1829 	    int newto = to->trans[transnr].to;
   1830 
   1831 	    if (to->trans[transnr].counter >= 0) {
   1832 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
   1833 				    ctxt->states[newto],
   1834 				    to->trans[transnr].counter, -1);
   1835 	    } else {
   1836 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
   1837 				    ctxt->states[newto], counter, -1);
   1838 	    }
   1839 	}
   1840     }
   1841     to->mark = XML_REGEXP_MARK_NORMAL;
   1842 }
   1843 
   1844 /**
   1845  * xmlFAEliminateSimpleEpsilonTransitions:
   1846  * @ctxt:  a regexp parser context
   1847  *
   1848  * Eliminating general epsilon transitions can get costly in the general
   1849  * algorithm due to the large amount of generated new transitions and
   1850  * associated comparisons. However for simple epsilon transition used just
   1851  * to separate building blocks when generating the automata this can be
   1852  * reduced to state elimination:
   1853  *    - if there exists an epsilon from X to Y
   1854  *    - if there is no other transition from X
   1855  * then X and Y are semantically equivalent and X can be eliminated
   1856  * If X is the start state then make Y the start state, else replace the
   1857  * target of all transitions to X by transitions to Y.
   1858  */
   1859 static void
   1860 xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
   1861     int statenr, i, j, newto;
   1862     xmlRegStatePtr state, tmp;
   1863 
   1864     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   1865 	state = ctxt->states[statenr];
   1866 	if (state == NULL)
   1867 	    continue;
   1868 	if (state->nbTrans != 1)
   1869 	    continue;
   1870 	if (state->type == XML_REGEXP_UNREACH_STATE)
   1871 	    continue;
   1872 	/* is the only transition out a basic transition */
   1873 	if ((state->trans[0].atom == NULL) &&
   1874 	    (state->trans[0].to >= 0) &&
   1875 	    (state->trans[0].to != statenr) &&
   1876 	    (state->trans[0].counter < 0) &&
   1877 	    (state->trans[0].count < 0)) {
   1878 	    newto = state->trans[0].to;
   1879 
   1880             if (state->type == XML_REGEXP_START_STATE) {
   1881 #ifdef DEBUG_REGEXP_GRAPH
   1882 		printf("Found simple epsilon trans from start %d to %d\n",
   1883 		       statenr, newto);
   1884 #endif
   1885             } else {
   1886 #ifdef DEBUG_REGEXP_GRAPH
   1887 		printf("Found simple epsilon trans from %d to %d\n",
   1888 		       statenr, newto);
   1889 #endif
   1890 	        for (i = 0;i < state->nbTransTo;i++) {
   1891 		    tmp = ctxt->states[state->transTo[i]];
   1892 		    for (j = 0;j < tmp->nbTrans;j++) {
   1893 			if (tmp->trans[j].to == statenr) {
   1894 #ifdef DEBUG_REGEXP_GRAPH
   1895 			    printf("Changed transition %d on %d to go to %d\n",
   1896 				   j, tmp->no, newto);
   1897 #endif
   1898 			    tmp->trans[j].to = -1;
   1899 			    xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
   1900 						ctxt->states[newto],
   1901 					        tmp->trans[j].counter,
   1902 						tmp->trans[j].count);
   1903 			}
   1904 		    }
   1905 		}
   1906 		if (state->type == XML_REGEXP_FINAL_STATE)
   1907 		    ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
   1908 		/* eliminate the transition completely */
   1909 		state->nbTrans = 0;
   1910 
   1911                 state->type = XML_REGEXP_UNREACH_STATE;
   1912 
   1913 	    }
   1914 
   1915 	}
   1916     }
   1917 }
   1918 /**
   1919  * xmlFAEliminateEpsilonTransitions:
   1920  * @ctxt:  a regexp parser context
   1921  *
   1922  */
   1923 static void
   1924 xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
   1925     int statenr, transnr;
   1926     xmlRegStatePtr state;
   1927     int has_epsilon;
   1928 
   1929     if (ctxt->states == NULL) return;
   1930 
   1931     /*
   1932      * Eliminate simple epsilon transition and the associated unreachable
   1933      * states.
   1934      */
   1935     xmlFAEliminateSimpleEpsilonTransitions(ctxt);
   1936     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   1937 	state = ctxt->states[statenr];
   1938 	if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
   1939 #ifdef DEBUG_REGEXP_GRAPH
   1940 	    printf("Removed unreachable state %d\n", statenr);
   1941 #endif
   1942 	    xmlRegFreeState(state);
   1943 	    ctxt->states[statenr] = NULL;
   1944 	}
   1945     }
   1946 
   1947     has_epsilon = 0;
   1948 
   1949     /*
   1950      * Build the completed transitions bypassing the epsilons
   1951      * Use a marking algorithm to avoid loops
   1952      * Mark sink states too.
   1953      * Process from the latests states backward to the start when
   1954      * there is long cascading epsilon chains this minimize the
   1955      * recursions and transition compares when adding the new ones
   1956      */
   1957     for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
   1958 	state = ctxt->states[statenr];
   1959 	if (state == NULL)
   1960 	    continue;
   1961 	if ((state->nbTrans == 0) &&
   1962 	    (state->type != XML_REGEXP_FINAL_STATE)) {
   1963 	    state->type = XML_REGEXP_SINK_STATE;
   1964 	}
   1965 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   1966 	    if ((state->trans[transnr].atom == NULL) &&
   1967 		(state->trans[transnr].to >= 0)) {
   1968 		if (state->trans[transnr].to == statenr) {
   1969 		    state->trans[transnr].to = -1;
   1970 #ifdef DEBUG_REGEXP_GRAPH
   1971 		    printf("Removed loopback epsilon trans %d on %d\n",
   1972 			   transnr, statenr);
   1973 #endif
   1974 		} else if (state->trans[transnr].count < 0) {
   1975 		    int newto = state->trans[transnr].to;
   1976 
   1977 #ifdef DEBUG_REGEXP_GRAPH
   1978 		    printf("Found epsilon trans %d from %d to %d\n",
   1979 			   transnr, statenr, newto);
   1980 #endif
   1981 		    has_epsilon = 1;
   1982 		    state->trans[transnr].to = -2;
   1983 		    state->mark = XML_REGEXP_MARK_START;
   1984 		    xmlFAReduceEpsilonTransitions(ctxt, statenr,
   1985 				      newto, state->trans[transnr].counter);
   1986 		    state->mark = XML_REGEXP_MARK_NORMAL;
   1987 #ifdef DEBUG_REGEXP_GRAPH
   1988 		} else {
   1989 		    printf("Found counted transition %d on %d\n",
   1990 			   transnr, statenr);
   1991 #endif
   1992 	        }
   1993 	    }
   1994 	}
   1995     }
   1996     /*
   1997      * Eliminate the epsilon transitions
   1998      */
   1999     if (has_epsilon) {
   2000 	for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2001 	    state = ctxt->states[statenr];
   2002 	    if (state == NULL)
   2003 		continue;
   2004 	    for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2005 		xmlRegTransPtr trans = &(state->trans[transnr]);
   2006 		if ((trans->atom == NULL) &&
   2007 		    (trans->count < 0) &&
   2008 		    (trans->to >= 0)) {
   2009 		    trans->to = -1;
   2010 		}
   2011 	    }
   2012 	}
   2013     }
   2014 
   2015     /*
   2016      * Use this pass to detect unreachable states too
   2017      */
   2018     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2019 	state = ctxt->states[statenr];
   2020 	if (state != NULL)
   2021 	    state->reached = XML_REGEXP_MARK_NORMAL;
   2022     }
   2023     state = ctxt->states[0];
   2024     if (state != NULL)
   2025 	state->reached = XML_REGEXP_MARK_START;
   2026     while (state != NULL) {
   2027 	xmlRegStatePtr target = NULL;
   2028 	state->reached = XML_REGEXP_MARK_VISITED;
   2029 	/*
   2030 	 * Mark all states reachable from the current reachable state
   2031 	 */
   2032 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2033 	    if ((state->trans[transnr].to >= 0) &&
   2034 		((state->trans[transnr].atom != NULL) ||
   2035 		 (state->trans[transnr].count >= 0))) {
   2036 		int newto = state->trans[transnr].to;
   2037 
   2038 		if (ctxt->states[newto] == NULL)
   2039 		    continue;
   2040 		if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
   2041 		    ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
   2042 		    target = ctxt->states[newto];
   2043 		}
   2044 	    }
   2045 	}
   2046 
   2047 	/*
   2048 	 * find the next accessible state not explored
   2049 	 */
   2050 	if (target == NULL) {
   2051 	    for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
   2052 		state = ctxt->states[statenr];
   2053 		if ((state != NULL) && (state->reached ==
   2054 			XML_REGEXP_MARK_START)) {
   2055 		    target = state;
   2056 		    break;
   2057 		}
   2058 	    }
   2059 	}
   2060 	state = target;
   2061     }
   2062     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2063 	state = ctxt->states[statenr];
   2064 	if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
   2065 #ifdef DEBUG_REGEXP_GRAPH
   2066 	    printf("Removed unreachable state %d\n", statenr);
   2067 #endif
   2068 	    xmlRegFreeState(state);
   2069 	    ctxt->states[statenr] = NULL;
   2070 	}
   2071     }
   2072 
   2073 }
   2074 
   2075 static int
   2076 xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
   2077     int ret = 0;
   2078 
   2079     if ((range1->type == XML_REGEXP_RANGES) ||
   2080         (range2->type == XML_REGEXP_RANGES) ||
   2081         (range2->type == XML_REGEXP_SUBREG) ||
   2082         (range1->type == XML_REGEXP_SUBREG) ||
   2083         (range1->type == XML_REGEXP_STRING) ||
   2084         (range2->type == XML_REGEXP_STRING))
   2085 	return(-1);
   2086 
   2087     /* put them in order */
   2088     if (range1->type > range2->type) {
   2089         xmlRegRangePtr tmp;
   2090 
   2091 	tmp = range1;
   2092 	range1 = range2;
   2093 	range2 = tmp;
   2094     }
   2095     if ((range1->type == XML_REGEXP_ANYCHAR) ||
   2096         (range2->type == XML_REGEXP_ANYCHAR)) {
   2097 	ret = 1;
   2098     } else if ((range1->type == XML_REGEXP_EPSILON) ||
   2099                (range2->type == XML_REGEXP_EPSILON)) {
   2100 	return(0);
   2101     } else if (range1->type == range2->type) {
   2102         if (range1->type != XML_REGEXP_CHARVAL)
   2103             ret = 1;
   2104         else if ((range1->end < range2->start) ||
   2105 	         (range2->end < range1->start))
   2106 	    ret = 0;
   2107 	else
   2108 	    ret = 1;
   2109     } else if (range1->type == XML_REGEXP_CHARVAL) {
   2110         int codepoint;
   2111 	int neg = 0;
   2112 
   2113 	/*
   2114 	 * just check all codepoints in the range for acceptance,
   2115 	 * this is usually way cheaper since done only once at
   2116 	 * compilation than testing over and over at runtime or
   2117 	 * pushing too many states when evaluating.
   2118 	 */
   2119 	if (((range1->neg == 0) && (range2->neg != 0)) ||
   2120 	    ((range1->neg != 0) && (range2->neg == 0)))
   2121 	    neg = 1;
   2122 
   2123 	for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
   2124 	    ret = xmlRegCheckCharacterRange(range2->type, codepoint,
   2125 					    0, range2->start, range2->end,
   2126 					    range2->blockName);
   2127 	    if (ret < 0)
   2128 	        return(-1);
   2129 	    if (((neg == 1) && (ret == 0)) ||
   2130 	        ((neg == 0) && (ret == 1)))
   2131 		return(1);
   2132 	}
   2133 	return(0);
   2134     } else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
   2135                (range2->type == XML_REGEXP_BLOCK_NAME)) {
   2136 	if (range1->type == range2->type) {
   2137 	    ret = xmlStrEqual(range1->blockName, range2->blockName);
   2138 	} else {
   2139 	    /*
   2140 	     * comparing a block range with anything else is way
   2141 	     * too costly, and maintining the table is like too much
   2142 	     * memory too, so let's force the automata to save state
   2143 	     * here.
   2144 	     */
   2145 	    return(1);
   2146 	}
   2147     } else if ((range1->type < XML_REGEXP_LETTER) ||
   2148                (range2->type < XML_REGEXP_LETTER)) {
   2149 	if ((range1->type == XML_REGEXP_ANYSPACE) &&
   2150 	    (range2->type == XML_REGEXP_NOTSPACE))
   2151 	    ret = 0;
   2152 	else if ((range1->type == XML_REGEXP_INITNAME) &&
   2153 	         (range2->type == XML_REGEXP_NOTINITNAME))
   2154 	    ret = 0;
   2155 	else if ((range1->type == XML_REGEXP_NAMECHAR) &&
   2156 	         (range2->type == XML_REGEXP_NOTNAMECHAR))
   2157 	    ret = 0;
   2158 	else if ((range1->type == XML_REGEXP_DECIMAL) &&
   2159 	         (range2->type == XML_REGEXP_NOTDECIMAL))
   2160 	    ret = 0;
   2161 	else if ((range1->type == XML_REGEXP_REALCHAR) &&
   2162 	         (range2->type == XML_REGEXP_NOTREALCHAR))
   2163 	    ret = 0;
   2164 	else {
   2165 	    /* same thing to limit complexity */
   2166 	    return(1);
   2167 	}
   2168     } else {
   2169         ret = 0;
   2170         /* range1->type < range2->type here */
   2171         switch (range1->type) {
   2172 	    case XML_REGEXP_LETTER:
   2173 	         /* all disjoint except in the subgroups */
   2174 	         if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
   2175 		     (range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
   2176 		     (range2->type == XML_REGEXP_LETTER_TITLECASE) ||
   2177 		     (range2->type == XML_REGEXP_LETTER_MODIFIER) ||
   2178 		     (range2->type == XML_REGEXP_LETTER_OTHERS))
   2179 		     ret = 1;
   2180 		 break;
   2181 	    case XML_REGEXP_MARK:
   2182 	         if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
   2183 		     (range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
   2184 		     (range2->type == XML_REGEXP_MARK_ENCLOSING))
   2185 		     ret = 1;
   2186 		 break;
   2187 	    case XML_REGEXP_NUMBER:
   2188 	         if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
   2189 		     (range2->type == XML_REGEXP_NUMBER_LETTER) ||
   2190 		     (range2->type == XML_REGEXP_NUMBER_OTHERS))
   2191 		     ret = 1;
   2192 		 break;
   2193 	    case XML_REGEXP_PUNCT:
   2194 	         if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
   2195 		     (range2->type == XML_REGEXP_PUNCT_DASH) ||
   2196 		     (range2->type == XML_REGEXP_PUNCT_OPEN) ||
   2197 		     (range2->type == XML_REGEXP_PUNCT_CLOSE) ||
   2198 		     (range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
   2199 		     (range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
   2200 		     (range2->type == XML_REGEXP_PUNCT_OTHERS))
   2201 		     ret = 1;
   2202 		 break;
   2203 	    case XML_REGEXP_SEPAR:
   2204 	         if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
   2205 		     (range2->type == XML_REGEXP_SEPAR_LINE) ||
   2206 		     (range2->type == XML_REGEXP_SEPAR_PARA))
   2207 		     ret = 1;
   2208 		 break;
   2209 	    case XML_REGEXP_SYMBOL:
   2210 	         if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
   2211 		     (range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
   2212 		     (range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
   2213 		     (range2->type == XML_REGEXP_SYMBOL_OTHERS))
   2214 		     ret = 1;
   2215 		 break;
   2216 	    case XML_REGEXP_OTHER:
   2217 	         if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
   2218 		     (range2->type == XML_REGEXP_OTHER_FORMAT) ||
   2219 		     (range2->type == XML_REGEXP_OTHER_PRIVATE))
   2220 		     ret = 1;
   2221 		 break;
   2222             default:
   2223 	         if ((range2->type >= XML_REGEXP_LETTER) &&
   2224 		     (range2->type < XML_REGEXP_BLOCK_NAME))
   2225 		     ret = 0;
   2226 		 else {
   2227 		     /* safety net ! */
   2228 		     return(1);
   2229 		 }
   2230 	}
   2231     }
   2232     if (((range1->neg == 0) && (range2->neg != 0)) ||
   2233         ((range1->neg != 0) && (range2->neg == 0)))
   2234 	ret = !ret;
   2235     return(ret);
   2236 }
   2237 
   2238 /**
   2239  * xmlFACompareAtomTypes:
   2240  * @type1:  an atom type
   2241  * @type2:  an atom type
   2242  *
   2243  * Compares two atoms type to check whether they intersect in some ways,
   2244  * this is used by xmlFACompareAtoms only
   2245  *
   2246  * Returns 1 if they may intersect and 0 otherwise
   2247  */
   2248 static int
   2249 xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
   2250     if ((type1 == XML_REGEXP_EPSILON) ||
   2251         (type1 == XML_REGEXP_CHARVAL) ||
   2252 	(type1 == XML_REGEXP_RANGES) ||
   2253 	(type1 == XML_REGEXP_SUBREG) ||
   2254 	(type1 == XML_REGEXP_STRING) ||
   2255 	(type1 == XML_REGEXP_ANYCHAR))
   2256 	return(1);
   2257     if ((type2 == XML_REGEXP_EPSILON) ||
   2258         (type2 == XML_REGEXP_CHARVAL) ||
   2259 	(type2 == XML_REGEXP_RANGES) ||
   2260 	(type2 == XML_REGEXP_SUBREG) ||
   2261 	(type2 == XML_REGEXP_STRING) ||
   2262 	(type2 == XML_REGEXP_ANYCHAR))
   2263 	return(1);
   2264 
   2265     if (type1 == type2) return(1);
   2266 
   2267     /* simplify subsequent compares by making sure type1 < type2 */
   2268     if (type1 > type2) {
   2269         xmlRegAtomType tmp = type1;
   2270 	type1 = type2;
   2271 	type2 = tmp;
   2272     }
   2273     switch (type1) {
   2274         case XML_REGEXP_ANYSPACE: /* \s */
   2275 	    /* can't be a letter, number, mark, pontuation, symbol */
   2276 	    if ((type2 == XML_REGEXP_NOTSPACE) ||
   2277 		((type2 >= XML_REGEXP_LETTER) &&
   2278 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
   2279 	        ((type2 >= XML_REGEXP_NUMBER) &&
   2280 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
   2281 	        ((type2 >= XML_REGEXP_MARK) &&
   2282 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2283 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2284 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2285 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2286 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS))
   2287 	        ) return(0);
   2288 	    break;
   2289         case XML_REGEXP_NOTSPACE: /* \S */
   2290 	    break;
   2291         case XML_REGEXP_INITNAME: /* \l */
   2292 	    /* can't be a number, mark, separator, pontuation, symbol or other */
   2293 	    if ((type2 == XML_REGEXP_NOTINITNAME) ||
   2294 	        ((type2 >= XML_REGEXP_NUMBER) &&
   2295 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
   2296 	        ((type2 >= XML_REGEXP_MARK) &&
   2297 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2298 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2299 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2300 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2301 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2302 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2303 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2304 	        ((type2 >= XML_REGEXP_OTHER) &&
   2305 		 (type2 <= XML_REGEXP_OTHER_NA))
   2306 		) return(0);
   2307 	    break;
   2308         case XML_REGEXP_NOTINITNAME: /* \L */
   2309 	    break;
   2310         case XML_REGEXP_NAMECHAR: /* \c */
   2311 	    /* can't be a mark, separator, pontuation, symbol or other */
   2312 	    if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
   2313 	        ((type2 >= XML_REGEXP_MARK) &&
   2314 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2315 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2316 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2317 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2318 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2319 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2320 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2321 	        ((type2 >= XML_REGEXP_OTHER) &&
   2322 		 (type2 <= XML_REGEXP_OTHER_NA))
   2323 		) return(0);
   2324 	    break;
   2325         case XML_REGEXP_NOTNAMECHAR: /* \C */
   2326 	    break;
   2327         case XML_REGEXP_DECIMAL: /* \d */
   2328 	    /* can't be a letter, mark, separator, pontuation, symbol or other */
   2329 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
   2330 	        (type2 == XML_REGEXP_REALCHAR) ||
   2331 		((type2 >= XML_REGEXP_LETTER) &&
   2332 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
   2333 	        ((type2 >= XML_REGEXP_MARK) &&
   2334 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2335 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2336 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2337 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2338 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2339 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2340 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2341 	        ((type2 >= XML_REGEXP_OTHER) &&
   2342 		 (type2 <= XML_REGEXP_OTHER_NA))
   2343 		)return(0);
   2344 	    break;
   2345         case XML_REGEXP_NOTDECIMAL: /* \D */
   2346 	    break;
   2347         case XML_REGEXP_REALCHAR: /* \w */
   2348 	    /* can't be a mark, separator, pontuation, symbol or other */
   2349 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
   2350 	        ((type2 >= XML_REGEXP_MARK) &&
   2351 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2352 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2353 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2354 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2355 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2356 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2357 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2358 	        ((type2 >= XML_REGEXP_OTHER) &&
   2359 		 (type2 <= XML_REGEXP_OTHER_NA))
   2360 		)return(0);
   2361 	    break;
   2362         case XML_REGEXP_NOTREALCHAR: /* \W */
   2363 	    break;
   2364 	/*
   2365 	 * at that point we know both type 1 and type2 are from
   2366 	 * character categories are ordered and are different,
   2367 	 * it becomes simple because this is a partition
   2368 	 */
   2369         case XML_REGEXP_LETTER:
   2370 	    if (type2 <= XML_REGEXP_LETTER_OTHERS)
   2371 	        return(1);
   2372 	    return(0);
   2373         case XML_REGEXP_LETTER_UPPERCASE:
   2374         case XML_REGEXP_LETTER_LOWERCASE:
   2375         case XML_REGEXP_LETTER_TITLECASE:
   2376         case XML_REGEXP_LETTER_MODIFIER:
   2377         case XML_REGEXP_LETTER_OTHERS:
   2378 	    return(0);
   2379         case XML_REGEXP_MARK:
   2380 	    if (type2 <= XML_REGEXP_MARK_ENCLOSING)
   2381 	        return(1);
   2382 	    return(0);
   2383         case XML_REGEXP_MARK_NONSPACING:
   2384         case XML_REGEXP_MARK_SPACECOMBINING:
   2385         case XML_REGEXP_MARK_ENCLOSING:
   2386 	    return(0);
   2387         case XML_REGEXP_NUMBER:
   2388 	    if (type2 <= XML_REGEXP_NUMBER_OTHERS)
   2389 	        return(1);
   2390 	    return(0);
   2391         case XML_REGEXP_NUMBER_DECIMAL:
   2392         case XML_REGEXP_NUMBER_LETTER:
   2393         case XML_REGEXP_NUMBER_OTHERS:
   2394 	    return(0);
   2395         case XML_REGEXP_PUNCT:
   2396 	    if (type2 <= XML_REGEXP_PUNCT_OTHERS)
   2397 	        return(1);
   2398 	    return(0);
   2399         case XML_REGEXP_PUNCT_CONNECTOR:
   2400         case XML_REGEXP_PUNCT_DASH:
   2401         case XML_REGEXP_PUNCT_OPEN:
   2402         case XML_REGEXP_PUNCT_CLOSE:
   2403         case XML_REGEXP_PUNCT_INITQUOTE:
   2404         case XML_REGEXP_PUNCT_FINQUOTE:
   2405         case XML_REGEXP_PUNCT_OTHERS:
   2406 	    return(0);
   2407         case XML_REGEXP_SEPAR:
   2408 	    if (type2 <= XML_REGEXP_SEPAR_PARA)
   2409 	        return(1);
   2410 	    return(0);
   2411         case XML_REGEXP_SEPAR_SPACE:
   2412         case XML_REGEXP_SEPAR_LINE:
   2413         case XML_REGEXP_SEPAR_PARA:
   2414 	    return(0);
   2415         case XML_REGEXP_SYMBOL:
   2416 	    if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
   2417 	        return(1);
   2418 	    return(0);
   2419         case XML_REGEXP_SYMBOL_MATH:
   2420         case XML_REGEXP_SYMBOL_CURRENCY:
   2421         case XML_REGEXP_SYMBOL_MODIFIER:
   2422         case XML_REGEXP_SYMBOL_OTHERS:
   2423 	    return(0);
   2424         case XML_REGEXP_OTHER:
   2425 	    if (type2 <= XML_REGEXP_OTHER_NA)
   2426 	        return(1);
   2427 	    return(0);
   2428         case XML_REGEXP_OTHER_CONTROL:
   2429         case XML_REGEXP_OTHER_FORMAT:
   2430         case XML_REGEXP_OTHER_PRIVATE:
   2431         case XML_REGEXP_OTHER_NA:
   2432 	    return(0);
   2433 	default:
   2434 	    break;
   2435     }
   2436     return(1);
   2437 }
   2438 
   2439 /**
   2440  * xmlFAEqualAtoms:
   2441  * @atom1:  an atom
   2442  * @atom2:  an atom
   2443  * @deep: if not set only compare string pointers
   2444  *
   2445  * Compares two atoms to check whether they are the same exactly
   2446  * this is used to remove equivalent transitions
   2447  *
   2448  * Returns 1 if same and 0 otherwise
   2449  */
   2450 static int
   2451 xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
   2452     int ret = 0;
   2453 
   2454     if (atom1 == atom2)
   2455 	return(1);
   2456     if ((atom1 == NULL) || (atom2 == NULL))
   2457 	return(0);
   2458 
   2459     if (atom1->type != atom2->type)
   2460         return(0);
   2461     switch (atom1->type) {
   2462         case XML_REGEXP_EPSILON:
   2463 	    ret = 0;
   2464 	    break;
   2465         case XML_REGEXP_STRING:
   2466             if (!deep)
   2467                 ret = (atom1->valuep == atom2->valuep);
   2468             else
   2469                 ret = xmlStrEqual((xmlChar *)atom1->valuep,
   2470                                   (xmlChar *)atom2->valuep);
   2471 	    break;
   2472         case XML_REGEXP_CHARVAL:
   2473 	    ret = (atom1->codepoint == atom2->codepoint);
   2474 	    break;
   2475 	case XML_REGEXP_RANGES:
   2476 	    /* too hard to do in the general case */
   2477 	    ret = 0;
   2478 	default:
   2479 	    break;
   2480     }
   2481     return(ret);
   2482 }
   2483 
   2484 /**
   2485  * xmlFACompareAtoms:
   2486  * @atom1:  an atom
   2487  * @atom2:  an atom
   2488  * @deep: if not set only compare string pointers
   2489  *
   2490  * Compares two atoms to check whether they intersect in some ways,
   2491  * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
   2492  *
   2493  * Returns 1 if yes and 0 otherwise
   2494  */
   2495 static int
   2496 xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
   2497     int ret = 1;
   2498 
   2499     if (atom1 == atom2)
   2500 	return(1);
   2501     if ((atom1 == NULL) || (atom2 == NULL))
   2502 	return(0);
   2503 
   2504     if ((atom1->type == XML_REGEXP_ANYCHAR) ||
   2505         (atom2->type == XML_REGEXP_ANYCHAR))
   2506 	return(1);
   2507 
   2508     if (atom1->type > atom2->type) {
   2509 	xmlRegAtomPtr tmp;
   2510 	tmp = atom1;
   2511 	atom1 = atom2;
   2512 	atom2 = tmp;
   2513     }
   2514     if (atom1->type != atom2->type) {
   2515         ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
   2516 	/* if they can't intersect at the type level break now */
   2517 	if (ret == 0)
   2518 	    return(0);
   2519     }
   2520     switch (atom1->type) {
   2521         case XML_REGEXP_STRING:
   2522             if (!deep)
   2523                 ret = (atom1->valuep != atom2->valuep);
   2524             else
   2525                 ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep,
   2526                                              (xmlChar *)atom2->valuep);
   2527 	    break;
   2528         case XML_REGEXP_EPSILON:
   2529 	    goto not_determinist;
   2530         case XML_REGEXP_CHARVAL:
   2531 	    if (atom2->type == XML_REGEXP_CHARVAL) {
   2532 		ret = (atom1->codepoint == atom2->codepoint);
   2533 	    } else {
   2534 	        ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
   2535 		if (ret < 0)
   2536 		    ret = 1;
   2537 	    }
   2538 	    break;
   2539         case XML_REGEXP_RANGES:
   2540 	    if (atom2->type == XML_REGEXP_RANGES) {
   2541 	        int i, j, res;
   2542 		xmlRegRangePtr r1, r2;
   2543 
   2544 		/*
   2545 		 * need to check that none of the ranges eventually matches
   2546 		 */
   2547 		for (i = 0;i < atom1->nbRanges;i++) {
   2548 		    for (j = 0;j < atom2->nbRanges;j++) {
   2549 			r1 = atom1->ranges[i];
   2550 			r2 = atom2->ranges[j];
   2551 			res = xmlFACompareRanges(r1, r2);
   2552 			if (res == 1) {
   2553 			    ret = 1;
   2554 			    goto done;
   2555 			}
   2556 		    }
   2557 		}
   2558 		ret = 0;
   2559 	    }
   2560 	    break;
   2561 	default:
   2562 	    goto not_determinist;
   2563     }
   2564 done:
   2565     if (atom1->neg != atom2->neg) {
   2566         ret = !ret;
   2567     }
   2568     if (ret == 0)
   2569         return(0);
   2570 not_determinist:
   2571     return(1);
   2572 }
   2573 
   2574 /**
   2575  * xmlFARecurseDeterminism:
   2576  * @ctxt:  a regexp parser context
   2577  *
   2578  * Check whether the associated regexp is determinist,
   2579  * should be called after xmlFAEliminateEpsilonTransitions()
   2580  *
   2581  */
   2582 static int
   2583 xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
   2584 	                 int to, xmlRegAtomPtr atom) {
   2585     int ret = 1;
   2586     int res;
   2587     int transnr, nbTrans;
   2588     xmlRegTransPtr t1;
   2589     int deep = 1;
   2590 
   2591     if (state == NULL)
   2592 	return(ret);
   2593     if (state->markd == XML_REGEXP_MARK_VISITED)
   2594 	return(ret);
   2595 
   2596     if (ctxt->flags & AM_AUTOMATA_RNG)
   2597         deep = 0;
   2598 
   2599     /*
   2600      * don't recurse on transitions potentially added in the course of
   2601      * the elimination.
   2602      */
   2603     nbTrans = state->nbTrans;
   2604     for (transnr = 0;transnr < nbTrans;transnr++) {
   2605 	t1 = &(state->trans[transnr]);
   2606 	/*
   2607 	 * check transitions conflicting with the one looked at
   2608 	 */
   2609 	if (t1->atom == NULL) {
   2610 	    if (t1->to < 0)
   2611 		continue;
   2612 	    state->markd = XML_REGEXP_MARK_VISITED;
   2613 	    res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
   2614 		                           to, atom);
   2615 	    state->markd = 0;
   2616 	    if (res == 0) {
   2617 	        ret = 0;
   2618 		/* t1->nd = 1; */
   2619 	    }
   2620 	    continue;
   2621 	}
   2622 	if (t1->to != to)
   2623 	    continue;
   2624 	if (xmlFACompareAtoms(t1->atom, atom, deep)) {
   2625 	    ret = 0;
   2626 	    /* mark the transition as non-deterministic */
   2627 	    t1->nd = 1;
   2628 	}
   2629     }
   2630     return(ret);
   2631 }
   2632 
   2633 /**
   2634  * xmlFAComputesDeterminism:
   2635  * @ctxt:  a regexp parser context
   2636  *
   2637  * Check whether the associated regexp is determinist,
   2638  * should be called after xmlFAEliminateEpsilonTransitions()
   2639  *
   2640  */
   2641 static int
   2642 xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
   2643     int statenr, transnr;
   2644     xmlRegStatePtr state;
   2645     xmlRegTransPtr t1, t2, last;
   2646     int i;
   2647     int ret = 1;
   2648     int deep = 1;
   2649 
   2650 #ifdef DEBUG_REGEXP_GRAPH
   2651     printf("xmlFAComputesDeterminism\n");
   2652     xmlRegPrintCtxt(stdout, ctxt);
   2653 #endif
   2654     if (ctxt->determinist != -1)
   2655 	return(ctxt->determinist);
   2656 
   2657     if (ctxt->flags & AM_AUTOMATA_RNG)
   2658         deep = 0;
   2659 
   2660     /*
   2661      * First cleanup the automata removing cancelled transitions
   2662      */
   2663     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2664 	state = ctxt->states[statenr];
   2665 	if (state == NULL)
   2666 	    continue;
   2667 	if (state->nbTrans < 2)
   2668 	    continue;
   2669 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2670 	    t1 = &(state->trans[transnr]);
   2671 	    /*
   2672 	     * Determinism checks in case of counted or all transitions
   2673 	     * will have to be handled separately
   2674 	     */
   2675 	    if (t1->atom == NULL) {
   2676 		/* t1->nd = 1; */
   2677 		continue;
   2678 	    }
   2679 	    if (t1->to == -1) /* eliminated */
   2680 		continue;
   2681 	    for (i = 0;i < transnr;i++) {
   2682 		t2 = &(state->trans[i]);
   2683 		if (t2->to == -1) /* eliminated */
   2684 		    continue;
   2685 		if (t2->atom != NULL) {
   2686 		    if (t1->to == t2->to) {
   2687                         /*
   2688                          * Here we use deep because we want to keep the
   2689                          * transitions which indicate a conflict
   2690                          */
   2691 			if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
   2692                             (t1->counter == t2->counter) &&
   2693                             (t1->count == t2->count))
   2694 			    t2->to = -1; /* eliminated */
   2695 		    }
   2696 		}
   2697 	    }
   2698 	}
   2699     }
   2700 
   2701     /*
   2702      * Check for all states that there aren't 2 transitions
   2703      * with the same atom and a different target.
   2704      */
   2705     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2706 	state = ctxt->states[statenr];
   2707 	if (state == NULL)
   2708 	    continue;
   2709 	if (state->nbTrans < 2)
   2710 	    continue;
   2711 	last = NULL;
   2712 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2713 	    t1 = &(state->trans[transnr]);
   2714 	    /*
   2715 	     * Determinism checks in case of counted or all transitions
   2716 	     * will have to be handled separately
   2717 	     */
   2718 	    if (t1->atom == NULL) {
   2719 		continue;
   2720 	    }
   2721 	    if (t1->to == -1) /* eliminated */
   2722 		continue;
   2723 	    for (i = 0;i < transnr;i++) {
   2724 		t2 = &(state->trans[i]);
   2725 		if (t2->to == -1) /* eliminated */
   2726 		    continue;
   2727 		if (t2->atom != NULL) {
   2728                     /*
   2729                      * But here we don't use deep because we want to
   2730                      * find transitions which indicate a conflict
   2731                      */
   2732 		    if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
   2733 			ret = 0;
   2734 			/* mark the transitions as non-deterministic ones */
   2735 			t1->nd = 1;
   2736 			t2->nd = 1;
   2737 			last = t1;
   2738 		    }
   2739 		} else if (t1->to != -1) {
   2740 		    /*
   2741 		     * do the closure in case of remaining specific
   2742 		     * epsilon transitions like choices or all
   2743 		     */
   2744 		    ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
   2745 						   t2->to, t2->atom);
   2746 		    /* don't shortcut the computation so all non deterministic
   2747 		       transition get marked down
   2748 		    if (ret == 0)
   2749 			return(0);
   2750 		     */
   2751 		    if (ret == 0) {
   2752 			t1->nd = 1;
   2753 			/* t2->nd = 1; */
   2754 			last = t1;
   2755 		    }
   2756 		}
   2757 	    }
   2758 	    /* don't shortcut the computation so all non deterministic
   2759 	       transition get marked down
   2760 	    if (ret == 0)
   2761 		break; */
   2762 	}
   2763 
   2764 	/*
   2765 	 * mark specifically the last non-deterministic transition
   2766 	 * from a state since there is no need to set-up rollback
   2767 	 * from it
   2768 	 */
   2769 	if (last != NULL) {
   2770 	    last->nd = 2;
   2771 	}
   2772 
   2773 	/* don't shortcut the computation so all non deterministic
   2774 	   transition get marked down
   2775 	if (ret == 0)
   2776 	    break; */
   2777     }
   2778 
   2779     ctxt->determinist = ret;
   2780     return(ret);
   2781 }
   2782 
   2783 /************************************************************************
   2784  *									*
   2785  *	Routines to check input against transition atoms		*
   2786  *									*
   2787  ************************************************************************/
   2788 
   2789 static int
   2790 xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
   2791 	                  int start, int end, const xmlChar *blockName) {
   2792     int ret = 0;
   2793 
   2794     switch (type) {
   2795         case XML_REGEXP_STRING:
   2796         case XML_REGEXP_SUBREG:
   2797         case XML_REGEXP_RANGES:
   2798         case XML_REGEXP_EPSILON:
   2799 	    return(-1);
   2800         case XML_REGEXP_ANYCHAR:
   2801 	    ret = ((codepoint != '\n') && (codepoint != '\r'));
   2802 	    break;
   2803         case XML_REGEXP_CHARVAL:
   2804 	    ret = ((codepoint >= start) && (codepoint <= end));
   2805 	    break;
   2806         case XML_REGEXP_NOTSPACE:
   2807 	    neg = !neg;
   2808         case XML_REGEXP_ANYSPACE:
   2809 	    ret = ((codepoint == '\n') || (codepoint == '\r') ||
   2810 		   (codepoint == '\t') || (codepoint == ' '));
   2811 	    break;
   2812         case XML_REGEXP_NOTINITNAME:
   2813 	    neg = !neg;
   2814         case XML_REGEXP_INITNAME:
   2815 	    ret = (IS_LETTER(codepoint) ||
   2816 		   (codepoint == '_') || (codepoint == ':'));
   2817 	    break;
   2818         case XML_REGEXP_NOTNAMECHAR:
   2819 	    neg = !neg;
   2820         case XML_REGEXP_NAMECHAR:
   2821 	    ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
   2822 		   (codepoint == '.') || (codepoint == '-') ||
   2823 		   (codepoint == '_') || (codepoint == ':') ||
   2824 		   IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
   2825 	    break;
   2826         case XML_REGEXP_NOTDECIMAL:
   2827 	    neg = !neg;
   2828         case XML_REGEXP_DECIMAL:
   2829 	    ret = xmlUCSIsCatNd(codepoint);
   2830 	    break;
   2831         case XML_REGEXP_REALCHAR:
   2832 	    neg = !neg;
   2833         case XML_REGEXP_NOTREALCHAR:
   2834 	    ret = xmlUCSIsCatP(codepoint);
   2835 	    if (ret == 0)
   2836 		ret = xmlUCSIsCatZ(codepoint);
   2837 	    if (ret == 0)
   2838 		ret = xmlUCSIsCatC(codepoint);
   2839 	    break;
   2840         case XML_REGEXP_LETTER:
   2841 	    ret = xmlUCSIsCatL(codepoint);
   2842 	    break;
   2843         case XML_REGEXP_LETTER_UPPERCASE:
   2844 	    ret = xmlUCSIsCatLu(codepoint);
   2845 	    break;
   2846         case XML_REGEXP_LETTER_LOWERCASE:
   2847 	    ret = xmlUCSIsCatLl(codepoint);
   2848 	    break;
   2849         case XML_REGEXP_LETTER_TITLECASE:
   2850 	    ret = xmlUCSIsCatLt(codepoint);
   2851 	    break;
   2852         case XML_REGEXP_LETTER_MODIFIER:
   2853 	    ret = xmlUCSIsCatLm(codepoint);
   2854 	    break;
   2855         case XML_REGEXP_LETTER_OTHERS:
   2856 	    ret = xmlUCSIsCatLo(codepoint);
   2857 	    break;
   2858         case XML_REGEXP_MARK:
   2859 	    ret = xmlUCSIsCatM(codepoint);
   2860 	    break;
   2861         case XML_REGEXP_MARK_NONSPACING:
   2862 	    ret = xmlUCSIsCatMn(codepoint);
   2863 	    break;
   2864         case XML_REGEXP_MARK_SPACECOMBINING:
   2865 	    ret = xmlUCSIsCatMc(codepoint);
   2866 	    break;
   2867         case XML_REGEXP_MARK_ENCLOSING:
   2868 	    ret = xmlUCSIsCatMe(codepoint);
   2869 	    break;
   2870         case XML_REGEXP_NUMBER:
   2871 	    ret = xmlUCSIsCatN(codepoint);
   2872 	    break;
   2873         case XML_REGEXP_NUMBER_DECIMAL:
   2874 	    ret = xmlUCSIsCatNd(codepoint);
   2875 	    break;
   2876         case XML_REGEXP_NUMBER_LETTER:
   2877 	    ret = xmlUCSIsCatNl(codepoint);
   2878 	    break;
   2879         case XML_REGEXP_NUMBER_OTHERS:
   2880 	    ret = xmlUCSIsCatNo(codepoint);
   2881 	    break;
   2882         case XML_REGEXP_PUNCT:
   2883 	    ret = xmlUCSIsCatP(codepoint);
   2884 	    break;
   2885         case XML_REGEXP_PUNCT_CONNECTOR:
   2886 	    ret = xmlUCSIsCatPc(codepoint);
   2887 	    break;
   2888         case XML_REGEXP_PUNCT_DASH:
   2889 	    ret = xmlUCSIsCatPd(codepoint);
   2890 	    break;
   2891         case XML_REGEXP_PUNCT_OPEN:
   2892 	    ret = xmlUCSIsCatPs(codepoint);
   2893 	    break;
   2894         case XML_REGEXP_PUNCT_CLOSE:
   2895 	    ret = xmlUCSIsCatPe(codepoint);
   2896 	    break;
   2897         case XML_REGEXP_PUNCT_INITQUOTE:
   2898 	    ret = xmlUCSIsCatPi(codepoint);
   2899 	    break;
   2900         case XML_REGEXP_PUNCT_FINQUOTE:
   2901 	    ret = xmlUCSIsCatPf(codepoint);
   2902 	    break;
   2903         case XML_REGEXP_PUNCT_OTHERS:
   2904 	    ret = xmlUCSIsCatPo(codepoint);
   2905 	    break;
   2906         case XML_REGEXP_SEPAR:
   2907 	    ret = xmlUCSIsCatZ(codepoint);
   2908 	    break;
   2909         case XML_REGEXP_SEPAR_SPACE:
   2910 	    ret = xmlUCSIsCatZs(codepoint);
   2911 	    break;
   2912         case XML_REGEXP_SEPAR_LINE:
   2913 	    ret = xmlUCSIsCatZl(codepoint);
   2914 	    break;
   2915         case XML_REGEXP_SEPAR_PARA:
   2916 	    ret = xmlUCSIsCatZp(codepoint);
   2917 	    break;
   2918         case XML_REGEXP_SYMBOL:
   2919 	    ret = xmlUCSIsCatS(codepoint);
   2920 	    break;
   2921         case XML_REGEXP_SYMBOL_MATH:
   2922 	    ret = xmlUCSIsCatSm(codepoint);
   2923 	    break;
   2924         case XML_REGEXP_SYMBOL_CURRENCY:
   2925 	    ret = xmlUCSIsCatSc(codepoint);
   2926 	    break;
   2927         case XML_REGEXP_SYMBOL_MODIFIER:
   2928 	    ret = xmlUCSIsCatSk(codepoint);
   2929 	    break;
   2930         case XML_REGEXP_SYMBOL_OTHERS:
   2931 	    ret = xmlUCSIsCatSo(codepoint);
   2932 	    break;
   2933         case XML_REGEXP_OTHER:
   2934 	    ret = xmlUCSIsCatC(codepoint);
   2935 	    break;
   2936         case XML_REGEXP_OTHER_CONTROL:
   2937 	    ret = xmlUCSIsCatCc(codepoint);
   2938 	    break;
   2939         case XML_REGEXP_OTHER_FORMAT:
   2940 	    ret = xmlUCSIsCatCf(codepoint);
   2941 	    break;
   2942         case XML_REGEXP_OTHER_PRIVATE:
   2943 	    ret = xmlUCSIsCatCo(codepoint);
   2944 	    break;
   2945         case XML_REGEXP_OTHER_NA:
   2946 	    /* ret = xmlUCSIsCatCn(codepoint); */
   2947 	    /* Seems it doesn't exist anymore in recent Unicode releases */
   2948 	    ret = 0;
   2949 	    break;
   2950         case XML_REGEXP_BLOCK_NAME:
   2951 	    ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
   2952 	    break;
   2953     }
   2954     if (neg)
   2955 	return(!ret);
   2956     return(ret);
   2957 }
   2958 
   2959 static int
   2960 xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
   2961     int i, ret = 0;
   2962     xmlRegRangePtr range;
   2963 
   2964     if ((atom == NULL) || (!IS_CHAR(codepoint)))
   2965 	return(-1);
   2966 
   2967     switch (atom->type) {
   2968         case XML_REGEXP_SUBREG:
   2969         case XML_REGEXP_EPSILON:
   2970 	    return(-1);
   2971         case XML_REGEXP_CHARVAL:
   2972             return(codepoint == atom->codepoint);
   2973         case XML_REGEXP_RANGES: {
   2974 	    int accept = 0;
   2975 
   2976 	    for (i = 0;i < atom->nbRanges;i++) {
   2977 		range = atom->ranges[i];
   2978 		if (range->neg == 2) {
   2979 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2980 						0, range->start, range->end,
   2981 						range->blockName);
   2982 		    if (ret != 0)
   2983 			return(0); /* excluded char */
   2984 		} else if (range->neg) {
   2985 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2986 						0, range->start, range->end,
   2987 						range->blockName);
   2988 		    if (ret == 0)
   2989 		        accept = 1;
   2990 		    else
   2991 		        return(0);
   2992 		} else {
   2993 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2994 						0, range->start, range->end,
   2995 						range->blockName);
   2996 		    if (ret != 0)
   2997 			accept = 1; /* might still be excluded */
   2998 		}
   2999 	    }
   3000 	    return(accept);
   3001 	}
   3002         case XML_REGEXP_STRING:
   3003 	    printf("TODO: XML_REGEXP_STRING\n");
   3004 	    return(-1);
   3005         case XML_REGEXP_ANYCHAR:
   3006         case XML_REGEXP_ANYSPACE:
   3007         case XML_REGEXP_NOTSPACE:
   3008         case XML_REGEXP_INITNAME:
   3009         case XML_REGEXP_NOTINITNAME:
   3010         case XML_REGEXP_NAMECHAR:
   3011         case XML_REGEXP_NOTNAMECHAR:
   3012         case XML_REGEXP_DECIMAL:
   3013         case XML_REGEXP_NOTDECIMAL:
   3014         case XML_REGEXP_REALCHAR:
   3015         case XML_REGEXP_NOTREALCHAR:
   3016         case XML_REGEXP_LETTER:
   3017         case XML_REGEXP_LETTER_UPPERCASE:
   3018         case XML_REGEXP_LETTER_LOWERCASE:
   3019         case XML_REGEXP_LETTER_TITLECASE:
   3020         case XML_REGEXP_LETTER_MODIFIER:
   3021         case XML_REGEXP_LETTER_OTHERS:
   3022         case XML_REGEXP_MARK:
   3023         case XML_REGEXP_MARK_NONSPACING:
   3024         case XML_REGEXP_MARK_SPACECOMBINING:
   3025         case XML_REGEXP_MARK_ENCLOSING:
   3026         case XML_REGEXP_NUMBER:
   3027         case XML_REGEXP_NUMBER_DECIMAL:
   3028         case XML_REGEXP_NUMBER_LETTER:
   3029         case XML_REGEXP_NUMBER_OTHERS:
   3030         case XML_REGEXP_PUNCT:
   3031         case XML_REGEXP_PUNCT_CONNECTOR:
   3032         case XML_REGEXP_PUNCT_DASH:
   3033         case XML_REGEXP_PUNCT_OPEN:
   3034         case XML_REGEXP_PUNCT_CLOSE:
   3035         case XML_REGEXP_PUNCT_INITQUOTE:
   3036         case XML_REGEXP_PUNCT_FINQUOTE:
   3037         case XML_REGEXP_PUNCT_OTHERS:
   3038         case XML_REGEXP_SEPAR:
   3039         case XML_REGEXP_SEPAR_SPACE:
   3040         case XML_REGEXP_SEPAR_LINE:
   3041         case XML_REGEXP_SEPAR_PARA:
   3042         case XML_REGEXP_SYMBOL:
   3043         case XML_REGEXP_SYMBOL_MATH:
   3044         case XML_REGEXP_SYMBOL_CURRENCY:
   3045         case XML_REGEXP_SYMBOL_MODIFIER:
   3046         case XML_REGEXP_SYMBOL_OTHERS:
   3047         case XML_REGEXP_OTHER:
   3048         case XML_REGEXP_OTHER_CONTROL:
   3049         case XML_REGEXP_OTHER_FORMAT:
   3050         case XML_REGEXP_OTHER_PRIVATE:
   3051         case XML_REGEXP_OTHER_NA:
   3052 	case XML_REGEXP_BLOCK_NAME:
   3053 	    ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
   3054 		                            (const xmlChar *)atom->valuep);
   3055 	    if (atom->neg)
   3056 		ret = !ret;
   3057 	    break;
   3058     }
   3059     return(ret);
   3060 }
   3061 
   3062 /************************************************************************
   3063  *									*
   3064  *	Saving and restoring state of an execution context		*
   3065  *									*
   3066  ************************************************************************/
   3067 
   3068 #ifdef DEBUG_REGEXP_EXEC
   3069 static void
   3070 xmlFARegDebugExec(xmlRegExecCtxtPtr exec) {
   3071     printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index);
   3072     if (exec->inputStack != NULL) {
   3073 	int i;
   3074 	printf(": ");
   3075 	for (i = 0;(i < 3) && (i < exec->inputStackNr);i++)
   3076 	    printf("%s ", (const char *)
   3077 	           exec->inputStack[exec->inputStackNr - (i + 1)].value);
   3078     } else {
   3079 	printf(": %s", &(exec->inputString[exec->index]));
   3080     }
   3081     printf("\n");
   3082 }
   3083 #endif
   3084 
   3085 static void
   3086 xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
   3087 #ifdef DEBUG_REGEXP_EXEC
   3088     printf("saving ");
   3089     exec->transno++;
   3090     xmlFARegDebugExec(exec);
   3091     exec->transno--;
   3092 #endif
   3093 #ifdef MAX_PUSH
   3094     if (exec->nbPush > MAX_PUSH) {
   3095         return;
   3096     }
   3097     exec->nbPush++;
   3098 #endif
   3099 
   3100     if (exec->maxRollbacks == 0) {
   3101 	exec->maxRollbacks = 4;
   3102 	exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
   3103 		                             sizeof(xmlRegExecRollback));
   3104 	if (exec->rollbacks == NULL) {
   3105 	    xmlRegexpErrMemory(NULL, "saving regexp");
   3106 	    exec->maxRollbacks = 0;
   3107 	    return;
   3108 	}
   3109 	memset(exec->rollbacks, 0,
   3110 	       exec->maxRollbacks * sizeof(xmlRegExecRollback));
   3111     } else if (exec->nbRollbacks >= exec->maxRollbacks) {
   3112 	xmlRegExecRollback *tmp;
   3113 	int len = exec->maxRollbacks;
   3114 
   3115 	exec->maxRollbacks *= 2;
   3116 	tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
   3117 			exec->maxRollbacks * sizeof(xmlRegExecRollback));
   3118 	if (tmp == NULL) {
   3119 	    xmlRegexpErrMemory(NULL, "saving regexp");
   3120 	    exec->maxRollbacks /= 2;
   3121 	    return;
   3122 	}
   3123 	exec->rollbacks = tmp;
   3124 	tmp = &exec->rollbacks[len];
   3125 	memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
   3126     }
   3127     exec->rollbacks[exec->nbRollbacks].state = exec->state;
   3128     exec->rollbacks[exec->nbRollbacks].index = exec->index;
   3129     exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
   3130     if (exec->comp->nbCounters > 0) {
   3131 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3132 	    exec->rollbacks[exec->nbRollbacks].counts = (int *)
   3133 		xmlMalloc(exec->comp->nbCounters * sizeof(int));
   3134 	    if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3135 		xmlRegexpErrMemory(NULL, "saving regexp");
   3136 		exec->status = -5;
   3137 		return;
   3138 	    }
   3139 	}
   3140 	memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
   3141 	       exec->comp->nbCounters * sizeof(int));
   3142     }
   3143     exec->nbRollbacks++;
   3144 }
   3145 
   3146 static void
   3147 xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
   3148     if (exec->nbRollbacks <= 0) {
   3149 	exec->status = -1;
   3150 #ifdef DEBUG_REGEXP_EXEC
   3151 	printf("rollback failed on empty stack\n");
   3152 #endif
   3153 	return;
   3154     }
   3155     exec->nbRollbacks--;
   3156     exec->state = exec->rollbacks[exec->nbRollbacks].state;
   3157     exec->index = exec->rollbacks[exec->nbRollbacks].index;
   3158     exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
   3159     if (exec->comp->nbCounters > 0) {
   3160 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3161 	    fprintf(stderr, "exec save: allocation failed");
   3162 	    exec->status = -6;
   3163 	    return;
   3164 	}
   3165 	memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
   3166 	       exec->comp->nbCounters * sizeof(int));
   3167     }
   3168 
   3169 #ifdef DEBUG_REGEXP_EXEC
   3170     printf("restored ");
   3171     xmlFARegDebugExec(exec);
   3172 #endif
   3173 }
   3174 
   3175 /************************************************************************
   3176  *									*
   3177  *	Verifier, running an input against a compiled regexp		*
   3178  *									*
   3179  ************************************************************************/
   3180 
   3181 static int
   3182 xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
   3183     xmlRegExecCtxt execval;
   3184     xmlRegExecCtxtPtr exec = &execval;
   3185     int ret, codepoint = 0, len, deter;
   3186 
   3187     exec->inputString = content;
   3188     exec->index = 0;
   3189     exec->nbPush = 0;
   3190     exec->determinist = 1;
   3191     exec->maxRollbacks = 0;
   3192     exec->nbRollbacks = 0;
   3193     exec->rollbacks = NULL;
   3194     exec->status = 0;
   3195     exec->comp = comp;
   3196     exec->state = comp->states[0];
   3197     exec->transno = 0;
   3198     exec->transcount = 0;
   3199     exec->inputStack = NULL;
   3200     exec->inputStackMax = 0;
   3201     if (comp->nbCounters > 0) {
   3202 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
   3203 	if (exec->counts == NULL) {
   3204 	    xmlRegexpErrMemory(NULL, "running regexp");
   3205 	    return(-1);
   3206 	}
   3207         memset(exec->counts, 0, comp->nbCounters * sizeof(int));
   3208     } else
   3209 	exec->counts = NULL;
   3210     while ((exec->status == 0) && (exec->state != NULL) &&
   3211 	   ((exec->inputString[exec->index] != 0) ||
   3212 	    ((exec->state != NULL) &&
   3213 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
   3214 	xmlRegTransPtr trans;
   3215 	xmlRegAtomPtr atom;
   3216 
   3217 	/*
   3218 	 * If end of input on non-terminal state, rollback, however we may
   3219 	 * still have epsilon like transition for counted transitions
   3220 	 * on counters, in that case don't break too early.  Additionally,
   3221 	 * if we are working on a range like "AB{0,2}", where B is not present,
   3222 	 * we don't want to break.
   3223 	 */
   3224 	len = 1;
   3225 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
   3226 	    /*
   3227 	     * if there is a transition, we must check if
   3228 	     *  atom allows minOccurs of 0
   3229 	     */
   3230 	    if (exec->transno < exec->state->nbTrans) {
   3231 	        trans = &exec->state->trans[exec->transno];
   3232 		if (trans->to >=0) {
   3233 		    atom = trans->atom;
   3234 		    if (!((atom->min == 0) && (atom->max > 0)))
   3235 		        goto rollback;
   3236 		}
   3237 	    } else
   3238 	        goto rollback;
   3239 	}
   3240 
   3241 	exec->transcount = 0;
   3242 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   3243 	    trans = &exec->state->trans[exec->transno];
   3244 	    if (trans->to < 0)
   3245 		continue;
   3246 	    atom = trans->atom;
   3247 	    ret = 0;
   3248 	    deter = 1;
   3249 	    if (trans->count >= 0) {
   3250 		int count;
   3251 		xmlRegCounterPtr counter;
   3252 
   3253 		if (exec->counts == NULL) {
   3254 		    exec->status = -1;
   3255 		    goto error;
   3256 		}
   3257 		/*
   3258 		 * A counted transition.
   3259 		 */
   3260 
   3261 		count = exec->counts[trans->count];
   3262 		counter = &exec->comp->counters[trans->count];
   3263 #ifdef DEBUG_REGEXP_EXEC
   3264 		printf("testing count %d: val %d, min %d, max %d\n",
   3265 		       trans->count, count, counter->min,  counter->max);
   3266 #endif
   3267 		ret = ((count >= counter->min) && (count <= counter->max));
   3268 		if ((ret) && (counter->min != counter->max))
   3269 		    deter = 0;
   3270 	    } else if (atom == NULL) {
   3271 		fprintf(stderr, "epsilon transition left at runtime\n");
   3272 		exec->status = -2;
   3273 		break;
   3274 	    } else if (exec->inputString[exec->index] != 0) {
   3275                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
   3276 		ret = xmlRegCheckCharacter(atom, codepoint);
   3277 		if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
   3278 		    xmlRegStatePtr to = comp->states[trans->to];
   3279 
   3280 		    /*
   3281 		     * this is a multiple input sequence
   3282 		     * If there is a counter associated increment it now.
   3283 		     * before potentially saving and rollback
   3284 		     * do not increment if the counter is already over the
   3285 		     * maximum limit in which case get to next transition
   3286 		     */
   3287 		    if (trans->counter >= 0) {
   3288 			xmlRegCounterPtr counter;
   3289 
   3290 			if ((exec->counts == NULL) ||
   3291 			    (exec->comp == NULL) ||
   3292 			    (exec->comp->counters == NULL)) {
   3293 			    exec->status = -1;
   3294 			    goto error;
   3295 			}
   3296 			counter = &exec->comp->counters[trans->counter];
   3297 			if (exec->counts[trans->counter] >= counter->max)
   3298 			    continue; /* for loop on transitions */
   3299 
   3300 #ifdef DEBUG_REGEXP_EXEC
   3301 			printf("Increasing count %d\n", trans->counter);
   3302 #endif
   3303 			exec->counts[trans->counter]++;
   3304 		    }
   3305 		    if (exec->state->nbTrans > exec->transno + 1) {
   3306 			xmlFARegExecSave(exec);
   3307 		    }
   3308 		    exec->transcount = 1;
   3309 		    do {
   3310 			/*
   3311 			 * Try to progress as much as possible on the input
   3312 			 */
   3313 			if (exec->transcount == atom->max) {
   3314 			    break;
   3315 			}
   3316 			exec->index += len;
   3317 			/*
   3318 			 * End of input: stop here
   3319 			 */
   3320 			if (exec->inputString[exec->index] == 0) {
   3321 			    exec->index -= len;
   3322 			    break;
   3323 			}
   3324 			if (exec->transcount >= atom->min) {
   3325 			    int transno = exec->transno;
   3326 			    xmlRegStatePtr state = exec->state;
   3327 
   3328 			    /*
   3329 			     * The transition is acceptable save it
   3330 			     */
   3331 			    exec->transno = -1; /* trick */
   3332 			    exec->state = to;
   3333 			    xmlFARegExecSave(exec);
   3334 			    exec->transno = transno;
   3335 			    exec->state = state;
   3336 			}
   3337 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
   3338 				              len);
   3339 			ret = xmlRegCheckCharacter(atom, codepoint);
   3340 			exec->transcount++;
   3341 		    } while (ret == 1);
   3342 		    if (exec->transcount < atom->min)
   3343 			ret = 0;
   3344 
   3345 		    /*
   3346 		     * If the last check failed but one transition was found
   3347 		     * possible, rollback
   3348 		     */
   3349 		    if (ret < 0)
   3350 			ret = 0;
   3351 		    if (ret == 0) {
   3352 			goto rollback;
   3353 		    }
   3354 		    if (trans->counter >= 0) {
   3355 			if (exec->counts == NULL) {
   3356 			    exec->status = -1;
   3357 			    goto error;
   3358 			}
   3359 #ifdef DEBUG_REGEXP_EXEC
   3360 			printf("Decreasing count %d\n", trans->counter);
   3361 #endif
   3362 			exec->counts[trans->counter]--;
   3363 		    }
   3364 		} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
   3365 		    /*
   3366 		     * we don't match on the codepoint, but minOccurs of 0
   3367 		     * says that's ok.  Setting len to 0 inhibits stepping
   3368 		     * over the codepoint.
   3369 		     */
   3370 		    exec->transcount = 1;
   3371 		    len = 0;
   3372 		    ret = 1;
   3373 		}
   3374 	    } else if ((atom->min == 0) && (atom->max > 0)) {
   3375 	        /* another spot to match when minOccurs is 0 */
   3376 		exec->transcount = 1;
   3377 		len = 0;
   3378 		ret = 1;
   3379 	    }
   3380 	    if (ret == 1) {
   3381 		if ((trans->nd == 1) ||
   3382 		    ((trans->count >= 0) && (deter == 0) &&
   3383 		     (exec->state->nbTrans > exec->transno + 1))) {
   3384 #ifdef DEBUG_REGEXP_EXEC
   3385 		    if (trans->nd == 1)
   3386 		        printf("Saving on nd transition atom %d for %c at %d\n",
   3387 			       trans->atom->no, codepoint, exec->index);
   3388 		    else
   3389 		        printf("Saving on counted transition count %d for %c at %d\n",
   3390 			       trans->count, codepoint, exec->index);
   3391 #endif
   3392 		    xmlFARegExecSave(exec);
   3393 		}
   3394 		if (trans->counter >= 0) {
   3395 		    xmlRegCounterPtr counter;
   3396 
   3397                     /* make sure we don't go over the counter maximum value */
   3398 		    if ((exec->counts == NULL) ||
   3399 			(exec->comp == NULL) ||
   3400 			(exec->comp->counters == NULL)) {
   3401 			exec->status = -1;
   3402 			goto error;
   3403 		    }
   3404 		    counter = &exec->comp->counters[trans->counter];
   3405 		    if (exec->counts[trans->counter] >= counter->max)
   3406 			continue; /* for loop on transitions */
   3407 #ifdef DEBUG_REGEXP_EXEC
   3408 		    printf("Increasing count %d\n", trans->counter);
   3409 #endif
   3410 		    exec->counts[trans->counter]++;
   3411 		}
   3412 		if ((trans->count >= 0) &&
   3413 		    (trans->count < REGEXP_ALL_COUNTER)) {
   3414 		    if (exec->counts == NULL) {
   3415 		        exec->status = -1;
   3416 			goto error;
   3417 		    }
   3418 #ifdef DEBUG_REGEXP_EXEC
   3419 		    printf("resetting count %d on transition\n",
   3420 		           trans->count);
   3421 #endif
   3422 		    exec->counts[trans->count] = 0;
   3423 		}
   3424 #ifdef DEBUG_REGEXP_EXEC
   3425 		printf("entering state %d\n", trans->to);
   3426 #endif
   3427 		exec->state = comp->states[trans->to];
   3428 		exec->transno = 0;
   3429 		if (trans->atom != NULL) {
   3430 		    exec->index += len;
   3431 		}
   3432 		goto progress;
   3433 	    } else if (ret < 0) {
   3434 		exec->status = -4;
   3435 		break;
   3436 	    }
   3437 	}
   3438 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   3439 rollback:
   3440 	    /*
   3441 	     * Failed to find a way out
   3442 	     */
   3443 	    exec->determinist = 0;
   3444 #ifdef DEBUG_REGEXP_EXEC
   3445 	    printf("rollback from state %d on %d:%c\n", exec->state->no,
   3446 	           codepoint,codepoint);
   3447 #endif
   3448 	    xmlFARegExecRollBack(exec);
   3449 	}
   3450 progress:
   3451 	continue;
   3452     }
   3453 error:
   3454     if (exec->rollbacks != NULL) {
   3455 	if (exec->counts != NULL) {
   3456 	    int i;
   3457 
   3458 	    for (i = 0;i < exec->maxRollbacks;i++)
   3459 		if (exec->rollbacks[i].counts != NULL)
   3460 		    xmlFree(exec->rollbacks[i].counts);
   3461 	}
   3462 	xmlFree(exec->rollbacks);
   3463     }
   3464     if (exec->state == NULL)
   3465         return(-1);
   3466     if (exec->counts != NULL)
   3467 	xmlFree(exec->counts);
   3468     if (exec->status == 0)
   3469 	return(1);
   3470     if (exec->status == -1) {
   3471 	if (exec->nbPush > MAX_PUSH)
   3472 	    return(-1);
   3473 	return(0);
   3474     }
   3475     return(exec->status);
   3476 }
   3477 
   3478 /************************************************************************
   3479  *									*
   3480  *	Progressive interface to the verifier one atom at a time	*
   3481  *									*
   3482  ************************************************************************/
   3483 #ifdef DEBUG_ERR
   3484 static void testerr(xmlRegExecCtxtPtr exec);
   3485 #endif
   3486 
   3487 /**
   3488  * xmlRegNewExecCtxt:
   3489  * @comp: a precompiled regular expression
   3490  * @callback: a callback function used for handling progresses in the
   3491  *            automata matching phase
   3492  * @data: the context data associated to the callback in this context
   3493  *
   3494  * Build a context used for progressive evaluation of a regexp.
   3495  *
   3496  * Returns the new context
   3497  */
   3498 xmlRegExecCtxtPtr
   3499 xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
   3500     xmlRegExecCtxtPtr exec;
   3501 
   3502     if (comp == NULL)
   3503 	return(NULL);
   3504     if ((comp->compact == NULL) && (comp->states == NULL))
   3505         return(NULL);
   3506     exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
   3507     if (exec == NULL) {
   3508 	xmlRegexpErrMemory(NULL, "creating execution context");
   3509 	return(NULL);
   3510     }
   3511     memset(exec, 0, sizeof(xmlRegExecCtxt));
   3512     exec->inputString = NULL;
   3513     exec->index = 0;
   3514     exec->determinist = 1;
   3515     exec->maxRollbacks = 0;
   3516     exec->nbRollbacks = 0;
   3517     exec->rollbacks = NULL;
   3518     exec->status = 0;
   3519     exec->comp = comp;
   3520     if (comp->compact == NULL)
   3521 	exec->state = comp->states[0];
   3522     exec->transno = 0;
   3523     exec->transcount = 0;
   3524     exec->callback = callback;
   3525     exec->data = data;
   3526     if (comp->nbCounters > 0) {
   3527         /*
   3528 	 * For error handling, exec->counts is allocated twice the size
   3529 	 * the second half is used to store the data in case of rollback
   3530 	 */
   3531 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
   3532 	                                 * 2);
   3533 	if (exec->counts == NULL) {
   3534 	    xmlRegexpErrMemory(NULL, "creating execution context");
   3535 	    xmlFree(exec);
   3536 	    return(NULL);
   3537 	}
   3538         memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
   3539 	exec->errCounts = &exec->counts[comp->nbCounters];
   3540     } else {
   3541 	exec->counts = NULL;
   3542 	exec->errCounts = NULL;
   3543     }
   3544     exec->inputStackMax = 0;
   3545     exec->inputStackNr = 0;
   3546     exec->inputStack = NULL;
   3547     exec->errStateNo = -1;
   3548     exec->errString = NULL;
   3549     exec->nbPush = 0;
   3550     return(exec);
   3551 }
   3552 
   3553 /**
   3554  * xmlRegFreeExecCtxt:
   3555  * @exec: a regular expression evaulation context
   3556  *
   3557  * Free the structures associated to a regular expression evaulation context.
   3558  */
   3559 void
   3560 xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
   3561     if (exec == NULL)
   3562 	return;
   3563 
   3564     if (exec->rollbacks != NULL) {
   3565 	if (exec->counts != NULL) {
   3566 	    int i;
   3567 
   3568 	    for (i = 0;i < exec->maxRollbacks;i++)
   3569 		if (exec->rollbacks[i].counts != NULL)
   3570 		    xmlFree(exec->rollbacks[i].counts);
   3571 	}
   3572 	xmlFree(exec->rollbacks);
   3573     }
   3574     if (exec->counts != NULL)
   3575 	xmlFree(exec->counts);
   3576     if (exec->inputStack != NULL) {
   3577 	int i;
   3578 
   3579 	for (i = 0;i < exec->inputStackNr;i++) {
   3580 	    if (exec->inputStack[i].value != NULL)
   3581 		xmlFree(exec->inputStack[i].value);
   3582 	}
   3583 	xmlFree(exec->inputStack);
   3584     }
   3585     if (exec->errString != NULL)
   3586         xmlFree(exec->errString);
   3587     xmlFree(exec);
   3588 }
   3589 
   3590 static void
   3591 xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
   3592 	                    void *data) {
   3593 #ifdef DEBUG_PUSH
   3594     printf("saving value: %d:%s\n", exec->inputStackNr, value);
   3595 #endif
   3596     if (exec->inputStackMax == 0) {
   3597 	exec->inputStackMax = 4;
   3598 	exec->inputStack = (xmlRegInputTokenPtr)
   3599 	    xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
   3600 	if (exec->inputStack == NULL) {
   3601 	    xmlRegexpErrMemory(NULL, "pushing input string");
   3602 	    exec->inputStackMax = 0;
   3603 	    return;
   3604 	}
   3605     } else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
   3606 	xmlRegInputTokenPtr tmp;
   3607 
   3608 	exec->inputStackMax *= 2;
   3609 	tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
   3610 			exec->inputStackMax * sizeof(xmlRegInputToken));
   3611 	if (tmp == NULL) {
   3612 	    xmlRegexpErrMemory(NULL, "pushing input string");
   3613 	    exec->inputStackMax /= 2;
   3614 	    return;
   3615 	}
   3616 	exec->inputStack = tmp;
   3617     }
   3618     exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
   3619     exec->inputStack[exec->inputStackNr].data = data;
   3620     exec->inputStackNr++;
   3621     exec->inputStack[exec->inputStackNr].value = NULL;
   3622     exec->inputStack[exec->inputStackNr].data = NULL;
   3623 }
   3624 
   3625 /**
   3626  * xmlRegStrEqualWildcard:
   3627  * @expStr:  the string to be evaluated
   3628  * @valStr:  the validation string
   3629  *
   3630  * Checks if both strings are equal or have the same content. "*"
   3631  * can be used as a wildcard in @valStr; "|" is used as a seperator of
   3632  * substrings in both @expStr and @valStr.
   3633  *
   3634  * Returns 1 if the comparison is satisfied and the number of substrings
   3635  * is equal, 0 otherwise.
   3636  */
   3637 
   3638 static int
   3639 xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
   3640     if (expStr == valStr) return(1);
   3641     if (expStr == NULL) return(0);
   3642     if (valStr == NULL) return(0);
   3643     do {
   3644 	/*
   3645 	* Eval if we have a wildcard for the current item.
   3646 	*/
   3647         if (*expStr != *valStr) {
   3648 	    /* if one of them starts with a wildcard make valStr be it */
   3649 	    if (*valStr == '*') {
   3650 	        const xmlChar *tmp;
   3651 
   3652 		tmp = valStr;
   3653 		valStr = expStr;
   3654 		expStr = tmp;
   3655 	    }
   3656 	    if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
   3657 		do {
   3658 		    if (*valStr == XML_REG_STRING_SEPARATOR)
   3659 			break;
   3660 		    valStr++;
   3661 		} while (*valStr != 0);
   3662 		continue;
   3663 	    } else
   3664 		return(0);
   3665 	}
   3666 	expStr++;
   3667 	valStr++;
   3668     } while (*valStr != 0);
   3669     if (*expStr != 0)
   3670 	return (0);
   3671     else
   3672 	return (1);
   3673 }
   3674 
   3675 /**
   3676  * xmlRegCompactPushString:
   3677  * @exec: a regexp execution context
   3678  * @comp:  the precompiled exec with a compact table
   3679  * @value: a string token input
   3680  * @data: data associated to the token to reuse in callbacks
   3681  *
   3682  * Push one input token in the execution context
   3683  *
   3684  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   3685  *     a negative value in case of error.
   3686  */
   3687 static int
   3688 xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
   3689 	                xmlRegexpPtr comp,
   3690 	                const xmlChar *value,
   3691 	                void *data) {
   3692     int state = exec->index;
   3693     int i, target;
   3694 
   3695     if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
   3696 	return(-1);
   3697 
   3698     if (value == NULL) {
   3699 	/*
   3700 	 * are we at a final state ?
   3701 	 */
   3702 	if (comp->compact[state * (comp->nbstrings + 1)] ==
   3703             XML_REGEXP_FINAL_STATE)
   3704 	    return(1);
   3705 	return(0);
   3706     }
   3707 
   3708 #ifdef DEBUG_PUSH
   3709     printf("value pushed: %s\n", value);
   3710 #endif
   3711 
   3712     /*
   3713      * Examine all outside transitions from current state
   3714      */
   3715     for (i = 0;i < comp->nbstrings;i++) {
   3716 	target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   3717 	if ((target > 0) && (target <= comp->nbstates)) {
   3718 	    target--; /* to avoid 0 */
   3719 	    if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
   3720 		exec->index = target;
   3721 		if ((exec->callback != NULL) && (comp->transdata != NULL)) {
   3722 		    exec->callback(exec->data, value,
   3723 			  comp->transdata[state * comp->nbstrings + i], data);
   3724 		}
   3725 #ifdef DEBUG_PUSH
   3726 		printf("entering state %d\n", target);
   3727 #endif
   3728 		if (comp->compact[target * (comp->nbstrings + 1)] ==
   3729 		    XML_REGEXP_SINK_STATE)
   3730 		    goto error;
   3731 
   3732 		if (comp->compact[target * (comp->nbstrings + 1)] ==
   3733 		    XML_REGEXP_FINAL_STATE)
   3734 		    return(1);
   3735 		return(0);
   3736 	    }
   3737 	}
   3738     }
   3739     /*
   3740      * Failed to find an exit transition out from current state for the
   3741      * current token
   3742      */
   3743 #ifdef DEBUG_PUSH
   3744     printf("failed to find a transition for %s on state %d\n", value, state);
   3745 #endif
   3746 error:
   3747     if (exec->errString != NULL)
   3748         xmlFree(exec->errString);
   3749     exec->errString = xmlStrdup(value);
   3750     exec->errStateNo = state;
   3751     exec->status = -1;
   3752 #ifdef DEBUG_ERR
   3753     testerr(exec);
   3754 #endif
   3755     return(-1);
   3756 }
   3757 
   3758 /**
   3759  * xmlRegExecPushStringInternal:
   3760  * @exec: a regexp execution context or NULL to indicate the end
   3761  * @value: a string token input
   3762  * @data: data associated to the token to reuse in callbacks
   3763  * @compound: value was assembled from 2 strings
   3764  *
   3765  * Push one input token in the execution context
   3766  *
   3767  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   3768  *     a negative value in case of error.
   3769  */
   3770 static int
   3771 xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
   3772 	                     void *data, int compound) {
   3773     xmlRegTransPtr trans;
   3774     xmlRegAtomPtr atom;
   3775     int ret;
   3776     int final = 0;
   3777     int progress = 1;
   3778 
   3779     if (exec == NULL)
   3780 	return(-1);
   3781     if (exec->comp == NULL)
   3782 	return(-1);
   3783     if (exec->status != 0)
   3784 	return(exec->status);
   3785 
   3786     if (exec->comp->compact != NULL)
   3787 	return(xmlRegCompactPushString(exec, exec->comp, value, data));
   3788 
   3789     if (value == NULL) {
   3790         if (exec->state->type == XML_REGEXP_FINAL_STATE)
   3791 	    return(1);
   3792 	final = 1;
   3793     }
   3794 
   3795 #ifdef DEBUG_PUSH
   3796     printf("value pushed: %s\n", value);
   3797 #endif
   3798     /*
   3799      * If we have an active rollback stack push the new value there
   3800      * and get back to where we were left
   3801      */
   3802     if ((value != NULL) && (exec->inputStackNr > 0)) {
   3803 	xmlFARegExecSaveInputString(exec, value, data);
   3804 	value = exec->inputStack[exec->index].value;
   3805 	data = exec->inputStack[exec->index].data;
   3806 #ifdef DEBUG_PUSH
   3807 	printf("value loaded: %s\n", value);
   3808 #endif
   3809     }
   3810 
   3811     while ((exec->status == 0) &&
   3812 	   ((value != NULL) ||
   3813 	    ((final == 1) &&
   3814 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
   3815 
   3816 	/*
   3817 	 * End of input on non-terminal state, rollback, however we may
   3818 	 * still have epsilon like transition for counted transitions
   3819 	 * on counters, in that case don't break too early.
   3820 	 */
   3821 	if ((value == NULL) && (exec->counts == NULL))
   3822 	    goto rollback;
   3823 
   3824 	exec->transcount = 0;
   3825 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   3826 	    trans = &exec->state->trans[exec->transno];
   3827 	    if (trans->to < 0)
   3828 		continue;
   3829 	    atom = trans->atom;
   3830 	    ret = 0;
   3831 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   3832 		int i;
   3833 		int count;
   3834 		xmlRegTransPtr t;
   3835 		xmlRegCounterPtr counter;
   3836 
   3837 		ret = 0;
   3838 
   3839 #ifdef DEBUG_PUSH
   3840 		printf("testing all lax %d\n", trans->count);
   3841 #endif
   3842 		/*
   3843 		 * Check all counted transitions from the current state
   3844 		 */
   3845 		if ((value == NULL) && (final)) {
   3846 		    ret = 1;
   3847 		} else if (value != NULL) {
   3848 		    for (i = 0;i < exec->state->nbTrans;i++) {
   3849 			t = &exec->state->trans[i];
   3850 			if ((t->counter < 0) || (t == trans))
   3851 			    continue;
   3852 			counter = &exec->comp->counters[t->counter];
   3853 			count = exec->counts[t->counter];
   3854 			if ((count < counter->max) &&
   3855 		            (t->atom != NULL) &&
   3856 			    (xmlStrEqual(value, t->atom->valuep))) {
   3857 			    ret = 0;
   3858 			    break;
   3859 			}
   3860 			if ((count >= counter->min) &&
   3861 			    (count < counter->max) &&
   3862 			    (t->atom != NULL) &&
   3863 			    (xmlStrEqual(value, t->atom->valuep))) {
   3864 			    ret = 1;
   3865 			    break;
   3866 			}
   3867 		    }
   3868 		}
   3869 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   3870 		int i;
   3871 		int count;
   3872 		xmlRegTransPtr t;
   3873 		xmlRegCounterPtr counter;
   3874 
   3875 		ret = 1;
   3876 
   3877 #ifdef DEBUG_PUSH
   3878 		printf("testing all %d\n", trans->count);
   3879 #endif
   3880 		/*
   3881 		 * Check all counted transitions from the current state
   3882 		 */
   3883 		for (i = 0;i < exec->state->nbTrans;i++) {
   3884                     t = &exec->state->trans[i];
   3885 		    if ((t->counter < 0) || (t == trans))
   3886 			continue;
   3887                     counter = &exec->comp->counters[t->counter];
   3888 		    count = exec->counts[t->counter];
   3889 		    if ((count < counter->min) || (count > counter->max)) {
   3890 			ret = 0;
   3891 			break;
   3892 		    }
   3893 		}
   3894 	    } else if (trans->count >= 0) {
   3895 		int count;
   3896 		xmlRegCounterPtr counter;
   3897 
   3898 		/*
   3899 		 * A counted transition.
   3900 		 */
   3901 
   3902 		count = exec->counts[trans->count];
   3903 		counter = &exec->comp->counters[trans->count];
   3904 #ifdef DEBUG_PUSH
   3905 		printf("testing count %d: val %d, min %d, max %d\n",
   3906 		       trans->count, count, counter->min,  counter->max);
   3907 #endif
   3908 		ret = ((count >= counter->min) && (count <= counter->max));
   3909 	    } else if (atom == NULL) {
   3910 		fprintf(stderr, "epsilon transition left at runtime\n");
   3911 		exec->status = -2;
   3912 		break;
   3913 	    } else if (value != NULL) {
   3914 		ret = xmlRegStrEqualWildcard(atom->valuep, value);
   3915 		if (atom->neg) {
   3916 		    ret = !ret;
   3917 		    if (!compound)
   3918 		        ret = 0;
   3919 		}
   3920 		if ((ret == 1) && (trans->counter >= 0)) {
   3921 		    xmlRegCounterPtr counter;
   3922 		    int count;
   3923 
   3924 		    count = exec->counts[trans->counter];
   3925 		    counter = &exec->comp->counters[trans->counter];
   3926 		    if (count >= counter->max)
   3927 			ret = 0;
   3928 		}
   3929 
   3930 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
   3931 		    xmlRegStatePtr to = exec->comp->states[trans->to];
   3932 
   3933 		    /*
   3934 		     * this is a multiple input sequence
   3935 		     */
   3936 		    if (exec->state->nbTrans > exec->transno + 1) {
   3937 			if (exec->inputStackNr <= 0) {
   3938 			    xmlFARegExecSaveInputString(exec, value, data);
   3939 			}
   3940 			xmlFARegExecSave(exec);
   3941 		    }
   3942 		    exec->transcount = 1;
   3943 		    do {
   3944 			/*
   3945 			 * Try to progress as much as possible on the input
   3946 			 */
   3947 			if (exec->transcount == atom->max) {
   3948 			    break;
   3949 			}
   3950 			exec->index++;
   3951 			value = exec->inputStack[exec->index].value;
   3952 			data = exec->inputStack[exec->index].data;
   3953 #ifdef DEBUG_PUSH
   3954 			printf("value loaded: %s\n", value);
   3955 #endif
   3956 
   3957 			/*
   3958 			 * End of input: stop here
   3959 			 */
   3960 			if (value == NULL) {
   3961 			    exec->index --;
   3962 			    break;
   3963 			}
   3964 			if (exec->transcount >= atom->min) {
   3965 			    int transno = exec->transno;
   3966 			    xmlRegStatePtr state = exec->state;
   3967 
   3968 			    /*
   3969 			     * The transition is acceptable save it
   3970 			     */
   3971 			    exec->transno = -1; /* trick */
   3972 			    exec->state = to;
   3973 			    if (exec->inputStackNr <= 0) {
   3974 				xmlFARegExecSaveInputString(exec, value, data);
   3975 			    }
   3976 			    xmlFARegExecSave(exec);
   3977 			    exec->transno = transno;
   3978 			    exec->state = state;
   3979 			}
   3980 			ret = xmlStrEqual(value, atom->valuep);
   3981 			exec->transcount++;
   3982 		    } while (ret == 1);
   3983 		    if (exec->transcount < atom->min)
   3984 			ret = 0;
   3985 
   3986 		    /*
   3987 		     * If the last check failed but one transition was found
   3988 		     * possible, rollback
   3989 		     */
   3990 		    if (ret < 0)
   3991 			ret = 0;
   3992 		    if (ret == 0) {
   3993 			goto rollback;
   3994 		    }
   3995 		}
   3996 	    }
   3997 	    if (ret == 1) {
   3998 		if ((exec->callback != NULL) && (atom != NULL) &&
   3999 			(data != NULL)) {
   4000 		    exec->callback(exec->data, atom->valuep,
   4001 			           atom->data, data);
   4002 		}
   4003 		if (exec->state->nbTrans > exec->transno + 1) {
   4004 		    if (exec->inputStackNr <= 0) {
   4005 			xmlFARegExecSaveInputString(exec, value, data);
   4006 		    }
   4007 		    xmlFARegExecSave(exec);
   4008 		}
   4009 		if (trans->counter >= 0) {
   4010 #ifdef DEBUG_PUSH
   4011 		    printf("Increasing count %d\n", trans->counter);
   4012 #endif
   4013 		    exec->counts[trans->counter]++;
   4014 		}
   4015 		if ((trans->count >= 0) &&
   4016 		    (trans->count < REGEXP_ALL_COUNTER)) {
   4017 #ifdef DEBUG_REGEXP_EXEC
   4018 		    printf("resetting count %d on transition\n",
   4019 		           trans->count);
   4020 #endif
   4021 		    exec->counts[trans->count] = 0;
   4022 		}
   4023 #ifdef DEBUG_PUSH
   4024 		printf("entering state %d\n", trans->to);
   4025 #endif
   4026                 if ((exec->comp->states[trans->to] != NULL) &&
   4027 		    (exec->comp->states[trans->to]->type ==
   4028 		     XML_REGEXP_SINK_STATE)) {
   4029 		    /*
   4030 		     * entering a sink state, save the current state as error
   4031 		     * state.
   4032 		     */
   4033 		    if (exec->errString != NULL)
   4034 			xmlFree(exec->errString);
   4035 		    exec->errString = xmlStrdup(value);
   4036 		    exec->errState = exec->state;
   4037 		    memcpy(exec->errCounts, exec->counts,
   4038 			   exec->comp->nbCounters * sizeof(int));
   4039 		}
   4040 		exec->state = exec->comp->states[trans->to];
   4041 		exec->transno = 0;
   4042 		if (trans->atom != NULL) {
   4043 		    if (exec->inputStack != NULL) {
   4044 			exec->index++;
   4045 			if (exec->index < exec->inputStackNr) {
   4046 			    value = exec->inputStack[exec->index].value;
   4047 			    data = exec->inputStack[exec->index].data;
   4048 #ifdef DEBUG_PUSH
   4049 			    printf("value loaded: %s\n", value);
   4050 #endif
   4051 			} else {
   4052 			    value = NULL;
   4053 			    data = NULL;
   4054 #ifdef DEBUG_PUSH
   4055 			    printf("end of input\n");
   4056 #endif
   4057 			}
   4058 		    } else {
   4059 			value = NULL;
   4060 			data = NULL;
   4061 #ifdef DEBUG_PUSH
   4062 			printf("end of input\n");
   4063 #endif
   4064 		    }
   4065 		}
   4066 		goto progress;
   4067 	    } else if (ret < 0) {
   4068 		exec->status = -4;
   4069 		break;
   4070 	    }
   4071 	}
   4072 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   4073 rollback:
   4074             /*
   4075 	     * if we didn't yet rollback on the current input
   4076 	     * store the current state as the error state.
   4077 	     */
   4078 	    if ((progress) && (exec->state != NULL) &&
   4079 	        (exec->state->type != XML_REGEXP_SINK_STATE)) {
   4080 	        progress = 0;
   4081 		if (exec->errString != NULL)
   4082 		    xmlFree(exec->errString);
   4083 		exec->errString = xmlStrdup(value);
   4084 		exec->errState = exec->state;
   4085 		memcpy(exec->errCounts, exec->counts,
   4086 		       exec->comp->nbCounters * sizeof(int));
   4087 	    }
   4088 
   4089 	    /*
   4090 	     * Failed to find a way out
   4091 	     */
   4092 	    exec->determinist = 0;
   4093 	    xmlFARegExecRollBack(exec);
   4094 	    if (exec->status == 0) {
   4095 		value = exec->inputStack[exec->index].value;
   4096 		data = exec->inputStack[exec->index].data;
   4097 #ifdef DEBUG_PUSH
   4098 		printf("value loaded: %s\n", value);
   4099 #endif
   4100 	    }
   4101 	}
   4102 	continue;
   4103 progress:
   4104         progress = 1;
   4105 	continue;
   4106     }
   4107     if (exec->status == 0) {
   4108         return(exec->state->type == XML_REGEXP_FINAL_STATE);
   4109     }
   4110 #ifdef DEBUG_ERR
   4111     if (exec->status < 0) {
   4112 	testerr(exec);
   4113     }
   4114 #endif
   4115     return(exec->status);
   4116 }
   4117 
   4118 /**
   4119  * xmlRegExecPushString:
   4120  * @exec: a regexp execution context or NULL to indicate the end
   4121  * @value: a string token input
   4122  * @data: data associated to the token to reuse in callbacks
   4123  *
   4124  * Push one input token in the execution context
   4125  *
   4126  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   4127  *     a negative value in case of error.
   4128  */
   4129 int
   4130 xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
   4131 	             void *data) {
   4132     return(xmlRegExecPushStringInternal(exec, value, data, 0));
   4133 }
   4134 
   4135 /**
   4136  * xmlRegExecPushString2:
   4137  * @exec: a regexp execution context or NULL to indicate the end
   4138  * @value: the first string token input
   4139  * @value2: the second string token input
   4140  * @data: data associated to the token to reuse in callbacks
   4141  *
   4142  * Push one input token in the execution context
   4143  *
   4144  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   4145  *     a negative value in case of error.
   4146  */
   4147 int
   4148 xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
   4149                       const xmlChar *value2, void *data) {
   4150     xmlChar buf[150];
   4151     int lenn, lenp, ret;
   4152     xmlChar *str;
   4153 
   4154     if (exec == NULL)
   4155 	return(-1);
   4156     if (exec->comp == NULL)
   4157 	return(-1);
   4158     if (exec->status != 0)
   4159 	return(exec->status);
   4160 
   4161     if (value2 == NULL)
   4162         return(xmlRegExecPushString(exec, value, data));
   4163 
   4164     lenn = strlen((char *) value2);
   4165     lenp = strlen((char *) value);
   4166 
   4167     if (150 < lenn + lenp + 2) {
   4168 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   4169 	if (str == NULL) {
   4170 	    exec->status = -1;
   4171 	    return(-1);
   4172 	}
   4173     } else {
   4174 	str = buf;
   4175     }
   4176     memcpy(&str[0], value, lenp);
   4177     str[lenp] = XML_REG_STRING_SEPARATOR;
   4178     memcpy(&str[lenp + 1], value2, lenn);
   4179     str[lenn + lenp + 1] = 0;
   4180 
   4181     if (exec->comp->compact != NULL)
   4182 	ret = xmlRegCompactPushString(exec, exec->comp, str, data);
   4183     else
   4184         ret = xmlRegExecPushStringInternal(exec, str, data, 1);
   4185 
   4186     if (str != buf)
   4187         xmlFree(str);
   4188     return(ret);
   4189 }
   4190 
   4191 /**
   4192  * xmlRegExecGetValues:
   4193  * @exec: a regexp execution context
   4194  * @err: error extraction or normal one
   4195  * @nbval: pointer to the number of accepted values IN/OUT
   4196  * @nbneg: return number of negative transitions
   4197  * @values: pointer to the array of acceptable values
   4198  * @terminal: return value if this was a terminal state
   4199  *
   4200  * Extract informations from the regexp execution, internal routine to
   4201  * implement xmlRegExecNextValues() and xmlRegExecErrInfo()
   4202  *
   4203  * Returns: 0 in case of success or -1 in case of error.
   4204  */
   4205 static int
   4206 xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
   4207                     int *nbval, int *nbneg,
   4208 		    xmlChar **values, int *terminal) {
   4209     int maxval;
   4210     int nb = 0;
   4211 
   4212     if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
   4213         (values == NULL) || (*nbval <= 0))
   4214         return(-1);
   4215 
   4216     maxval = *nbval;
   4217     *nbval = 0;
   4218     *nbneg = 0;
   4219     if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
   4220         xmlRegexpPtr comp;
   4221 	int target, i, state;
   4222 
   4223         comp = exec->comp;
   4224 
   4225 	if (err) {
   4226 	    if (exec->errStateNo == -1) return(-1);
   4227 	    state = exec->errStateNo;
   4228 	} else {
   4229 	    state = exec->index;
   4230 	}
   4231 	if (terminal != NULL) {
   4232 	    if (comp->compact[state * (comp->nbstrings + 1)] ==
   4233 	        XML_REGEXP_FINAL_STATE)
   4234 		*terminal = 1;
   4235 	    else
   4236 		*terminal = 0;
   4237 	}
   4238 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
   4239 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   4240 	    if ((target > 0) && (target <= comp->nbstates) &&
   4241 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
   4242 		 XML_REGEXP_SINK_STATE)) {
   4243 	        values[nb++] = comp->stringMap[i];
   4244 		(*nbval)++;
   4245 	    }
   4246 	}
   4247 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
   4248 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   4249 	    if ((target > 0) && (target <= comp->nbstates) &&
   4250 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
   4251 		 XML_REGEXP_SINK_STATE)) {
   4252 	        values[nb++] = comp->stringMap[i];
   4253 		(*nbneg)++;
   4254 	    }
   4255 	}
   4256     } else {
   4257         int transno;
   4258 	xmlRegTransPtr trans;
   4259 	xmlRegAtomPtr atom;
   4260 	xmlRegStatePtr state;
   4261 
   4262 	if (terminal != NULL) {
   4263 	    if (exec->state->type == XML_REGEXP_FINAL_STATE)
   4264 		*terminal = 1;
   4265 	    else
   4266 		*terminal = 0;
   4267 	}
   4268 
   4269 	if (err) {
   4270 	    if (exec->errState == NULL) return(-1);
   4271 	    state = exec->errState;
   4272 	} else {
   4273 	    if (exec->state == NULL) return(-1);
   4274 	    state = exec->state;
   4275 	}
   4276 	for (transno = 0;
   4277 	     (transno < state->nbTrans) && (nb < maxval);
   4278 	     transno++) {
   4279 	    trans = &state->trans[transno];
   4280 	    if (trans->to < 0)
   4281 		continue;
   4282 	    atom = trans->atom;
   4283 	    if ((atom == NULL) || (atom->valuep == NULL))
   4284 		continue;
   4285 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   4286 	        /* this should not be reached but ... */
   4287 	        TODO;
   4288 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   4289 	        /* this should not be reached but ... */
   4290 	        TODO;
   4291 	    } else if (trans->counter >= 0) {
   4292 		xmlRegCounterPtr counter = NULL;
   4293 		int count;
   4294 
   4295 		if (err)
   4296 		    count = exec->errCounts[trans->counter];
   4297 		else
   4298 		    count = exec->counts[trans->counter];
   4299 		if (exec->comp != NULL)
   4300 		    counter = &exec->comp->counters[trans->counter];
   4301 		if ((counter == NULL) || (count < counter->max)) {
   4302 		    if (atom->neg)
   4303 			values[nb++] = (xmlChar *) atom->valuep2;
   4304 		    else
   4305 			values[nb++] = (xmlChar *) atom->valuep;
   4306 		    (*nbval)++;
   4307 		}
   4308 	    } else {
   4309                 if ((exec->comp->states[trans->to] != NULL) &&
   4310 		    (exec->comp->states[trans->to]->type !=
   4311 		     XML_REGEXP_SINK_STATE)) {
   4312 		    if (atom->neg)
   4313 			values[nb++] = (xmlChar *) atom->valuep2;
   4314 		    else
   4315 			values[nb++] = (xmlChar *) atom->valuep;
   4316 		    (*nbval)++;
   4317 		}
   4318 	    }
   4319 	}
   4320 	for (transno = 0;
   4321 	     (transno < state->nbTrans) && (nb < maxval);
   4322 	     transno++) {
   4323 	    trans = &state->trans[transno];
   4324 	    if (trans->to < 0)
   4325 		continue;
   4326 	    atom = trans->atom;
   4327 	    if ((atom == NULL) || (atom->valuep == NULL))
   4328 		continue;
   4329 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   4330 	        continue;
   4331 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   4332 	        continue;
   4333 	    } else if (trans->counter >= 0) {
   4334 	        continue;
   4335 	    } else {
   4336                 if ((exec->comp->states[trans->to] != NULL) &&
   4337 		    (exec->comp->states[trans->to]->type ==
   4338 		     XML_REGEXP_SINK_STATE)) {
   4339 		    if (atom->neg)
   4340 			values[nb++] = (xmlChar *) atom->valuep2;
   4341 		    else
   4342 			values[nb++] = (xmlChar *) atom->valuep;
   4343 		    (*nbneg)++;
   4344 		}
   4345 	    }
   4346 	}
   4347     }
   4348     return(0);
   4349 }
   4350 
   4351 /**
   4352  * xmlRegExecNextValues:
   4353  * @exec: a regexp execution context
   4354  * @nbval: pointer to the number of accepted values IN/OUT
   4355  * @nbneg: return number of negative transitions
   4356  * @values: pointer to the array of acceptable values
   4357  * @terminal: return value if this was a terminal state
   4358  *
   4359  * Extract informations from the regexp execution,
   4360  * the parameter @values must point to an array of @nbval string pointers
   4361  * on return nbval will contain the number of possible strings in that
   4362  * state and the @values array will be updated with them. The string values
   4363  * returned will be freed with the @exec context and don't need to be
   4364  * deallocated.
   4365  *
   4366  * Returns: 0 in case of success or -1 in case of error.
   4367  */
   4368 int
   4369 xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
   4370                      xmlChar **values, int *terminal) {
   4371     return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
   4372 }
   4373 
   4374 /**
   4375  * xmlRegExecErrInfo:
   4376  * @exec: a regexp execution context generating an error
   4377  * @string: return value for the error string
   4378  * @nbval: pointer to the number of accepted values IN/OUT
   4379  * @nbneg: return number of negative transitions
   4380  * @values: pointer to the array of acceptable values
   4381  * @terminal: return value if this was a terminal state
   4382  *
   4383  * Extract error informations from the regexp execution, the parameter
   4384  * @string will be updated with the value pushed and not accepted,
   4385  * the parameter @values must point to an array of @nbval string pointers
   4386  * on return nbval will contain the number of possible strings in that
   4387  * state and the @values array will be updated with them. The string values
   4388  * returned will be freed with the @exec context and don't need to be
   4389  * deallocated.
   4390  *
   4391  * Returns: 0 in case of success or -1 in case of error.
   4392  */
   4393 int
   4394 xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
   4395                   int *nbval, int *nbneg, xmlChar **values, int *terminal) {
   4396     if (exec == NULL)
   4397         return(-1);
   4398     if (string != NULL) {
   4399         if (exec->status != 0)
   4400 	    *string = exec->errString;
   4401 	else
   4402 	    *string = NULL;
   4403     }
   4404     return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
   4405 }
   4406 
   4407 #ifdef DEBUG_ERR
   4408 static void testerr(xmlRegExecCtxtPtr exec) {
   4409     const xmlChar *string;
   4410     xmlChar *values[5];
   4411     int nb = 5;
   4412     int nbneg;
   4413     int terminal;
   4414     xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal);
   4415 }
   4416 #endif
   4417 
   4418 #if 0
   4419 static int
   4420 xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
   4421     xmlRegTransPtr trans;
   4422     xmlRegAtomPtr atom;
   4423     int ret;
   4424     int codepoint, len;
   4425 
   4426     if (exec == NULL)
   4427 	return(-1);
   4428     if (exec->status != 0)
   4429 	return(exec->status);
   4430 
   4431     while ((exec->status == 0) &&
   4432 	   ((exec->inputString[exec->index] != 0) ||
   4433 	    (exec->state->type != XML_REGEXP_FINAL_STATE))) {
   4434 
   4435 	/*
   4436 	 * End of input on non-terminal state, rollback, however we may
   4437 	 * still have epsilon like transition for counted transitions
   4438 	 * on counters, in that case don't break too early.
   4439 	 */
   4440 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
   4441 	    goto rollback;
   4442 
   4443 	exec->transcount = 0;
   4444 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   4445 	    trans = &exec->state->trans[exec->transno];
   4446 	    if (trans->to < 0)
   4447 		continue;
   4448 	    atom = trans->atom;
   4449 	    ret = 0;
   4450 	    if (trans->count >= 0) {
   4451 		int count;
   4452 		xmlRegCounterPtr counter;
   4453 
   4454 		/*
   4455 		 * A counted transition.
   4456 		 */
   4457 
   4458 		count = exec->counts[trans->count];
   4459 		counter = &exec->comp->counters[trans->count];
   4460 #ifdef DEBUG_REGEXP_EXEC
   4461 		printf("testing count %d: val %d, min %d, max %d\n",
   4462 		       trans->count, count, counter->min,  counter->max);
   4463 #endif
   4464 		ret = ((count >= counter->min) && (count <= counter->max));
   4465 	    } else if (atom == NULL) {
   4466 		fprintf(stderr, "epsilon transition left at runtime\n");
   4467 		exec->status = -2;
   4468 		break;
   4469 	    } else if (exec->inputString[exec->index] != 0) {
   4470                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
   4471 		ret = xmlRegCheckCharacter(atom, codepoint);
   4472 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
   4473 		    xmlRegStatePtr to = exec->comp->states[trans->to];
   4474 
   4475 		    /*
   4476 		     * this is a multiple input sequence
   4477 		     */
   4478 		    if (exec->state->nbTrans > exec->transno + 1) {
   4479 			xmlFARegExecSave(exec);
   4480 		    }
   4481 		    exec->transcount = 1;
   4482 		    do {
   4483 			/*
   4484 			 * Try to progress as much as possible on the input
   4485 			 */
   4486 			if (exec->transcount == atom->max) {
   4487 			    break;
   4488 			}
   4489 			exec->index += len;
   4490 			/*
   4491 			 * End of input: stop here
   4492 			 */
   4493 			if (exec->inputString[exec->index] == 0) {
   4494 			    exec->index -= len;
   4495 			    break;
   4496 			}
   4497 			if (exec->transcount >= atom->min) {
   4498 			    int transno = exec->transno;
   4499 			    xmlRegStatePtr state = exec->state;
   4500 
   4501 			    /*
   4502 			     * The transition is acceptable save it
   4503 			     */
   4504 			    exec->transno = -1; /* trick */
   4505 			    exec->state = to;
   4506 			    xmlFARegExecSave(exec);
   4507 			    exec->transno = transno;
   4508 			    exec->state = state;
   4509 			}
   4510 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
   4511 				              len);
   4512 			ret = xmlRegCheckCharacter(atom, codepoint);
   4513 			exec->transcount++;
   4514 		    } while (ret == 1);
   4515 		    if (exec->transcount < atom->min)
   4516 			ret = 0;
   4517 
   4518 		    /*
   4519 		     * If the last check failed but one transition was found
   4520 		     * possible, rollback
   4521 		     */
   4522 		    if (ret < 0)
   4523 			ret = 0;
   4524 		    if (ret == 0) {
   4525 			goto rollback;
   4526 		    }
   4527 		}
   4528 	    }
   4529 	    if (ret == 1) {
   4530 		if (exec->state->nbTrans > exec->transno + 1) {
   4531 		    xmlFARegExecSave(exec);
   4532 		}
   4533 		/*
   4534 		 * restart count for expressions like this ((abc){2})*
   4535 		 */
   4536 		if (trans->count >= 0) {
   4537 #ifdef DEBUG_REGEXP_EXEC
   4538 		    printf("Reset count %d\n", trans->count);
   4539 #endif
   4540 		    exec->counts[trans->count] = 0;
   4541 		}
   4542 		if (trans->counter >= 0) {
   4543 #ifdef DEBUG_REGEXP_EXEC
   4544 		    printf("Increasing count %d\n", trans->counter);
   4545 #endif
   4546 		    exec->counts[trans->counter]++;
   4547 		}
   4548 #ifdef DEBUG_REGEXP_EXEC
   4549 		printf("entering state %d\n", trans->to);
   4550 #endif
   4551 		exec->state = exec->comp->states[trans->to];
   4552 		exec->transno = 0;
   4553 		if (trans->atom != NULL) {
   4554 		    exec->index += len;
   4555 		}
   4556 		goto progress;
   4557 	    } else if (ret < 0) {
   4558 		exec->status = -4;
   4559 		break;
   4560 	    }
   4561 	}
   4562 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   4563 rollback:
   4564 	    /*
   4565 	     * Failed to find a way out
   4566 	     */
   4567 	    exec->determinist = 0;
   4568 	    xmlFARegExecRollBack(exec);
   4569 	}
   4570 progress:
   4571 	continue;
   4572     }
   4573 }
   4574 #endif
   4575 /************************************************************************
   4576  *									*
   4577  *	Parser for the Schemas Datatype Regular Expressions		*
   4578  *	http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs	*
   4579  *									*
   4580  ************************************************************************/
   4581 
   4582 /**
   4583  * xmlFAIsChar:
   4584  * @ctxt:  a regexp parser context
   4585  *
   4586  * [10]   Char   ::=   [^.\?*+()|#x5B#x5D]
   4587  */
   4588 static int
   4589 xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
   4590     int cur;
   4591     int len;
   4592 
   4593     cur = CUR_SCHAR(ctxt->cur, len);
   4594     if ((cur == '.') || (cur == '\\') || (cur == '?') ||
   4595 	(cur == '*') || (cur == '+') || (cur == '(') ||
   4596 	(cur == ')') || (cur == '|') || (cur == 0x5B) ||
   4597 	(cur == 0x5D) || (cur == 0))
   4598 	return(-1);
   4599     return(cur);
   4600 }
   4601 
   4602 /**
   4603  * xmlFAParseCharProp:
   4604  * @ctxt:  a regexp parser context
   4605  *
   4606  * [27]   charProp   ::=   IsCategory | IsBlock
   4607  * [28]   IsCategory ::= Letters | Marks | Numbers | Punctuation |
   4608  *                       Separators | Symbols | Others
   4609  * [29]   Letters   ::=   'L' [ultmo]?
   4610  * [30]   Marks   ::=   'M' [nce]?
   4611  * [31]   Numbers   ::=   'N' [dlo]?
   4612  * [32]   Punctuation   ::=   'P' [cdseifo]?
   4613  * [33]   Separators   ::=   'Z' [slp]?
   4614  * [34]   Symbols   ::=   'S' [mcko]?
   4615  * [35]   Others   ::=   'C' [cfon]?
   4616  * [36]   IsBlock   ::=   'Is' [a-zA-Z0-9#x2D]+
   4617  */
   4618 static void
   4619 xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
   4620     int cur;
   4621     xmlRegAtomType type = (xmlRegAtomType) 0;
   4622     xmlChar *blockName = NULL;
   4623 
   4624     cur = CUR;
   4625     if (cur == 'L') {
   4626 	NEXT;
   4627 	cur = CUR;
   4628 	if (cur == 'u') {
   4629 	    NEXT;
   4630 	    type = XML_REGEXP_LETTER_UPPERCASE;
   4631 	} else if (cur == 'l') {
   4632 	    NEXT;
   4633 	    type = XML_REGEXP_LETTER_LOWERCASE;
   4634 	} else if (cur == 't') {
   4635 	    NEXT;
   4636 	    type = XML_REGEXP_LETTER_TITLECASE;
   4637 	} else if (cur == 'm') {
   4638 	    NEXT;
   4639 	    type = XML_REGEXP_LETTER_MODIFIER;
   4640 	} else if (cur == 'o') {
   4641 	    NEXT;
   4642 	    type = XML_REGEXP_LETTER_OTHERS;
   4643 	} else {
   4644 	    type = XML_REGEXP_LETTER;
   4645 	}
   4646     } else if (cur == 'M') {
   4647 	NEXT;
   4648 	cur = CUR;
   4649 	if (cur == 'n') {
   4650 	    NEXT;
   4651 	    /* nonspacing */
   4652 	    type = XML_REGEXP_MARK_NONSPACING;
   4653 	} else if (cur == 'c') {
   4654 	    NEXT;
   4655 	    /* spacing combining */
   4656 	    type = XML_REGEXP_MARK_SPACECOMBINING;
   4657 	} else if (cur == 'e') {
   4658 	    NEXT;
   4659 	    /* enclosing */
   4660 	    type = XML_REGEXP_MARK_ENCLOSING;
   4661 	} else {
   4662 	    /* all marks */
   4663 	    type = XML_REGEXP_MARK;
   4664 	}
   4665     } else if (cur == 'N') {
   4666 	NEXT;
   4667 	cur = CUR;
   4668 	if (cur == 'd') {
   4669 	    NEXT;
   4670 	    /* digital */
   4671 	    type = XML_REGEXP_NUMBER_DECIMAL;
   4672 	} else if (cur == 'l') {
   4673 	    NEXT;
   4674 	    /* letter */
   4675 	    type = XML_REGEXP_NUMBER_LETTER;
   4676 	} else if (cur == 'o') {
   4677 	    NEXT;
   4678 	    /* other */
   4679 	    type = XML_REGEXP_NUMBER_OTHERS;
   4680 	} else {
   4681 	    /* all numbers */
   4682 	    type = XML_REGEXP_NUMBER;
   4683 	}
   4684     } else if (cur == 'P') {
   4685 	NEXT;
   4686 	cur = CUR;
   4687 	if (cur == 'c') {
   4688 	    NEXT;
   4689 	    /* connector */
   4690 	    type = XML_REGEXP_PUNCT_CONNECTOR;
   4691 	} else if (cur == 'd') {
   4692 	    NEXT;
   4693 	    /* dash */
   4694 	    type = XML_REGEXP_PUNCT_DASH;
   4695 	} else if (cur == 's') {
   4696 	    NEXT;
   4697 	    /* open */
   4698 	    type = XML_REGEXP_PUNCT_OPEN;
   4699 	} else if (cur == 'e') {
   4700 	    NEXT;
   4701 	    /* close */
   4702 	    type = XML_REGEXP_PUNCT_CLOSE;
   4703 	} else if (cur == 'i') {
   4704 	    NEXT;
   4705 	    /* initial quote */
   4706 	    type = XML_REGEXP_PUNCT_INITQUOTE;
   4707 	} else if (cur == 'f') {
   4708 	    NEXT;
   4709 	    /* final quote */
   4710 	    type = XML_REGEXP_PUNCT_FINQUOTE;
   4711 	} else if (cur == 'o') {
   4712 	    NEXT;
   4713 	    /* other */
   4714 	    type = XML_REGEXP_PUNCT_OTHERS;
   4715 	} else {
   4716 	    /* all punctuation */
   4717 	    type = XML_REGEXP_PUNCT;
   4718 	}
   4719     } else if (cur == 'Z') {
   4720 	NEXT;
   4721 	cur = CUR;
   4722 	if (cur == 's') {
   4723 	    NEXT;
   4724 	    /* space */
   4725 	    type = XML_REGEXP_SEPAR_SPACE;
   4726 	} else if (cur == 'l') {
   4727 	    NEXT;
   4728 	    /* line */
   4729 	    type = XML_REGEXP_SEPAR_LINE;
   4730 	} else if (cur == 'p') {
   4731 	    NEXT;
   4732 	    /* paragraph */
   4733 	    type = XML_REGEXP_SEPAR_PARA;
   4734 	} else {
   4735 	    /* all separators */
   4736 	    type = XML_REGEXP_SEPAR;
   4737 	}
   4738     } else if (cur == 'S') {
   4739 	NEXT;
   4740 	cur = CUR;
   4741 	if (cur == 'm') {
   4742 	    NEXT;
   4743 	    type = XML_REGEXP_SYMBOL_MATH;
   4744 	    /* math */
   4745 	} else if (cur == 'c') {
   4746 	    NEXT;
   4747 	    type = XML_REGEXP_SYMBOL_CURRENCY;
   4748 	    /* currency */
   4749 	} else if (cur == 'k') {
   4750 	    NEXT;
   4751 	    type = XML_REGEXP_SYMBOL_MODIFIER;
   4752 	    /* modifiers */
   4753 	} else if (cur == 'o') {
   4754 	    NEXT;
   4755 	    type = XML_REGEXP_SYMBOL_OTHERS;
   4756 	    /* other */
   4757 	} else {
   4758 	    /* all symbols */
   4759 	    type = XML_REGEXP_SYMBOL;
   4760 	}
   4761     } else if (cur == 'C') {
   4762 	NEXT;
   4763 	cur = CUR;
   4764 	if (cur == 'c') {
   4765 	    NEXT;
   4766 	    /* control */
   4767 	    type = XML_REGEXP_OTHER_CONTROL;
   4768 	} else if (cur == 'f') {
   4769 	    NEXT;
   4770 	    /* format */
   4771 	    type = XML_REGEXP_OTHER_FORMAT;
   4772 	} else if (cur == 'o') {
   4773 	    NEXT;
   4774 	    /* private use */
   4775 	    type = XML_REGEXP_OTHER_PRIVATE;
   4776 	} else if (cur == 'n') {
   4777 	    NEXT;
   4778 	    /* not assigned */
   4779 	    type = XML_REGEXP_OTHER_NA;
   4780 	} else {
   4781 	    /* all others */
   4782 	    type = XML_REGEXP_OTHER;
   4783 	}
   4784     } else if (cur == 'I') {
   4785 	const xmlChar *start;
   4786 	NEXT;
   4787 	cur = CUR;
   4788 	if (cur != 's') {
   4789 	    ERROR("IsXXXX expected");
   4790 	    return;
   4791 	}
   4792 	NEXT;
   4793 	start = ctxt->cur;
   4794 	cur = CUR;
   4795 	if (((cur >= 'a') && (cur <= 'z')) ||
   4796 	    ((cur >= 'A') && (cur <= 'Z')) ||
   4797 	    ((cur >= '0') && (cur <= '9')) ||
   4798 	    (cur == 0x2D)) {
   4799 	    NEXT;
   4800 	    cur = CUR;
   4801 	    while (((cur >= 'a') && (cur <= 'z')) ||
   4802 		((cur >= 'A') && (cur <= 'Z')) ||
   4803 		((cur >= '0') && (cur <= '9')) ||
   4804 		(cur == 0x2D)) {
   4805 		NEXT;
   4806 		cur = CUR;
   4807 	    }
   4808 	}
   4809 	type = XML_REGEXP_BLOCK_NAME;
   4810 	blockName = xmlStrndup(start, ctxt->cur - start);
   4811     } else {
   4812 	ERROR("Unknown char property");
   4813 	return;
   4814     }
   4815     if (ctxt->atom == NULL) {
   4816 	ctxt->atom = xmlRegNewAtom(ctxt, type);
   4817 	if (ctxt->atom != NULL)
   4818 	    ctxt->atom->valuep = blockName;
   4819     } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4820         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4821 		           type, 0, 0, blockName);
   4822     }
   4823 }
   4824 
   4825 /**
   4826  * xmlFAParseCharClassEsc:
   4827  * @ctxt:  a regexp parser context
   4828  *
   4829  * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
   4830  * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
   4831  * [25] catEsc   ::=   '\p{' charProp '}'
   4832  * [26] complEsc ::=   '\P{' charProp '}'
   4833  * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
   4834  */
   4835 static void
   4836 xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
   4837     int cur;
   4838 
   4839     if (CUR == '.') {
   4840 	if (ctxt->atom == NULL) {
   4841 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
   4842 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4843 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4844 			       XML_REGEXP_ANYCHAR, 0, 0, NULL);
   4845 	}
   4846 	NEXT;
   4847 	return;
   4848     }
   4849     if (CUR != '\\') {
   4850 	ERROR("Escaped sequence: expecting \\");
   4851 	return;
   4852     }
   4853     NEXT;
   4854     cur = CUR;
   4855     if (cur == 'p') {
   4856 	NEXT;
   4857 	if (CUR != '{') {
   4858 	    ERROR("Expecting '{'");
   4859 	    return;
   4860 	}
   4861 	NEXT;
   4862 	xmlFAParseCharProp(ctxt);
   4863 	if (CUR != '}') {
   4864 	    ERROR("Expecting '}'");
   4865 	    return;
   4866 	}
   4867 	NEXT;
   4868     } else if (cur == 'P') {
   4869 	NEXT;
   4870 	if (CUR != '{') {
   4871 	    ERROR("Expecting '{'");
   4872 	    return;
   4873 	}
   4874 	NEXT;
   4875 	xmlFAParseCharProp(ctxt);
   4876 	ctxt->atom->neg = 1;
   4877 	if (CUR != '}') {
   4878 	    ERROR("Expecting '}'");
   4879 	    return;
   4880 	}
   4881 	NEXT;
   4882     } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
   4883 	(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
   4884 	(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
   4885 	(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
   4886 	(cur == 0x5E)) {
   4887 	if (ctxt->atom == NULL) {
   4888 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
   4889 	    if (ctxt->atom != NULL) {
   4890 	        switch (cur) {
   4891 		    case 'n':
   4892 		        ctxt->atom->codepoint = '\n';
   4893 			break;
   4894 		    case 'r':
   4895 		        ctxt->atom->codepoint = '\r';
   4896 			break;
   4897 		    case 't':
   4898 		        ctxt->atom->codepoint = '\t';
   4899 			break;
   4900 		    default:
   4901 			ctxt->atom->codepoint = cur;
   4902 		}
   4903 	    }
   4904 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4905             switch (cur) {
   4906                 case 'n':
   4907                     cur = '\n';
   4908                     break;
   4909                 case 'r':
   4910                     cur = '\r';
   4911                     break;
   4912                 case 't':
   4913                     cur = '\t';
   4914                     break;
   4915             }
   4916 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4917 			       XML_REGEXP_CHARVAL, cur, cur, NULL);
   4918 	}
   4919 	NEXT;
   4920     } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
   4921 	(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
   4922 	(cur == 'w') || (cur == 'W')) {
   4923 	xmlRegAtomType type = XML_REGEXP_ANYSPACE;
   4924 
   4925 	switch (cur) {
   4926 	    case 's':
   4927 		type = XML_REGEXP_ANYSPACE;
   4928 		break;
   4929 	    case 'S':
   4930 		type = XML_REGEXP_NOTSPACE;
   4931 		break;
   4932 	    case 'i':
   4933 		type = XML_REGEXP_INITNAME;
   4934 		break;
   4935 	    case 'I':
   4936 		type = XML_REGEXP_NOTINITNAME;
   4937 		break;
   4938 	    case 'c':
   4939 		type = XML_REGEXP_NAMECHAR;
   4940 		break;
   4941 	    case 'C':
   4942 		type = XML_REGEXP_NOTNAMECHAR;
   4943 		break;
   4944 	    case 'd':
   4945 		type = XML_REGEXP_DECIMAL;
   4946 		break;
   4947 	    case 'D':
   4948 		type = XML_REGEXP_NOTDECIMAL;
   4949 		break;
   4950 	    case 'w':
   4951 		type = XML_REGEXP_REALCHAR;
   4952 		break;
   4953 	    case 'W':
   4954 		type = XML_REGEXP_NOTREALCHAR;
   4955 		break;
   4956 	}
   4957 	NEXT;
   4958 	if (ctxt->atom == NULL) {
   4959 	    ctxt->atom = xmlRegNewAtom(ctxt, type);
   4960 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4961 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4962 			       type, 0, 0, NULL);
   4963 	}
   4964     } else {
   4965 	ERROR("Wrong escape sequence, misuse of character '\\'");
   4966     }
   4967 }
   4968 
   4969 /**
   4970  * xmlFAParseCharRange:
   4971  * @ctxt:  a regexp parser context
   4972  *
   4973  * [17]   charRange   ::=     seRange | XmlCharRef | XmlCharIncDash
   4974  * [18]   seRange   ::=   charOrEsc '-' charOrEsc
   4975  * [20]   charOrEsc   ::=   XmlChar | SingleCharEsc
   4976  * [21]   XmlChar   ::=   [^\#x2D#x5B#x5D]
   4977  * [22]   XmlCharIncDash   ::=   [^\#x5B#x5D]
   4978  */
   4979 static void
   4980 xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
   4981     int cur, len;
   4982     int start = -1;
   4983     int end = -1;
   4984 
   4985     if (CUR == '\0') {
   4986         ERROR("Expecting ']'");
   4987 	return;
   4988     }
   4989 
   4990     cur = CUR;
   4991     if (cur == '\\') {
   4992 	NEXT;
   4993 	cur = CUR;
   4994 	switch (cur) {
   4995 	    case 'n': start = 0xA; break;
   4996 	    case 'r': start = 0xD; break;
   4997 	    case 't': start = 0x9; break;
   4998 	    case '\\': case '|': case '.': case '-': case '^': case '?':
   4999 	    case '*': case '+': case '{': case '}': case '(': case ')':
   5000 	    case '[': case ']':
   5001 		start = cur; break;
   5002 	    default:
   5003 		ERROR("Invalid escape value");
   5004 		return;
   5005 	}
   5006 	end = start;
   5007         len = 1;
   5008     } else if ((cur != 0x5B) && (cur != 0x5D)) {
   5009         end = start = CUR_SCHAR(ctxt->cur, len);
   5010     } else {
   5011 	ERROR("Expecting a char range");
   5012 	return;
   5013     }
   5014     /*
   5015      * Since we are "inside" a range, we can assume ctxt->cur is past
   5016      * the start of ctxt->string, and PREV should be safe
   5017      */
   5018     if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
   5019 	NEXTL(len);
   5020 	return;
   5021     }
   5022     NEXTL(len);
   5023     cur = CUR;
   5024     if ((cur != '-') || (NXT(1) == ']')) {
   5025         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   5026 		              XML_REGEXP_CHARVAL, start, end, NULL);
   5027 	return;
   5028     }
   5029     NEXT;
   5030     cur = CUR;
   5031     if (cur == '\\') {
   5032 	NEXT;
   5033 	cur = CUR;
   5034 	switch (cur) {
   5035 	    case 'n': end = 0xA; break;
   5036 	    case 'r': end = 0xD; break;
   5037 	    case 't': end = 0x9; break;
   5038 	    case '\\': case '|': case '.': case '-': case '^': case '?':
   5039 	    case '*': case '+': case '{': case '}': case '(': case ')':
   5040 	    case '[': case ']':
   5041 		end = cur; break;
   5042 	    default:
   5043 		ERROR("Invalid escape value");
   5044 		return;
   5045 	}
   5046         len = 1;
   5047     } else if ((cur != 0x5B) && (cur != 0x5D)) {
   5048         end = CUR_SCHAR(ctxt->cur, len);
   5049     } else {
   5050 	ERROR("Expecting the end of a char range");
   5051 	return;
   5052     }
   5053     NEXTL(len);
   5054     /* TODO check that the values are acceptable character ranges for XML */
   5055     if (end < start) {
   5056 	ERROR("End of range is before start of range");
   5057     } else {
   5058         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   5059 		           XML_REGEXP_CHARVAL, start, end, NULL);
   5060     }
   5061     return;
   5062 }
   5063 
   5064 /**
   5065  * xmlFAParsePosCharGroup:
   5066  * @ctxt:  a regexp parser context
   5067  *
   5068  * [14]   posCharGroup ::= ( charRange | charClassEsc  )+
   5069  */
   5070 static void
   5071 xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
   5072     do {
   5073 	if (CUR == '\\') {
   5074 	    xmlFAParseCharClassEsc(ctxt);
   5075 	} else {
   5076 	    xmlFAParseCharRange(ctxt);
   5077 	}
   5078     } while ((CUR != ']') && (CUR != '^') && (CUR != '-') &&
   5079              (CUR != 0) && (ctxt->error == 0));
   5080 }
   5081 
   5082 /**
   5083  * xmlFAParseCharGroup:
   5084  * @ctxt:  a regexp parser context
   5085  *
   5086  * [13]   charGroup    ::= posCharGroup | negCharGroup | charClassSub
   5087  * [15]   negCharGroup ::= '^' posCharGroup
   5088  * [16]   charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
   5089  * [12]   charClassExpr ::= '[' charGroup ']'
   5090  */
   5091 static void
   5092 xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
   5093     int n = ctxt->neg;
   5094     while ((CUR != ']') && (ctxt->error == 0)) {
   5095 	if (CUR == '^') {
   5096 	    int neg = ctxt->neg;
   5097 
   5098 	    NEXT;
   5099 	    ctxt->neg = !ctxt->neg;
   5100 	    xmlFAParsePosCharGroup(ctxt);
   5101 	    ctxt->neg = neg;
   5102 	} else if ((CUR == '-') && (NXT(1) == '[')) {
   5103 	    int neg = ctxt->neg;
   5104 	    ctxt->neg = 2;
   5105 	    NEXT;	/* eat the '-' */
   5106 	    NEXT;	/* eat the '[' */
   5107 	    xmlFAParseCharGroup(ctxt);
   5108 	    if (CUR == ']') {
   5109 		NEXT;
   5110 	    } else {
   5111 		ERROR("charClassExpr: ']' expected");
   5112 		break;
   5113 	    }
   5114 	    ctxt->neg = neg;
   5115 	    break;
   5116 	} else if (CUR != ']') {
   5117 	    xmlFAParsePosCharGroup(ctxt);
   5118 	}
   5119     }
   5120     ctxt->neg = n;
   5121 }
   5122 
   5123 /**
   5124  * xmlFAParseCharClass:
   5125  * @ctxt:  a regexp parser context
   5126  *
   5127  * [11]   charClass   ::=     charClassEsc | charClassExpr
   5128  * [12]   charClassExpr   ::=   '[' charGroup ']'
   5129  */
   5130 static void
   5131 xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
   5132     if (CUR == '[') {
   5133 	NEXT;
   5134 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
   5135 	if (ctxt->atom == NULL)
   5136 	    return;
   5137 	xmlFAParseCharGroup(ctxt);
   5138 	if (CUR == ']') {
   5139 	    NEXT;
   5140 	} else {
   5141 	    ERROR("xmlFAParseCharClass: ']' expected");
   5142 	}
   5143     } else {
   5144 	xmlFAParseCharClassEsc(ctxt);
   5145     }
   5146 }
   5147 
   5148 /**
   5149  * xmlFAParseQuantExact:
   5150  * @ctxt:  a regexp parser context
   5151  *
   5152  * [8]   QuantExact   ::=   [0-9]+
   5153  *
   5154  * Returns 0 if success or -1 in case of error
   5155  */
   5156 static int
   5157 xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
   5158     int ret = 0;
   5159     int ok = 0;
   5160 
   5161     while ((CUR >= '0') && (CUR <= '9')) {
   5162 	ret = ret * 10 + (CUR - '0');
   5163 	ok = 1;
   5164 	NEXT;
   5165     }
   5166     if (ok != 1) {
   5167 	return(-1);
   5168     }
   5169     return(ret);
   5170 }
   5171 
   5172 /**
   5173  * xmlFAParseQuantifier:
   5174  * @ctxt:  a regexp parser context
   5175  *
   5176  * [4]   quantifier   ::=   [?*+] | ( '{' quantity '}' )
   5177  * [5]   quantity   ::=   quantRange | quantMin | QuantExact
   5178  * [6]   quantRange   ::=   QuantExact ',' QuantExact
   5179  * [7]   quantMin   ::=   QuantExact ','
   5180  * [8]   QuantExact   ::=   [0-9]+
   5181  */
   5182 static int
   5183 xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
   5184     int cur;
   5185 
   5186     cur = CUR;
   5187     if ((cur == '?') || (cur == '*') || (cur == '+')) {
   5188 	if (ctxt->atom != NULL) {
   5189 	    if (cur == '?')
   5190 		ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
   5191 	    else if (cur == '*')
   5192 		ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
   5193 	    else if (cur == '+')
   5194 		ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
   5195 	}
   5196 	NEXT;
   5197 	return(1);
   5198     }
   5199     if (cur == '{') {
   5200 	int min = 0, max = 0;
   5201 
   5202 	NEXT;
   5203 	cur = xmlFAParseQuantExact(ctxt);
   5204 	if (cur >= 0)
   5205 	    min = cur;
   5206 	if (CUR == ',') {
   5207 	    NEXT;
   5208 	    if (CUR == '}')
   5209 	        max = INT_MAX;
   5210 	    else {
   5211 	        cur = xmlFAParseQuantExact(ctxt);
   5212 	        if (cur >= 0)
   5213 		    max = cur;
   5214 		else {
   5215 		    ERROR("Improper quantifier");
   5216 		}
   5217 	    }
   5218 	}
   5219 	if (CUR == '}') {
   5220 	    NEXT;
   5221 	} else {
   5222 	    ERROR("Unterminated quantifier");
   5223 	}
   5224 	if (max == 0)
   5225 	    max = min;
   5226 	if (ctxt->atom != NULL) {
   5227 	    ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
   5228 	    ctxt->atom->min = min;
   5229 	    ctxt->atom->max = max;
   5230 	}
   5231 	return(1);
   5232     }
   5233     return(0);
   5234 }
   5235 
   5236 /**
   5237  * xmlFAParseAtom:
   5238  * @ctxt:  a regexp parser context
   5239  *
   5240  * [9]   atom   ::=   Char | charClass | ( '(' regExp ')' )
   5241  */
   5242 static int
   5243 xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
   5244     int codepoint, len;
   5245 
   5246     codepoint = xmlFAIsChar(ctxt);
   5247     if (codepoint > 0) {
   5248 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
   5249 	if (ctxt->atom == NULL)
   5250 	    return(-1);
   5251 	codepoint = CUR_SCHAR(ctxt->cur, len);
   5252 	ctxt->atom->codepoint = codepoint;
   5253 	NEXTL(len);
   5254 	return(1);
   5255     } else if (CUR == '|') {
   5256 	return(0);
   5257     } else if (CUR == 0) {
   5258 	return(0);
   5259     } else if (CUR == ')') {
   5260 	return(0);
   5261     } else if (CUR == '(') {
   5262 	xmlRegStatePtr start, oldend, start0;
   5263 
   5264 	NEXT;
   5265 	/*
   5266 	 * this extra Epsilon transition is needed if we count with 0 allowed
   5267 	 * unfortunately this can't be known at that point
   5268 	 */
   5269 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
   5270 	start0 = ctxt->state;
   5271 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
   5272 	start = ctxt->state;
   5273 	oldend = ctxt->end;
   5274 	ctxt->end = NULL;
   5275 	ctxt->atom = NULL;
   5276 	xmlFAParseRegExp(ctxt, 0);
   5277 	if (CUR == ')') {
   5278 	    NEXT;
   5279 	} else {
   5280 	    ERROR("xmlFAParseAtom: expecting ')'");
   5281 	}
   5282 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
   5283 	if (ctxt->atom == NULL)
   5284 	    return(-1);
   5285 	ctxt->atom->start = start;
   5286 	ctxt->atom->start0 = start0;
   5287 	ctxt->atom->stop = ctxt->state;
   5288 	ctxt->end = oldend;
   5289 	return(1);
   5290     } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
   5291 	xmlFAParseCharClass(ctxt);
   5292 	return(1);
   5293     }
   5294     return(0);
   5295 }
   5296 
   5297 /**
   5298  * xmlFAParsePiece:
   5299  * @ctxt:  a regexp parser context
   5300  *
   5301  * [3]   piece   ::=   atom quantifier?
   5302  */
   5303 static int
   5304 xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
   5305     int ret;
   5306 
   5307     ctxt->atom = NULL;
   5308     ret = xmlFAParseAtom(ctxt);
   5309     if (ret == 0)
   5310 	return(0);
   5311     if (ctxt->atom == NULL) {
   5312 	ERROR("internal: no atom generated");
   5313     }
   5314     xmlFAParseQuantifier(ctxt);
   5315     return(1);
   5316 }
   5317 
   5318 /**
   5319  * xmlFAParseBranch:
   5320  * @ctxt:  a regexp parser context
   5321  * @to: optional target to the end of the branch
   5322  *
   5323  * @to is used to optimize by removing duplicate path in automata
   5324  * in expressions like (a|b)(c|d)
   5325  *
   5326  * [2]   branch   ::=   piece*
   5327  */
   5328 static int
   5329 xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
   5330     xmlRegStatePtr previous;
   5331     int ret;
   5332 
   5333     previous = ctxt->state;
   5334     ret = xmlFAParsePiece(ctxt);
   5335     if (ret != 0) {
   5336 	if (xmlFAGenerateTransitions(ctxt, previous,
   5337 	        (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
   5338 	    return(-1);
   5339 	previous = ctxt->state;
   5340 	ctxt->atom = NULL;
   5341     }
   5342     while ((ret != 0) && (ctxt->error == 0)) {
   5343 	ret = xmlFAParsePiece(ctxt);
   5344 	if (ret != 0) {
   5345 	    if (xmlFAGenerateTransitions(ctxt, previous,
   5346 	            (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
   5347 		    return(-1);
   5348 	    previous = ctxt->state;
   5349 	    ctxt->atom = NULL;
   5350 	}
   5351     }
   5352     return(0);
   5353 }
   5354 
   5355 /**
   5356  * xmlFAParseRegExp:
   5357  * @ctxt:  a regexp parser context
   5358  * @top:  is this the top-level expression ?
   5359  *
   5360  * [1]   regExp   ::=     branch  ( '|' branch )*
   5361  */
   5362 static void
   5363 xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
   5364     xmlRegStatePtr start, end;
   5365 
   5366     /* if not top start should have been generated by an epsilon trans */
   5367     start = ctxt->state;
   5368     ctxt->end = NULL;
   5369     xmlFAParseBranch(ctxt, NULL);
   5370     if (top) {
   5371 #ifdef DEBUG_REGEXP_GRAPH
   5372 	printf("State %d is final\n", ctxt->state->no);
   5373 #endif
   5374 	ctxt->state->type = XML_REGEXP_FINAL_STATE;
   5375     }
   5376     if (CUR != '|') {
   5377 	ctxt->end = ctxt->state;
   5378 	return;
   5379     }
   5380     end = ctxt->state;
   5381     while ((CUR == '|') && (ctxt->error == 0)) {
   5382 	NEXT;
   5383 	if (CUR == 0) {
   5384 	    ERROR("expecting a branch after |")
   5385 	    return;
   5386 	}
   5387 	ctxt->state = start;
   5388 	ctxt->end = NULL;
   5389 	xmlFAParseBranch(ctxt, end);
   5390     }
   5391     if (!top) {
   5392 	ctxt->state = end;
   5393 	ctxt->end = end;
   5394     }
   5395 }
   5396 
   5397 /************************************************************************
   5398  *									*
   5399  *			The basic API					*
   5400  *									*
   5401  ************************************************************************/
   5402 
   5403 /**
   5404  * xmlRegexpPrint:
   5405  * @output: the file for the output debug
   5406  * @regexp: the compiled regexp
   5407  *
   5408  * Print the content of the compiled regular expression
   5409  */
   5410 void
   5411 xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
   5412     int i;
   5413 
   5414     if (output == NULL)
   5415         return;
   5416     fprintf(output, " regexp: ");
   5417     if (regexp == NULL) {
   5418 	fprintf(output, "NULL\n");
   5419 	return;
   5420     }
   5421     fprintf(output, "'%s' ", regexp->string);
   5422     fprintf(output, "\n");
   5423     fprintf(output, "%d atoms:\n", regexp->nbAtoms);
   5424     for (i = 0;i < regexp->nbAtoms; i++) {
   5425 	fprintf(output, " %02d ", i);
   5426 	xmlRegPrintAtom(output, regexp->atoms[i]);
   5427     }
   5428     fprintf(output, "%d states:", regexp->nbStates);
   5429     fprintf(output, "\n");
   5430     for (i = 0;i < regexp->nbStates; i++) {
   5431 	xmlRegPrintState(output, regexp->states[i]);
   5432     }
   5433     fprintf(output, "%d counters:\n", regexp->nbCounters);
   5434     for (i = 0;i < regexp->nbCounters; i++) {
   5435 	fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
   5436 		                                regexp->counters[i].max);
   5437     }
   5438 }
   5439 
   5440 /**
   5441  * xmlRegexpCompile:
   5442  * @regexp:  a regular expression string
   5443  *
   5444  * Parses a regular expression conforming to XML Schemas Part 2 Datatype
   5445  * Appendix F and builds an automata suitable for testing strings against
   5446  * that regular expression
   5447  *
   5448  * Returns the compiled expression or NULL in case of error
   5449  */
   5450 xmlRegexpPtr
   5451 xmlRegexpCompile(const xmlChar *regexp) {
   5452     xmlRegexpPtr ret;
   5453     xmlRegParserCtxtPtr ctxt;
   5454 
   5455     ctxt = xmlRegNewParserCtxt(regexp);
   5456     if (ctxt == NULL)
   5457 	return(NULL);
   5458 
   5459     /* initialize the parser */
   5460     ctxt->end = NULL;
   5461     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
   5462     xmlRegStatePush(ctxt, ctxt->start);
   5463 
   5464     /* parse the expression building an automata */
   5465     xmlFAParseRegExp(ctxt, 1);
   5466     if (CUR != 0) {
   5467 	ERROR("xmlFAParseRegExp: extra characters");
   5468     }
   5469     if (ctxt->error != 0) {
   5470 	xmlRegFreeParserCtxt(ctxt);
   5471 	return(NULL);
   5472     }
   5473     ctxt->end = ctxt->state;
   5474     ctxt->start->type = XML_REGEXP_START_STATE;
   5475     ctxt->end->type = XML_REGEXP_FINAL_STATE;
   5476 
   5477     /* remove the Epsilon except for counted transitions */
   5478     xmlFAEliminateEpsilonTransitions(ctxt);
   5479 
   5480 
   5481     if (ctxt->error != 0) {
   5482 	xmlRegFreeParserCtxt(ctxt);
   5483 	return(NULL);
   5484     }
   5485     ret = xmlRegEpxFromParse(ctxt);
   5486     xmlRegFreeParserCtxt(ctxt);
   5487     return(ret);
   5488 }
   5489 
   5490 /**
   5491  * xmlRegexpExec:
   5492  * @comp:  the compiled regular expression
   5493  * @content:  the value to check against the regular expression
   5494  *
   5495  * Check if the regular expression generates the value
   5496  *
   5497  * Returns 1 if it matches, 0 if not and a negative value in case of error
   5498  */
   5499 int
   5500 xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
   5501     if ((comp == NULL) || (content == NULL))
   5502 	return(-1);
   5503     return(xmlFARegExec(comp, content));
   5504 }
   5505 
   5506 /**
   5507  * xmlRegexpIsDeterminist:
   5508  * @comp:  the compiled regular expression
   5509  *
   5510  * Check if the regular expression is determinist
   5511  *
   5512  * Returns 1 if it yes, 0 if not and a negative value in case of error
   5513  */
   5514 int
   5515 xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
   5516     xmlAutomataPtr am;
   5517     int ret;
   5518 
   5519     if (comp == NULL)
   5520 	return(-1);
   5521     if (comp->determinist != -1)
   5522 	return(comp->determinist);
   5523 
   5524     am = xmlNewAutomata();
   5525     if (am->states != NULL) {
   5526 	int i;
   5527 
   5528 	for (i = 0;i < am->nbStates;i++)
   5529 	    xmlRegFreeState(am->states[i]);
   5530 	xmlFree(am->states);
   5531     }
   5532     am->nbAtoms = comp->nbAtoms;
   5533     am->atoms = comp->atoms;
   5534     am->nbStates = comp->nbStates;
   5535     am->states = comp->states;
   5536     am->determinist = -1;
   5537     am->flags = comp->flags;
   5538     ret = xmlFAComputesDeterminism(am);
   5539     am->atoms = NULL;
   5540     am->states = NULL;
   5541     xmlFreeAutomata(am);
   5542     comp->determinist = ret;
   5543     return(ret);
   5544 }
   5545 
   5546 /**
   5547  * xmlRegFreeRegexp:
   5548  * @regexp:  the regexp
   5549  *
   5550  * Free a regexp
   5551  */
   5552 void
   5553 xmlRegFreeRegexp(xmlRegexpPtr regexp) {
   5554     int i;
   5555     if (regexp == NULL)
   5556 	return;
   5557 
   5558     if (regexp->string != NULL)
   5559 	xmlFree(regexp->string);
   5560     if (regexp->states != NULL) {
   5561 	for (i = 0;i < regexp->nbStates;i++)
   5562 	    xmlRegFreeState(regexp->states[i]);
   5563 	xmlFree(regexp->states);
   5564     }
   5565     if (regexp->atoms != NULL) {
   5566 	for (i = 0;i < regexp->nbAtoms;i++)
   5567 	    xmlRegFreeAtom(regexp->atoms[i]);
   5568 	xmlFree(regexp->atoms);
   5569     }
   5570     if (regexp->counters != NULL)
   5571 	xmlFree(regexp->counters);
   5572     if (regexp->compact != NULL)
   5573 	xmlFree(regexp->compact);
   5574     if (regexp->transdata != NULL)
   5575 	xmlFree(regexp->transdata);
   5576     if (regexp->stringMap != NULL) {
   5577 	for (i = 0; i < regexp->nbstrings;i++)
   5578 	    xmlFree(regexp->stringMap[i]);
   5579 	xmlFree(regexp->stringMap);
   5580     }
   5581 
   5582     xmlFree(regexp);
   5583 }
   5584 
   5585 #ifdef LIBXML_AUTOMATA_ENABLED
   5586 /************************************************************************
   5587  *									*
   5588  *			The Automata interface				*
   5589  *									*
   5590  ************************************************************************/
   5591 
   5592 /**
   5593  * xmlNewAutomata:
   5594  *
   5595  * Create a new automata
   5596  *
   5597  * Returns the new object or NULL in case of failure
   5598  */
   5599 xmlAutomataPtr
   5600 xmlNewAutomata(void) {
   5601     xmlAutomataPtr ctxt;
   5602 
   5603     ctxt = xmlRegNewParserCtxt(NULL);
   5604     if (ctxt == NULL)
   5605 	return(NULL);
   5606 
   5607     /* initialize the parser */
   5608     ctxt->end = NULL;
   5609     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
   5610     if (ctxt->start == NULL) {
   5611 	xmlFreeAutomata(ctxt);
   5612 	return(NULL);
   5613     }
   5614     ctxt->start->type = XML_REGEXP_START_STATE;
   5615     if (xmlRegStatePush(ctxt, ctxt->start) < 0) {
   5616         xmlRegFreeState(ctxt->start);
   5617 	xmlFreeAutomata(ctxt);
   5618 	return(NULL);
   5619     }
   5620     ctxt->flags = 0;
   5621 
   5622     return(ctxt);
   5623 }
   5624 
   5625 /**
   5626  * xmlFreeAutomata:
   5627  * @am: an automata
   5628  *
   5629  * Free an automata
   5630  */
   5631 void
   5632 xmlFreeAutomata(xmlAutomataPtr am) {
   5633     if (am == NULL)
   5634 	return;
   5635     xmlRegFreeParserCtxt(am);
   5636 }
   5637 
   5638 /**
   5639  * xmlAutomataSetFlags:
   5640  * @am: an automata
   5641  * @flags:  a set of internal flags
   5642  *
   5643  * Set some flags on the automata
   5644  */
   5645 void
   5646 xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
   5647     if (am == NULL)
   5648 	return;
   5649     am->flags |= flags;
   5650 }
   5651 
   5652 /**
   5653  * xmlAutomataGetInitState:
   5654  * @am: an automata
   5655  *
   5656  * Initial state lookup
   5657  *
   5658  * Returns the initial state of the automata
   5659  */
   5660 xmlAutomataStatePtr
   5661 xmlAutomataGetInitState(xmlAutomataPtr am) {
   5662     if (am == NULL)
   5663 	return(NULL);
   5664     return(am->start);
   5665 }
   5666 
   5667 /**
   5668  * xmlAutomataSetFinalState:
   5669  * @am: an automata
   5670  * @state: a state in this automata
   5671  *
   5672  * Makes that state a final state
   5673  *
   5674  * Returns 0 or -1 in case of error
   5675  */
   5676 int
   5677 xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
   5678     if ((am == NULL) || (state == NULL))
   5679 	return(-1);
   5680     state->type = XML_REGEXP_FINAL_STATE;
   5681     return(0);
   5682 }
   5683 
   5684 /**
   5685  * xmlAutomataNewTransition:
   5686  * @am: an automata
   5687  * @from: the starting point of the transition
   5688  * @to: the target point of the transition or NULL
   5689  * @token: the input string associated to that transition
   5690  * @data: data passed to the callback function if the transition is activated
   5691  *
   5692  * If @to is NULL, this creates first a new target state in the automata
   5693  * and then adds a transition from the @from state to the target state
   5694  * activated by the value of @token
   5695  *
   5696  * Returns the target state or NULL in case of error
   5697  */
   5698 xmlAutomataStatePtr
   5699 xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5700 			 xmlAutomataStatePtr to, const xmlChar *token,
   5701 			 void *data) {
   5702     xmlRegAtomPtr atom;
   5703 
   5704     if ((am == NULL) || (from == NULL) || (token == NULL))
   5705 	return(NULL);
   5706     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5707     if (atom == NULL)
   5708         return(NULL);
   5709     atom->data = data;
   5710     if (atom == NULL)
   5711 	return(NULL);
   5712     atom->valuep = xmlStrdup(token);
   5713 
   5714     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5715         xmlRegFreeAtom(atom);
   5716 	return(NULL);
   5717     }
   5718     if (to == NULL)
   5719 	return(am->state);
   5720     return(to);
   5721 }
   5722 
   5723 /**
   5724  * xmlAutomataNewTransition2:
   5725  * @am: an automata
   5726  * @from: the starting point of the transition
   5727  * @to: the target point of the transition or NULL
   5728  * @token: the first input string associated to that transition
   5729  * @token2: the second input string associated to that transition
   5730  * @data: data passed to the callback function if the transition is activated
   5731  *
   5732  * If @to is NULL, this creates first a new target state in the automata
   5733  * and then adds a transition from the @from state to the target state
   5734  * activated by the value of @token
   5735  *
   5736  * Returns the target state or NULL in case of error
   5737  */
   5738 xmlAutomataStatePtr
   5739 xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5740 			  xmlAutomataStatePtr to, const xmlChar *token,
   5741 			  const xmlChar *token2, void *data) {
   5742     xmlRegAtomPtr atom;
   5743 
   5744     if ((am == NULL) || (from == NULL) || (token == NULL))
   5745 	return(NULL);
   5746     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5747     if (atom == NULL)
   5748 	return(NULL);
   5749     atom->data = data;
   5750     if ((token2 == NULL) || (*token2 == 0)) {
   5751 	atom->valuep = xmlStrdup(token);
   5752     } else {
   5753 	int lenn, lenp;
   5754 	xmlChar *str;
   5755 
   5756 	lenn = strlen((char *) token2);
   5757 	lenp = strlen((char *) token);
   5758 
   5759 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5760 	if (str == NULL) {
   5761 	    xmlRegFreeAtom(atom);
   5762 	    return(NULL);
   5763 	}
   5764 	memcpy(&str[0], token, lenp);
   5765 	str[lenp] = '|';
   5766 	memcpy(&str[lenp + 1], token2, lenn);
   5767 	str[lenn + lenp + 1] = 0;
   5768 
   5769 	atom->valuep = str;
   5770     }
   5771 
   5772     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5773         xmlRegFreeAtom(atom);
   5774 	return(NULL);
   5775     }
   5776     if (to == NULL)
   5777 	return(am->state);
   5778     return(to);
   5779 }
   5780 
   5781 /**
   5782  * xmlAutomataNewNegTrans:
   5783  * @am: an automata
   5784  * @from: the starting point of the transition
   5785  * @to: the target point of the transition or NULL
   5786  * @token: the first input string associated to that transition
   5787  * @token2: the second input string associated to that transition
   5788  * @data: data passed to the callback function if the transition is activated
   5789  *
   5790  * If @to is NULL, this creates first a new target state in the automata
   5791  * and then adds a transition from the @from state to the target state
   5792  * activated by any value except (@token,@token2)
   5793  * Note that if @token2 is not NULL, then (X, NULL) won't match to follow
   5794  # the semantic of XSD ##other
   5795  *
   5796  * Returns the target state or NULL in case of error
   5797  */
   5798 xmlAutomataStatePtr
   5799 xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5800 		       xmlAutomataStatePtr to, const xmlChar *token,
   5801 		       const xmlChar *token2, void *data) {
   5802     xmlRegAtomPtr atom;
   5803     xmlChar err_msg[200];
   5804 
   5805     if ((am == NULL) || (from == NULL) || (token == NULL))
   5806 	return(NULL);
   5807     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5808     if (atom == NULL)
   5809 	return(NULL);
   5810     atom->data = data;
   5811     atom->neg = 1;
   5812     if ((token2 == NULL) || (*token2 == 0)) {
   5813 	atom->valuep = xmlStrdup(token);
   5814     } else {
   5815 	int lenn, lenp;
   5816 	xmlChar *str;
   5817 
   5818 	lenn = strlen((char *) token2);
   5819 	lenp = strlen((char *) token);
   5820 
   5821 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5822 	if (str == NULL) {
   5823 	    xmlRegFreeAtom(atom);
   5824 	    return(NULL);
   5825 	}
   5826 	memcpy(&str[0], token, lenp);
   5827 	str[lenp] = '|';
   5828 	memcpy(&str[lenp + 1], token2, lenn);
   5829 	str[lenn + lenp + 1] = 0;
   5830 
   5831 	atom->valuep = str;
   5832     }
   5833     snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
   5834     err_msg[199] = 0;
   5835     atom->valuep2 = xmlStrdup(err_msg);
   5836 
   5837     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5838         xmlRegFreeAtom(atom);
   5839 	return(NULL);
   5840     }
   5841     am->negs++;
   5842     if (to == NULL)
   5843 	return(am->state);
   5844     return(to);
   5845 }
   5846 
   5847 /**
   5848  * xmlAutomataNewCountTrans2:
   5849  * @am: an automata
   5850  * @from: the starting point of the transition
   5851  * @to: the target point of the transition or NULL
   5852  * @token: the input string associated to that transition
   5853  * @token2: the second input string associated to that transition
   5854  * @min:  the minimum successive occurences of token
   5855  * @max:  the maximum successive occurences of token
   5856  * @data:  data associated to the transition
   5857  *
   5858  * If @to is NULL, this creates first a new target state in the automata
   5859  * and then adds a transition from the @from state to the target state
   5860  * activated by a succession of input of value @token and @token2 and
   5861  * whose number is between @min and @max
   5862  *
   5863  * Returns the target state or NULL in case of error
   5864  */
   5865 xmlAutomataStatePtr
   5866 xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5867 			 xmlAutomataStatePtr to, const xmlChar *token,
   5868 			 const xmlChar *token2,
   5869 			 int min, int max, void *data) {
   5870     xmlRegAtomPtr atom;
   5871     int counter;
   5872 
   5873     if ((am == NULL) || (from == NULL) || (token == NULL))
   5874 	return(NULL);
   5875     if (min < 0)
   5876 	return(NULL);
   5877     if ((max < min) || (max < 1))
   5878 	return(NULL);
   5879     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5880     if (atom == NULL)
   5881 	return(NULL);
   5882     if ((token2 == NULL) || (*token2 == 0)) {
   5883 	atom->valuep = xmlStrdup(token);
   5884     } else {
   5885 	int lenn, lenp;
   5886 	xmlChar *str;
   5887 
   5888 	lenn = strlen((char *) token2);
   5889 	lenp = strlen((char *) token);
   5890 
   5891 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5892 	if (str == NULL) {
   5893 	    xmlRegFreeAtom(atom);
   5894 	    return(NULL);
   5895 	}
   5896 	memcpy(&str[0], token, lenp);
   5897 	str[lenp] = '|';
   5898 	memcpy(&str[lenp + 1], token2, lenn);
   5899 	str[lenn + lenp + 1] = 0;
   5900 
   5901 	atom->valuep = str;
   5902     }
   5903     atom->data = data;
   5904     if (min == 0)
   5905 	atom->min = 1;
   5906     else
   5907 	atom->min = min;
   5908     atom->max = max;
   5909 
   5910     /*
   5911      * associate a counter to the transition.
   5912      */
   5913     counter = xmlRegGetCounter(am);
   5914     am->counters[counter].min = min;
   5915     am->counters[counter].max = max;
   5916 
   5917     /* xmlFAGenerateTransitions(am, from, to, atom); */
   5918     if (to == NULL) {
   5919         to = xmlRegNewState(am);
   5920 	xmlRegStatePush(am, to);
   5921     }
   5922     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   5923     xmlRegAtomPush(am, atom);
   5924     am->state = to;
   5925 
   5926     if (to == NULL)
   5927 	to = am->state;
   5928     if (to == NULL)
   5929 	return(NULL);
   5930     if (min == 0)
   5931 	xmlFAGenerateEpsilonTransition(am, from, to);
   5932     return(to);
   5933 }
   5934 
   5935 /**
   5936  * xmlAutomataNewCountTrans:
   5937  * @am: an automata
   5938  * @from: the starting point of the transition
   5939  * @to: the target point of the transition or NULL
   5940  * @token: the input string associated to that transition
   5941  * @min:  the minimum successive occurences of token
   5942  * @max:  the maximum successive occurences of token
   5943  * @data:  data associated to the transition
   5944  *
   5945  * If @to is NULL, this creates first a new target state in the automata
   5946  * and then adds a transition from the @from state to the target state
   5947  * activated by a succession of input of value @token and whose number
   5948  * is between @min and @max
   5949  *
   5950  * Returns the target state or NULL in case of error
   5951  */
   5952 xmlAutomataStatePtr
   5953 xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5954 			 xmlAutomataStatePtr to, const xmlChar *token,
   5955 			 int min, int max, void *data) {
   5956     xmlRegAtomPtr atom;
   5957     int counter;
   5958 
   5959     if ((am == NULL) || (from == NULL) || (token == NULL))
   5960 	return(NULL);
   5961     if (min < 0)
   5962 	return(NULL);
   5963     if ((max < min) || (max < 1))
   5964 	return(NULL);
   5965     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5966     if (atom == NULL)
   5967 	return(NULL);
   5968     atom->valuep = xmlStrdup(token);
   5969     atom->data = data;
   5970     if (min == 0)
   5971 	atom->min = 1;
   5972     else
   5973 	atom->min = min;
   5974     atom->max = max;
   5975 
   5976     /*
   5977      * associate a counter to the transition.
   5978      */
   5979     counter = xmlRegGetCounter(am);
   5980     am->counters[counter].min = min;
   5981     am->counters[counter].max = max;
   5982 
   5983     /* xmlFAGenerateTransitions(am, from, to, atom); */
   5984     if (to == NULL) {
   5985         to = xmlRegNewState(am);
   5986 	xmlRegStatePush(am, to);
   5987     }
   5988     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   5989     xmlRegAtomPush(am, atom);
   5990     am->state = to;
   5991 
   5992     if (to == NULL)
   5993 	to = am->state;
   5994     if (to == NULL)
   5995 	return(NULL);
   5996     if (min == 0)
   5997 	xmlFAGenerateEpsilonTransition(am, from, to);
   5998     return(to);
   5999 }
   6000 
   6001 /**
   6002  * xmlAutomataNewOnceTrans2:
   6003  * @am: an automata
   6004  * @from: the starting point of the transition
   6005  * @to: the target point of the transition or NULL
   6006  * @token: the input string associated to that transition
   6007  * @token2: the second input string associated to that transition
   6008  * @min:  the minimum successive occurences of token
   6009  * @max:  the maximum successive occurences of token
   6010  * @data:  data associated to the transition
   6011  *
   6012  * If @to is NULL, this creates first a new target state in the automata
   6013  * and then adds a transition from the @from state to the target state
   6014  * activated by a succession of input of value @token and @token2 and whose
   6015  * number is between @min and @max, moreover that transition can only be
   6016  * crossed once.
   6017  *
   6018  * Returns the target state or NULL in case of error
   6019  */
   6020 xmlAutomataStatePtr
   6021 xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6022 			 xmlAutomataStatePtr to, const xmlChar *token,
   6023 			 const xmlChar *token2,
   6024 			 int min, int max, void *data) {
   6025     xmlRegAtomPtr atom;
   6026     int counter;
   6027 
   6028     if ((am == NULL) || (from == NULL) || (token == NULL))
   6029 	return(NULL);
   6030     if (min < 1)
   6031 	return(NULL);
   6032     if ((max < min) || (max < 1))
   6033 	return(NULL);
   6034     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   6035     if (atom == NULL)
   6036 	return(NULL);
   6037     if ((token2 == NULL) || (*token2 == 0)) {
   6038 	atom->valuep = xmlStrdup(token);
   6039     } else {
   6040 	int lenn, lenp;
   6041 	xmlChar *str;
   6042 
   6043 	lenn = strlen((char *) token2);
   6044 	lenp = strlen((char *) token);
   6045 
   6046 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   6047 	if (str == NULL) {
   6048 	    xmlRegFreeAtom(atom);
   6049 	    return(NULL);
   6050 	}
   6051 	memcpy(&str[0], token, lenp);
   6052 	str[lenp] = '|';
   6053 	memcpy(&str[lenp + 1], token2, lenn);
   6054 	str[lenn + lenp + 1] = 0;
   6055 
   6056 	atom->valuep = str;
   6057     }
   6058     atom->data = data;
   6059     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
   6060     atom->min = min;
   6061     atom->max = max;
   6062     /*
   6063      * associate a counter to the transition.
   6064      */
   6065     counter = xmlRegGetCounter(am);
   6066     am->counters[counter].min = 1;
   6067     am->counters[counter].max = 1;
   6068 
   6069     /* xmlFAGenerateTransitions(am, from, to, atom); */
   6070     if (to == NULL) {
   6071 	to = xmlRegNewState(am);
   6072 	xmlRegStatePush(am, to);
   6073     }
   6074     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   6075     xmlRegAtomPush(am, atom);
   6076     am->state = to;
   6077     return(to);
   6078 }
   6079 
   6080 
   6081 
   6082 /**
   6083  * xmlAutomataNewOnceTrans:
   6084  * @am: an automata
   6085  * @from: the starting point of the transition
   6086  * @to: the target point of the transition or NULL
   6087  * @token: the input string associated to that transition
   6088  * @min:  the minimum successive occurences of token
   6089  * @max:  the maximum successive occurences of token
   6090  * @data:  data associated to the transition
   6091  *
   6092  * If @to is NULL, this creates first a new target state in the automata
   6093  * and then adds a transition from the @from state to the target state
   6094  * activated by a succession of input of value @token and whose number
   6095  * is between @min and @max, moreover that transition can only be crossed
   6096  * once.
   6097  *
   6098  * Returns the target state or NULL in case of error
   6099  */
   6100 xmlAutomataStatePtr
   6101 xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6102 			 xmlAutomataStatePtr to, const xmlChar *token,
   6103 			 int min, int max, void *data) {
   6104     xmlRegAtomPtr atom;
   6105     int counter;
   6106 
   6107     if ((am == NULL) || (from == NULL) || (token == NULL))
   6108 	return(NULL);
   6109     if (min < 1)
   6110 	return(NULL);
   6111     if ((max < min) || (max < 1))
   6112 	return(NULL);
   6113     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   6114     if (atom == NULL)
   6115 	return(NULL);
   6116     atom->valuep = xmlStrdup(token);
   6117     atom->data = data;
   6118     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
   6119     atom->min = min;
   6120     atom->max = max;
   6121     /*
   6122      * associate a counter to the transition.
   6123      */
   6124     counter = xmlRegGetCounter(am);
   6125     am->counters[counter].min = 1;
   6126     am->counters[counter].max = 1;
   6127 
   6128     /* xmlFAGenerateTransitions(am, from, to, atom); */
   6129     if (to == NULL) {
   6130 	to = xmlRegNewState(am);
   6131 	xmlRegStatePush(am, to);
   6132     }
   6133     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   6134     xmlRegAtomPush(am, atom);
   6135     am->state = to;
   6136     return(to);
   6137 }
   6138 
   6139 /**
   6140  * xmlAutomataNewState:
   6141  * @am: an automata
   6142  *
   6143  * Create a new disconnected state in the automata
   6144  *
   6145  * Returns the new state or NULL in case of error
   6146  */
   6147 xmlAutomataStatePtr
   6148 xmlAutomataNewState(xmlAutomataPtr am) {
   6149     xmlAutomataStatePtr to;
   6150 
   6151     if (am == NULL)
   6152 	return(NULL);
   6153     to = xmlRegNewState(am);
   6154     xmlRegStatePush(am, to);
   6155     return(to);
   6156 }
   6157 
   6158 /**
   6159  * xmlAutomataNewEpsilon:
   6160  * @am: an automata
   6161  * @from: the starting point of the transition
   6162  * @to: the target point of the transition or NULL
   6163  *
   6164  * If @to is NULL, this creates first a new target state in the automata
   6165  * and then adds an epsilon transition from the @from state to the
   6166  * target state
   6167  *
   6168  * Returns the target state or NULL in case of error
   6169  */
   6170 xmlAutomataStatePtr
   6171 xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6172 		      xmlAutomataStatePtr to) {
   6173     if ((am == NULL) || (from == NULL))
   6174 	return(NULL);
   6175     xmlFAGenerateEpsilonTransition(am, from, to);
   6176     if (to == NULL)
   6177 	return(am->state);
   6178     return(to);
   6179 }
   6180 
   6181 /**
   6182  * xmlAutomataNewAllTrans:
   6183  * @am: an automata
   6184  * @from: the starting point of the transition
   6185  * @to: the target point of the transition or NULL
   6186  * @lax: allow to transition if not all all transitions have been activated
   6187  *
   6188  * If @to is NULL, this creates first a new target state in the automata
   6189  * and then adds a an ALL transition from the @from state to the
   6190  * target state. That transition is an epsilon transition allowed only when
   6191  * all transitions from the @from node have been activated.
   6192  *
   6193  * Returns the target state or NULL in case of error
   6194  */
   6195 xmlAutomataStatePtr
   6196 xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6197 		       xmlAutomataStatePtr to, int lax) {
   6198     if ((am == NULL) || (from == NULL))
   6199 	return(NULL);
   6200     xmlFAGenerateAllTransition(am, from, to, lax);
   6201     if (to == NULL)
   6202 	return(am->state);
   6203     return(to);
   6204 }
   6205 
   6206 /**
   6207  * xmlAutomataNewCounter:
   6208  * @am: an automata
   6209  * @min:  the minimal value on the counter
   6210  * @max:  the maximal value on the counter
   6211  *
   6212  * Create a new counter
   6213  *
   6214  * Returns the counter number or -1 in case of error
   6215  */
   6216 int
   6217 xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
   6218     int ret;
   6219 
   6220     if (am == NULL)
   6221 	return(-1);
   6222 
   6223     ret = xmlRegGetCounter(am);
   6224     if (ret < 0)
   6225 	return(-1);
   6226     am->counters[ret].min = min;
   6227     am->counters[ret].max = max;
   6228     return(ret);
   6229 }
   6230 
   6231 /**
   6232  * xmlAutomataNewCountedTrans:
   6233  * @am: an automata
   6234  * @from: the starting point of the transition
   6235  * @to: the target point of the transition or NULL
   6236  * @counter: the counter associated to that transition
   6237  *
   6238  * If @to is NULL, this creates first a new target state in the automata
   6239  * and then adds an epsilon transition from the @from state to the target state
   6240  * which will increment the counter provided
   6241  *
   6242  * Returns the target state or NULL in case of error
   6243  */
   6244 xmlAutomataStatePtr
   6245 xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6246 		xmlAutomataStatePtr to, int counter) {
   6247     if ((am == NULL) || (from == NULL) || (counter < 0))
   6248 	return(NULL);
   6249     xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
   6250     if (to == NULL)
   6251 	return(am->state);
   6252     return(to);
   6253 }
   6254 
   6255 /**
   6256  * xmlAutomataNewCounterTrans:
   6257  * @am: an automata
   6258  * @from: the starting point of the transition
   6259  * @to: the target point of the transition or NULL
   6260  * @counter: the counter associated to that transition
   6261  *
   6262  * If @to is NULL, this creates first a new target state in the automata
   6263  * and then adds an epsilon transition from the @from state to the target state
   6264  * which will be allowed only if the counter is within the right range.
   6265  *
   6266  * Returns the target state or NULL in case of error
   6267  */
   6268 xmlAutomataStatePtr
   6269 xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6270 		xmlAutomataStatePtr to, int counter) {
   6271     if ((am == NULL) || (from == NULL) || (counter < 0))
   6272 	return(NULL);
   6273     xmlFAGenerateCountedTransition(am, from, to, counter);
   6274     if (to == NULL)
   6275 	return(am->state);
   6276     return(to);
   6277 }
   6278 
   6279 /**
   6280  * xmlAutomataCompile:
   6281  * @am: an automata
   6282  *
   6283  * Compile the automata into a Reg Exp ready for being executed.
   6284  * The automata should be free after this point.
   6285  *
   6286  * Returns the compiled regexp or NULL in case of error
   6287  */
   6288 xmlRegexpPtr
   6289 xmlAutomataCompile(xmlAutomataPtr am) {
   6290     xmlRegexpPtr ret;
   6291 
   6292     if ((am == NULL) || (am->error != 0)) return(NULL);
   6293     xmlFAEliminateEpsilonTransitions(am);
   6294     /* xmlFAComputesDeterminism(am); */
   6295     ret = xmlRegEpxFromParse(am);
   6296 
   6297     return(ret);
   6298 }
   6299 
   6300 /**
   6301  * xmlAutomataIsDeterminist:
   6302  * @am: an automata
   6303  *
   6304  * Checks if an automata is determinist.
   6305  *
   6306  * Returns 1 if true, 0 if not, and -1 in case of error
   6307  */
   6308 int
   6309 xmlAutomataIsDeterminist(xmlAutomataPtr am) {
   6310     int ret;
   6311 
   6312     if (am == NULL)
   6313 	return(-1);
   6314 
   6315     ret = xmlFAComputesDeterminism(am);
   6316     return(ret);
   6317 }
   6318 #endif /* LIBXML_AUTOMATA_ENABLED */
   6319 
   6320 #ifdef LIBXML_EXPR_ENABLED
   6321 /************************************************************************
   6322  *									*
   6323  *		Formal Expression handling code				*
   6324  *									*
   6325  ************************************************************************/
   6326 /************************************************************************
   6327  *									*
   6328  *		Expression handling context				*
   6329  *									*
   6330  ************************************************************************/
   6331 
   6332 struct _xmlExpCtxt {
   6333     xmlDictPtr dict;
   6334     xmlExpNodePtr *table;
   6335     int size;
   6336     int nbElems;
   6337     int nb_nodes;
   6338     int maxNodes;
   6339     const char *expr;
   6340     const char *cur;
   6341     int nb_cons;
   6342     int tabSize;
   6343 };
   6344 
   6345 /**
   6346  * xmlExpNewCtxt:
   6347  * @maxNodes:  the maximum number of nodes
   6348  * @dict:  optional dictionnary to use internally
   6349  *
   6350  * Creates a new context for manipulating expressions
   6351  *
   6352  * Returns the context or NULL in case of error
   6353  */
   6354 xmlExpCtxtPtr
   6355 xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
   6356     xmlExpCtxtPtr ret;
   6357     int size = 256;
   6358 
   6359     if (maxNodes <= 4096)
   6360         maxNodes = 4096;
   6361 
   6362     ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
   6363     if (ret == NULL)
   6364         return(NULL);
   6365     memset(ret, 0, sizeof(xmlExpCtxt));
   6366     ret->size = size;
   6367     ret->nbElems = 0;
   6368     ret->maxNodes = maxNodes;
   6369     ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
   6370     if (ret->table == NULL) {
   6371         xmlFree(ret);
   6372 	return(NULL);
   6373     }
   6374     memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
   6375     if (dict == NULL) {
   6376         ret->dict = xmlDictCreate();
   6377 	if (ret->dict == NULL) {
   6378 	    xmlFree(ret->table);
   6379 	    xmlFree(ret);
   6380 	    return(NULL);
   6381 	}
   6382     } else {
   6383         ret->dict = dict;
   6384 	xmlDictReference(ret->dict);
   6385     }
   6386     return(ret);
   6387 }
   6388 
   6389 /**
   6390  * xmlExpFreeCtxt:
   6391  * @ctxt:  an expression context
   6392  *
   6393  * Free an expression context
   6394  */
   6395 void
   6396 xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
   6397     if (ctxt == NULL)
   6398         return;
   6399     xmlDictFree(ctxt->dict);
   6400     if (ctxt->table != NULL)
   6401 	xmlFree(ctxt->table);
   6402     xmlFree(ctxt);
   6403 }
   6404 
   6405 /************************************************************************
   6406  *									*
   6407  *		Structure associated to an expression node		*
   6408  *									*
   6409  ************************************************************************/
   6410 #define MAX_NODES 10000
   6411 
   6412 /* #define DEBUG_DERIV */
   6413 
   6414 /*
   6415  * TODO:
   6416  * - Wildcards
   6417  * - public API for creation
   6418  *
   6419  * Started
   6420  * - regression testing
   6421  *
   6422  * Done
   6423  * - split into module and test tool
   6424  * - memleaks
   6425  */
   6426 
   6427 typedef enum {
   6428     XML_EXP_NILABLE = (1 << 0)
   6429 } xmlExpNodeInfo;
   6430 
   6431 #define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
   6432 
   6433 struct _xmlExpNode {
   6434     unsigned char type;/* xmlExpNodeType */
   6435     unsigned char info;/* OR of xmlExpNodeInfo */
   6436     unsigned short key;	/* the hash key */
   6437     unsigned int ref;	/* The number of references */
   6438     int c_max;		/* the maximum length it can consume */
   6439     xmlExpNodePtr exp_left;
   6440     xmlExpNodePtr next;/* the next node in the hash table or free list */
   6441     union {
   6442 	struct {
   6443 	    int f_min;
   6444 	    int f_max;
   6445 	} count;
   6446 	struct {
   6447 	    xmlExpNodePtr f_right;
   6448 	} children;
   6449         const xmlChar *f_str;
   6450     } field;
   6451 };
   6452 
   6453 #define exp_min field.count.f_min
   6454 #define exp_max field.count.f_max
   6455 /* #define exp_left field.children.f_left */
   6456 #define exp_right field.children.f_right
   6457 #define exp_str field.f_str
   6458 
   6459 static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
   6460 static xmlExpNode forbiddenExpNode = {
   6461     XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
   6462 };
   6463 xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
   6464 static xmlExpNode emptyExpNode = {
   6465     XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
   6466 };
   6467 xmlExpNodePtr emptyExp = &emptyExpNode;
   6468 
   6469 /************************************************************************
   6470  *									*
   6471  *  The custom hash table for unicity and canonicalization		*
   6472  *  of sub-expressions pointers						*
   6473  *									*
   6474  ************************************************************************/
   6475 /*
   6476  * xmlExpHashNameComputeKey:
   6477  * Calculate the hash key for a token
   6478  */
   6479 static unsigned short
   6480 xmlExpHashNameComputeKey(const xmlChar *name) {
   6481     unsigned short value = 0L;
   6482     char ch;
   6483 
   6484     if (name != NULL) {
   6485 	value += 30 * (*name);
   6486 	while ((ch = *name++) != 0) {
   6487 	    value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
   6488 	}
   6489     }
   6490     return (value);
   6491 }
   6492 
   6493 /*
   6494  * xmlExpHashComputeKey:
   6495  * Calculate the hash key for a compound expression
   6496  */
   6497 static unsigned short
   6498 xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
   6499                      xmlExpNodePtr right) {
   6500     unsigned long value;
   6501     unsigned short ret;
   6502 
   6503     switch (type) {
   6504         case XML_EXP_SEQ:
   6505 	    value = left->key;
   6506 	    value += right->key;
   6507 	    value *= 3;
   6508 	    ret = (unsigned short) value;
   6509 	    break;
   6510         case XML_EXP_OR:
   6511 	    value = left->key;
   6512 	    value += right->key;
   6513 	    value *= 7;
   6514 	    ret = (unsigned short) value;
   6515 	    break;
   6516         case XML_EXP_COUNT:
   6517 	    value = left->key;
   6518 	    value += right->key;
   6519 	    ret = (unsigned short) value;
   6520 	    break;
   6521 	default:
   6522 	    ret = 0;
   6523     }
   6524     return(ret);
   6525 }
   6526 
   6527 
   6528 static xmlExpNodePtr
   6529 xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
   6530     xmlExpNodePtr ret;
   6531 
   6532     if (ctxt->nb_nodes >= MAX_NODES)
   6533         return(NULL);
   6534     ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
   6535     if (ret == NULL)
   6536         return(NULL);
   6537     memset(ret, 0, sizeof(xmlExpNode));
   6538     ret->type = type;
   6539     ret->next = NULL;
   6540     ctxt->nb_nodes++;
   6541     ctxt->nb_cons++;
   6542     return(ret);
   6543 }
   6544 
   6545 /**
   6546  * xmlExpHashGetEntry:
   6547  * @table: the hash table
   6548  *
   6549  * Get the unique entry from the hash table. The entry is created if
   6550  * needed. @left and @right are consumed, i.e. their ref count will
   6551  * be decremented by the operation.
   6552  *
   6553  * Returns the pointer or NULL in case of error
   6554  */
   6555 static xmlExpNodePtr
   6556 xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
   6557                    xmlExpNodePtr left, xmlExpNodePtr right,
   6558 		   const xmlChar *name, int min, int max) {
   6559     unsigned short kbase, key;
   6560     xmlExpNodePtr entry;
   6561     xmlExpNodePtr insert;
   6562 
   6563     if (ctxt == NULL)
   6564 	return(NULL);
   6565 
   6566     /*
   6567      * Check for duplicate and insertion location.
   6568      */
   6569     if (type == XML_EXP_ATOM) {
   6570 	kbase = xmlExpHashNameComputeKey(name);
   6571     } else if (type == XML_EXP_COUNT) {
   6572         /* COUNT reduction rule 1 */
   6573 	/* a{1} -> a */
   6574 	if (min == max) {
   6575 	    if (min == 1) {
   6576 		return(left);
   6577 	    }
   6578 	    if (min == 0) {
   6579 		xmlExpFree(ctxt, left);
   6580 	        return(emptyExp);
   6581 	    }
   6582 	}
   6583 	if (min < 0) {
   6584 	    xmlExpFree(ctxt, left);
   6585 	    return(forbiddenExp);
   6586 	}
   6587         if (max == -1)
   6588 	    kbase = min + 79;
   6589 	else
   6590 	    kbase = max - min;
   6591 	kbase += left->key;
   6592     } else if (type == XML_EXP_OR) {
   6593         /* Forbid reduction rules */
   6594         if (left->type == XML_EXP_FORBID) {
   6595 	    xmlExpFree(ctxt, left);
   6596 	    return(right);
   6597 	}
   6598         if (right->type == XML_EXP_FORBID) {
   6599 	    xmlExpFree(ctxt, right);
   6600 	    return(left);
   6601 	}
   6602 
   6603         /* OR reduction rule 1 */
   6604 	/* a | a reduced to a */
   6605         if (left == right) {
   6606 	    left->ref--;
   6607 	    return(left);
   6608 	}
   6609         /* OR canonicalization rule 1 */
   6610 	/* linearize (a | b) | c into a | (b | c) */
   6611         if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
   6612 	    xmlExpNodePtr tmp = left;
   6613             left = right;
   6614 	    right = tmp;
   6615 	}
   6616         /* OR reduction rule 2 */
   6617 	/* a | (a | b) and b | (a | b) are reduced to a | b */
   6618         if (right->type == XML_EXP_OR) {
   6619 	    if ((left == right->exp_left) ||
   6620 	        (left == right->exp_right)) {
   6621 		xmlExpFree(ctxt, left);
   6622 		return(right);
   6623 	    }
   6624 	}
   6625         /* OR canonicalization rule 2 */
   6626 	/* linearize (a | b) | c into a | (b | c) */
   6627         if (left->type == XML_EXP_OR) {
   6628 	    xmlExpNodePtr tmp;
   6629 
   6630 	    /* OR canonicalization rule 2 */
   6631 	    if ((left->exp_right->type != XML_EXP_OR) &&
   6632 	        (left->exp_right->key < left->exp_left->key)) {
   6633 	        tmp = left->exp_right;
   6634 		left->exp_right = left->exp_left;
   6635 		left->exp_left = tmp;
   6636 	    }
   6637 	    left->exp_right->ref++;
   6638 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
   6639 	                             NULL, 0, 0);
   6640 	    left->exp_left->ref++;
   6641 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
   6642 	                             NULL, 0, 0);
   6643 
   6644 	    xmlExpFree(ctxt, left);
   6645 	    return(tmp);
   6646 	}
   6647 	if (right->type == XML_EXP_OR) {
   6648 	    /* Ordering in the tree */
   6649 	    /* C | (A | B) -> A | (B | C) */
   6650 	    if (left->key > right->exp_right->key) {
   6651 		xmlExpNodePtr tmp;
   6652 		right->exp_right->ref++;
   6653 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
   6654 		                         left, NULL, 0, 0);
   6655 		right->exp_left->ref++;
   6656 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
   6657 		                         tmp, NULL, 0, 0);
   6658 		xmlExpFree(ctxt, right);
   6659 		return(tmp);
   6660 	    }
   6661 	    /* Ordering in the tree */
   6662 	    /* B | (A | C) -> A | (B | C) */
   6663 	    if (left->key > right->exp_left->key) {
   6664 		xmlExpNodePtr tmp;
   6665 		right->exp_right->ref++;
   6666 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
   6667 		                         right->exp_right, NULL, 0, 0);
   6668 		right->exp_left->ref++;
   6669 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
   6670 		                         tmp, NULL, 0, 0);
   6671 		xmlExpFree(ctxt, right);
   6672 		return(tmp);
   6673 	    }
   6674 	}
   6675 	/* we know both types are != XML_EXP_OR here */
   6676         else if (left->key > right->key) {
   6677 	    xmlExpNodePtr tmp = left;
   6678             left = right;
   6679 	    right = tmp;
   6680 	}
   6681 	kbase = xmlExpHashComputeKey(type, left, right);
   6682     } else if (type == XML_EXP_SEQ) {
   6683         /* Forbid reduction rules */
   6684         if (left->type == XML_EXP_FORBID) {
   6685 	    xmlExpFree(ctxt, right);
   6686 	    return(left);
   6687 	}
   6688         if (right->type == XML_EXP_FORBID) {
   6689 	    xmlExpFree(ctxt, left);
   6690 	    return(right);
   6691 	}
   6692         /* Empty reduction rules */
   6693         if (right->type == XML_EXP_EMPTY) {
   6694 	    return(left);
   6695 	}
   6696         if (left->type == XML_EXP_EMPTY) {
   6697 	    return(right);
   6698 	}
   6699 	kbase = xmlExpHashComputeKey(type, left, right);
   6700     } else
   6701         return(NULL);
   6702 
   6703     key = kbase % ctxt->size;
   6704     if (ctxt->table[key] != NULL) {
   6705 	for (insert = ctxt->table[key]; insert != NULL;
   6706 	     insert = insert->next) {
   6707 	    if ((insert->key == kbase) &&
   6708 	        (insert->type == type)) {
   6709 		if (type == XML_EXP_ATOM) {
   6710 		    if (name == insert->exp_str) {
   6711 			insert->ref++;
   6712 			return(insert);
   6713 		    }
   6714 		} else if (type == XML_EXP_COUNT) {
   6715 		    if ((insert->exp_min == min) && (insert->exp_max == max) &&
   6716 		        (insert->exp_left == left)) {
   6717 			insert->ref++;
   6718 			left->ref--;
   6719 			return(insert);
   6720 		    }
   6721 		} else if ((insert->exp_left == left) &&
   6722 			   (insert->exp_right == right)) {
   6723 		    insert->ref++;
   6724 		    left->ref--;
   6725 		    right->ref--;
   6726 		    return(insert);
   6727 		}
   6728 	    }
   6729 	}
   6730     }
   6731 
   6732     entry = xmlExpNewNode(ctxt, type);
   6733     if (entry == NULL)
   6734         return(NULL);
   6735     entry->key = kbase;
   6736     if (type == XML_EXP_ATOM) {
   6737 	entry->exp_str = name;
   6738 	entry->c_max = 1;
   6739     } else if (type == XML_EXP_COUNT) {
   6740         entry->exp_min = min;
   6741         entry->exp_max = max;
   6742 	entry->exp_left = left;
   6743 	if ((min == 0) || (IS_NILLABLE(left)))
   6744 	    entry->info |= XML_EXP_NILABLE;
   6745 	if (max < 0)
   6746 	    entry->c_max = -1;
   6747 	else
   6748 	    entry->c_max = max * entry->exp_left->c_max;
   6749     } else {
   6750 	entry->exp_left = left;
   6751 	entry->exp_right = right;
   6752 	if (type == XML_EXP_OR) {
   6753 	    if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
   6754 		entry->info |= XML_EXP_NILABLE;
   6755 	    if ((entry->exp_left->c_max == -1) ||
   6756 	        (entry->exp_right->c_max == -1))
   6757 		entry->c_max = -1;
   6758 	    else if (entry->exp_left->c_max > entry->exp_right->c_max)
   6759 	        entry->c_max = entry->exp_left->c_max;
   6760 	    else
   6761 	        entry->c_max = entry->exp_right->c_max;
   6762 	} else {
   6763 	    if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
   6764 		entry->info |= XML_EXP_NILABLE;
   6765 	    if ((entry->exp_left->c_max == -1) ||
   6766 	        (entry->exp_right->c_max == -1))
   6767 		entry->c_max = -1;
   6768 	    else
   6769 	        entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
   6770 	}
   6771     }
   6772     entry->ref = 1;
   6773     if (ctxt->table[key] != NULL)
   6774         entry->next = ctxt->table[key];
   6775 
   6776     ctxt->table[key] = entry;
   6777     ctxt->nbElems++;
   6778 
   6779     return(entry);
   6780 }
   6781 
   6782 /**
   6783  * xmlExpFree:
   6784  * @ctxt: the expression context
   6785  * @exp: the expression
   6786  *
   6787  * Dereference the expression
   6788  */
   6789 void
   6790 xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
   6791     if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
   6792         return;
   6793     exp->ref--;
   6794     if (exp->ref == 0) {
   6795         unsigned short key;
   6796 
   6797         /* Unlink it first from the hash table */
   6798 	key = exp->key % ctxt->size;
   6799 	if (ctxt->table[key] == exp) {
   6800 	    ctxt->table[key] = exp->next;
   6801 	} else {
   6802 	    xmlExpNodePtr tmp;
   6803 
   6804 	    tmp = ctxt->table[key];
   6805 	    while (tmp != NULL) {
   6806 	        if (tmp->next == exp) {
   6807 		    tmp->next = exp->next;
   6808 		    break;
   6809 		}
   6810 	        tmp = tmp->next;
   6811 	    }
   6812 	}
   6813 
   6814         if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
   6815 	    xmlExpFree(ctxt, exp->exp_left);
   6816 	    xmlExpFree(ctxt, exp->exp_right);
   6817 	} else if (exp->type == XML_EXP_COUNT) {
   6818 	    xmlExpFree(ctxt, exp->exp_left);
   6819 	}
   6820         xmlFree(exp);
   6821 	ctxt->nb_nodes--;
   6822     }
   6823 }
   6824 
   6825 /**
   6826  * xmlExpRef:
   6827  * @exp: the expression
   6828  *
   6829  * Increase the reference count of the expression
   6830  */
   6831 void
   6832 xmlExpRef(xmlExpNodePtr exp) {
   6833     if (exp != NULL)
   6834         exp->ref++;
   6835 }
   6836 
   6837 /**
   6838  * xmlExpNewAtom:
   6839  * @ctxt: the expression context
   6840  * @name: the atom name
   6841  * @len: the atom name length in byte (or -1);
   6842  *
   6843  * Get the atom associated to this name from that context
   6844  *
   6845  * Returns the node or NULL in case of error
   6846  */
   6847 xmlExpNodePtr
   6848 xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
   6849     if ((ctxt == NULL) || (name == NULL))
   6850         return(NULL);
   6851     name = xmlDictLookup(ctxt->dict, name, len);
   6852     if (name == NULL)
   6853         return(NULL);
   6854     return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
   6855 }
   6856 
   6857 /**
   6858  * xmlExpNewOr:
   6859  * @ctxt: the expression context
   6860  * @left: left expression
   6861  * @right: right expression
   6862  *
   6863  * Get the atom associated to the choice @left | @right
   6864  * Note that @left and @right are consumed in the operation, to keep
   6865  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
   6866  * this is true even in case of failure (unless ctxt == NULL).
   6867  *
   6868  * Returns the node or NULL in case of error
   6869  */
   6870 xmlExpNodePtr
   6871 xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
   6872     if (ctxt == NULL)
   6873         return(NULL);
   6874     if ((left == NULL) || (right == NULL)) {
   6875         xmlExpFree(ctxt, left);
   6876         xmlExpFree(ctxt, right);
   6877         return(NULL);
   6878     }
   6879     return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
   6880 }
   6881 
   6882 /**
   6883  * xmlExpNewSeq:
   6884  * @ctxt: the expression context
   6885  * @left: left expression
   6886  * @right: right expression
   6887  *
   6888  * Get the atom associated to the sequence @left , @right
   6889  * Note that @left and @right are consumed in the operation, to keep
   6890  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
   6891  * this is true even in case of failure (unless ctxt == NULL).
   6892  *
   6893  * Returns the node or NULL in case of error
   6894  */
   6895 xmlExpNodePtr
   6896 xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
   6897     if (ctxt == NULL)
   6898         return(NULL);
   6899     if ((left == NULL) || (right == NULL)) {
   6900         xmlExpFree(ctxt, left);
   6901         xmlExpFree(ctxt, right);
   6902         return(NULL);
   6903     }
   6904     return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
   6905 }
   6906 
   6907 /**
   6908  * xmlExpNewRange:
   6909  * @ctxt: the expression context
   6910  * @subset: the expression to be repeated
   6911  * @min: the lower bound for the repetition
   6912  * @max: the upper bound for the repetition, -1 means infinite
   6913  *
   6914  * Get the atom associated to the range (@subset){@min, @max}
   6915  * Note that @subset is consumed in the operation, to keep
   6916  * an handle on it use xmlExpRef() and use xmlExpFree() to release it,
   6917  * this is true even in case of failure (unless ctxt == NULL).
   6918  *
   6919  * Returns the node or NULL in case of error
   6920  */
   6921 xmlExpNodePtr
   6922 xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
   6923     if (ctxt == NULL)
   6924         return(NULL);
   6925     if ((subset == NULL) || (min < 0) || (max < -1) ||
   6926         ((max >= 0) && (min > max))) {
   6927 	xmlExpFree(ctxt, subset);
   6928         return(NULL);
   6929     }
   6930     return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
   6931                               NULL, NULL, min, max));
   6932 }
   6933 
   6934 /************************************************************************
   6935  *									*
   6936  *		Public API for operations on expressions		*
   6937  *									*
   6938  ************************************************************************/
   6939 
   6940 static int
   6941 xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6942                      const xmlChar**list, int len, int nb) {
   6943     int tmp, tmp2;
   6944 tail:
   6945     switch (exp->type) {
   6946         case XML_EXP_EMPTY:
   6947 	    return(0);
   6948         case XML_EXP_ATOM:
   6949 	    for (tmp = 0;tmp < nb;tmp++)
   6950 	        if (list[tmp] == exp->exp_str)
   6951 		    return(0);
   6952             if (nb >= len)
   6953 	        return(-2);
   6954 	    list[nb] = exp->exp_str;
   6955 	    return(1);
   6956         case XML_EXP_COUNT:
   6957 	    exp = exp->exp_left;
   6958 	    goto tail;
   6959         case XML_EXP_SEQ:
   6960         case XML_EXP_OR:
   6961 	    tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
   6962 	    if (tmp < 0)
   6963 	        return(tmp);
   6964 	    tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
   6965 	                                nb + tmp);
   6966 	    if (tmp2 < 0)
   6967 	        return(tmp2);
   6968             return(tmp + tmp2);
   6969     }
   6970     return(-1);
   6971 }
   6972 
   6973 /**
   6974  * xmlExpGetLanguage:
   6975  * @ctxt: the expression context
   6976  * @exp: the expression
   6977  * @langList: where to store the tokens
   6978  * @len: the allocated length of @list
   6979  *
   6980  * Find all the strings used in @exp and store them in @list
   6981  *
   6982  * Returns the number of unique strings found, -1 in case of errors and
   6983  *         -2 if there is more than @len strings
   6984  */
   6985 int
   6986 xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6987                   const xmlChar**langList, int len) {
   6988     if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
   6989         return(-1);
   6990     return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
   6991 }
   6992 
   6993 static int
   6994 xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6995                   const xmlChar**list, int len, int nb) {
   6996     int tmp, tmp2;
   6997 tail:
   6998     switch (exp->type) {
   6999         case XML_EXP_FORBID:
   7000 	    return(0);
   7001         case XML_EXP_EMPTY:
   7002 	    return(0);
   7003         case XML_EXP_ATOM:
   7004 	    for (tmp = 0;tmp < nb;tmp++)
   7005 	        if (list[tmp] == exp->exp_str)
   7006 		    return(0);
   7007             if (nb >= len)
   7008 	        return(-2);
   7009 	    list[nb] = exp->exp_str;
   7010 	    return(1);
   7011         case XML_EXP_COUNT:
   7012 	    exp = exp->exp_left;
   7013 	    goto tail;
   7014         case XML_EXP_SEQ:
   7015 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
   7016 	    if (tmp < 0)
   7017 	        return(tmp);
   7018 	    if (IS_NILLABLE(exp->exp_left)) {
   7019 		tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
   7020 					    nb + tmp);
   7021 		if (tmp2 < 0)
   7022 		    return(tmp2);
   7023 		tmp += tmp2;
   7024 	    }
   7025             return(tmp);
   7026         case XML_EXP_OR:
   7027 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
   7028 	    if (tmp < 0)
   7029 	        return(tmp);
   7030 	    tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
   7031 	                                nb + tmp);
   7032 	    if (tmp2 < 0)
   7033 	        return(tmp2);
   7034             return(tmp + tmp2);
   7035     }
   7036     return(-1);
   7037 }
   7038 
   7039 /**
   7040  * xmlExpGetStart:
   7041  * @ctxt: the expression context
   7042  * @exp: the expression
   7043  * @tokList: where to store the tokens
   7044  * @len: the allocated length of @list
   7045  *
   7046  * Find all the strings that appears at the start of the languages
   7047  * accepted by @exp and store them in @list. E.g. for (a, b) | c
   7048  * it will return the list [a, c]
   7049  *
   7050  * Returns the number of unique strings found, -1 in case of errors and
   7051  *         -2 if there is more than @len strings
   7052  */
   7053 int
   7054 xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7055                const xmlChar**tokList, int len) {
   7056     if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
   7057         return(-1);
   7058     return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
   7059 }
   7060 
   7061 /**
   7062  * xmlExpIsNillable:
   7063  * @exp: the expression
   7064  *
   7065  * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce
   7066  *
   7067  * Returns 1 if nillable, 0 if not and -1 in case of error
   7068  */
   7069 int
   7070 xmlExpIsNillable(xmlExpNodePtr exp) {
   7071     if (exp == NULL)
   7072         return(-1);
   7073     return(IS_NILLABLE(exp) != 0);
   7074 }
   7075 
   7076 static xmlExpNodePtr
   7077 xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
   7078 {
   7079     xmlExpNodePtr ret;
   7080 
   7081     switch (exp->type) {
   7082 	case XML_EXP_EMPTY:
   7083 	    return(forbiddenExp);
   7084 	case XML_EXP_FORBID:
   7085 	    return(forbiddenExp);
   7086 	case XML_EXP_ATOM:
   7087 	    if (exp->exp_str == str) {
   7088 #ifdef DEBUG_DERIV
   7089 		printf("deriv atom: equal => Empty\n");
   7090 #endif
   7091 	        ret = emptyExp;
   7092 	    } else {
   7093 #ifdef DEBUG_DERIV
   7094 		printf("deriv atom: mismatch => forbid\n");
   7095 #endif
   7096 	        /* TODO wildcards here */
   7097 		ret = forbiddenExp;
   7098 	    }
   7099 	    return(ret);
   7100 	case XML_EXP_OR: {
   7101 	    xmlExpNodePtr tmp;
   7102 
   7103 #ifdef DEBUG_DERIV
   7104 	    printf("deriv or: => or(derivs)\n");
   7105 #endif
   7106 	    tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7107 	    if (tmp == NULL) {
   7108 		return(NULL);
   7109 	    }
   7110 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
   7111 	    if (ret == NULL) {
   7112 	        xmlExpFree(ctxt, tmp);
   7113 		return(NULL);
   7114 	    }
   7115             ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
   7116 			     NULL, 0, 0);
   7117 	    return(ret);
   7118 	}
   7119 	case XML_EXP_SEQ:
   7120 #ifdef DEBUG_DERIV
   7121 	    printf("deriv seq: starting with left\n");
   7122 #endif
   7123 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7124 	    if (ret == NULL) {
   7125 	        return(NULL);
   7126 	    } else if (ret == forbiddenExp) {
   7127 	        if (IS_NILLABLE(exp->exp_left)) {
   7128 #ifdef DEBUG_DERIV
   7129 		    printf("deriv seq: left failed but nillable\n");
   7130 #endif
   7131 		    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
   7132 		}
   7133 	    } else {
   7134 #ifdef DEBUG_DERIV
   7135 		printf("deriv seq: left match => sequence\n");
   7136 #endif
   7137 	        exp->exp_right->ref++;
   7138 	        ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
   7139 		                         NULL, 0, 0);
   7140 	    }
   7141 	    return(ret);
   7142 	case XML_EXP_COUNT: {
   7143 	    int min, max;
   7144 	    xmlExpNodePtr tmp;
   7145 
   7146 	    if (exp->exp_max == 0)
   7147 		return(forbiddenExp);
   7148 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7149 	    if (ret == NULL)
   7150 	        return(NULL);
   7151 	    if (ret == forbiddenExp) {
   7152 #ifdef DEBUG_DERIV
   7153 		printf("deriv count: pattern mismatch => forbid\n");
   7154 #endif
   7155 	        return(ret);
   7156 	    }
   7157 	    if (exp->exp_max == 1)
   7158 		return(ret);
   7159 	    if (exp->exp_max < 0) /* unbounded */
   7160 		max = -1;
   7161 	    else
   7162 		max = exp->exp_max - 1;
   7163 	    if (exp->exp_min > 0)
   7164 		min = exp->exp_min - 1;
   7165 	    else
   7166 		min = 0;
   7167 	    exp->exp_left->ref++;
   7168 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
   7169 				     NULL, min, max);
   7170 	    if (ret == emptyExp) {
   7171 #ifdef DEBUG_DERIV
   7172 		printf("deriv count: match to empty => new count\n");
   7173 #endif
   7174 	        return(tmp);
   7175 	    }
   7176 #ifdef DEBUG_DERIV
   7177 	    printf("deriv count: match => sequence with new count\n");
   7178 #endif
   7179 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
   7180 	                              NULL, 0, 0));
   7181 	}
   7182     }
   7183     return(NULL);
   7184 }
   7185 
   7186 /**
   7187  * xmlExpStringDerive:
   7188  * @ctxt: the expression context
   7189  * @exp: the expression
   7190  * @str: the string
   7191  * @len: the string len in bytes if available
   7192  *
   7193  * Do one step of Brzozowski derivation of the expression @exp with
   7194  * respect to the input string
   7195  *
   7196  * Returns the resulting expression or NULL in case of internal error
   7197  */
   7198 xmlExpNodePtr
   7199 xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7200                    const xmlChar *str, int len) {
   7201     const xmlChar *input;
   7202 
   7203     if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
   7204         return(NULL);
   7205     }
   7206     /*
   7207      * check the string is in the dictionnary, if yes use an interned
   7208      * copy, otherwise we know it's not an acceptable input
   7209      */
   7210     input = xmlDictExists(ctxt->dict, str, len);
   7211     if (input == NULL) {
   7212         return(forbiddenExp);
   7213     }
   7214     return(xmlExpStringDeriveInt(ctxt, exp, input));
   7215 }
   7216 
   7217 static int
   7218 xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7219     int ret = 1;
   7220 
   7221     if (sub->c_max == -1) {
   7222         if (exp->c_max != -1)
   7223 	    ret = 0;
   7224     } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
   7225         ret = 0;
   7226     }
   7227 #if 0
   7228     if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
   7229         ret = 0;
   7230 #endif
   7231     return(ret);
   7232 }
   7233 
   7234 static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7235                                         xmlExpNodePtr sub);
   7236 /**
   7237  * xmlExpDivide:
   7238  * @ctxt: the expressions context
   7239  * @exp: the englobing expression
   7240  * @sub: the subexpression
   7241  * @mult: the multiple expression
   7242  * @remain: the remain from the derivation of the multiple
   7243  *
   7244  * Check if exp is a multiple of sub, i.e. if there is a finite number n
   7245  * so that sub{n} subsume exp
   7246  *
   7247  * Returns the multiple value if successful, 0 if it is not a multiple
   7248  *         and -1 in case of internel error.
   7249  */
   7250 
   7251 static int
   7252 xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
   7253              xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
   7254     int i;
   7255     xmlExpNodePtr tmp, tmp2;
   7256 
   7257     if (mult != NULL) *mult = NULL;
   7258     if (remain != NULL) *remain = NULL;
   7259     if (exp->c_max == -1) return(0);
   7260     if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
   7261 
   7262     for (i = 1;i <= exp->c_max;i++) {
   7263         sub->ref++;
   7264         tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
   7265 				 sub, NULL, NULL, i, i);
   7266 	if (tmp == NULL) {
   7267 	    return(-1);
   7268 	}
   7269 	if (!xmlExpCheckCard(tmp, exp)) {
   7270 	    xmlExpFree(ctxt, tmp);
   7271 	    continue;
   7272 	}
   7273 	tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
   7274 	if (tmp2 == NULL) {
   7275 	    xmlExpFree(ctxt, tmp);
   7276 	    return(-1);
   7277 	}
   7278 	if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
   7279 	    if (remain != NULL)
   7280 	        *remain = tmp2;
   7281 	    else
   7282 	        xmlExpFree(ctxt, tmp2);
   7283 	    if (mult != NULL)
   7284 	        *mult = tmp;
   7285 	    else
   7286 	        xmlExpFree(ctxt, tmp);
   7287 #ifdef DEBUG_DERIV
   7288 	    printf("Divide succeeded %d\n", i);
   7289 #endif
   7290 	    return(i);
   7291 	}
   7292 	xmlExpFree(ctxt, tmp);
   7293 	xmlExpFree(ctxt, tmp2);
   7294     }
   7295 #ifdef DEBUG_DERIV
   7296     printf("Divide failed\n");
   7297 #endif
   7298     return(0);
   7299 }
   7300 
   7301 /**
   7302  * xmlExpExpDeriveInt:
   7303  * @ctxt: the expressions context
   7304  * @exp: the englobing expression
   7305  * @sub: the subexpression
   7306  *
   7307  * Try to do a step of Brzozowski derivation but at a higher level
   7308  * the input being a subexpression.
   7309  *
   7310  * Returns the resulting expression or NULL in case of internal error
   7311  */
   7312 static xmlExpNodePtr
   7313 xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7314     xmlExpNodePtr ret, tmp, tmp2, tmp3;
   7315     const xmlChar **tab;
   7316     int len, i;
   7317 
   7318     /*
   7319      * In case of equality and if the expression can only consume a finite
   7320      * amount, then the derivation is empty
   7321      */
   7322     if ((exp == sub) && (exp->c_max >= 0)) {
   7323 #ifdef DEBUG_DERIV
   7324         printf("Equal(exp, sub) and finite -> Empty\n");
   7325 #endif
   7326         return(emptyExp);
   7327     }
   7328     /*
   7329      * decompose sub sequence first
   7330      */
   7331     if (sub->type == XML_EXP_EMPTY) {
   7332 #ifdef DEBUG_DERIV
   7333         printf("Empty(sub) -> Empty\n");
   7334 #endif
   7335 	exp->ref++;
   7336         return(exp);
   7337     }
   7338     if (sub->type == XML_EXP_SEQ) {
   7339 #ifdef DEBUG_DERIV
   7340         printf("Seq(sub) -> decompose\n");
   7341 #endif
   7342         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
   7343 	if (tmp == NULL)
   7344 	    return(NULL);
   7345 	if (tmp == forbiddenExp)
   7346 	    return(tmp);
   7347 	ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
   7348 	xmlExpFree(ctxt, tmp);
   7349 	return(ret);
   7350     }
   7351     if (sub->type == XML_EXP_OR) {
   7352 #ifdef DEBUG_DERIV
   7353         printf("Or(sub) -> decompose\n");
   7354 #endif
   7355         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
   7356 	if (tmp == forbiddenExp)
   7357 	    return(tmp);
   7358 	if (tmp == NULL)
   7359 	    return(NULL);
   7360 	ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
   7361 	if ((ret == NULL) || (ret == forbiddenExp)) {
   7362 	    xmlExpFree(ctxt, tmp);
   7363 	    return(ret);
   7364 	}
   7365 	return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
   7366     }
   7367     if (!xmlExpCheckCard(exp, sub)) {
   7368 #ifdef DEBUG_DERIV
   7369         printf("CheckCard(exp, sub) failed -> Forbid\n");
   7370 #endif
   7371         return(forbiddenExp);
   7372     }
   7373     switch (exp->type) {
   7374         case XML_EXP_EMPTY:
   7375 	    if (sub == emptyExp)
   7376 	        return(emptyExp);
   7377 #ifdef DEBUG_DERIV
   7378 	    printf("Empty(exp) -> Forbid\n");
   7379 #endif
   7380 	    return(forbiddenExp);
   7381         case XML_EXP_FORBID:
   7382 #ifdef DEBUG_DERIV
   7383 	    printf("Forbid(exp) -> Forbid\n");
   7384 #endif
   7385 	    return(forbiddenExp);
   7386         case XML_EXP_ATOM:
   7387 	    if (sub->type == XML_EXP_ATOM) {
   7388 	        /* TODO: handle wildcards */
   7389 	        if (exp->exp_str == sub->exp_str) {
   7390 #ifdef DEBUG_DERIV
   7391 		    printf("Atom match -> Empty\n");
   7392 #endif
   7393 		    return(emptyExp);
   7394                 }
   7395 #ifdef DEBUG_DERIV
   7396 		printf("Atom mismatch -> Forbid\n");
   7397 #endif
   7398 	        return(forbiddenExp);
   7399 	    }
   7400 	    if ((sub->type == XML_EXP_COUNT) &&
   7401 	        (sub->exp_max == 1) &&
   7402 	        (sub->exp_left->type == XML_EXP_ATOM)) {
   7403 	        /* TODO: handle wildcards */
   7404 	        if (exp->exp_str == sub->exp_left->exp_str) {
   7405 #ifdef DEBUG_DERIV
   7406 		    printf("Atom match -> Empty\n");
   7407 #endif
   7408 		    return(emptyExp);
   7409 		}
   7410 #ifdef DEBUG_DERIV
   7411 		printf("Atom mismatch -> Forbid\n");
   7412 #endif
   7413 	        return(forbiddenExp);
   7414 	    }
   7415 #ifdef DEBUG_DERIV
   7416 	    printf("Compex exp vs Atom -> Forbid\n");
   7417 #endif
   7418 	    return(forbiddenExp);
   7419         case XML_EXP_SEQ:
   7420 	    /* try to get the sequence consumed only if possible */
   7421 	    if (xmlExpCheckCard(exp->exp_left, sub)) {
   7422 		/* See if the sequence can be consumed directly */
   7423 #ifdef DEBUG_DERIV
   7424 		printf("Seq trying left only\n");
   7425 #endif
   7426 		ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7427 		if ((ret != forbiddenExp) && (ret != NULL)) {
   7428 #ifdef DEBUG_DERIV
   7429 		    printf("Seq trying left only worked\n");
   7430 #endif
   7431 		    /*
   7432 		     * TODO: assumption here that we are determinist
   7433 		     *       i.e. we won't get to a nillable exp left
   7434 		     *       subset which could be matched by the right
   7435 		     *       part too.
   7436 		     * e.g.: (a | b)+,(a | c) and 'a+,a'
   7437 		     */
   7438 		    exp->exp_right->ref++;
   7439 		    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
   7440 					      exp->exp_right, NULL, 0, 0));
   7441 		}
   7442 #ifdef DEBUG_DERIV
   7443 	    } else {
   7444 		printf("Seq: left too short\n");
   7445 #endif
   7446 	    }
   7447 	    /* Try instead to decompose */
   7448 	    if (sub->type == XML_EXP_COUNT) {
   7449 		int min, max;
   7450 
   7451 #ifdef DEBUG_DERIV
   7452 		printf("Seq: sub is a count\n");
   7453 #endif
   7454 	        ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
   7455 		if (ret == NULL)
   7456 		    return(NULL);
   7457 		if (ret != forbiddenExp) {
   7458 #ifdef DEBUG_DERIV
   7459 		    printf("Seq , Count match on left\n");
   7460 #endif
   7461 		    if (sub->exp_max < 0)
   7462 		        max = -1;
   7463 	            else
   7464 		        max = sub->exp_max -1;
   7465 		    if (sub->exp_min > 0)
   7466 		        min = sub->exp_min -1;
   7467 		    else
   7468 		        min = 0;
   7469 		    exp->exp_right->ref++;
   7470 		    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
   7471 		                             exp->exp_right, NULL, 0, 0);
   7472 		    if (tmp == NULL)
   7473 		        return(NULL);
   7474 
   7475 		    sub->exp_left->ref++;
   7476 		    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
   7477 				      sub->exp_left, NULL, NULL, min, max);
   7478 		    if (tmp2 == NULL) {
   7479 		        xmlExpFree(ctxt, tmp);
   7480 			return(NULL);
   7481 		    }
   7482 		    ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
   7483 		    xmlExpFree(ctxt, tmp);
   7484 		    xmlExpFree(ctxt, tmp2);
   7485 		    return(ret);
   7486 		}
   7487 	    }
   7488 	    /* we made no progress on structured operations */
   7489 	    break;
   7490         case XML_EXP_OR:
   7491 #ifdef DEBUG_DERIV
   7492 	    printf("Or , trying both side\n");
   7493 #endif
   7494 	    ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7495 	    if (ret == NULL)
   7496 	        return(NULL);
   7497 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
   7498 	    if (tmp == NULL) {
   7499 		xmlExpFree(ctxt, ret);
   7500 	        return(NULL);
   7501 	    }
   7502 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
   7503         case XML_EXP_COUNT: {
   7504 	    int min, max;
   7505 
   7506 	    if (sub->type == XML_EXP_COUNT) {
   7507 	        /*
   7508 		 * Try to see if the loop is completely subsumed
   7509 		 */
   7510 	        tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
   7511 		if (tmp == NULL)
   7512 		    return(NULL);
   7513 		if (tmp == forbiddenExp) {
   7514 		    int mult;
   7515 
   7516 #ifdef DEBUG_DERIV
   7517 		    printf("Count, Count inner don't subsume\n");
   7518 #endif
   7519 		    mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
   7520 		                        NULL, &tmp);
   7521 		    if (mult <= 0) {
   7522 #ifdef DEBUG_DERIV
   7523 			printf("Count, Count not multiple => forbidden\n");
   7524 #endif
   7525                         return(forbiddenExp);
   7526 		    }
   7527 		    if (sub->exp_max == -1) {
   7528 		        max = -1;
   7529 			if (exp->exp_max == -1) {
   7530 			    if (exp->exp_min <= sub->exp_min * mult)
   7531 			        min = 0;
   7532 			    else
   7533 			        min = exp->exp_min - sub->exp_min * mult;
   7534 			} else {
   7535 #ifdef DEBUG_DERIV
   7536 			    printf("Count, Count finite can't subsume infinite\n");
   7537 #endif
   7538                             xmlExpFree(ctxt, tmp);
   7539 			    return(forbiddenExp);
   7540 			}
   7541 		    } else {
   7542 			if (exp->exp_max == -1) {
   7543 #ifdef DEBUG_DERIV
   7544 			    printf("Infinite loop consume mult finite loop\n");
   7545 #endif
   7546 			    if (exp->exp_min > sub->exp_min * mult) {
   7547 				max = -1;
   7548 				min = exp->exp_min - sub->exp_min * mult;
   7549 			    } else {
   7550 				max = -1;
   7551 				min = 0;
   7552 			    }
   7553 			} else {
   7554 			    if (exp->exp_max < sub->exp_max * mult) {
   7555 #ifdef DEBUG_DERIV
   7556 				printf("loops max mult mismatch => forbidden\n");
   7557 #endif
   7558 				xmlExpFree(ctxt, tmp);
   7559 				return(forbiddenExp);
   7560 			    }
   7561 			    if (sub->exp_max * mult > exp->exp_min)
   7562 				min = 0;
   7563 			    else
   7564 				min = exp->exp_min - sub->exp_max * mult;
   7565 			    max = exp->exp_max - sub->exp_max * mult;
   7566 			}
   7567 		    }
   7568 		} else if (!IS_NILLABLE(tmp)) {
   7569 		    /*
   7570 		     * TODO: loop here to try to grow if working on finite
   7571 		     *       blocks.
   7572 		     */
   7573 #ifdef DEBUG_DERIV
   7574 		    printf("Count, Count remain not nillable => forbidden\n");
   7575 #endif
   7576 		    xmlExpFree(ctxt, tmp);
   7577 		    return(forbiddenExp);
   7578 		} else if (sub->exp_max == -1) {
   7579 		    if (exp->exp_max == -1) {
   7580 		        if (exp->exp_min <= sub->exp_min) {
   7581 #ifdef DEBUG_DERIV
   7582 			    printf("Infinite loops Okay => COUNT(0,Inf)\n");
   7583 #endif
   7584                             max = -1;
   7585 			    min = 0;
   7586 			} else {
   7587 #ifdef DEBUG_DERIV
   7588 			    printf("Infinite loops min => Count(X,Inf)\n");
   7589 #endif
   7590                             max = -1;
   7591 			    min = exp->exp_min - sub->exp_min;
   7592 			}
   7593 		    } else if (exp->exp_min > sub->exp_min) {
   7594 #ifdef DEBUG_DERIV
   7595 			printf("loops min mismatch 1 => forbidden ???\n");
   7596 #endif
   7597 		        xmlExpFree(ctxt, tmp);
   7598 		        return(forbiddenExp);
   7599 		    } else {
   7600 			max = -1;
   7601 			min = 0;
   7602 		    }
   7603 		} else {
   7604 		    if (exp->exp_max == -1) {
   7605 #ifdef DEBUG_DERIV
   7606 			printf("Infinite loop consume finite loop\n");
   7607 #endif
   7608 		        if (exp->exp_min > sub->exp_min) {
   7609 			    max = -1;
   7610 			    min = exp->exp_min - sub->exp_min;
   7611 			} else {
   7612 			    max = -1;
   7613 			    min = 0;
   7614 			}
   7615 		    } else {
   7616 		        if (exp->exp_max < sub->exp_max) {
   7617 #ifdef DEBUG_DERIV
   7618 			    printf("loops max mismatch => forbidden\n");
   7619 #endif
   7620 			    xmlExpFree(ctxt, tmp);
   7621 			    return(forbiddenExp);
   7622 			}
   7623 			if (sub->exp_max > exp->exp_min)
   7624 			    min = 0;
   7625 			else
   7626 			    min = exp->exp_min - sub->exp_max;
   7627 			max = exp->exp_max - sub->exp_max;
   7628 		    }
   7629 		}
   7630 #ifdef DEBUG_DERIV
   7631 		printf("loops match => SEQ(COUNT())\n");
   7632 #endif
   7633 		exp->exp_left->ref++;
   7634 		tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
   7635 		                          NULL, NULL, min, max);
   7636 		if (tmp2 == NULL) {
   7637 		    return(NULL);
   7638 		}
   7639                 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
   7640 		                         NULL, 0, 0);
   7641 		return(ret);
   7642 	    }
   7643 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7644 	    if (tmp == NULL)
   7645 		return(NULL);
   7646 	    if (tmp == forbiddenExp) {
   7647 #ifdef DEBUG_DERIV
   7648 		printf("loop mismatch => forbidden\n");
   7649 #endif
   7650 		return(forbiddenExp);
   7651 	    }
   7652 	    if (exp->exp_min > 0)
   7653 		min = exp->exp_min - 1;
   7654 	    else
   7655 		min = 0;
   7656 	    if (exp->exp_max < 0)
   7657 		max = -1;
   7658 	    else
   7659 		max = exp->exp_max - 1;
   7660 
   7661 #ifdef DEBUG_DERIV
   7662 	    printf("loop match => SEQ(COUNT())\n");
   7663 #endif
   7664 	    exp->exp_left->ref++;
   7665 	    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
   7666 				      NULL, NULL, min, max);
   7667 	    if (tmp2 == NULL)
   7668 		return(NULL);
   7669 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
   7670 				     NULL, 0, 0);
   7671 	    return(ret);
   7672 	}
   7673     }
   7674 
   7675 #ifdef DEBUG_DERIV
   7676     printf("Fallback to derivative\n");
   7677 #endif
   7678     if (IS_NILLABLE(sub)) {
   7679         if (!(IS_NILLABLE(exp)))
   7680 	    return(forbiddenExp);
   7681 	else
   7682 	    ret = emptyExp;
   7683     } else
   7684 	ret = NULL;
   7685     /*
   7686      * here the structured derivation made no progress so
   7687      * we use the default token based derivation to force one more step
   7688      */
   7689     if (ctxt->tabSize == 0)
   7690         ctxt->tabSize = 40;
   7691 
   7692     tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
   7693 	                               sizeof(const xmlChar *));
   7694     if (tab == NULL) {
   7695 	return(NULL);
   7696     }
   7697 
   7698     /*
   7699      * collect all the strings accepted by the subexpression on input
   7700      */
   7701     len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
   7702     while (len < 0) {
   7703         const xmlChar **temp;
   7704 	temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
   7705 	                                     sizeof(const xmlChar *));
   7706 	if (temp == NULL) {
   7707 	    xmlFree((xmlChar **) tab);
   7708 	    return(NULL);
   7709 	}
   7710 	tab = temp;
   7711 	ctxt->tabSize *= 2;
   7712 	len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
   7713     }
   7714     for (i = 0;i < len;i++) {
   7715         tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
   7716 	if ((tmp == NULL) || (tmp == forbiddenExp)) {
   7717 	    xmlExpFree(ctxt, ret);
   7718 	    xmlFree((xmlChar **) tab);
   7719 	    return(tmp);
   7720 	}
   7721 	tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
   7722 	if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
   7723 	    xmlExpFree(ctxt, tmp);
   7724 	    xmlExpFree(ctxt, ret);
   7725 	    xmlFree((xmlChar **) tab);
   7726 	    return(tmp);
   7727 	}
   7728 	tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
   7729 	xmlExpFree(ctxt, tmp);
   7730 	xmlExpFree(ctxt, tmp2);
   7731 
   7732 	if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
   7733 	    xmlExpFree(ctxt, ret);
   7734 	    xmlFree((xmlChar **) tab);
   7735 	    return(tmp3);
   7736 	}
   7737 
   7738 	if (ret == NULL)
   7739 	    ret = tmp3;
   7740 	else {
   7741 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
   7742 	    if (ret == NULL) {
   7743 		xmlFree((xmlChar **) tab);
   7744 	        return(NULL);
   7745 	    }
   7746 	}
   7747     }
   7748     xmlFree((xmlChar **) tab);
   7749     return(ret);
   7750 }
   7751 
   7752 /**
   7753  * xmlExpExpDerive:
   7754  * @ctxt: the expressions context
   7755  * @exp: the englobing expression
   7756  * @sub: the subexpression
   7757  *
   7758  * Evaluates the expression resulting from @exp consuming a sub expression @sub
   7759  * Based on algebraic derivation and sometimes direct Brzozowski derivation
   7760  * it usually tatkes less than linear time and can handle expressions generating
   7761  * infinite languages.
   7762  *
   7763  * Returns the resulting expression or NULL in case of internal error, the
   7764  *         result must be freed
   7765  */
   7766 xmlExpNodePtr
   7767 xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7768     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
   7769         return(NULL);
   7770 
   7771     /*
   7772      * O(1) speedups
   7773      */
   7774     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
   7775 #ifdef DEBUG_DERIV
   7776 	printf("Sub nillable and not exp : can't subsume\n");
   7777 #endif
   7778         return(forbiddenExp);
   7779     }
   7780     if (xmlExpCheckCard(exp, sub) == 0) {
   7781 #ifdef DEBUG_DERIV
   7782 	printf("sub generate longuer sequances than exp : can't subsume\n");
   7783 #endif
   7784         return(forbiddenExp);
   7785     }
   7786     return(xmlExpExpDeriveInt(ctxt, exp, sub));
   7787 }
   7788 
   7789 /**
   7790  * xmlExpSubsume:
   7791  * @ctxt: the expressions context
   7792  * @exp: the englobing expression
   7793  * @sub: the subexpression
   7794  *
   7795  * Check whether @exp accepts all the languages accexpted by @sub
   7796  * the input being a subexpression.
   7797  *
   7798  * Returns 1 if true 0 if false and -1 in case of failure.
   7799  */
   7800 int
   7801 xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7802     xmlExpNodePtr tmp;
   7803 
   7804     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
   7805         return(-1);
   7806 
   7807     /*
   7808      * TODO: speedup by checking the language of sub is a subset of the
   7809      *       language of exp
   7810      */
   7811     /*
   7812      * O(1) speedups
   7813      */
   7814     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
   7815 #ifdef DEBUG_DERIV
   7816 	printf("Sub nillable and not exp : can't subsume\n");
   7817 #endif
   7818         return(0);
   7819     }
   7820     if (xmlExpCheckCard(exp, sub) == 0) {
   7821 #ifdef DEBUG_DERIV
   7822 	printf("sub generate longuer sequances than exp : can't subsume\n");
   7823 #endif
   7824         return(0);
   7825     }
   7826     tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
   7827 #ifdef DEBUG_DERIV
   7828     printf("Result derivation :\n");
   7829     PRINT_EXP(tmp);
   7830 #endif
   7831     if (tmp == NULL)
   7832         return(-1);
   7833     if (tmp == forbiddenExp)
   7834 	return(0);
   7835     if (tmp == emptyExp)
   7836 	return(1);
   7837     if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
   7838         xmlExpFree(ctxt, tmp);
   7839         return(1);
   7840     }
   7841     xmlExpFree(ctxt, tmp);
   7842     return(0);
   7843 }
   7844 
   7845 /************************************************************************
   7846  *									*
   7847  *			Parsing expression				*
   7848  *									*
   7849  ************************************************************************/
   7850 
   7851 static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
   7852 
   7853 #undef CUR
   7854 #define CUR (*ctxt->cur)
   7855 #undef NEXT
   7856 #define NEXT ctxt->cur++;
   7857 #undef IS_BLANK
   7858 #define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
   7859 #define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
   7860 
   7861 static int
   7862 xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
   7863     int ret = 0;
   7864 
   7865     SKIP_BLANKS
   7866     if (CUR == '*') {
   7867 	NEXT
   7868 	return(-1);
   7869     }
   7870     if ((CUR < '0') || (CUR > '9'))
   7871         return(-1);
   7872     while ((CUR >= '0') && (CUR <= '9')) {
   7873         ret = ret * 10 + (CUR - '0');
   7874 	NEXT
   7875     }
   7876     return(ret);
   7877 }
   7878 
   7879 static xmlExpNodePtr
   7880 xmlExpParseOr(xmlExpCtxtPtr ctxt) {
   7881     const char *base;
   7882     xmlExpNodePtr ret;
   7883     const xmlChar *val;
   7884 
   7885     SKIP_BLANKS
   7886     base = ctxt->cur;
   7887     if (*ctxt->cur == '(') {
   7888         NEXT
   7889 	ret = xmlExpParseExpr(ctxt);
   7890 	SKIP_BLANKS
   7891 	if (*ctxt->cur != ')') {
   7892 	    fprintf(stderr, "unbalanced '(' : %s\n", base);
   7893 	    xmlExpFree(ctxt, ret);
   7894 	    return(NULL);
   7895 	}
   7896 	NEXT;
   7897 	SKIP_BLANKS
   7898 	goto parse_quantifier;
   7899     }
   7900     while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
   7901            (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
   7902 	   (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
   7903 	NEXT;
   7904     val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
   7905     if (val == NULL)
   7906         return(NULL);
   7907     ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
   7908     if (ret == NULL)
   7909         return(NULL);
   7910     SKIP_BLANKS
   7911 parse_quantifier:
   7912     if (CUR == '{') {
   7913         int min, max;
   7914 
   7915         NEXT
   7916 	min = xmlExpParseNumber(ctxt);
   7917 	if (min < 0) {
   7918 	    xmlExpFree(ctxt, ret);
   7919 	    return(NULL);
   7920 	}
   7921 	SKIP_BLANKS
   7922 	if (CUR == ',') {
   7923 	    NEXT
   7924 	    max = xmlExpParseNumber(ctxt);
   7925 	    SKIP_BLANKS
   7926 	} else
   7927 	    max = min;
   7928 	if (CUR != '}') {
   7929 	    xmlExpFree(ctxt, ret);
   7930 	    return(NULL);
   7931 	}
   7932         NEXT
   7933 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7934 	                         min, max);
   7935 	SKIP_BLANKS
   7936     } else if (CUR == '?') {
   7937         NEXT
   7938 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7939 	                         0, 1);
   7940 	SKIP_BLANKS
   7941     } else if (CUR == '+') {
   7942         NEXT
   7943 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7944 	                         1, -1);
   7945 	SKIP_BLANKS
   7946     } else if (CUR == '*') {
   7947         NEXT
   7948 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7949 	                         0, -1);
   7950 	SKIP_BLANKS
   7951     }
   7952     return(ret);
   7953 }
   7954 
   7955 
   7956 static xmlExpNodePtr
   7957 xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
   7958     xmlExpNodePtr ret, right;
   7959 
   7960     ret = xmlExpParseOr(ctxt);
   7961     SKIP_BLANKS
   7962     while (CUR == '|') {
   7963         NEXT
   7964 	right = xmlExpParseOr(ctxt);
   7965 	if (right == NULL) {
   7966 	    xmlExpFree(ctxt, ret);
   7967 	    return(NULL);
   7968 	}
   7969 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
   7970 	if (ret == NULL)
   7971 	    return(NULL);
   7972     }
   7973     return(ret);
   7974 }
   7975 
   7976 static xmlExpNodePtr
   7977 xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
   7978     xmlExpNodePtr ret, right;
   7979 
   7980     ret = xmlExpParseSeq(ctxt);
   7981     SKIP_BLANKS
   7982     while (CUR == ',') {
   7983         NEXT
   7984 	right = xmlExpParseSeq(ctxt);
   7985 	if (right == NULL) {
   7986 	    xmlExpFree(ctxt, ret);
   7987 	    return(NULL);
   7988 	}
   7989 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
   7990 	if (ret == NULL)
   7991 	    return(NULL);
   7992     }
   7993     return(ret);
   7994 }
   7995 
   7996 /**
   7997  * xmlExpParse:
   7998  * @ctxt: the expressions context
   7999  * @expr: the 0 terminated string
   8000  *
   8001  * Minimal parser for regexps, it understand the following constructs
   8002  *  - string terminals
   8003  *  - choice operator |
   8004  *  - sequence operator ,
   8005  *  - subexpressions (...)
   8006  *  - usual cardinality operators + * and ?
   8007  *  - finite sequences  { min, max }
   8008  *  - infinite sequences { min, * }
   8009  * There is minimal checkings made especially no checking on strings values
   8010  *
   8011  * Returns a new expression or NULL in case of failure
   8012  */
   8013 xmlExpNodePtr
   8014 xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
   8015     xmlExpNodePtr ret;
   8016 
   8017     ctxt->expr = expr;
   8018     ctxt->cur = expr;
   8019 
   8020     ret = xmlExpParseExpr(ctxt);
   8021     SKIP_BLANKS
   8022     if (*ctxt->cur != 0) {
   8023         xmlExpFree(ctxt, ret);
   8024         return(NULL);
   8025     }
   8026     return(ret);
   8027 }
   8028 
   8029 static void
   8030 xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
   8031     xmlExpNodePtr c;
   8032 
   8033     if (expr == NULL) return;
   8034     if (glob) xmlBufferWriteChar(buf, "(");
   8035     switch (expr->type) {
   8036         case XML_EXP_EMPTY:
   8037 	    xmlBufferWriteChar(buf, "empty");
   8038 	    break;
   8039         case XML_EXP_FORBID:
   8040 	    xmlBufferWriteChar(buf, "forbidden");
   8041 	    break;
   8042         case XML_EXP_ATOM:
   8043 	    xmlBufferWriteCHAR(buf, expr->exp_str);
   8044 	    break;
   8045         case XML_EXP_SEQ:
   8046 	    c = expr->exp_left;
   8047 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8048 	        xmlExpDumpInt(buf, c, 1);
   8049 	    else
   8050 	        xmlExpDumpInt(buf, c, 0);
   8051 	    xmlBufferWriteChar(buf, " , ");
   8052 	    c = expr->exp_right;
   8053 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8054 	        xmlExpDumpInt(buf, c, 1);
   8055 	    else
   8056 	        xmlExpDumpInt(buf, c, 0);
   8057             break;
   8058         case XML_EXP_OR:
   8059 	    c = expr->exp_left;
   8060 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8061 	        xmlExpDumpInt(buf, c, 1);
   8062 	    else
   8063 	        xmlExpDumpInt(buf, c, 0);
   8064 	    xmlBufferWriteChar(buf, " | ");
   8065 	    c = expr->exp_right;
   8066 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8067 	        xmlExpDumpInt(buf, c, 1);
   8068 	    else
   8069 	        xmlExpDumpInt(buf, c, 0);
   8070             break;
   8071         case XML_EXP_COUNT: {
   8072 	    char rep[40];
   8073 
   8074 	    c = expr->exp_left;
   8075 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8076 	        xmlExpDumpInt(buf, c, 1);
   8077 	    else
   8078 	        xmlExpDumpInt(buf, c, 0);
   8079 	    if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
   8080 		rep[0] = '?';
   8081 		rep[1] = 0;
   8082 	    } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
   8083 		rep[0] = '*';
   8084 		rep[1] = 0;
   8085 	    } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
   8086 		rep[0] = '+';
   8087 		rep[1] = 0;
   8088 	    } else if (expr->exp_max == expr->exp_min) {
   8089 	        snprintf(rep, 39, "{%d}", expr->exp_min);
   8090 	    } else if (expr->exp_max < 0) {
   8091 	        snprintf(rep, 39, "{%d,inf}", expr->exp_min);
   8092 	    } else {
   8093 	        snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
   8094 	    }
   8095 	    rep[39] = 0;
   8096 	    xmlBufferWriteChar(buf, rep);
   8097 	    break;
   8098 	}
   8099 	default:
   8100 	    fprintf(stderr, "Error in tree\n");
   8101     }
   8102     if (glob)
   8103         xmlBufferWriteChar(buf, ")");
   8104 }
   8105 /**
   8106  * xmlExpDump:
   8107  * @buf:  a buffer to receive the output
   8108  * @expr:  the compiled expression
   8109  *
   8110  * Serialize the expression as compiled to the buffer
   8111  */
   8112 void
   8113 xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
   8114     if ((buf == NULL) || (expr == NULL))
   8115         return;
   8116     xmlExpDumpInt(buf, expr, 0);
   8117 }
   8118 
   8119 /**
   8120  * xmlExpMaxToken:
   8121  * @expr: a compiled expression
   8122  *
   8123  * Indicate the maximum number of input a expression can accept
   8124  *
   8125  * Returns the maximum length or -1 in case of error
   8126  */
   8127 int
   8128 xmlExpMaxToken(xmlExpNodePtr expr) {
   8129     if (expr == NULL)
   8130         return(-1);
   8131     return(expr->c_max);
   8132 }
   8133 
   8134 /**
   8135  * xmlExpCtxtNbNodes:
   8136  * @ctxt: an expression context
   8137  *
   8138  * Debugging facility provides the number of allocated nodes at a that point
   8139  *
   8140  * Returns the number of nodes in use or -1 in case of error
   8141  */
   8142 int
   8143 xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
   8144     if (ctxt == NULL)
   8145         return(-1);
   8146     return(ctxt->nb_nodes);
   8147 }
   8148 
   8149 /**
   8150  * xmlExpCtxtNbCons:
   8151  * @ctxt: an expression context
   8152  *
   8153  * Debugging facility provides the number of allocated nodes over lifetime
   8154  *
   8155  * Returns the number of nodes ever allocated or -1 in case of error
   8156  */
   8157 int
   8158 xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
   8159     if (ctxt == NULL)
   8160         return(-1);
   8161     return(ctxt->nb_cons);
   8162 }
   8163 
   8164 #endif /* LIBXML_EXPR_ENABLED */
   8165 #define bottom_xmlregexp
   8166 #include "elfgcchack.h"
   8167 #endif /* LIBXML_REGEXP_ENABLED */
   8168