Home | History | Annotate | Download | only in Symbol
      1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 
     11 // C Includes
     12 // C++ Includes
     13 #include <list>
     14 
     15 #include "lldb/Core/Log.h"
     16 #include "lldb/Core/Section.h"
     17 #include "lldb/Core/ArchSpec.h"
     18 #include "lldb/Core/Module.h"
     19 #include "lldb/Core/Section.h"
     20 #include "lldb/Core/Timer.h"
     21 #include "lldb/Host/Host.h"
     22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
     23 #include "lldb/Symbol/ObjectFile.h"
     24 #include "lldb/Symbol/UnwindPlan.h"
     25 #include "lldb/Target/RegisterContext.h"
     26 #include "lldb/Target/Thread.h"
     27 
     28 using namespace lldb;
     29 using namespace lldb_private;
     30 
     31 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
     32     m_objfile (objfile),
     33     m_section_sp (section_sp),
     34     m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
     35     m_flags (),
     36     m_cie_map (),
     37     m_cfi_data (),
     38     m_cfi_data_initialized (false),
     39     m_fde_index (),
     40     m_fde_index_initialized (false),
     41     m_is_eh_frame (is_eh_frame)
     42 {
     43 }
     44 
     45 DWARFCallFrameInfo::~DWARFCallFrameInfo()
     46 {
     47 }
     48 
     49 
     50 bool
     51 DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
     52 {
     53     FDEEntryMap::Entry fde_entry;
     54 
     55     // Make sure that the Address we're searching for is the same object file
     56     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
     57     ModuleSP module_sp = addr.GetModule();
     58     if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
     59         return false;
     60 
     61     if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
     62         return false;
     63     return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
     64 }
     65 
     66 bool
     67 DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
     68 {
     69 
     70     // Make sure that the Address we're searching for is the same object file
     71     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
     72     ModuleSP module_sp = addr.GetModule();
     73     if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
     74         return false;
     75 
     76     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
     77         return false;
     78     GetFDEIndex();
     79     FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
     80     if (!fde_entry)
     81         return false;
     82 
     83     range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
     84     return true;
     85 }
     86 
     87 bool
     88 DWARFCallFrameInfo::GetFDEEntryByFileAddress (addr_t file_addr, FDEEntryMap::Entry &fde_entry)
     89 {
     90     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
     91         return false;
     92 
     93     GetFDEIndex();
     94 
     95     if (m_fde_index.IsEmpty())
     96         return false;
     97 
     98     FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains (file_addr);
     99 
    100     if (fde == NULL)
    101         return false;
    102 
    103     fde_entry = *fde;
    104     return true;
    105 }
    106 
    107 void
    108 DWARFCallFrameInfo::GetFunctionAddressAndSizeVector (FunctionAddressAndSizeVector &function_info)
    109 {
    110     GetFDEIndex();
    111     const size_t count = m_fde_index.GetSize();
    112     function_info.Clear();
    113     if (count > 0)
    114         function_info.Reserve(count);
    115     for (size_t i = 0; i < count; ++i)
    116     {
    117         const FDEEntryMap::Entry *func_offset_data_entry = m_fde_index.GetEntryAtIndex (i);
    118         if (func_offset_data_entry)
    119         {
    120             FunctionAddressAndSizeVector::Entry function_offset_entry (func_offset_data_entry->base, func_offset_data_entry->size);
    121             function_info.Append (function_offset_entry);
    122         }
    123     }
    124 }
    125 
    126 const DWARFCallFrameInfo::CIE*
    127 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
    128 {
    129     cie_map_t::iterator pos = m_cie_map.find(cie_offset);
    130 
    131     if (pos != m_cie_map.end())
    132     {
    133         // Parse and cache the CIE
    134         if (pos->second.get() == NULL)
    135             pos->second = ParseCIE (cie_offset);
    136 
    137         return pos->second.get();
    138     }
    139     return NULL;
    140 }
    141 
    142 DWARFCallFrameInfo::CIESP
    143 DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
    144 {
    145     CIESP cie_sp(new CIE(cie_offset));
    146     lldb::offset_t offset = cie_offset;
    147     if (m_cfi_data_initialized == false)
    148         GetCFIData();
    149     const uint32_t length = m_cfi_data.GetU32(&offset);
    150     const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
    151     const dw_offset_t end_offset = cie_offset + length + 4;
    152     if (length > 0 && ((!m_is_eh_frame && cie_id == UINT32_MAX) || (m_is_eh_frame && cie_id == 0ul)))
    153     {
    154         size_t i;
    155         //    cie.offset = cie_offset;
    156         //    cie.length = length;
    157         //    cie.cieID = cieID;
    158         cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
    159         cie_sp->version = m_cfi_data.GetU8(&offset);
    160 
    161         for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
    162         {
    163             cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
    164             if (cie_sp->augmentation[i] == '\0')
    165             {
    166                 // Zero out remaining bytes in augmentation string
    167                 for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
    168                     cie_sp->augmentation[j] = '\0';
    169 
    170                 break;
    171             }
    172         }
    173 
    174         if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
    175         {
    176             Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
    177             return cie_sp;
    178         }
    179         cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
    180         cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
    181         cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
    182 
    183         if (cie_sp->augmentation[0])
    184         {
    185             // Get the length of the eh_frame augmentation data
    186             // which starts with a ULEB128 length in bytes
    187             const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
    188             const size_t aug_data_end = offset + aug_data_len;
    189             const size_t aug_str_len = strlen(cie_sp->augmentation);
    190             // A 'z' may be present as the first character of the string.
    191             // If present, the Augmentation Data field shall be present.
    192             // The contents of the Augmentation Data shall be intepreted
    193             // according to other characters in the Augmentation String.
    194             if (cie_sp->augmentation[0] == 'z')
    195             {
    196                 // Extract the Augmentation Data
    197                 size_t aug_str_idx = 0;
    198                 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
    199                 {
    200                     char aug = cie_sp->augmentation[aug_str_idx];
    201                     switch (aug)
    202                     {
    203                         case 'L':
    204                             // Indicates the presence of one argument in the
    205                             // Augmentation Data of the CIE, and a corresponding
    206                             // argument in the Augmentation Data of the FDE. The
    207                             // argument in the Augmentation Data of the CIE is
    208                             // 1-byte and represents the pointer encoding used
    209                             // for the argument in the Augmentation Data of the
    210                             // FDE, which is the address of a language-specific
    211                             // data area (LSDA). The size of the LSDA pointer is
    212                             // specified by the pointer encoding used.
    213                             m_cfi_data.GetU8(&offset);
    214                             break;
    215 
    216                         case 'P':
    217                             // Indicates the presence of two arguments in the
    218                             // Augmentation Data of the cie_sp-> The first argument
    219                             // is 1-byte and represents the pointer encoding
    220                             // used for the second argument, which is the
    221                             // address of a personality routine handler. The
    222                             // size of the personality routine pointer is
    223                             // specified by the pointer encoding used.
    224                         {
    225                             uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
    226                             m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
    227                         }
    228                             break;
    229 
    230                         case 'R':
    231                             // A 'R' may be present at any position after the
    232                             // first character of the string. The Augmentation
    233                             // Data shall include a 1 byte argument that
    234                             // represents the pointer encoding for the address
    235                             // pointers used in the FDE.
    236                             // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
    237                             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
    238                             break;
    239                     }
    240                 }
    241             }
    242             else if (strcmp(cie_sp->augmentation, "eh") == 0)
    243             {
    244                 // If the Augmentation string has the value "eh", then
    245                 // the EH Data field shall be present
    246             }
    247 
    248             // Set the offset to be the end of the augmentation data just in case
    249             // we didn't understand any of the data.
    250             offset = (uint32_t)aug_data_end;
    251         }
    252 
    253         if (end_offset > offset)
    254         {
    255             cie_sp->inst_offset = offset;
    256             cie_sp->inst_length = end_offset - offset;
    257         }
    258         while (offset < end_offset)
    259         {
    260             uint8_t inst = m_cfi_data.GetU8(&offset);
    261             uint8_t primary_opcode  = inst & 0xC0;
    262             uint8_t extended_opcode = inst & 0x3F;
    263 
    264             if (extended_opcode == DW_CFA_def_cfa)
    265             {
    266                 // Takes two unsigned LEB128 operands representing a register
    267                 // number and a (non-factored) offset. The required action
    268                 // is to define the current CFA rule to use the provided
    269                 // register and offset.
    270                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    271                 int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
    272                 cie_sp->initial_row.SetCFARegister (reg_num);
    273                 cie_sp->initial_row.SetCFAOffset (op_offset);
    274                 continue;
    275             }
    276             if (primary_opcode == DW_CFA_offset)
    277             {
    278                 // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
    279                 // Takes two arguments: an unsigned LEB128 constant representing a
    280                 // factored offset and a register number. The required action is to
    281                 // change the rule for the register indicated by the register number
    282                 // to be an offset(N) rule with a value of
    283                 // (N = factored offset * data_align).
    284                 uint32_t reg_num = extended_opcode;
    285                 int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
    286                 UnwindPlan::Row::RegisterLocation reg_location;
    287                 reg_location.SetAtCFAPlusOffset(op_offset);
    288                 cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
    289                 continue;
    290             }
    291             if (extended_opcode == DW_CFA_nop)
    292             {
    293                 continue;
    294             }
    295             break;  // Stop if we hit an unrecognized opcode
    296         }
    297     }
    298 
    299     return cie_sp;
    300 }
    301 
    302 void
    303 DWARFCallFrameInfo::GetCFIData()
    304 {
    305     if (m_cfi_data_initialized == false)
    306     {
    307         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
    308         if (log)
    309             m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
    310         m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
    311         m_cfi_data_initialized = true;
    312     }
    313 }
    314 // Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
    315 // of the functions and a pointer back to the function's FDE for later expansion.
    316 // Internalize CIEs as we come across them.
    317 
    318 void
    319 DWARFCallFrameInfo::GetFDEIndex ()
    320 {
    321     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
    322         return;
    323 
    324     if (m_fde_index_initialized)
    325         return;
    326 
    327     Mutex::Locker locker(m_fde_index_mutex);
    328 
    329     if (m_fde_index_initialized) // if two threads hit the locker
    330         return;
    331 
    332     Timer scoped_timer (__PRETTY_FUNCTION__, "%s - %s", __PRETTY_FUNCTION__, m_objfile.GetFileSpec().GetFilename().AsCString(""));
    333 
    334     lldb::offset_t offset = 0;
    335     if (m_cfi_data_initialized == false)
    336         GetCFIData();
    337     while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
    338     {
    339         const dw_offset_t current_entry = offset;
    340         uint32_t len = m_cfi_data.GetU32 (&offset);
    341         dw_offset_t next_entry = current_entry + len + 4;
    342         dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
    343 
    344         if (cie_id == 0 || cie_id == UINT32_MAX)
    345         {
    346             m_cie_map[current_entry] = ParseCIE (current_entry);
    347             offset = next_entry;
    348             continue;
    349         }
    350 
    351         const dw_offset_t cie_offset = current_entry + 4 - cie_id;
    352         const CIE *cie = GetCIE (cie_offset);
    353         if (cie)
    354         {
    355             const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    356             const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    357             const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    358 
    359             lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    360             lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    361             FDEEntryMap::Entry fde (addr, length, current_entry);
    362             m_fde_index.Append(fde);
    363         }
    364         else
    365         {
    366             Host::SystemLog (Host::eSystemLogError,
    367                              "error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
    368                              cie_offset,
    369                              cie_id,
    370                              current_entry);
    371         }
    372         offset = next_entry;
    373     }
    374     m_fde_index.Sort();
    375     m_fde_index_initialized = true;
    376 }
    377 
    378 bool
    379 DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
    380 {
    381     lldb::offset_t offset = dwarf_offset;
    382     lldb::offset_t current_entry = offset;
    383 
    384     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
    385         return false;
    386 
    387     if (m_cfi_data_initialized == false)
    388         GetCFIData();
    389 
    390     uint32_t length = m_cfi_data.GetU32 (&offset);
    391     dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
    392 
    393     assert (cie_offset != 0 && cie_offset != UINT32_MAX);
    394 
    395     // Translate the CIE_id from the eh_frame format, which
    396     // is relative to the FDE offset, into a __eh_frame section
    397     // offset
    398     if (m_is_eh_frame)
    399     {
    400         unwind_plan.SetSourceName ("eh_frame CFI");
    401         cie_offset = current_entry + 4 - cie_offset;
    402         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    403     }
    404     else
    405     {
    406         unwind_plan.SetSourceName ("DWARF CFI");
    407         // In theory the debug_frame info should be valid at all call sites
    408         // ("asynchronous unwind info" as it is sometimes called) but in practice
    409         // gcc et al all emit call frame info for the prologue and call sites, but
    410         // not for the epilogue or all the other locations during the function reliably.
    411         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    412     }
    413     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
    414 
    415     const CIE *cie = GetCIE (cie_offset);
    416     assert (cie != NULL);
    417 
    418     const dw_offset_t end_offset = current_entry + length + 4;
    419 
    420     const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    421     const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    422     const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    423     lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    424     lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    425     AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
    426     range.SetByteSize (range_len);
    427 
    428     if (cie->augmentation[0] == 'z')
    429     {
    430         uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
    431         offset += aug_data_len;
    432     }
    433 
    434     uint32_t reg_num = 0;
    435     int32_t op_offset = 0;
    436     uint32_t code_align = cie->code_align;
    437     int32_t data_align = cie->data_align;
    438 
    439     unwind_plan.SetPlanValidAddressRange (range);
    440     UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
    441     *cie_initial_row = cie->initial_row;
    442     UnwindPlan::RowSP row(cie_initial_row);
    443 
    444     unwind_plan.SetRegisterKind (m_reg_kind);
    445     unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
    446 
    447     UnwindPlan::Row::RegisterLocation reg_location;
    448     while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
    449     {
    450         uint8_t inst = m_cfi_data.GetU8(&offset);
    451         uint8_t primary_opcode  = inst & 0xC0;
    452         uint8_t extended_opcode = inst & 0x3F;
    453 
    454         if (primary_opcode)
    455         {
    456             switch (primary_opcode)
    457             {
    458                 case DW_CFA_advance_loc :   // (Row Creation Instruction)
    459                     {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
    460                         // takes a single argument that represents a constant delta. The
    461                         // required action is to create a new table row with a location
    462                         // value that is computed by taking the current entry's location
    463                         // value and adding (delta * code_align). All other
    464                         // values in the new row are initially identical to the current row.
    465                         unwind_plan.AppendRow(row);
    466                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    467                         *newrow = *row.get();
    468                         row.reset (newrow);
    469                         row->SlideOffset(extended_opcode * code_align);
    470                     }
    471                     break;
    472 
    473                 case DW_CFA_offset      :
    474                     {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
    475                         // takes two arguments: an unsigned LEB128 constant representing a
    476                         // factored offset and a register number. The required action is to
    477                         // change the rule for the register indicated by the register number
    478                         // to be an offset(N) rule with a value of
    479                         // (N = factored offset * data_align).
    480                         reg_num = extended_opcode;
    481                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
    482                         reg_location.SetAtCFAPlusOffset(op_offset);
    483                         row->SetRegisterInfo (reg_num, reg_location);
    484                     }
    485                     break;
    486 
    487                 case DW_CFA_restore     :
    488                     {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
    489                         // takes a single argument that represents a register number. The
    490                         // required action is to change the rule for the indicated register
    491                         // to the rule assigned it by the initial_instructions in the CIE.
    492                         reg_num = extended_opcode;
    493                         // We only keep enough register locations around to
    494                         // unwind what is in our thread, and these are organized
    495                         // by the register index in that state, so we need to convert our
    496                         // GCC register number from the EH frame info, to a register index
    497 
    498                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
    499                             row->SetRegisterInfo (reg_num, reg_location);
    500                     }
    501                     break;
    502             }
    503         }
    504         else
    505         {
    506             switch (extended_opcode)
    507             {
    508                 case DW_CFA_nop                 : // 0x0
    509                     break;
    510 
    511                 case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
    512                     {
    513                         // DW_CFA_set_loc takes a single argument that represents an address.
    514                         // The required action is to create a new table row using the
    515                         // specified address as the location. All other values in the new row
    516                         // are initially identical to the current row. The new location value
    517                         // should always be greater than the current one.
    518                         unwind_plan.AppendRow(row);
    519                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    520                         *newrow = *row.get();
    521                         row.reset (newrow);
    522                         row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
    523                     }
    524                     break;
    525 
    526                 case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
    527                     {
    528                         // takes a single uword argument that represents a constant delta.
    529                         // This instruction is identical to DW_CFA_advance_loc except for the
    530                         // encoding and size of the delta argument.
    531                         unwind_plan.AppendRow(row);
    532                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    533                         *newrow = *row.get();
    534                         row.reset (newrow);
    535                         row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
    536                     }
    537                     break;
    538 
    539                 case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
    540                     {
    541                         // takes a single uword argument that represents a constant delta.
    542                         // This instruction is identical to DW_CFA_advance_loc except for the
    543                         // encoding and size of the delta argument.
    544                         unwind_plan.AppendRow(row);
    545                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    546                         *newrow = *row.get();
    547                         row.reset (newrow);
    548                         row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
    549                     }
    550                     break;
    551 
    552                 case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
    553                     {
    554                         // takes a single uword argument that represents a constant delta.
    555                         // This instruction is identical to DW_CFA_advance_loc except for the
    556                         // encoding and size of the delta argument.
    557                         unwind_plan.AppendRow(row);
    558                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    559                         *newrow = *row.get();
    560                         row.reset (newrow);
    561                         row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
    562                     }
    563                     break;
    564 
    565                 case DW_CFA_offset_extended     : // 0x5
    566                     {
    567                         // takes two unsigned LEB128 arguments representing a register number
    568                         // and a factored offset. This instruction is identical to DW_CFA_offset
    569                         // except for the encoding and size of the register argument.
    570                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    571                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
    572                         reg_location.SetAtCFAPlusOffset(op_offset);
    573                         row->SetRegisterInfo (reg_num, reg_location);
    574                     }
    575                     break;
    576 
    577                 case DW_CFA_restore_extended    : // 0x6
    578                     {
    579                         // takes a single unsigned LEB128 argument that represents a register
    580                         // number. This instruction is identical to DW_CFA_restore except for
    581                         // the encoding and size of the register argument.
    582                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    583                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
    584                             row->SetRegisterInfo (reg_num, reg_location);
    585                     }
    586                     break;
    587 
    588                 case DW_CFA_undefined           : // 0x7
    589                     {
    590                         // takes a single unsigned LEB128 argument that represents a register
    591                         // number. The required action is to set the rule for the specified
    592                         // register to undefined.
    593                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    594                         reg_location.SetUndefined();
    595                         row->SetRegisterInfo (reg_num, reg_location);
    596                     }
    597                     break;
    598 
    599                 case DW_CFA_same_value          : // 0x8
    600                     {
    601                         // takes a single unsigned LEB128 argument that represents a register
    602                         // number. The required action is to set the rule for the specified
    603                         // register to same value.
    604                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    605                         reg_location.SetSame();
    606                         row->SetRegisterInfo (reg_num, reg_location);
    607                     }
    608                     break;
    609 
    610                 case DW_CFA_register            : // 0x9
    611                     {
    612                         // takes two unsigned LEB128 arguments representing register numbers.
    613                         // The required action is to set the rule for the first register to be
    614                         // the second register.
    615 
    616                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    617                         uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    618                         reg_location.SetInRegister(other_reg_num);
    619                         row->SetRegisterInfo (reg_num, reg_location);
    620                     }
    621                     break;
    622 
    623                 case DW_CFA_remember_state      : // 0xA
    624                     {
    625                         // These instructions define a stack of information. Encountering the
    626                         // DW_CFA_remember_state instruction means to save the rules for every
    627                         // register on the current row on the stack. Encountering the
    628                         // DW_CFA_restore_state instruction means to pop the set of rules off
    629                         // the stack and place them in the current row. (This operation is
    630                         // useful for compilers that move epilogue code into the body of a
    631                         // function.)
    632                         unwind_plan.AppendRow (row);
    633                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
    634                         *newrow = *row.get();
    635                         row.reset (newrow);
    636                     }
    637                     break;
    638 
    639                 case DW_CFA_restore_state       : // 0xB
    640                     // These instructions define a stack of information. Encountering the
    641                     // DW_CFA_remember_state instruction means to save the rules for every
    642                     // register on the current row on the stack. Encountering the
    643                     // DW_CFA_restore_state instruction means to pop the set of rules off
    644                     // the stack and place them in the current row. (This operation is
    645                     // useful for compilers that move epilogue code into the body of a
    646                     // function.)
    647                     {
    648                         row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
    649                     }
    650                     break;
    651 
    652                 case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
    653                     {
    654                         // Takes two unsigned LEB128 operands representing a register
    655                         // number and a (non-factored) offset. The required action
    656                         // is to define the current CFA rule to use the provided
    657                         // register and offset.
    658                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    659                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
    660                         row->SetCFARegister (reg_num);
    661                         row->SetCFAOffset (op_offset);
    662                     }
    663                     break;
    664 
    665                 case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
    666                     {
    667                         // takes a single unsigned LEB128 argument representing a register
    668                         // number. The required action is to define the current CFA rule to
    669                         // use the provided register (but to keep the old offset).
    670                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    671                         row->SetCFARegister (reg_num);
    672                     }
    673                     break;
    674 
    675                 case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
    676                     {
    677                         // Takes a single unsigned LEB128 operand representing a
    678                         // (non-factored) offset. The required action is to define
    679                         // the current CFA rule to use the provided offset (but
    680                         // to keep the old register).
    681                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
    682                         row->SetCFAOffset (op_offset);
    683                     }
    684                     break;
    685 
    686                 case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
    687                     {
    688                         size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
    689                         offset += (uint32_t)block_len;
    690                     }
    691                     break;
    692 
    693                 case DW_CFA_expression          : // 0x10
    694                     {
    695                         // Takes two operands: an unsigned LEB128 value representing
    696                         // a register number, and a DW_FORM_block value representing a DWARF
    697                         // expression. The required action is to change the rule for the
    698                         // register indicated by the register number to be an expression(E)
    699                         // rule where E is the DWARF expression. That is, the DWARF
    700                         // expression computes the address. The value of the CFA is
    701                         // pushed on the DWARF evaluation stack prior to execution of
    702                         // the DWARF expression.
    703                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    704                         uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
    705                         const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
    706 
    707                         reg_location.SetAtDWARFExpression(block_data, block_len);
    708                         row->SetRegisterInfo (reg_num, reg_location);
    709                     }
    710                     break;
    711 
    712                 case DW_CFA_offset_extended_sf  : // 0x11
    713                     {
    714                         // takes two operands: an unsigned LEB128 value representing a
    715                         // register number and a signed LEB128 factored offset. This
    716                         // instruction is identical to DW_CFA_offset_extended except
    717                         //that the second operand is signed and factored.
    718                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    719                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
    720                         reg_location.SetAtCFAPlusOffset(op_offset);
    721                         row->SetRegisterInfo (reg_num, reg_location);
    722                     }
    723                     break;
    724 
    725                 case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
    726                     {
    727                         // Takes two operands: an unsigned LEB128 value representing
    728                         // a register number and a signed LEB128 factored offset.
    729                         // This instruction is identical to DW_CFA_def_cfa except
    730                         // that the second operand is signed and factored.
    731                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    732                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
    733                         row->SetCFARegister (reg_num);
    734                         row->SetCFAOffset (op_offset);
    735                     }
    736                     break;
    737 
    738                 case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
    739                     {
    740                         // takes a signed LEB128 operand representing a factored
    741                         // offset. This instruction is identical to  DW_CFA_def_cfa_offset
    742                         // except that the operand is signed and factored.
    743                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
    744                         row->SetCFAOffset (op_offset);
    745                     }
    746                     break;
    747 
    748                 case DW_CFA_val_expression      :   // 0x16
    749                     {
    750                         // takes two operands: an unsigned LEB128 value representing a register
    751                         // number, and a DW_FORM_block value representing a DWARF expression.
    752                         // The required action is to change the rule for the register indicated
    753                         // by the register number to be a val_expression(E) rule where E is the
    754                         // DWARF expression. That is, the DWARF expression computes the value of
    755                         // the given register. The value of the CFA is pushed on the DWARF
    756                         // evaluation stack prior to execution of the DWARF expression.
    757                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
    758                         uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
    759                         const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
    760 //#if defined(__i386__) || defined(__x86_64__)
    761 //                      // The EH frame info for EIP and RIP contains code that looks for traps to
    762 //                      // be a specific type and increments the PC.
    763 //                      // For i386:
    764 //                      // DW_CFA_val_expression where:
    765 //                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
    766 //                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
    767 //                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
    768 //                      //       DW_OP_and, DW_OP_plus
    769 //                      // This basically does a:
    770 //                      // eip = ucontenxt.mcontext32->gpr.eip;
    771 //                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
    772 //                      //   eip++;
    773 //                      //
    774 //                      // For x86_64:
    775 //                      // DW_CFA_val_expression where:
    776 //                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
    777 //                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
    778 //                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
    779 //                      // This basically does a:
    780 //                      // rip = ucontenxt.mcontext64->gpr.rip;
    781 //                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
    782 //                      //   rip++;
    783 //                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
    784 //                      // is expected to point at least past the instruction that causes the fault/trap. So we
    785 //                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
    786 //                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
    787 //                      {
    788 //                          if (thread->Is64Bit())
    789 //                          {
    790 //                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
    791 //                                  block_len = 8;
    792 //                          }
    793 //                          else
    794 //                          {
    795 //                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
    796 //                                  block_len = 7;
    797 //                          }
    798 //                      }
    799 //#endif
    800                         reg_location.SetIsDWARFExpression(block_data, block_len);
    801                         row->SetRegisterInfo (reg_num, reg_location);
    802                     }
    803                     break;
    804 
    805                 case DW_CFA_val_offset          :   // 0x14
    806                 case DW_CFA_val_offset_sf       :   // 0x15
    807                 default:
    808                     break;
    809             }
    810         }
    811     }
    812     unwind_plan.AppendRow(row);
    813 
    814     return true;
    815 }
    816