1 ============================== 2 TableGen Language Introduction 3 ============================== 4 5 .. contents:: 6 :local: 7 8 .. warning:: 9 This document is extremely rough. If you find something lacking, please 10 fix it, file a documentation bug, or ask about it on llvmdev. 11 12 Introduction 13 ============ 14 15 This document is not meant to be a normative spec about the TableGen language 16 in and of itself (i.e. how to understand a given construct in terms of how 17 it affects the final set of records represented by the TableGen file). For 18 the formal language specification, see :doc:`LangRef`. 19 20 TableGen syntax 21 =============== 22 23 TableGen doesn't care about the meaning of data (that is up to the backend to 24 define), but it does care about syntax, and it enforces a simple type system. 25 This section describes the syntax and the constructs allowed in a TableGen file. 26 27 TableGen primitives 28 ------------------- 29 30 TableGen comments 31 ^^^^^^^^^^^^^^^^^ 32 33 TableGen supports C++ style "``//``" comments, which run to the end of the 34 line, and it also supports **nestable** "``/* */``" comments. 35 36 .. _TableGen type: 37 38 The TableGen type system 39 ^^^^^^^^^^^^^^^^^^^^^^^^ 40 41 TableGen files are strongly typed, in a simple (but complete) type-system. 42 These types are used to perform automatic conversions, check for errors, and to 43 help interface designers constrain the input that they allow. Every `value 44 definition`_ is required to have an associated type. 45 46 TableGen supports a mixture of very low-level types (such as ``bit``) and very 47 high-level types (such as ``dag``). This flexibility is what allows it to 48 describe a wide range of information conveniently and compactly. The TableGen 49 types are: 50 51 ``bit`` 52 A 'bit' is a boolean value that can hold either 0 or 1. 53 54 ``int`` 55 The 'int' type represents a simple 32-bit integer value, such as 5. 56 57 ``string`` 58 The 'string' type represents an ordered sequence of characters of arbitrary 59 length. 60 61 ``bits<n>`` 62 A 'bits' type is an arbitrary, but fixed, size integer that is broken up 63 into individual bits. This type is useful because it can handle some bits 64 being defined while others are undefined. 65 66 ``list<ty>`` 67 This type represents a list whose elements are some other type. The 68 contained type is arbitrary: it can even be another list type. 69 70 Class type 71 Specifying a class name in a type context means that the defined value must 72 be a subclass of the specified class. This is useful in conjunction with 73 the ``list`` type, for example, to constrain the elements of the list to a 74 common base class (e.g., a ``list<Register>`` can only contain definitions 75 derived from the "``Register``" class). 76 77 ``dag`` 78 This type represents a nestable directed graph of elements. 79 80 To date, these types have been sufficient for describing things that TableGen 81 has been used for, but it is straight-forward to extend this list if needed. 82 83 .. _TableGen expressions: 84 85 TableGen values and expressions 86 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 87 88 TableGen allows for a pretty reasonable number of different expression forms 89 when building up values. These forms allow the TableGen file to be written in a 90 natural syntax and flavor for the application. The current expression forms 91 supported include: 92 93 ``?`` 94 uninitialized field 95 96 ``0b1001011`` 97 binary integer value 98 99 ``07654321`` 100 octal integer value (indicated by a leading 0) 101 102 ``7`` 103 decimal integer value 104 105 ``0x7F`` 106 hexadecimal integer value 107 108 ``"foo"`` 109 string value 110 111 ``[{ ... }]`` 112 usually called a "code fragment", but is just a multiline string literal 113 114 ``[ X, Y, Z ]<type>`` 115 list value. <type> is the type of the list element and is usually optional. 116 In rare cases, TableGen is unable to deduce the element type in which case 117 the user must specify it explicitly. 118 119 ``{ a, b, c }`` 120 initializer for a "bits<3>" value 121 122 ``value`` 123 value reference 124 125 ``value{17}`` 126 access to one bit of a value 127 128 ``value{15-17}`` 129 access to multiple bits of a value 130 131 ``DEF`` 132 reference to a record definition 133 134 ``CLASS<val list>`` 135 reference to a new anonymous definition of CLASS with the specified template 136 arguments. 137 138 ``X.Y`` 139 reference to the subfield of a value 140 141 ``list[4-7,17,2-3]`` 142 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it. 143 Elements may be included multiple times. 144 145 ``foreach <var> = [ <list> ] in { <body> }`` 146 147 ``foreach <var> = [ <list> ] in <def>`` 148 Replicate <body> or <def>, replacing instances of <var> with each value 149 in <list>. <var> is scoped at the level of the ``foreach`` loop and must 150 not conflict with any other object introduced in <body> or <def>. Currently 151 only ``def``\s are expanded within <body>. 152 153 ``foreach <var> = 0-15 in ...`` 154 155 ``foreach <var> = {0-15,32-47} in ...`` 156 Loop over ranges of integers. The braces are required for multiple ranges. 157 158 ``(DEF a, b)`` 159 a dag value. The first element is required to be a record definition, the 160 remaining elements in the list may be arbitrary other values, including 161 nested ```dag``' values. 162 163 ``!listconcat(a, b, ...)`` 164 A list value that is the result of concatenating the 'a' and 'b' lists. 165 The lists must have the same element type. 166 More than two arguments are accepted with the result being the concatenation 167 of all the lists given. 168 169 ``!strconcat(a, b, ...)`` 170 A string value that is the result of concatenating the 'a' and 'b' strings. 171 More than two arguments are accepted with the result being the concatenation 172 of all the strings given. 173 174 ``str1#str2`` 175 "#" (paste) is a shorthand for !strconcat. It may concatenate things that 176 are not quoted strings, in which case an implicit !cast<string> is done on 177 the operand of the paste. 178 179 ``!cast<type>(a)`` 180 A symbol of type *type* obtained by looking up the string 'a' in the symbol 181 table. If the type of 'a' does not match *type*, TableGen aborts with an 182 error. !cast<string> is a special case in that the argument must be an 183 object defined by a 'def' construct. 184 185 ``!subst(a, b, c)`` 186 If 'a' and 'b' are of string type or are symbol references, substitute 'b' 187 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make. 188 189 ``!foreach(a, b, c)`` 190 For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a dummy 191 variable that should be declared as a member variable of an instantiated 192 class. This operation is analogous to $(foreach) in GNU make. 193 194 ``!head(a)`` 195 The first element of list 'a.' 196 197 ``!tail(a)`` 198 The 2nd-N elements of list 'a.' 199 200 ``!empty(a)`` 201 An integer {0,1} indicating whether list 'a' is empty. 202 203 ``!if(a,b,c)`` 204 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise. 205 206 ``!eq(a,b)`` 207 'bit 1' if string a is equal to string b, 0 otherwise. This only operates 208 on string, int and bit objects. Use !cast<string> to compare other types of 209 objects. 210 211 Note that all of the values have rules specifying how they convert to values 212 for different types. These rules allow you to assign a value like "``7``" 213 to a "``bits<4>``" value, for example. 214 215 Classes and definitions 216 ----------------------- 217 218 As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as 219 'records') in TableGen are the main high-level unit of information that TableGen 220 collects. Records are defined with a ``def`` or ``class`` keyword, the record 221 name, and an optional list of "`template arguments`_". If the record has 222 superclasses, they are specified as a comma separated list that starts with a 223 colon character ("``:``"). If `value definitions`_ or `let expressions`_ are 224 needed for the class, they are enclosed in curly braces ("``{}``"); otherwise, 225 the record ends with a semicolon. 226 227 Here is a simple TableGen file: 228 229 .. code-block:: llvm 230 231 class C { bit V = 1; } 232 def X : C; 233 def Y : C { 234 string Greeting = "hello"; 235 } 236 237 This example defines two definitions, ``X`` and ``Y``, both of which derive from 238 the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y`` 239 definition also gets the Greeting member as well. 240 241 In general, classes are useful for collecting together the commonality between a 242 group of records and isolating it in a single place. Also, classes permit the 243 specification of default values for their subclasses, allowing the subclasses to 244 override them as they wish. 245 246 .. _value definition: 247 .. _value definitions: 248 249 Value definitions 250 ^^^^^^^^^^^^^^^^^ 251 252 Value definitions define named entries in records. A value must be defined 253 before it can be referred to as the operand for another value definition or 254 before the value is reset with a `let expression`_. A value is defined by 255 specifying a `TableGen type`_ and a name. If an initial value is available, it 256 may be specified after the type with an equal sign. Value definitions require 257 terminating semicolons. 258 259 .. _let expression: 260 .. _let expressions: 261 .. _"let" expressions within a record: 262 263 'let' expressions 264 ^^^^^^^^^^^^^^^^^ 265 266 A record-level let expression is used to change the value of a value definition 267 in a record. This is primarily useful when a superclass defines a value that a 268 derived class or definition wants to override. Let expressions consist of the 269 '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new 270 value. For example, a new class could be added to the example above, redefining 271 the ``V`` field for all of its subclasses: 272 273 .. code-block:: llvm 274 275 class D : C { let V = 0; } 276 def Z : D; 277 278 In this case, the ``Z`` definition will have a zero value for its ``V`` value, 279 despite the fact that it derives (indirectly) from the ``C`` class, because the 280 ``D`` class overrode its value. 281 282 .. _template arguments: 283 284 Class template arguments 285 ^^^^^^^^^^^^^^^^^^^^^^^^ 286 287 TableGen permits the definition of parameterized classes as well as normal 288 concrete classes. Parameterized TableGen classes specify a list of variable 289 bindings (which may optionally have defaults) that are bound when used. Here is 290 a simple example: 291 292 .. code-block:: llvm 293 294 class FPFormat<bits<3> val> { 295 bits<3> Value = val; 296 } 297 def NotFP : FPFormat<0>; 298 def ZeroArgFP : FPFormat<1>; 299 def OneArgFP : FPFormat<2>; 300 def OneArgFPRW : FPFormat<3>; 301 def TwoArgFP : FPFormat<4>; 302 def CompareFP : FPFormat<5>; 303 def CondMovFP : FPFormat<6>; 304 def SpecialFP : FPFormat<7>; 305 306 In this case, template arguments are used as a space efficient way to specify a 307 list of "enumeration values", each with a "``Value``" field set to the specified 308 integer. 309 310 The more esoteric forms of `TableGen expressions`_ are useful in conjunction 311 with template arguments. As an example: 312 313 .. code-block:: llvm 314 315 class ModRefVal<bits<2> val> { 316 bits<2> Value = val; 317 } 318 319 def None : ModRefVal<0>; 320 def Mod : ModRefVal<1>; 321 def Ref : ModRefVal<2>; 322 def ModRef : ModRefVal<3>; 323 324 class Value<ModRefVal MR> { 325 // Decode some information into a more convenient format, while providing 326 // a nice interface to the user of the "Value" class. 327 bit isMod = MR.Value{0}; 328 bit isRef = MR.Value{1}; 329 330 // other stuff... 331 } 332 333 // Example uses 334 def bork : Value<Mod>; 335 def zork : Value<Ref>; 336 def hork : Value<ModRef>; 337 338 This is obviously a contrived example, but it shows how template arguments can 339 be used to decouple the interface provided to the user of the class from the 340 actual internal data representation expected by the class. In this case, 341 running ``llvm-tblgen`` on the example prints the following definitions: 342 343 .. code-block:: llvm 344 345 def bork { // Value 346 bit isMod = 1; 347 bit isRef = 0; 348 } 349 def hork { // Value 350 bit isMod = 1; 351 bit isRef = 1; 352 } 353 def zork { // Value 354 bit isMod = 0; 355 bit isRef = 1; 356 } 357 358 This shows that TableGen was able to dig into the argument and extract a piece 359 of information that was requested by the designer of the "Value" class. For 360 more realistic examples, please see existing users of TableGen, such as the X86 361 backend. 362 363 Multiclass definitions and instances 364 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 365 366 While classes with template arguments are a good way to factor commonality 367 between two instances of a definition, multiclasses allow a convenient notation 368 for defining multiple definitions at once (instances of implicitly constructed 369 classes). For example, consider an 3-address instruction set whose instructions 370 come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``" 371 (e.g. SPARC). In this case, you'd like to specify in one place that this 372 commonality exists, then in a separate place indicate what all the ops are. 373 374 Here is an example TableGen fragment that shows this idea: 375 376 .. code-block:: llvm 377 378 def ops; 379 def GPR; 380 def Imm; 381 class inst<int opc, string asmstr, dag operandlist>; 382 383 multiclass ri_inst<int opc, string asmstr> { 384 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 385 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 386 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 387 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 388 } 389 390 // Instantiations of the ri_inst multiclass. 391 defm ADD : ri_inst<0b111, "add">; 392 defm SUB : ri_inst<0b101, "sub">; 393 defm MUL : ri_inst<0b100, "mul">; 394 ... 395 396 The name of the resultant definitions has the multidef fragment names appended 397 to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may 398 inherit from multiple multiclasses, instantiating definitions from each 399 multiclass. Using a multiclass this way is exactly equivalent to instantiating 400 the classes multiple times yourself, e.g. by writing: 401 402 .. code-block:: llvm 403 404 def ops; 405 def GPR; 406 def Imm; 407 class inst<int opc, string asmstr, dag operandlist>; 408 409 class rrinst<int opc, string asmstr> 410 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 411 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 412 413 class riinst<int opc, string asmstr> 414 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 415 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 416 417 // Instantiations of the ri_inst multiclass. 418 def ADD_rr : rrinst<0b111, "add">; 419 def ADD_ri : riinst<0b111, "add">; 420 def SUB_rr : rrinst<0b101, "sub">; 421 def SUB_ri : riinst<0b101, "sub">; 422 def MUL_rr : rrinst<0b100, "mul">; 423 def MUL_ri : riinst<0b100, "mul">; 424 ... 425 426 A ``defm`` can also be used inside a multiclass providing several levels of 427 multiclass instantiations. 428 429 .. code-block:: llvm 430 431 class Instruction<bits<4> opc, string Name> { 432 bits<4> opcode = opc; 433 string name = Name; 434 } 435 436 multiclass basic_r<bits<4> opc> { 437 def rr : Instruction<opc, "rr">; 438 def rm : Instruction<opc, "rm">; 439 } 440 441 multiclass basic_s<bits<4> opc> { 442 defm SS : basic_r<opc>; 443 defm SD : basic_r<opc>; 444 def X : Instruction<opc, "x">; 445 } 446 447 multiclass basic_p<bits<4> opc> { 448 defm PS : basic_r<opc>; 449 defm PD : basic_r<opc>; 450 def Y : Instruction<opc, "y">; 451 } 452 453 defm ADD : basic_s<0xf>, basic_p<0xf>; 454 ... 455 456 // Results 457 def ADDPDrm { ... 458 def ADDPDrr { ... 459 def ADDPSrm { ... 460 def ADDPSrr { ... 461 def ADDSDrm { ... 462 def ADDSDrr { ... 463 def ADDY { ... 464 def ADDX { ... 465 466 ``defm`` declarations can inherit from classes too, the rule to follow is that 467 the class list must start after the last multiclass, and there must be at least 468 one multiclass before them. 469 470 .. code-block:: llvm 471 472 class XD { bits<4> Prefix = 11; } 473 class XS { bits<4> Prefix = 12; } 474 475 class I<bits<4> op> { 476 bits<4> opcode = op; 477 } 478 479 multiclass R { 480 def rr : I<4>; 481 def rm : I<2>; 482 } 483 484 multiclass Y { 485 defm SS : R, XD; 486 defm SD : R, XS; 487 } 488 489 defm Instr : Y; 490 491 // Results 492 def InstrSDrm { 493 bits<4> opcode = { 0, 0, 1, 0 }; 494 bits<4> Prefix = { 1, 1, 0, 0 }; 495 } 496 ... 497 def InstrSSrr { 498 bits<4> opcode = { 0, 1, 0, 0 }; 499 bits<4> Prefix = { 1, 0, 1, 1 }; 500 } 501 502 File scope entities 503 ------------------- 504 505 File inclusion 506 ^^^^^^^^^^^^^^ 507 508 TableGen supports the '``include``' token, which textually substitutes the 509 specified file in place of the include directive. The filename should be 510 specified as a double quoted string immediately after the '``include``' keyword. 511 Example: 512 513 .. code-block:: llvm 514 515 include "foo.td" 516 517 'let' expressions 518 ^^^^^^^^^^^^^^^^^ 519 520 "Let" expressions at file scope are similar to `"let" expressions within a 521 record`_, except they can specify a value binding for multiple records at a 522 time, and may be useful in certain other cases. File-scope let expressions are 523 really just another way that TableGen allows the end-user to factor out 524 commonality from the records. 525 526 File-scope "let" expressions take a comma-separated list of bindings to apply, 527 and one or more records to bind the values in. Here are some examples: 528 529 .. code-block:: llvm 530 531 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in 532 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>; 533 534 let isCall = 1 in 535 // All calls clobber the non-callee saved registers... 536 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, 537 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 538 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in { 539 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops), 540 "call\t${dst:call}", []>; 541 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), 542 "call\t{*}$dst", [(X86call GR32:$dst)]>; 543 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), 544 "call\t{*}$dst", []>; 545 } 546 547 File-scope "let" expressions are often useful when a couple of definitions need 548 to be added to several records, and the records do not otherwise need to be 549 opened, as in the case with the ``CALL*`` instructions above. 550 551 It's also possible to use "let" expressions inside multiclasses, providing more 552 ways to factor out commonality from the records, specially if using several 553 levels of multiclass instantiations. This also avoids the need of using "let" 554 expressions within subsequent records inside a multiclass. 555 556 .. code-block:: llvm 557 558 multiclass basic_r<bits<4> opc> { 559 let Predicates = [HasSSE2] in { 560 def rr : Instruction<opc, "rr">; 561 def rm : Instruction<opc, "rm">; 562 } 563 let Predicates = [HasSSE3] in 564 def rx : Instruction<opc, "rx">; 565 } 566 567 multiclass basic_ss<bits<4> opc> { 568 let IsDouble = 0 in 569 defm SS : basic_r<opc>; 570 571 let IsDouble = 1 in 572 defm SD : basic_r<opc>; 573 } 574 575 defm ADD : basic_ss<0xf>; 576 577 Looping 578 ^^^^^^^ 579 580 TableGen supports the '``foreach``' block, which textually replicates the loop 581 body, substituting iterator values for iterator references in the body. 582 Example: 583 584 .. code-block:: llvm 585 586 foreach i = [0, 1, 2, 3] in { 587 def R#i : Register<...>; 588 def F#i : Register<...>; 589 } 590 591 This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks 592 may be nested. If there is only one item in the body the braces may be 593 elided: 594 595 .. code-block:: llvm 596 597 foreach i = [0, 1, 2, 3] in 598 def R#i : Register<...>; 599 600 Code Generator backend info 601 =========================== 602 603 Expressions used by code generator to describe instructions and isel patterns: 604 605 ``(implicit a)`` 606 an implicitly defined physical register. This tells the dag instruction 607 selection emitter the input pattern's extra definitions matches implicit 608 physical register definitions. 609 610