Home | History | Annotate | Download | only in docs
      1 =====================
      2 YAML I/O
      3 =====================
      4 
      5 .. contents::
      6    :local:
      7 
      8 Introduction to YAML
      9 ====================
     10 
     11 YAML is a human readable data serialization language.  The full YAML language 
     12 spec can be read at `yaml.org 
     13 <http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
     14 yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
     15 or string.  The pound/hash symbol (#) begins a comment line.   A mapping is 
     16 a set of key-value pairs where the key ends with a colon.  For example:
     17 
     18 .. code-block:: yaml
     19 
     20      # a mapping
     21      name:      Tom
     22      hat-size:  7
     23      
     24 A sequence is a list of items where each item starts with a leading dash ('-'). 
     25 For example:
     26 
     27 .. code-block:: yaml
     28 
     29      # a sequence
     30      - x86
     31      - x86_64
     32      - PowerPC
     33 
     34 You can combine mappings and sequences by indenting.  For example a sequence
     35 of mappings in which one of the mapping values is itself a sequence:
     36 
     37 .. code-block:: yaml
     38 
     39      # a sequence of mappings with one key's value being a sequence
     40      - name:      Tom
     41        cpus:
     42         - x86
     43         - x86_64
     44      - name:      Bob
     45        cpus:
     46         - x86
     47      - name:      Dan
     48        cpus:
     49         - PowerPC
     50         - x86
     51 
     52 Sometime sequences are known to be short and the one entry per line is too
     53 verbose, so YAML offers an alternate syntax for sequences called a "Flow
     54 Sequence" in which you put comma separated sequence elements into square 
     55 brackets.  The above example could then be simplified to :
     56 
     57 
     58 .. code-block:: yaml
     59 
     60      # a sequence of mappings with one key's value being a flow sequence
     61      - name:      Tom
     62        cpus:      [ x86, x86_64 ]
     63      - name:      Bob
     64        cpus:      [ x86 ]
     65      - name:      Dan
     66        cpus:      [ PowerPC, x86 ]
     67 
     68 
     69 Introduction to YAML I/O
     70 ========================
     71 
     72 The use of indenting makes the YAML easy for a human to read and understand,
     73 but having a program read and write YAML involves a lot of tedious details.
     74 The YAML I/O library structures and simplifies reading and writing YAML 
     75 documents.
     76 
     77 YAML I/O assumes you have some "native" data structures which you want to be
     78 able to dump as YAML and recreate from YAML.  The first step is to try 
     79 writing example YAML for your data structures. You may find after looking at 
     80 possible YAML representations that a direct mapping of your data structures
     81 to YAML is not very readable.  Often the fields are not in the order that
     82 a human would find readable.  Or the same information is replicated in multiple
     83 locations, making it hard for a human to write such YAML correctly.  
     84 
     85 In relational database theory there is a design step called normalization in 
     86 which you reorganize fields and tables.  The same considerations need to 
     87 go into the design of your YAML encoding.  But, you may not want to change
     88 your existing native data structures.  Therefore, when writing out YAML
     89 there may be a normalization step, and when reading YAML there would be a
     90 corresponding denormalization step.  
     91 
     92 YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some 
     93 abstract base templates.  You specialize those templates on your data types.
     94 For instance, if you have an enumerated type FooBar you could specialize 
     95 ScalarEnumerationTraits on that type and define the enumeration() method:
     96 
     97 .. code-block:: c++
     98 
     99     using llvm::yaml::ScalarEnumerationTraits;
    100     using llvm::yaml::IO;
    101 
    102     template <>
    103     struct ScalarEnumerationTraits<FooBar> {
    104       static void enumeration(IO &io, FooBar &value) {
    105       ...
    106       }
    107     };
    108 
    109 
    110 As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 
    111 both reading and writing YAML. That is, the mapping between in-memory enum
    112 values and the YAML string representation is only in one place.
    113 This assures that the code for writing and parsing of YAML stays in sync.
    114 
    115 To specify a YAML mappings, you define a specialization on 
    116 llvm::yaml::MappingTraits.
    117 If your native data structure happens to be a struct that is already normalized,
    118 then the specialization is simple.  For example:
    119 
    120 .. code-block:: c++
    121    
    122     using llvm::yaml::MappingTraits;
    123     using llvm::yaml::IO;
    124     
    125     template <>
    126     struct MappingTraits<Person> {
    127       static void mapping(IO &io, Person &info) {
    128         io.mapRequired("name",         info.name);
    129         io.mapOptional("hat-size",     info.hatSize);
    130       }
    131     };
    132 
    133 
    134 A YAML sequence is automatically inferred if you data type has begin()/end()
    135 iterators and a push_back() method.  Therefore any of the STL containers
    136 (such as std::vector<>) will automatically translate to YAML sequences.
    137 
    138 Once you have defined specializations for your data types, you can 
    139 programmatically use YAML I/O to write a YAML document:
    140 
    141 .. code-block:: c++
    142    
    143     using llvm::yaml::Output;
    144 
    145     Person tom;
    146     tom.name = "Tom";
    147     tom.hatSize = 8;
    148     Person dan;
    149     dan.name = "Dan";
    150     dan.hatSize = 7;
    151     std::vector<Person> persons;
    152     persons.push_back(tom);
    153     persons.push_back(dan);
    154     
    155     Output yout(llvm::outs());
    156     yout << persons;
    157    
    158 This would write the following:
    159 
    160 .. code-block:: yaml
    161 
    162      - name:      Tom
    163        hat-size:  8
    164      - name:      Dan
    165        hat-size:  7
    166 
    167 And you can also read such YAML documents with the following code:
    168 
    169 .. code-block:: c++
    170 
    171     using llvm::yaml::Input;
    172 
    173     typedef std::vector<Person> PersonList;
    174     std::vector<PersonList> docs;
    175     
    176     Input yin(document.getBuffer());
    177     yin >> docs;
    178     
    179     if ( yin.error() )
    180       return;
    181     
    182     // Process read document
    183     for ( PersonList &pl : docs ) {
    184       for ( Person &person : pl ) {
    185         cout << "name=" << person.name;
    186       }
    187     }
    188   
    189 One other feature of YAML is the ability to define multiple documents in a 
    190 single file.  That is why reading YAML produces a vector of your document type.
    191 
    192 
    193 
    194 Error Handling
    195 ==============
    196 
    197 When parsing a YAML document, if the input does not match your schema (as 
    198 expressed in your XxxTraits<> specializations).  YAML I/O 
    199 will print out an error message and your Input object's error() method will 
    200 return true. For instance the following document:
    201 
    202 .. code-block:: yaml
    203 
    204      - name:      Tom
    205        shoe-size: 12
    206      - name:      Dan
    207        hat-size:  7
    208 
    209 Has a key (shoe-size) that is not defined in the schema.  YAML I/O will 
    210 automatically generate this error:
    211 
    212 .. code-block:: yaml
    213 
    214     YAML:2:2: error: unknown key 'shoe-size'
    215       shoe-size:       12
    216       ^~~~~~~~~
    217 
    218 Similar errors are produced for other input not conforming to the schema.
    219 
    220 
    221 Scalars
    222 =======
    223 
    224 YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
    225 library provides support for translating between YAML scalars and specific
    226 C++ types.
    227 
    228 
    229 Built-in types
    230 --------------
    231 The following types have built-in support in YAML I/O:
    232 
    233 * bool
    234 * float
    235 * double
    236 * StringRef
    237 * std::string
    238 * int64_t
    239 * int32_t
    240 * int16_t
    241 * int8_t
    242 * uint64_t
    243 * uint32_t
    244 * uint16_t
    245 * uint8_t
    246 
    247 That is, you can use those types in fields of MappingTraits or as element type
    248 in sequence.  When reading, YAML I/O will validate that the string found
    249 is convertible to that type and error out if not.
    250 
    251 
    252 Unique types
    253 ------------
    254 Given that YAML I/O is trait based, the selection of how to convert your data
    255 to YAML is based on the type of your data.  But in C++ type matching, typedefs
    256 do not generate unique type names.  That means if you have two typedefs of
    257 unsigned int, to YAML I/O both types look exactly like unsigned int.  To
    258 facilitate make unique type names, YAML I/O provides a macro which is used
    259 like a typedef on built-in types, but expands to create a class with conversion
    260 operators to and from the base type.  For example:
    261 
    262 .. code-block:: c++
    263 
    264     LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
    265     LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
    266 
    267 This generates two classes MyFooFlags and MyBarFlags which you can use in your
    268 native data structures instead of uint32_t. They are implicitly 
    269 converted to and from uint32_t.  The point of creating these unique types
    270 is that you can now specify traits on them to get different YAML conversions.
    271 
    272 Hex types
    273 ---------
    274 An example use of a unique type is that YAML I/O provides fixed sized unsigned
    275 integers that are written with YAML I/O as hexadecimal instead of the decimal
    276 format used by the built-in integer types:
    277 
    278 * Hex64
    279 * Hex32
    280 * Hex16
    281 * Hex8
    282 
    283 You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
    284 be that when YAML I/O writes out that type it will be formatted in hexadecimal.
    285 
    286 
    287 ScalarEnumerationTraits
    288 -----------------------
    289 YAML I/O supports translating between in-memory enumerations and a set of string
    290 values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
    291 on your enumeration type and define a enumeration() method. 
    292 For instance, suppose you had an enumeration of CPUs and a struct with it as 
    293 a field:
    294 
    295 .. code-block:: c++
    296 
    297     enum CPUs {
    298       cpu_x86_64  = 5,
    299       cpu_x86     = 7,
    300       cpu_PowerPC = 8
    301     };
    302     
    303     struct Info {
    304       CPUs      cpu;
    305       uint32_t  flags;
    306     };
    307     
    308 To support reading and writing of this enumeration, you can define a 
    309 ScalarEnumerationTraits specialization on CPUs, which can then be used 
    310 as a field type: 
    311 
    312 .. code-block:: c++
    313 
    314     using llvm::yaml::ScalarEnumerationTraits;
    315     using llvm::yaml::MappingTraits;
    316     using llvm::yaml::IO;
    317 
    318     template <>
    319     struct ScalarEnumerationTraits<CPUs> {
    320       static void enumeration(IO &io, CPUs &value) {
    321         io.enumCase(value, "x86_64",  cpu_x86_64);
    322         io.enumCase(value, "x86",     cpu_x86);
    323         io.enumCase(value, "PowerPC", cpu_PowerPC);
    324       }
    325     };
    326  
    327     template <>
    328     struct MappingTraits<Info> {
    329       static void mapping(IO &io, Info &info) {
    330         io.mapRequired("cpu",       info.cpu);
    331         io.mapOptional("flags",     info.flags, 0);
    332       }
    333     };
    334 
    335 When reading YAML, if the string found does not match any of the the strings
    336 specified by enumCase() methods, an error is automatically generated.
    337 When writing YAML, if the value being written does not match any of the values
    338 specified by the enumCase() methods, a runtime assertion is triggered.
    339   
    340 
    341 BitValue
    342 --------
    343 Another common data structure in C++ is a field where each bit has a unique
    344 meaning.  This is often used in a "flags" field.  YAML I/O has support for
    345 converting such fields to a flow sequence.   For instance suppose you 
    346 had the following bit flags defined:
    347 
    348 .. code-block:: c++
    349 
    350     enum {
    351       flagsPointy = 1
    352       flagsHollow = 2
    353       flagsFlat   = 4
    354       flagsRound  = 8
    355     };
    356 
    357     LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
    358     
    359 To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
    360 on MyFlags and provide the bit values and their names.   
    361 
    362 .. code-block:: c++
    363 
    364     using llvm::yaml::ScalarBitSetTraits;
    365     using llvm::yaml::MappingTraits;
    366     using llvm::yaml::IO;
    367 
    368     template <>
    369     struct ScalarBitSetTraits<MyFlags> {
    370       static void bitset(IO &io, MyFlags &value) {
    371         io.bitSetCase(value, "hollow",  flagHollow);
    372         io.bitSetCase(value, "flat",    flagFlat);
    373         io.bitSetCase(value, "round",   flagRound);
    374         io.bitSetCase(value, "pointy",  flagPointy);
    375       }
    376     };
    377     
    378     struct Info {
    379       StringRef   name;
    380       MyFlags     flags;
    381     };
    382     
    383     template <>
    384     struct MappingTraits<Info> {
    385       static void mapping(IO &io, Info& info) {
    386         io.mapRequired("name",  info.name);
    387         io.mapRequired("flags", info.flags);
    388        }
    389     };
    390 
    391 With the above, YAML I/O (when writing) will test mask each value in the 
    392 bitset trait against the flags field, and each that matches will
    393 cause the corresponding string to be added to the flow sequence.  The opposite
    394 is done when reading and any unknown string values will result in a error. With 
    395 the above schema, a same valid YAML document is:
    396 
    397 .. code-block:: yaml
    398 
    399     name:    Tom
    400     flags:   [ pointy, flat ]
    401 
    402 Sometimes a "flags" field might contains an enumeration part
    403 defined by a bit-mask.
    404 
    405 .. code-block:: c++
    406 
    407     enum {
    408       flagsFeatureA = 1,
    409       flagsFeatureB = 2,
    410       flagsFeatureC = 4,
    411 
    412       flagsCPUMask = 24,
    413 
    414       flagsCPU1 = 8,
    415       flagsCPU2 = 16
    416     };
    417 
    418 To support reading and writing such fields, you need to use the maskedBitSet()
    419 method and provide the bit values, their names and the enumeration mask.
    420 
    421 .. code-block:: c++
    422 
    423     template <>
    424     struct ScalarBitSetTraits<MyFlags> {
    425       static void bitset(IO &io, MyFlags &value) {
    426         io.bitSetCase(value, "featureA",  flagsFeatureA);
    427         io.bitSetCase(value, "featureB",  flagsFeatureB);
    428         io.bitSetCase(value, "featureC",  flagsFeatureC);
    429         io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
    430         io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
    431       }
    432     };
    433 
    434 YAML I/O (when writing) will apply the enumeration mask to the flags field,
    435 and compare the result and values from the bitset. As in case of a regular
    436 bitset, each that matches will cause the corresponding string to be added
    437 to the flow sequence.
    438 
    439 Custom Scalar
    440 -------------
    441 Sometimes for readability a scalar needs to be formatted in a custom way. For
    442 instance your internal data structure may use a integer for time (seconds since
    443 some epoch), but in YAML it would be much nicer to express that integer in 
    444 some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support  
    445 custom formatting and parsing of scalar types by specializing ScalarTraits<> on
    446 your data type.  When writing, YAML I/O will provide the native type and
    447 your specialization must create a temporary llvm::StringRef.  When reading,
    448 YAML I/O will provide an llvm::StringRef of scalar and your specialization
    449 must convert that to your native data type.  An outline of a custom scalar type
    450 looks like:
    451 
    452 .. code-block:: c++
    453 
    454     using llvm::yaml::ScalarTraits;
    455     using llvm::yaml::IO;
    456 
    457     template <>
    458     struct ScalarTraits<MyCustomType> {
    459       static void output(const T &value, llvm::raw_ostream &out) {
    460         out << value;  // do custom formatting here
    461       }
    462       static StringRef input(StringRef scalar, T &value) {
    463         // do custom parsing here.  Return the empty string on success,
    464         // or an error message on failure.
    465         return StringRef();
    466       }
    467       // Determine if this scalar needs quotes.
    468       static bool mustQuote(StringRef) { return true; }
    469     };
    470     
    471 
    472 Mappings
    473 ========
    474 
    475 To be translated to or from a YAML mapping for your type T you must specialize  
    476 llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 
    477 method. If your native data structures use pointers to a class everywhere,
    478 you can specialize on the class pointer.  Examples:
    479 
    480 .. code-block:: c++
    481    
    482     using llvm::yaml::MappingTraits;
    483     using llvm::yaml::IO;
    484     
    485     // Example of struct Foo which is used by value
    486     template <>
    487     struct MappingTraits<Foo> {
    488       static void mapping(IO &io, Foo &foo) {
    489         io.mapOptional("size",      foo.size);
    490       ...
    491       }
    492     };
    493 
    494     // Example of struct Bar which is natively always a pointer
    495     template <>
    496     struct MappingTraits<Bar*> {
    497       static void mapping(IO &io, Bar *&bar) {
    498         io.mapOptional("size",    bar->size);
    499       ...
    500       }
    501     };
    502 
    503 
    504 No Normalization
    505 ----------------
    506 
    507 The mapping() method is responsible, if needed, for normalizing and 
    508 denormalizing. In a simple case where the native data structure requires no 
    509 normalization, the mapping method just uses mapOptional() or mapRequired() to 
    510 bind the struct's fields to YAML key names.  For example:
    511 
    512 .. code-block:: c++
    513    
    514     using llvm::yaml::MappingTraits;
    515     using llvm::yaml::IO;
    516     
    517     template <>
    518     struct MappingTraits<Person> {
    519       static void mapping(IO &io, Person &info) {
    520         io.mapRequired("name",         info.name);
    521         io.mapOptional("hat-size",     info.hatSize);
    522       }
    523     };
    524 
    525 
    526 Normalization
    527 ----------------
    528 
    529 When [de]normalization is required, the mapping() method needs a way to access
    530 normalized values as fields. To help with this, there is
    531 a template MappingNormalization<> which you can then use to automatically
    532 do the normalization and denormalization.  The template is used to create
    533 a local variable in your mapping() method which contains the normalized keys.
    534 
    535 Suppose you have native data type 
    536 Polar which specifies a position in polar coordinates (distance, angle):
    537 
    538 .. code-block:: c++
    539    
    540     struct Polar {
    541       float distance;
    542       float angle;
    543     };
    544 
    545 but you've decided the normalized YAML for should be in x,y coordinates. That 
    546 is, you want the yaml to look like:
    547 
    548 .. code-block:: yaml
    549 
    550     x:   10.3
    551     y:   -4.7
    552 
    553 You can support this by defining a MappingTraits that normalizes the polar
    554 coordinates to x,y coordinates when writing YAML and denormalizes x,y 
    555 coordinates into polar when reading YAML.  
    556 
    557 .. code-block:: c++
    558    
    559     using llvm::yaml::MappingTraits;
    560     using llvm::yaml::IO;
    561         
    562     template <>
    563     struct MappingTraits<Polar> {
    564       
    565       class NormalizedPolar {
    566       public:
    567         NormalizedPolar(IO &io)
    568           : x(0.0), y(0.0) {
    569         }
    570         NormalizedPolar(IO &, Polar &polar)
    571           : x(polar.distance * cos(polar.angle)), 
    572             y(polar.distance * sin(polar.angle)) {
    573         }
    574         Polar denormalize(IO &) {
    575           return Polar(sqrt(x*x+y*y), arctan(x,y));
    576         }
    577          
    578         float        x;
    579         float        y;
    580       };
    581 
    582       static void mapping(IO &io, Polar &polar) {
    583         MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
    584         
    585         io.mapRequired("x",    keys->x);
    586         io.mapRequired("y",    keys->y);
    587       }
    588     };
    589 
    590 When writing YAML, the local variable "keys" will be a stack allocated 
    591 instance of NormalizedPolar, constructed from the supplied polar object which
    592 initializes it x and y fields.  The mapRequired() methods then write out the x
    593 and y values as key/value pairs.  
    594 
    595 When reading YAML, the local variable "keys" will be a stack allocated instance
    596 of NormalizedPolar, constructed by the empty constructor.  The mapRequired 
    597 methods will find the matching key in the YAML document and fill in the x and y 
    598 fields of the NormalizedPolar object keys. At the end of the mapping() method
    599 when the local keys variable goes out of scope, the denormalize() method will
    600 automatically be called to convert the read values back to polar coordinates,
    601 and then assigned back to the second parameter to mapping().
    602 
    603 In some cases, the normalized class may be a subclass of the native type and
    604 could be returned by the denormalize() method, except that the temporary
    605 normalized instance is stack allocated.  In these cases, the utility template
    606 MappingNormalizationHeap<> can be used instead.  It just like 
    607 MappingNormalization<> except that it heap allocates the normalized object
    608 when reading YAML.  It never destroys the normalized object.  The denormalize()
    609 method can this return "this".
    610 
    611 
    612 Default values
    613 --------------
    614 Within a mapping() method, calls to io.mapRequired() mean that that key is 
    615 required to exist when parsing YAML documents, otherwise YAML I/O will issue an 
    616 error.
    617 
    618 On the other hand, keys registered with io.mapOptional() are allowed to not 
    619 exist in the YAML document being read.  So what value is put in the field 
    620 for those optional keys? 
    621 There are two steps to how those optional fields are filled in. First, the  
    622 second parameter to the mapping() method is a reference to a native class.  That
    623 native class must have a default constructor.  Whatever value the default
    624 constructor initially sets for an optional field will be that field's value.
    625 Second, the mapOptional() method has an optional third parameter.  If provided
    626 it is the value that mapOptional() should set that field to if the YAML document  
    627 does not have that key.  
    628 
    629 There is one important difference between those two ways (default constructor
    630 and third parameter to mapOptional). When YAML I/O generates a YAML document, 
    631 if the mapOptional() third parameter is used, if the actual value being written
    632 is the same as (using ==) the default value, then that key/value is not written.
    633 
    634 
    635 Order of Keys
    636 --------------
    637 
    638 When writing out a YAML document, the keys are written in the order that the
    639 calls to mapRequired()/mapOptional() are made in the mapping() method. This
    640 gives you a chance to write the fields in an order that a human reader of
    641 the YAML document would find natural.  This may be different that the order
    642 of the fields in the native class.
    643 
    644 When reading in a YAML document, the keys in the document can be in any order, 
    645 but they are processed in the order that the calls to mapRequired()/mapOptional() 
    646 are made in the mapping() method.  That enables some interesting 
    647 functionality.  For instance, if the first field bound is the cpu and the second
    648 field bound is flags, and the flags are cpu specific, you can programmatically
    649 switch how the flags are converted to and from YAML based on the cpu.  
    650 This works for both reading and writing. For example:
    651 
    652 .. code-block:: c++
    653 
    654     using llvm::yaml::MappingTraits;
    655     using llvm::yaml::IO;
    656     
    657     struct Info {
    658       CPUs        cpu;
    659       uint32_t    flags;
    660     };
    661 
    662     template <>
    663     struct MappingTraits<Info> {
    664       static void mapping(IO &io, Info &info) {
    665         io.mapRequired("cpu",       info.cpu);
    666         // flags must come after cpu for this to work when reading yaml
    667         if ( info.cpu == cpu_x86_64 )
    668           io.mapRequired("flags",  *(My86_64Flags*)info.flags);
    669         else
    670           io.mapRequired("flags",  *(My86Flags*)info.flags);
    671      }
    672     };
    673 
    674 
    675 Tags
    676 ----
    677 
    678 The YAML syntax supports tags as a way to specify the type of a node before
    679 it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
    680 static typing, so there are limits to how you can use tags with the YAML I/O
    681 model. Recently, we added support to YAML I/O for checking/setting the optional 
    682 tag on a map. Using this functionality it is even possbile to support different 
    683 mappings, as long as they are convertable.  
    684 
    685 To check a tag, inside your mapping() method you can use io.mapTag() to specify
    686 what the tag should be.  This will also add that tag when writing yaml.
    687 
    688 Validation
    689 ----------
    690 
    691 Sometimes in a yaml map, each key/value pair is valid, but the combination is
    692 not.  This is similar to something having no syntax errors, but still having
    693 semantic errors.  To support semantic level checking, YAML I/O allows
    694 an optional ``validate()`` method in a MappingTraits template specialization.  
    695 
    696 When parsing yaml, the ``validate()`` method is call *after* all key/values in 
    697 the map have been processed. Any error message returned by the ``validate()`` 
    698 method during input will be printed just a like a syntax error would be printed.
    699 When writing yaml, the ``validate()`` method is called *before* the yaml 
    700 key/values  are written.  Any error during output will trigger an ``assert()`` 
    701 because it is a programming error to have invalid struct values.
    702 
    703 
    704 .. code-block:: c++
    705 
    706     using llvm::yaml::MappingTraits;
    707     using llvm::yaml::IO;
    708     
    709     struct Stuff {
    710       ...
    711     };
    712 
    713     template <>
    714     struct MappingTraits<Stuff> {
    715       static void mapping(IO &io, Stuff &stuff) {
    716       ...
    717       }
    718       static StringRef validate(IO &io, Stuff &stuff) {
    719         // Look at all fields in 'stuff' and if there
    720         // are any bad values return a string describing
    721         // the error.  Otherwise return an empty string.
    722         return StringRef();
    723       }
    724     };
    725 
    726 
    727 Sequence
    728 ========
    729 
    730 To be translated to or from a YAML sequence for your type T you must specialize
    731 llvm::yaml::SequenceTraits on T and implement two methods:
    732 ``size_t size(IO &io, T&)`` and
    733 ``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
    734 
    735 .. code-block:: c++
    736 
    737   template <>
    738   struct SequenceTraits<MySeq> {
    739     static size_t size(IO &io, MySeq &list) { ... }
    740     static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
    741   };
    742 
    743 The size() method returns how many elements are currently in your sequence.
    744 The element() method returns a reference to the i'th element in the sequence. 
    745 When parsing YAML, the element() method may be called with an index one bigger
    746 than the current size.  Your element() method should allocate space for one
    747 more element (using default constructor if element is a C++ object) and returns
    748 a reference to that new allocated space.  
    749 
    750 
    751 Flow Sequence
    752 -------------
    753 A YAML "flow sequence" is a sequence that when written to YAML it uses the 
    754 inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
    755 be written in YAML as a flow sequence, your SequenceTraits specialization should
    756 add "static const bool flow = true;".  For instance:
    757 
    758 .. code-block:: c++
    759 
    760   template <>
    761   struct SequenceTraits<MyList> {
    762     static size_t size(IO &io, MyList &list) { ... }
    763     static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
    764     
    765     // The existence of this member causes YAML I/O to use a flow sequence
    766     static const bool flow = true;
    767   };
    768 
    769 With the above, if you used MyList as the data type in your native data 
    770 structures, then then when converted to YAML, a flow sequence of integers 
    771 will be used (e.g. [ 10, -3, 4 ]).
    772 
    773 
    774 Utility Macros
    775 --------------
    776 Since a common source of sequences is std::vector<>, YAML I/O provides macros:
    777 LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
    778 can be used to easily specify SequenceTraits<> on a std::vector type.  YAML 
    779 I/O does not partial specialize SequenceTraits on std::vector<> because that
    780 would force all vectors to be sequences.  An example use of the macros:
    781 
    782 .. code-block:: c++
    783 
    784   std::vector<MyType1>;
    785   std::vector<MyType2>;
    786   LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
    787   LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
    788 
    789 
    790 
    791 Document List
    792 =============
    793 
    794 YAML allows you to define multiple "documents" in a single YAML file.  Each 
    795 new document starts with a left aligned "---" token.  The end of all documents
    796 is denoted with a left aligned "..." token.  Many users of YAML will never
    797 have need for multiple documents.  The top level node in their YAML schema
    798 will be a mapping or sequence. For those cases, the following is not needed.
    799 But for cases where you do want multiple documents, you can specify a
    800 trait for you document list type.  The trait has the same methods as 
    801 SequenceTraits but is named DocumentListTraits.  For example:
    802 
    803 .. code-block:: c++
    804 
    805   template <>
    806   struct DocumentListTraits<MyDocList> {
    807     static size_t size(IO &io, MyDocList &list) { ... }
    808     static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
    809   };
    810 
    811 
    812 User Context Data
    813 =================
    814 When an llvm::yaml::Input or llvm::yaml::Output object is created their 
    815 constructors take an optional "context" parameter.  This is a pointer to 
    816 whatever state information you might need.  
    817 
    818 For instance, in a previous example we showed how the conversion type for a 
    819 flags field could be determined at runtime based on the value of another field 
    820 in the mapping. But what if an inner mapping needs to know some field value
    821 of an outer mapping?  That is where the "context" parameter comes in. You
    822 can set values in the context in the outer map's mapping() method and
    823 retrieve those values in the inner map's mapping() method.
    824 
    825 The context value is just a void*.  All your traits which use the context 
    826 and operate on your native data types, need to agree what the context value
    827 actually is.  It could be a pointer to an object or struct which your various
    828 traits use to shared context sensitive information.
    829 
    830 
    831 Output
    832 ======
    833 
    834 The llvm::yaml::Output class is used to generate a YAML document from your 
    835 in-memory data structures, using traits defined on your data types.  
    836 To instantiate an Output object you need an llvm::raw_ostream, and optionally 
    837 a context pointer:
    838 
    839 .. code-block:: c++
    840 
    841       class Output : public IO {
    842       public:
    843         Output(llvm::raw_ostream &, void *context=NULL);
    844     
    845 Once you have an Output object, you can use the C++ stream operator on it
    846 to write your native data as YAML. One thing to recall is that a YAML file
    847 can contain multiple "documents".  If the top level data structure you are
    848 streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
    849 are generating one document and wraps the mapping output 
    850 with  "``---``" and trailing "``...``".  
    851 
    852 .. code-block:: c++
    853    
    854     using llvm::yaml::Output;
    855 
    856     void dumpMyMapDoc(const MyMapType &info) {
    857       Output yout(llvm::outs());
    858       yout << info;
    859     }
    860 
    861 The above could produce output like:
    862 
    863 .. code-block:: yaml
    864 
    865      ---
    866      name:      Tom
    867      hat-size:  7
    868      ...
    869 
    870 On the other hand, if the top level data structure you are streaming as YAML
    871 has a DocumentListTraits specialization, then Output walks through each element
    872 of your DocumentList and generates a "---" before the start of each element
    873 and ends with a "...".
    874 
    875 .. code-block:: c++
    876    
    877     using llvm::yaml::Output;
    878 
    879     void dumpMyMapDoc(const MyDocListType &docList) {
    880       Output yout(llvm::outs());
    881       yout << docList;
    882     }
    883 
    884 The above could produce output like:
    885 
    886 .. code-block:: yaml
    887 
    888      ---
    889      name:      Tom
    890      hat-size:  7
    891      ---
    892      name:      Tom
    893      shoe-size:  11
    894      ...
    895 
    896 Input
    897 =====
    898 
    899 The llvm::yaml::Input class is used to parse YAML document(s) into your native
    900 data structures. To instantiate an Input
    901 object you need a StringRef to the entire YAML file, and optionally a context 
    902 pointer:
    903 
    904 .. code-block:: c++
    905 
    906       class Input : public IO {
    907       public:
    908         Input(StringRef inputContent, void *context=NULL);
    909     
    910 Once you have an Input object, you can use the C++ stream operator to read
    911 the document(s).  If you expect there might be multiple YAML documents in
    912 one file, you'll need to specialize DocumentListTraits on a list of your
    913 document type and stream in that document list type.  Otherwise you can
    914 just stream in the document type.  Also, you can check if there was 
    915 any syntax errors in the YAML be calling the error() method on the Input
    916 object.  For example:
    917 
    918 .. code-block:: c++
    919    
    920      // Reading a single document
    921      using llvm::yaml::Input;
    922 
    923      Input yin(mb.getBuffer());
    924      
    925      // Parse the YAML file
    926      MyDocType theDoc;
    927      yin >> theDoc;
    928 
    929      // Check for error
    930      if ( yin.error() )
    931        return;
    932   
    933       
    934 .. code-block:: c++
    935    
    936      // Reading multiple documents in one file
    937      using llvm::yaml::Input;
    938 
    939      LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
    940      
    941      Input yin(mb.getBuffer());
    942      
    943      // Parse the YAML file
    944      std::vector<MyDocType> theDocList;
    945      yin >> theDocList;
    946 
    947      // Check for error
    948      if ( yin.error() )
    949        return;
    950 
    951 
    952