1 ===================== 2 YAML I/O 3 ===================== 4 5 .. contents:: 6 :local: 7 8 Introduction to YAML 9 ==================== 10 11 YAML is a human readable data serialization language. The full YAML language 12 spec can be read at `yaml.org 13 <http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of 14 yaml is just "scalars", "mappings", and "sequences". A scalar is any number 15 or string. The pound/hash symbol (#) begins a comment line. A mapping is 16 a set of key-value pairs where the key ends with a colon. For example: 17 18 .. code-block:: yaml 19 20 # a mapping 21 name: Tom 22 hat-size: 7 23 24 A sequence is a list of items where each item starts with a leading dash ('-'). 25 For example: 26 27 .. code-block:: yaml 28 29 # a sequence 30 - x86 31 - x86_64 32 - PowerPC 33 34 You can combine mappings and sequences by indenting. For example a sequence 35 of mappings in which one of the mapping values is itself a sequence: 36 37 .. code-block:: yaml 38 39 # a sequence of mappings with one key's value being a sequence 40 - name: Tom 41 cpus: 42 - x86 43 - x86_64 44 - name: Bob 45 cpus: 46 - x86 47 - name: Dan 48 cpus: 49 - PowerPC 50 - x86 51 52 Sometime sequences are known to be short and the one entry per line is too 53 verbose, so YAML offers an alternate syntax for sequences called a "Flow 54 Sequence" in which you put comma separated sequence elements into square 55 brackets. The above example could then be simplified to : 56 57 58 .. code-block:: yaml 59 60 # a sequence of mappings with one key's value being a flow sequence 61 - name: Tom 62 cpus: [ x86, x86_64 ] 63 - name: Bob 64 cpus: [ x86 ] 65 - name: Dan 66 cpus: [ PowerPC, x86 ] 67 68 69 Introduction to YAML I/O 70 ======================== 71 72 The use of indenting makes the YAML easy for a human to read and understand, 73 but having a program read and write YAML involves a lot of tedious details. 74 The YAML I/O library structures and simplifies reading and writing YAML 75 documents. 76 77 YAML I/O assumes you have some "native" data structures which you want to be 78 able to dump as YAML and recreate from YAML. The first step is to try 79 writing example YAML for your data structures. You may find after looking at 80 possible YAML representations that a direct mapping of your data structures 81 to YAML is not very readable. Often the fields are not in the order that 82 a human would find readable. Or the same information is replicated in multiple 83 locations, making it hard for a human to write such YAML correctly. 84 85 In relational database theory there is a design step called normalization in 86 which you reorganize fields and tables. The same considerations need to 87 go into the design of your YAML encoding. But, you may not want to change 88 your existing native data structures. Therefore, when writing out YAML 89 there may be a normalization step, and when reading YAML there would be a 90 corresponding denormalization step. 91 92 YAML I/O uses a non-invasive, traits based design. YAML I/O defines some 93 abstract base templates. You specialize those templates on your data types. 94 For instance, if you have an enumerated type FooBar you could specialize 95 ScalarEnumerationTraits on that type and define the enumeration() method: 96 97 .. code-block:: c++ 98 99 using llvm::yaml::ScalarEnumerationTraits; 100 using llvm::yaml::IO; 101 102 template <> 103 struct ScalarEnumerationTraits<FooBar> { 104 static void enumeration(IO &io, FooBar &value) { 105 ... 106 } 107 }; 108 109 110 As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for 111 both reading and writing YAML. That is, the mapping between in-memory enum 112 values and the YAML string representation is only in one place. 113 This assures that the code for writing and parsing of YAML stays in sync. 114 115 To specify a YAML mappings, you define a specialization on 116 llvm::yaml::MappingTraits. 117 If your native data structure happens to be a struct that is already normalized, 118 then the specialization is simple. For example: 119 120 .. code-block:: c++ 121 122 using llvm::yaml::MappingTraits; 123 using llvm::yaml::IO; 124 125 template <> 126 struct MappingTraits<Person> { 127 static void mapping(IO &io, Person &info) { 128 io.mapRequired("name", info.name); 129 io.mapOptional("hat-size", info.hatSize); 130 } 131 }; 132 133 134 A YAML sequence is automatically inferred if you data type has begin()/end() 135 iterators and a push_back() method. Therefore any of the STL containers 136 (such as std::vector<>) will automatically translate to YAML sequences. 137 138 Once you have defined specializations for your data types, you can 139 programmatically use YAML I/O to write a YAML document: 140 141 .. code-block:: c++ 142 143 using llvm::yaml::Output; 144 145 Person tom; 146 tom.name = "Tom"; 147 tom.hatSize = 8; 148 Person dan; 149 dan.name = "Dan"; 150 dan.hatSize = 7; 151 std::vector<Person> persons; 152 persons.push_back(tom); 153 persons.push_back(dan); 154 155 Output yout(llvm::outs()); 156 yout << persons; 157 158 This would write the following: 159 160 .. code-block:: yaml 161 162 - name: Tom 163 hat-size: 8 164 - name: Dan 165 hat-size: 7 166 167 And you can also read such YAML documents with the following code: 168 169 .. code-block:: c++ 170 171 using llvm::yaml::Input; 172 173 typedef std::vector<Person> PersonList; 174 std::vector<PersonList> docs; 175 176 Input yin(document.getBuffer()); 177 yin >> docs; 178 179 if ( yin.error() ) 180 return; 181 182 // Process read document 183 for ( PersonList &pl : docs ) { 184 for ( Person &person : pl ) { 185 cout << "name=" << person.name; 186 } 187 } 188 189 One other feature of YAML is the ability to define multiple documents in a 190 single file. That is why reading YAML produces a vector of your document type. 191 192 193 194 Error Handling 195 ============== 196 197 When parsing a YAML document, if the input does not match your schema (as 198 expressed in your XxxTraits<> specializations). YAML I/O 199 will print out an error message and your Input object's error() method will 200 return true. For instance the following document: 201 202 .. code-block:: yaml 203 204 - name: Tom 205 shoe-size: 12 206 - name: Dan 207 hat-size: 7 208 209 Has a key (shoe-size) that is not defined in the schema. YAML I/O will 210 automatically generate this error: 211 212 .. code-block:: yaml 213 214 YAML:2:2: error: unknown key 'shoe-size' 215 shoe-size: 12 216 ^~~~~~~~~ 217 218 Similar errors are produced for other input not conforming to the schema. 219 220 221 Scalars 222 ======= 223 224 YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O 225 library provides support for translating between YAML scalars and specific 226 C++ types. 227 228 229 Built-in types 230 -------------- 231 The following types have built-in support in YAML I/O: 232 233 * bool 234 * float 235 * double 236 * StringRef 237 * std::string 238 * int64_t 239 * int32_t 240 * int16_t 241 * int8_t 242 * uint64_t 243 * uint32_t 244 * uint16_t 245 * uint8_t 246 247 That is, you can use those types in fields of MappingTraits or as element type 248 in sequence. When reading, YAML I/O will validate that the string found 249 is convertible to that type and error out if not. 250 251 252 Unique types 253 ------------ 254 Given that YAML I/O is trait based, the selection of how to convert your data 255 to YAML is based on the type of your data. But in C++ type matching, typedefs 256 do not generate unique type names. That means if you have two typedefs of 257 unsigned int, to YAML I/O both types look exactly like unsigned int. To 258 facilitate make unique type names, YAML I/O provides a macro which is used 259 like a typedef on built-in types, but expands to create a class with conversion 260 operators to and from the base type. For example: 261 262 .. code-block:: c++ 263 264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags) 265 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags) 266 267 This generates two classes MyFooFlags and MyBarFlags which you can use in your 268 native data structures instead of uint32_t. They are implicitly 269 converted to and from uint32_t. The point of creating these unique types 270 is that you can now specify traits on them to get different YAML conversions. 271 272 Hex types 273 --------- 274 An example use of a unique type is that YAML I/O provides fixed sized unsigned 275 integers that are written with YAML I/O as hexadecimal instead of the decimal 276 format used by the built-in integer types: 277 278 * Hex64 279 * Hex32 280 * Hex16 281 * Hex8 282 283 You can use llvm::yaml::Hex32 instead of uint32_t and the only different will 284 be that when YAML I/O writes out that type it will be formatted in hexadecimal. 285 286 287 ScalarEnumerationTraits 288 ----------------------- 289 YAML I/O supports translating between in-memory enumerations and a set of string 290 values in YAML documents. This is done by specializing ScalarEnumerationTraits<> 291 on your enumeration type and define a enumeration() method. 292 For instance, suppose you had an enumeration of CPUs and a struct with it as 293 a field: 294 295 .. code-block:: c++ 296 297 enum CPUs { 298 cpu_x86_64 = 5, 299 cpu_x86 = 7, 300 cpu_PowerPC = 8 301 }; 302 303 struct Info { 304 CPUs cpu; 305 uint32_t flags; 306 }; 307 308 To support reading and writing of this enumeration, you can define a 309 ScalarEnumerationTraits specialization on CPUs, which can then be used 310 as a field type: 311 312 .. code-block:: c++ 313 314 using llvm::yaml::ScalarEnumerationTraits; 315 using llvm::yaml::MappingTraits; 316 using llvm::yaml::IO; 317 318 template <> 319 struct ScalarEnumerationTraits<CPUs> { 320 static void enumeration(IO &io, CPUs &value) { 321 io.enumCase(value, "x86_64", cpu_x86_64); 322 io.enumCase(value, "x86", cpu_x86); 323 io.enumCase(value, "PowerPC", cpu_PowerPC); 324 } 325 }; 326 327 template <> 328 struct MappingTraits<Info> { 329 static void mapping(IO &io, Info &info) { 330 io.mapRequired("cpu", info.cpu); 331 io.mapOptional("flags", info.flags, 0); 332 } 333 }; 334 335 When reading YAML, if the string found does not match any of the the strings 336 specified by enumCase() methods, an error is automatically generated. 337 When writing YAML, if the value being written does not match any of the values 338 specified by the enumCase() methods, a runtime assertion is triggered. 339 340 341 BitValue 342 -------- 343 Another common data structure in C++ is a field where each bit has a unique 344 meaning. This is often used in a "flags" field. YAML I/O has support for 345 converting such fields to a flow sequence. For instance suppose you 346 had the following bit flags defined: 347 348 .. code-block:: c++ 349 350 enum { 351 flagsPointy = 1 352 flagsHollow = 2 353 flagsFlat = 4 354 flagsRound = 8 355 }; 356 357 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags) 358 359 To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> 360 on MyFlags and provide the bit values and their names. 361 362 .. code-block:: c++ 363 364 using llvm::yaml::ScalarBitSetTraits; 365 using llvm::yaml::MappingTraits; 366 using llvm::yaml::IO; 367 368 template <> 369 struct ScalarBitSetTraits<MyFlags> { 370 static void bitset(IO &io, MyFlags &value) { 371 io.bitSetCase(value, "hollow", flagHollow); 372 io.bitSetCase(value, "flat", flagFlat); 373 io.bitSetCase(value, "round", flagRound); 374 io.bitSetCase(value, "pointy", flagPointy); 375 } 376 }; 377 378 struct Info { 379 StringRef name; 380 MyFlags flags; 381 }; 382 383 template <> 384 struct MappingTraits<Info> { 385 static void mapping(IO &io, Info& info) { 386 io.mapRequired("name", info.name); 387 io.mapRequired("flags", info.flags); 388 } 389 }; 390 391 With the above, YAML I/O (when writing) will test mask each value in the 392 bitset trait against the flags field, and each that matches will 393 cause the corresponding string to be added to the flow sequence. The opposite 394 is done when reading and any unknown string values will result in a error. With 395 the above schema, a same valid YAML document is: 396 397 .. code-block:: yaml 398 399 name: Tom 400 flags: [ pointy, flat ] 401 402 Sometimes a "flags" field might contains an enumeration part 403 defined by a bit-mask. 404 405 .. code-block:: c++ 406 407 enum { 408 flagsFeatureA = 1, 409 flagsFeatureB = 2, 410 flagsFeatureC = 4, 411 412 flagsCPUMask = 24, 413 414 flagsCPU1 = 8, 415 flagsCPU2 = 16 416 }; 417 418 To support reading and writing such fields, you need to use the maskedBitSet() 419 method and provide the bit values, their names and the enumeration mask. 420 421 .. code-block:: c++ 422 423 template <> 424 struct ScalarBitSetTraits<MyFlags> { 425 static void bitset(IO &io, MyFlags &value) { 426 io.bitSetCase(value, "featureA", flagsFeatureA); 427 io.bitSetCase(value, "featureB", flagsFeatureB); 428 io.bitSetCase(value, "featureC", flagsFeatureC); 429 io.maskedBitSetCase(value, "CPU1", flagsCPU1, flagsCPUMask); 430 io.maskedBitSetCase(value, "CPU2", flagsCPU2, flagsCPUMask); 431 } 432 }; 433 434 YAML I/O (when writing) will apply the enumeration mask to the flags field, 435 and compare the result and values from the bitset. As in case of a regular 436 bitset, each that matches will cause the corresponding string to be added 437 to the flow sequence. 438 439 Custom Scalar 440 ------------- 441 Sometimes for readability a scalar needs to be formatted in a custom way. For 442 instance your internal data structure may use a integer for time (seconds since 443 some epoch), but in YAML it would be much nicer to express that integer in 444 some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support 445 custom formatting and parsing of scalar types by specializing ScalarTraits<> on 446 your data type. When writing, YAML I/O will provide the native type and 447 your specialization must create a temporary llvm::StringRef. When reading, 448 YAML I/O will provide an llvm::StringRef of scalar and your specialization 449 must convert that to your native data type. An outline of a custom scalar type 450 looks like: 451 452 .. code-block:: c++ 453 454 using llvm::yaml::ScalarTraits; 455 using llvm::yaml::IO; 456 457 template <> 458 struct ScalarTraits<MyCustomType> { 459 static void output(const T &value, llvm::raw_ostream &out) { 460 out << value; // do custom formatting here 461 } 462 static StringRef input(StringRef scalar, T &value) { 463 // do custom parsing here. Return the empty string on success, 464 // or an error message on failure. 465 return StringRef(); 466 } 467 // Determine if this scalar needs quotes. 468 static bool mustQuote(StringRef) { return true; } 469 }; 470 471 472 Mappings 473 ======== 474 475 To be translated to or from a YAML mapping for your type T you must specialize 476 llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)" 477 method. If your native data structures use pointers to a class everywhere, 478 you can specialize on the class pointer. Examples: 479 480 .. code-block:: c++ 481 482 using llvm::yaml::MappingTraits; 483 using llvm::yaml::IO; 484 485 // Example of struct Foo which is used by value 486 template <> 487 struct MappingTraits<Foo> { 488 static void mapping(IO &io, Foo &foo) { 489 io.mapOptional("size", foo.size); 490 ... 491 } 492 }; 493 494 // Example of struct Bar which is natively always a pointer 495 template <> 496 struct MappingTraits<Bar*> { 497 static void mapping(IO &io, Bar *&bar) { 498 io.mapOptional("size", bar->size); 499 ... 500 } 501 }; 502 503 504 No Normalization 505 ---------------- 506 507 The mapping() method is responsible, if needed, for normalizing and 508 denormalizing. In a simple case where the native data structure requires no 509 normalization, the mapping method just uses mapOptional() or mapRequired() to 510 bind the struct's fields to YAML key names. For example: 511 512 .. code-block:: c++ 513 514 using llvm::yaml::MappingTraits; 515 using llvm::yaml::IO; 516 517 template <> 518 struct MappingTraits<Person> { 519 static void mapping(IO &io, Person &info) { 520 io.mapRequired("name", info.name); 521 io.mapOptional("hat-size", info.hatSize); 522 } 523 }; 524 525 526 Normalization 527 ---------------- 528 529 When [de]normalization is required, the mapping() method needs a way to access 530 normalized values as fields. To help with this, there is 531 a template MappingNormalization<> which you can then use to automatically 532 do the normalization and denormalization. The template is used to create 533 a local variable in your mapping() method which contains the normalized keys. 534 535 Suppose you have native data type 536 Polar which specifies a position in polar coordinates (distance, angle): 537 538 .. code-block:: c++ 539 540 struct Polar { 541 float distance; 542 float angle; 543 }; 544 545 but you've decided the normalized YAML for should be in x,y coordinates. That 546 is, you want the yaml to look like: 547 548 .. code-block:: yaml 549 550 x: 10.3 551 y: -4.7 552 553 You can support this by defining a MappingTraits that normalizes the polar 554 coordinates to x,y coordinates when writing YAML and denormalizes x,y 555 coordinates into polar when reading YAML. 556 557 .. code-block:: c++ 558 559 using llvm::yaml::MappingTraits; 560 using llvm::yaml::IO; 561 562 template <> 563 struct MappingTraits<Polar> { 564 565 class NormalizedPolar { 566 public: 567 NormalizedPolar(IO &io) 568 : x(0.0), y(0.0) { 569 } 570 NormalizedPolar(IO &, Polar &polar) 571 : x(polar.distance * cos(polar.angle)), 572 y(polar.distance * sin(polar.angle)) { 573 } 574 Polar denormalize(IO &) { 575 return Polar(sqrt(x*x+y*y), arctan(x,y)); 576 } 577 578 float x; 579 float y; 580 }; 581 582 static void mapping(IO &io, Polar &polar) { 583 MappingNormalization<NormalizedPolar, Polar> keys(io, polar); 584 585 io.mapRequired("x", keys->x); 586 io.mapRequired("y", keys->y); 587 } 588 }; 589 590 When writing YAML, the local variable "keys" will be a stack allocated 591 instance of NormalizedPolar, constructed from the supplied polar object which 592 initializes it x and y fields. The mapRequired() methods then write out the x 593 and y values as key/value pairs. 594 595 When reading YAML, the local variable "keys" will be a stack allocated instance 596 of NormalizedPolar, constructed by the empty constructor. The mapRequired 597 methods will find the matching key in the YAML document and fill in the x and y 598 fields of the NormalizedPolar object keys. At the end of the mapping() method 599 when the local keys variable goes out of scope, the denormalize() method will 600 automatically be called to convert the read values back to polar coordinates, 601 and then assigned back to the second parameter to mapping(). 602 603 In some cases, the normalized class may be a subclass of the native type and 604 could be returned by the denormalize() method, except that the temporary 605 normalized instance is stack allocated. In these cases, the utility template 606 MappingNormalizationHeap<> can be used instead. It just like 607 MappingNormalization<> except that it heap allocates the normalized object 608 when reading YAML. It never destroys the normalized object. The denormalize() 609 method can this return "this". 610 611 612 Default values 613 -------------- 614 Within a mapping() method, calls to io.mapRequired() mean that that key is 615 required to exist when parsing YAML documents, otherwise YAML I/O will issue an 616 error. 617 618 On the other hand, keys registered with io.mapOptional() are allowed to not 619 exist in the YAML document being read. So what value is put in the field 620 for those optional keys? 621 There are two steps to how those optional fields are filled in. First, the 622 second parameter to the mapping() method is a reference to a native class. That 623 native class must have a default constructor. Whatever value the default 624 constructor initially sets for an optional field will be that field's value. 625 Second, the mapOptional() method has an optional third parameter. If provided 626 it is the value that mapOptional() should set that field to if the YAML document 627 does not have that key. 628 629 There is one important difference between those two ways (default constructor 630 and third parameter to mapOptional). When YAML I/O generates a YAML document, 631 if the mapOptional() third parameter is used, if the actual value being written 632 is the same as (using ==) the default value, then that key/value is not written. 633 634 635 Order of Keys 636 -------------- 637 638 When writing out a YAML document, the keys are written in the order that the 639 calls to mapRequired()/mapOptional() are made in the mapping() method. This 640 gives you a chance to write the fields in an order that a human reader of 641 the YAML document would find natural. This may be different that the order 642 of the fields in the native class. 643 644 When reading in a YAML document, the keys in the document can be in any order, 645 but they are processed in the order that the calls to mapRequired()/mapOptional() 646 are made in the mapping() method. That enables some interesting 647 functionality. For instance, if the first field bound is the cpu and the second 648 field bound is flags, and the flags are cpu specific, you can programmatically 649 switch how the flags are converted to and from YAML based on the cpu. 650 This works for both reading and writing. For example: 651 652 .. code-block:: c++ 653 654 using llvm::yaml::MappingTraits; 655 using llvm::yaml::IO; 656 657 struct Info { 658 CPUs cpu; 659 uint32_t flags; 660 }; 661 662 template <> 663 struct MappingTraits<Info> { 664 static void mapping(IO &io, Info &info) { 665 io.mapRequired("cpu", info.cpu); 666 // flags must come after cpu for this to work when reading yaml 667 if ( info.cpu == cpu_x86_64 ) 668 io.mapRequired("flags", *(My86_64Flags*)info.flags); 669 else 670 io.mapRequired("flags", *(My86Flags*)info.flags); 671 } 672 }; 673 674 675 Tags 676 ---- 677 678 The YAML syntax supports tags as a way to specify the type of a node before 679 it is parsed. This allows dynamic types of nodes. But the YAML I/O model uses 680 static typing, so there are limits to how you can use tags with the YAML I/O 681 model. Recently, we added support to YAML I/O for checking/setting the optional 682 tag on a map. Using this functionality it is even possbile to support different 683 mappings, as long as they are convertable. 684 685 To check a tag, inside your mapping() method you can use io.mapTag() to specify 686 what the tag should be. This will also add that tag when writing yaml. 687 688 Validation 689 ---------- 690 691 Sometimes in a yaml map, each key/value pair is valid, but the combination is 692 not. This is similar to something having no syntax errors, but still having 693 semantic errors. To support semantic level checking, YAML I/O allows 694 an optional ``validate()`` method in a MappingTraits template specialization. 695 696 When parsing yaml, the ``validate()`` method is call *after* all key/values in 697 the map have been processed. Any error message returned by the ``validate()`` 698 method during input will be printed just a like a syntax error would be printed. 699 When writing yaml, the ``validate()`` method is called *before* the yaml 700 key/values are written. Any error during output will trigger an ``assert()`` 701 because it is a programming error to have invalid struct values. 702 703 704 .. code-block:: c++ 705 706 using llvm::yaml::MappingTraits; 707 using llvm::yaml::IO; 708 709 struct Stuff { 710 ... 711 }; 712 713 template <> 714 struct MappingTraits<Stuff> { 715 static void mapping(IO &io, Stuff &stuff) { 716 ... 717 } 718 static StringRef validate(IO &io, Stuff &stuff) { 719 // Look at all fields in 'stuff' and if there 720 // are any bad values return a string describing 721 // the error. Otherwise return an empty string. 722 return StringRef(); 723 } 724 }; 725 726 727 Sequence 728 ======== 729 730 To be translated to or from a YAML sequence for your type T you must specialize 731 llvm::yaml::SequenceTraits on T and implement two methods: 732 ``size_t size(IO &io, T&)`` and 733 ``T::value_type& element(IO &io, T&, size_t indx)``. For example: 734 735 .. code-block:: c++ 736 737 template <> 738 struct SequenceTraits<MySeq> { 739 static size_t size(IO &io, MySeq &list) { ... } 740 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... } 741 }; 742 743 The size() method returns how many elements are currently in your sequence. 744 The element() method returns a reference to the i'th element in the sequence. 745 When parsing YAML, the element() method may be called with an index one bigger 746 than the current size. Your element() method should allocate space for one 747 more element (using default constructor if element is a C++ object) and returns 748 a reference to that new allocated space. 749 750 751 Flow Sequence 752 ------------- 753 A YAML "flow sequence" is a sequence that when written to YAML it uses the 754 inline notation (e.g [ foo, bar ] ). To specify that a sequence type should 755 be written in YAML as a flow sequence, your SequenceTraits specialization should 756 add "static const bool flow = true;". For instance: 757 758 .. code-block:: c++ 759 760 template <> 761 struct SequenceTraits<MyList> { 762 static size_t size(IO &io, MyList &list) { ... } 763 static MyListEl &element(IO &io, MyList &list, size_t index) { ... } 764 765 // The existence of this member causes YAML I/O to use a flow sequence 766 static const bool flow = true; 767 }; 768 769 With the above, if you used MyList as the data type in your native data 770 structures, then then when converted to YAML, a flow sequence of integers 771 will be used (e.g. [ 10, -3, 4 ]). 772 773 774 Utility Macros 775 -------------- 776 Since a common source of sequences is std::vector<>, YAML I/O provides macros: 777 LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which 778 can be used to easily specify SequenceTraits<> on a std::vector type. YAML 779 I/O does not partial specialize SequenceTraits on std::vector<> because that 780 would force all vectors to be sequences. An example use of the macros: 781 782 .. code-block:: c++ 783 784 std::vector<MyType1>; 785 std::vector<MyType2>; 786 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1) 787 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2) 788 789 790 791 Document List 792 ============= 793 794 YAML allows you to define multiple "documents" in a single YAML file. Each 795 new document starts with a left aligned "---" token. The end of all documents 796 is denoted with a left aligned "..." token. Many users of YAML will never 797 have need for multiple documents. The top level node in their YAML schema 798 will be a mapping or sequence. For those cases, the following is not needed. 799 But for cases where you do want multiple documents, you can specify a 800 trait for you document list type. The trait has the same methods as 801 SequenceTraits but is named DocumentListTraits. For example: 802 803 .. code-block:: c++ 804 805 template <> 806 struct DocumentListTraits<MyDocList> { 807 static size_t size(IO &io, MyDocList &list) { ... } 808 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... } 809 }; 810 811 812 User Context Data 813 ================= 814 When an llvm::yaml::Input or llvm::yaml::Output object is created their 815 constructors take an optional "context" parameter. This is a pointer to 816 whatever state information you might need. 817 818 For instance, in a previous example we showed how the conversion type for a 819 flags field could be determined at runtime based on the value of another field 820 in the mapping. But what if an inner mapping needs to know some field value 821 of an outer mapping? That is where the "context" parameter comes in. You 822 can set values in the context in the outer map's mapping() method and 823 retrieve those values in the inner map's mapping() method. 824 825 The context value is just a void*. All your traits which use the context 826 and operate on your native data types, need to agree what the context value 827 actually is. It could be a pointer to an object or struct which your various 828 traits use to shared context sensitive information. 829 830 831 Output 832 ====== 833 834 The llvm::yaml::Output class is used to generate a YAML document from your 835 in-memory data structures, using traits defined on your data types. 836 To instantiate an Output object you need an llvm::raw_ostream, and optionally 837 a context pointer: 838 839 .. code-block:: c++ 840 841 class Output : public IO { 842 public: 843 Output(llvm::raw_ostream &, void *context=NULL); 844 845 Once you have an Output object, you can use the C++ stream operator on it 846 to write your native data as YAML. One thing to recall is that a YAML file 847 can contain multiple "documents". If the top level data structure you are 848 streaming as YAML is a mapping, scalar, or sequence, then Output assumes you 849 are generating one document and wraps the mapping output 850 with "``---``" and trailing "``...``". 851 852 .. code-block:: c++ 853 854 using llvm::yaml::Output; 855 856 void dumpMyMapDoc(const MyMapType &info) { 857 Output yout(llvm::outs()); 858 yout << info; 859 } 860 861 The above could produce output like: 862 863 .. code-block:: yaml 864 865 --- 866 name: Tom 867 hat-size: 7 868 ... 869 870 On the other hand, if the top level data structure you are streaming as YAML 871 has a DocumentListTraits specialization, then Output walks through each element 872 of your DocumentList and generates a "---" before the start of each element 873 and ends with a "...". 874 875 .. code-block:: c++ 876 877 using llvm::yaml::Output; 878 879 void dumpMyMapDoc(const MyDocListType &docList) { 880 Output yout(llvm::outs()); 881 yout << docList; 882 } 883 884 The above could produce output like: 885 886 .. code-block:: yaml 887 888 --- 889 name: Tom 890 hat-size: 7 891 --- 892 name: Tom 893 shoe-size: 11 894 ... 895 896 Input 897 ===== 898 899 The llvm::yaml::Input class is used to parse YAML document(s) into your native 900 data structures. To instantiate an Input 901 object you need a StringRef to the entire YAML file, and optionally a context 902 pointer: 903 904 .. code-block:: c++ 905 906 class Input : public IO { 907 public: 908 Input(StringRef inputContent, void *context=NULL); 909 910 Once you have an Input object, you can use the C++ stream operator to read 911 the document(s). If you expect there might be multiple YAML documents in 912 one file, you'll need to specialize DocumentListTraits on a list of your 913 document type and stream in that document list type. Otherwise you can 914 just stream in the document type. Also, you can check if there was 915 any syntax errors in the YAML be calling the error() method on the Input 916 object. For example: 917 918 .. code-block:: c++ 919 920 // Reading a single document 921 using llvm::yaml::Input; 922 923 Input yin(mb.getBuffer()); 924 925 // Parse the YAML file 926 MyDocType theDoc; 927 yin >> theDoc; 928 929 // Check for error 930 if ( yin.error() ) 931 return; 932 933 934 .. code-block:: c++ 935 936 // Reading multiple documents in one file 937 using llvm::yaml::Input; 938 939 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>) 940 941 Input yin(mb.getBuffer()); 942 943 // Parse the YAML file 944 std::vector<MyDocType> theDocList; 945 yin >> theDocList; 946 947 // Check for error 948 if ( yin.error() ) 949 return; 950 951 952