Home | History | Annotate | Download | only in TableGen
      1 ==============================
      2 TableGen Language Introduction
      3 ==============================
      4 
      5 .. contents::
      6    :local:
      7 
      8 .. warning::
      9    This document is extremely rough. If you find something lacking, please
     10    fix it, file a documentation bug, or ask about it on llvmdev.
     11 
     12 Introduction
     13 ============
     14 
     15 This document is not meant to be a normative spec about the TableGen language
     16 in and of itself (i.e. how to understand a given construct in terms of how
     17 it affects the final set of records represented by the TableGen file). For
     18 the formal language specification, see :doc:`LangRef`.
     19 
     20 TableGen syntax
     21 ===============
     22 
     23 TableGen doesn't care about the meaning of data (that is up to the backend to
     24 define), but it does care about syntax, and it enforces a simple type system.
     25 This section describes the syntax and the constructs allowed in a TableGen file.
     26 
     27 TableGen primitives
     28 -------------------
     29 
     30 TableGen comments
     31 ^^^^^^^^^^^^^^^^^
     32 
     33 TableGen supports C++ style "``//``" comments, which run to the end of the
     34 line, and it also supports **nestable** "``/* */``" comments.
     35 
     36 .. _TableGen type:
     37 
     38 The TableGen type system
     39 ^^^^^^^^^^^^^^^^^^^^^^^^
     40 
     41 TableGen files are strongly typed, in a simple (but complete) type-system.
     42 These types are used to perform automatic conversions, check for errors, and to
     43 help interface designers constrain the input that they allow.  Every `value
     44 definition`_ is required to have an associated type.
     45 
     46 TableGen supports a mixture of very low-level types (such as ``bit``) and very
     47 high-level types (such as ``dag``).  This flexibility is what allows it to
     48 describe a wide range of information conveniently and compactly.  The TableGen
     49 types are:
     50 
     51 ``bit``
     52     A 'bit' is a boolean value that can hold either 0 or 1.
     53 
     54 ``int``
     55     The 'int' type represents a simple 32-bit integer value, such as 5.
     56 
     57 ``string``
     58     The 'string' type represents an ordered sequence of characters of arbitrary
     59     length.
     60 
     61 ``bits<n>``
     62     A 'bits' type is an arbitrary, but fixed, size integer that is broken up
     63     into individual bits.  This type is useful because it can handle some bits
     64     being defined while others are undefined.
     65 
     66 ``list<ty>``
     67     This type represents a list whose elements are some other type.  The
     68     contained type is arbitrary: it can even be another list type.
     69 
     70 Class type
     71     Specifying a class name in a type context means that the defined value must
     72     be a subclass of the specified class.  This is useful in conjunction with
     73     the ``list`` type, for example, to constrain the elements of the list to a
     74     common base class (e.g., a ``list<Register>`` can only contain definitions
     75     derived from the "``Register``" class).
     76 
     77 ``dag``
     78     This type represents a nestable directed graph of elements.
     79 
     80 To date, these types have been sufficient for describing things that TableGen
     81 has been used for, but it is straight-forward to extend this list if needed.
     82 
     83 .. _TableGen expressions:
     84 
     85 TableGen values and expressions
     86 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     87 
     88 TableGen allows for a pretty reasonable number of different expression forms
     89 when building up values.  These forms allow the TableGen file to be written in a
     90 natural syntax and flavor for the application.  The current expression forms
     91 supported include:
     92 
     93 ``?``
     94     uninitialized field
     95 
     96 ``0b1001011``
     97     binary integer value
     98 
     99 ``07654321``
    100     octal integer value (indicated by a leading 0)
    101 
    102 ``7``
    103     decimal integer value
    104 
    105 ``0x7F``
    106     hexadecimal integer value
    107 
    108 ``"foo"``
    109     string value
    110 
    111 ``[{ ... }]``
    112     usually called a "code fragment", but is just a multiline string literal
    113 
    114 ``[ X, Y, Z ]<type>``
    115     list value.  <type> is the type of the list element and is usually optional.
    116     In rare cases, TableGen is unable to deduce the element type in which case
    117     the user must specify it explicitly.
    118 
    119 ``{ a, b, c }``
    120     initializer for a "bits<3>" value
    121 
    122 ``value``
    123     value reference
    124 
    125 ``value{17}``
    126     access to one bit of a value
    127 
    128 ``value{15-17}``
    129     access to multiple bits of a value
    130 
    131 ``DEF``
    132     reference to a record definition
    133 
    134 ``CLASS<val list>``
    135     reference to a new anonymous definition of CLASS with the specified template
    136     arguments.
    137 
    138 ``X.Y``
    139     reference to the subfield of a value
    140 
    141 ``list[4-7,17,2-3]``
    142     A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
    143     Elements may be included multiple times.
    144 
    145 ``foreach <var> = [ <list> ] in { <body> }``
    146 
    147 ``foreach <var> = [ <list> ] in <def>``
    148     Replicate <body> or <def>, replacing instances of <var> with each value
    149     in <list>.  <var> is scoped at the level of the ``foreach`` loop and must
    150     not conflict with any other object introduced in <body> or <def>.  Currently
    151     only ``def``\s are expanded within <body>.
    152 
    153 ``foreach <var> = 0-15 in ...``
    154 
    155 ``foreach <var> = {0-15,32-47} in ...``
    156     Loop over ranges of integers. The braces are required for multiple ranges.
    157 
    158 ``(DEF a, b)``
    159     a dag value.  The first element is required to be a record definition, the
    160     remaining elements in the list may be arbitrary other values, including
    161     nested ```dag``' values.
    162 
    163 ``!listconcat(a, b, ...)``
    164     A list value that is the result of concatenating the 'a' and 'b' lists.
    165     The lists must have the same element type.
    166     More than two arguments are accepted with the result being the concatenation
    167     of all the lists given.
    168 
    169 ``!strconcat(a, b, ...)``
    170     A string value that is the result of concatenating the 'a' and 'b' strings.
    171     More than two arguments are accepted with the result being the concatenation
    172     of all the strings given.
    173 
    174 ``str1#str2``
    175     "#" (paste) is a shorthand for !strconcat.  It may concatenate things that
    176     are not quoted strings, in which case an implicit !cast<string> is done on
    177     the operand of the paste.
    178 
    179 ``!cast<type>(a)``
    180     A symbol of type *type* obtained by looking up the string 'a' in the symbol
    181     table.  If the type of 'a' does not match *type*, TableGen aborts with an
    182     error. !cast<string> is a special case in that the argument must be an
    183     object defined by a 'def' construct.
    184 
    185 ``!subst(a, b, c)``
    186     If 'a' and 'b' are of string type or are symbol references, substitute 'b'
    187     for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.
    188 
    189 ``!foreach(a, b, c)``
    190     For each member 'b' of dag or list 'a' apply operator 'c.'  'b' is a dummy
    191     variable that should be declared as a member variable of an instantiated
    192     class.  This operation is analogous to $(foreach) in GNU make.
    193 
    194 ``!head(a)``
    195     The first element of list 'a.'
    196 
    197 ``!tail(a)``
    198     The 2nd-N elements of list 'a.'
    199 
    200 ``!empty(a)``
    201     An integer {0,1} indicating whether list 'a' is empty.
    202 
    203 ``!if(a,b,c)``
    204   'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
    205 
    206 ``!eq(a,b)``
    207     'bit 1' if string a is equal to string b, 0 otherwise.  This only operates
    208     on string, int and bit objects.  Use !cast<string> to compare other types of
    209     objects.
    210 
    211 Note that all of the values have rules specifying how they convert to values
    212 for different types.  These rules allow you to assign a value like "``7``"
    213 to a "``bits<4>``" value, for example.
    214 
    215 Classes and definitions
    216 -----------------------
    217 
    218 As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
    219 'records') in TableGen are the main high-level unit of information that TableGen
    220 collects.  Records are defined with a ``def`` or ``class`` keyword, the record
    221 name, and an optional list of "`template arguments`_".  If the record has
    222 superclasses, they are specified as a comma separated list that starts with a
    223 colon character ("``:``").  If `value definitions`_ or `let expressions`_ are
    224 needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
    225 the record ends with a semicolon.
    226 
    227 Here is a simple TableGen file:
    228 
    229 .. code-block:: llvm
    230 
    231   class C { bit V = 1; }
    232   def X : C;
    233   def Y : C {
    234     string Greeting = "hello";
    235   }
    236 
    237 This example defines two definitions, ``X`` and ``Y``, both of which derive from
    238 the ``C`` class.  Because of this, they both get the ``V`` bit value.  The ``Y``
    239 definition also gets the Greeting member as well.
    240 
    241 In general, classes are useful for collecting together the commonality between a
    242 group of records and isolating it in a single place.  Also, classes permit the
    243 specification of default values for their subclasses, allowing the subclasses to
    244 override them as they wish.
    245 
    246 .. _value definition:
    247 .. _value definitions:
    248 
    249 Value definitions
    250 ^^^^^^^^^^^^^^^^^
    251 
    252 Value definitions define named entries in records.  A value must be defined
    253 before it can be referred to as the operand for another value definition or
    254 before the value is reset with a `let expression`_.  A value is defined by
    255 specifying a `TableGen type`_ and a name.  If an initial value is available, it
    256 may be specified after the type with an equal sign.  Value definitions require
    257 terminating semicolons.
    258 
    259 .. _let expression:
    260 .. _let expressions:
    261 .. _"let" expressions within a record:
    262 
    263 'let' expressions
    264 ^^^^^^^^^^^^^^^^^
    265 
    266 A record-level let expression is used to change the value of a value definition
    267 in a record.  This is primarily useful when a superclass defines a value that a
    268 derived class or definition wants to override.  Let expressions consist of the
    269 '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
    270 value.  For example, a new class could be added to the example above, redefining
    271 the ``V`` field for all of its subclasses:
    272 
    273 .. code-block:: llvm
    274 
    275   class D : C { let V = 0; }
    276   def Z : D;
    277 
    278 In this case, the ``Z`` definition will have a zero value for its ``V`` value,
    279 despite the fact that it derives (indirectly) from the ``C`` class, because the
    280 ``D`` class overrode its value.
    281 
    282 .. _template arguments:
    283 
    284 Class template arguments
    285 ^^^^^^^^^^^^^^^^^^^^^^^^
    286 
    287 TableGen permits the definition of parameterized classes as well as normal
    288 concrete classes.  Parameterized TableGen classes specify a list of variable
    289 bindings (which may optionally have defaults) that are bound when used.  Here is
    290 a simple example:
    291 
    292 .. code-block:: llvm
    293 
    294   class FPFormat<bits<3> val> {
    295     bits<3> Value = val;
    296   }
    297   def NotFP      : FPFormat<0>;
    298   def ZeroArgFP  : FPFormat<1>;
    299   def OneArgFP   : FPFormat<2>;
    300   def OneArgFPRW : FPFormat<3>;
    301   def TwoArgFP   : FPFormat<4>;
    302   def CompareFP  : FPFormat<5>;
    303   def CondMovFP  : FPFormat<6>;
    304   def SpecialFP  : FPFormat<7>;
    305 
    306 In this case, template arguments are used as a space efficient way to specify a
    307 list of "enumeration values", each with a "``Value``" field set to the specified
    308 integer.
    309 
    310 The more esoteric forms of `TableGen expressions`_ are useful in conjunction
    311 with template arguments.  As an example:
    312 
    313 .. code-block:: llvm
    314 
    315   class ModRefVal<bits<2> val> {
    316     bits<2> Value = val;
    317   }
    318 
    319   def None   : ModRefVal<0>;
    320   def Mod    : ModRefVal<1>;
    321   def Ref    : ModRefVal<2>;
    322   def ModRef : ModRefVal<3>;
    323 
    324   class Value<ModRefVal MR> {
    325     // Decode some information into a more convenient format, while providing
    326     // a nice interface to the user of the "Value" class.
    327     bit isMod = MR.Value{0};
    328     bit isRef = MR.Value{1};
    329 
    330     // other stuff...
    331   }
    332 
    333   // Example uses
    334   def bork : Value<Mod>;
    335   def zork : Value<Ref>;
    336   def hork : Value<ModRef>;
    337 
    338 This is obviously a contrived example, but it shows how template arguments can
    339 be used to decouple the interface provided to the user of the class from the
    340 actual internal data representation expected by the class.  In this case,
    341 running ``llvm-tblgen`` on the example prints the following definitions:
    342 
    343 .. code-block:: llvm
    344 
    345   def bork {      // Value
    346     bit isMod = 1;
    347     bit isRef = 0;
    348   }
    349   def hork {      // Value
    350     bit isMod = 1;
    351     bit isRef = 1;
    352   }
    353   def zork {      // Value
    354     bit isMod = 0;
    355     bit isRef = 1;
    356   }
    357 
    358 This shows that TableGen was able to dig into the argument and extract a piece
    359 of information that was requested by the designer of the "Value" class.  For
    360 more realistic examples, please see existing users of TableGen, such as the X86
    361 backend.
    362 
    363 Multiclass definitions and instances
    364 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    365 
    366 While classes with template arguments are a good way to factor commonality
    367 between two instances of a definition, multiclasses allow a convenient notation
    368 for defining multiple definitions at once (instances of implicitly constructed
    369 classes).  For example, consider an 3-address instruction set whose instructions
    370 come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
    371 (e.g. SPARC). In this case, you'd like to specify in one place that this
    372 commonality exists, then in a separate place indicate what all the ops are.
    373 
    374 Here is an example TableGen fragment that shows this idea:
    375 
    376 .. code-block:: llvm
    377 
    378   def ops;
    379   def GPR;
    380   def Imm;
    381   class inst<int opc, string asmstr, dag operandlist>;
    382 
    383   multiclass ri_inst<int opc, string asmstr> {
    384     def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    385                    (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
    386     def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    387                    (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
    388   }
    389 
    390   // Instantiations of the ri_inst multiclass.
    391   defm ADD : ri_inst<0b111, "add">;
    392   defm SUB : ri_inst<0b101, "sub">;
    393   defm MUL : ri_inst<0b100, "mul">;
    394   ...
    395 
    396 The name of the resultant definitions has the multidef fragment names appended
    397 to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc.  A defm may
    398 inherit from multiple multiclasses, instantiating definitions from each
    399 multiclass.  Using a multiclass this way is exactly equivalent to instantiating
    400 the classes multiple times yourself, e.g. by writing:
    401 
    402 .. code-block:: llvm
    403 
    404   def ops;
    405   def GPR;
    406   def Imm;
    407   class inst<int opc, string asmstr, dag operandlist>;
    408 
    409   class rrinst<int opc, string asmstr>
    410     : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    411            (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
    412 
    413   class riinst<int opc, string asmstr>
    414     : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
    415            (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
    416 
    417   // Instantiations of the ri_inst multiclass.
    418   def ADD_rr : rrinst<0b111, "add">;
    419   def ADD_ri : riinst<0b111, "add">;
    420   def SUB_rr : rrinst<0b101, "sub">;
    421   def SUB_ri : riinst<0b101, "sub">;
    422   def MUL_rr : rrinst<0b100, "mul">;
    423   def MUL_ri : riinst<0b100, "mul">;
    424   ...
    425 
    426 A ``defm`` can also be used inside a multiclass providing several levels of
    427 multiclass instantiations.
    428 
    429 .. code-block:: llvm
    430 
    431   class Instruction<bits<4> opc, string Name> {
    432     bits<4> opcode = opc;
    433     string name = Name;
    434   }
    435 
    436   multiclass basic_r<bits<4> opc> {
    437     def rr : Instruction<opc, "rr">;
    438     def rm : Instruction<opc, "rm">;
    439   }
    440 
    441   multiclass basic_s<bits<4> opc> {
    442     defm SS : basic_r<opc>;
    443     defm SD : basic_r<opc>;
    444     def X : Instruction<opc, "x">;
    445   }
    446 
    447   multiclass basic_p<bits<4> opc> {
    448     defm PS : basic_r<opc>;
    449     defm PD : basic_r<opc>;
    450     def Y : Instruction<opc, "y">;
    451   }
    452 
    453   defm ADD : basic_s<0xf>, basic_p<0xf>;
    454   ...
    455 
    456   // Results
    457   def ADDPDrm { ...
    458   def ADDPDrr { ...
    459   def ADDPSrm { ...
    460   def ADDPSrr { ...
    461   def ADDSDrm { ...
    462   def ADDSDrr { ...
    463   def ADDY { ...
    464   def ADDX { ...
    465 
    466 ``defm`` declarations can inherit from classes too, the rule to follow is that
    467 the class list must start after the last multiclass, and there must be at least
    468 one multiclass before them.
    469 
    470 .. code-block:: llvm
    471 
    472   class XD { bits<4> Prefix = 11; }
    473   class XS { bits<4> Prefix = 12; }
    474 
    475   class I<bits<4> op> {
    476     bits<4> opcode = op;
    477   }
    478 
    479   multiclass R {
    480     def rr : I<4>;
    481     def rm : I<2>;
    482   }
    483 
    484   multiclass Y {
    485     defm SS : R, XD;
    486     defm SD : R, XS;
    487   }
    488 
    489   defm Instr : Y;
    490 
    491   // Results
    492   def InstrSDrm {
    493     bits<4> opcode = { 0, 0, 1, 0 };
    494     bits<4> Prefix = { 1, 1, 0, 0 };
    495   }
    496   ...
    497   def InstrSSrr {
    498     bits<4> opcode = { 0, 1, 0, 0 };
    499     bits<4> Prefix = { 1, 0, 1, 1 };
    500   }
    501 
    502 File scope entities
    503 -------------------
    504 
    505 File inclusion
    506 ^^^^^^^^^^^^^^
    507 
    508 TableGen supports the '``include``' token, which textually substitutes the
    509 specified file in place of the include directive.  The filename should be
    510 specified as a double quoted string immediately after the '``include``' keyword.
    511 Example:
    512 
    513 .. code-block:: llvm
    514 
    515   include "foo.td"
    516 
    517 'let' expressions
    518 ^^^^^^^^^^^^^^^^^
    519 
    520 "Let" expressions at file scope are similar to `"let" expressions within a
    521 record`_, except they can specify a value binding for multiple records at a
    522 time, and may be useful in certain other cases.  File-scope let expressions are
    523 really just another way that TableGen allows the end-user to factor out
    524 commonality from the records.
    525 
    526 File-scope "let" expressions take a comma-separated list of bindings to apply,
    527 and one or more records to bind the values in.  Here are some examples:
    528 
    529 .. code-block:: llvm
    530 
    531   let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
    532     def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
    533 
    534   let isCall = 1 in
    535     // All calls clobber the non-callee saved registers...
    536     let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
    537                 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    538                 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
    539       def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
    540                              "call\t${dst:call}", []>;
    541       def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
    542                           "call\t{*}$dst", [(X86call GR32:$dst)]>;
    543       def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
    544                           "call\t{*}$dst", []>;
    545     }
    546 
    547 File-scope "let" expressions are often useful when a couple of definitions need
    548 to be added to several records, and the records do not otherwise need to be
    549 opened, as in the case with the ``CALL*`` instructions above.
    550 
    551 It's also possible to use "let" expressions inside multiclasses, providing more
    552 ways to factor out commonality from the records, specially if using several
    553 levels of multiclass instantiations. This also avoids the need of using "let"
    554 expressions within subsequent records inside a multiclass.
    555 
    556 .. code-block:: llvm
    557 
    558   multiclass basic_r<bits<4> opc> {
    559     let Predicates = [HasSSE2] in {
    560       def rr : Instruction<opc, "rr">;
    561       def rm : Instruction<opc, "rm">;
    562     }
    563     let Predicates = [HasSSE3] in
    564       def rx : Instruction<opc, "rx">;
    565   }
    566 
    567   multiclass basic_ss<bits<4> opc> {
    568     let IsDouble = 0 in
    569       defm SS : basic_r<opc>;
    570 
    571     let IsDouble = 1 in
    572       defm SD : basic_r<opc>;
    573   }
    574 
    575   defm ADD : basic_ss<0xf>;
    576 
    577 Looping
    578 ^^^^^^^
    579 
    580 TableGen supports the '``foreach``' block, which textually replicates the loop
    581 body, substituting iterator values for iterator references in the body.
    582 Example:
    583 
    584 .. code-block:: llvm
    585 
    586   foreach i = [0, 1, 2, 3] in {
    587     def R#i : Register<...>;
    588     def F#i : Register<...>;
    589   }
    590 
    591 This will create objects ``R0``, ``R1``, ``R2`` and ``R3``.  ``foreach`` blocks
    592 may be nested. If there is only one item in the body the braces may be
    593 elided:
    594 
    595 .. code-block:: llvm
    596 
    597   foreach i = [0, 1, 2, 3] in
    598     def R#i : Register<...>;
    599 
    600 Code Generator backend info
    601 ===========================
    602 
    603 Expressions used by code generator to describe instructions and isel patterns:
    604 
    605 ``(implicit a)``
    606     an implicitly defined physical register.  This tells the dag instruction
    607     selection emitter the input pattern's extra definitions matches implicit
    608     physical register definitions.
    609 
    610