Home | History | Annotate | Download | only in lazy
      1 #define MINIMAL_STDERR_OUTPUT
      2 
      3 #include "llvm/Analysis/Passes.h"
      4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      5 #include "llvm/ExecutionEngine/JIT.h"
      6 #include "llvm/IR/DataLayout.h"
      7 #include "llvm/IR/DerivedTypes.h"
      8 #include "llvm/IR/IRBuilder.h"
      9 #include "llvm/IR/LLVMContext.h"
     10 #include "llvm/IR/Module.h"
     11 #include "llvm/IR/Verifier.h"
     12 #include "llvm/PassManager.h"
     13 #include "llvm/Support/TargetSelect.h"
     14 #include "llvm/Transforms/Scalar.h"
     15 #include <cctype>
     16 #include <cstdio>
     17 #include <map>
     18 #include <string>
     19 #include <vector>
     20 
     21 using namespace llvm;
     22 
     23 //===----------------------------------------------------------------------===//
     24 // Lexer
     25 //===----------------------------------------------------------------------===//
     26 
     27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     28 // of these for known things.
     29 enum Token {
     30   tok_eof = -1,
     31 
     32   // commands
     33   tok_def = -2, tok_extern = -3,
     34 
     35   // primary
     36   tok_identifier = -4, tok_number = -5,
     37 
     38   // control
     39   tok_if = -6, tok_then = -7, tok_else = -8,
     40   tok_for = -9, tok_in = -10,
     41 
     42   // operators
     43   tok_binary = -11, tok_unary = -12,
     44 
     45   // var definition
     46   tok_var = -13
     47 };
     48 
     49 static std::string IdentifierStr;  // Filled in if tok_identifier
     50 static double NumVal;              // Filled in if tok_number
     51 
     52 /// gettok - Return the next token from standard input.
     53 static int gettok() {
     54   static int LastChar = ' ';
     55 
     56   // Skip any whitespace.
     57   while (isspace(LastChar))
     58     LastChar = getchar();
     59 
     60   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
     61     IdentifierStr = LastChar;
     62     while (isalnum((LastChar = getchar())))
     63       IdentifierStr += LastChar;
     64 
     65     if (IdentifierStr == "def") return tok_def;
     66     if (IdentifierStr == "extern") return tok_extern;
     67     if (IdentifierStr == "if") return tok_if;
     68     if (IdentifierStr == "then") return tok_then;
     69     if (IdentifierStr == "else") return tok_else;
     70     if (IdentifierStr == "for") return tok_for;
     71     if (IdentifierStr == "in") return tok_in;
     72     if (IdentifierStr == "binary") return tok_binary;
     73     if (IdentifierStr == "unary") return tok_unary;
     74     if (IdentifierStr == "var") return tok_var;
     75     return tok_identifier;
     76   }
     77 
     78   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
     79     std::string NumStr;
     80     do {
     81       NumStr += LastChar;
     82       LastChar = getchar();
     83     } while (isdigit(LastChar) || LastChar == '.');
     84 
     85     NumVal = strtod(NumStr.c_str(), 0);
     86     return tok_number;
     87   }
     88 
     89   if (LastChar == '#') {
     90     // Comment until end of line.
     91     do LastChar = getchar();
     92     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
     93 
     94     if (LastChar != EOF)
     95       return gettok();
     96   }
     97 
     98   // Check for end of file.  Don't eat the EOF.
     99   if (LastChar == EOF)
    100     return tok_eof;
    101 
    102   // Otherwise, just return the character as its ascii value.
    103   int ThisChar = LastChar;
    104   LastChar = getchar();
    105   return ThisChar;
    106 }
    107 
    108 //===----------------------------------------------------------------------===//
    109 // Abstract Syntax Tree (aka Parse Tree)
    110 //===----------------------------------------------------------------------===//
    111 
    112 /// ExprAST - Base class for all expression nodes.
    113 class ExprAST {
    114 public:
    115   virtual ~ExprAST() {}
    116   virtual Value *Codegen() = 0;
    117 };
    118 
    119 /// NumberExprAST - Expression class for numeric literals like "1.0".
    120 class NumberExprAST : public ExprAST {
    121   double Val;
    122 public:
    123   NumberExprAST(double val) : Val(val) {}
    124   virtual Value *Codegen();
    125 };
    126 
    127 /// VariableExprAST - Expression class for referencing a variable, like "a".
    128 class VariableExprAST : public ExprAST {
    129   std::string Name;
    130 public:
    131   VariableExprAST(const std::string &name) : Name(name) {}
    132   const std::string &getName() const { return Name; }
    133   virtual Value *Codegen();
    134 };
    135 
    136 /// UnaryExprAST - Expression class for a unary operator.
    137 class UnaryExprAST : public ExprAST {
    138   char Opcode;
    139   ExprAST *Operand;
    140 public:
    141   UnaryExprAST(char opcode, ExprAST *operand)
    142     : Opcode(opcode), Operand(operand) {}
    143   virtual Value *Codegen();
    144 };
    145 
    146 /// BinaryExprAST - Expression class for a binary operator.
    147 class BinaryExprAST : public ExprAST {
    148   char Op;
    149   ExprAST *LHS, *RHS;
    150 public:
    151   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    152     : Op(op), LHS(lhs), RHS(rhs) {}
    153   virtual Value *Codegen();
    154 };
    155 
    156 /// CallExprAST - Expression class for function calls.
    157 class CallExprAST : public ExprAST {
    158   std::string Callee;
    159   std::vector<ExprAST*> Args;
    160 public:
    161   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    162     : Callee(callee), Args(args) {}
    163   virtual Value *Codegen();
    164 };
    165 
    166 /// IfExprAST - Expression class for if/then/else.
    167 class IfExprAST : public ExprAST {
    168   ExprAST *Cond, *Then, *Else;
    169 public:
    170   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    171   : Cond(cond), Then(then), Else(_else) {}
    172   virtual Value *Codegen();
    173 };
    174 
    175 /// ForExprAST - Expression class for for/in.
    176 class ForExprAST : public ExprAST {
    177   std::string VarName;
    178   ExprAST *Start, *End, *Step, *Body;
    179 public:
    180   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    181              ExprAST *step, ExprAST *body)
    182     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    183   virtual Value *Codegen();
    184 };
    185 
    186 /// VarExprAST - Expression class for var/in
    187 class VarExprAST : public ExprAST {
    188   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    189   ExprAST *Body;
    190 public:
    191   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    192              ExprAST *body)
    193   : VarNames(varnames), Body(body) {}
    194 
    195   virtual Value *Codegen();
    196 };
    197 
    198 /// PrototypeAST - This class represents the "prototype" for a function,
    199 /// which captures its argument names as well as if it is an operator.
    200 class PrototypeAST {
    201   std::string Name;
    202   std::vector<std::string> Args;
    203   bool isOperator;
    204   unsigned Precedence;  // Precedence if a binary op.
    205 public:
    206   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    207                bool isoperator = false, unsigned prec = 0)
    208   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    209 
    210   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    211   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    212 
    213   char getOperatorName() const {
    214     assert(isUnaryOp() || isBinaryOp());
    215     return Name[Name.size()-1];
    216   }
    217 
    218   unsigned getBinaryPrecedence() const { return Precedence; }
    219 
    220   Function *Codegen();
    221 
    222   void CreateArgumentAllocas(Function *F);
    223 };
    224 
    225 /// FunctionAST - This class represents a function definition itself.
    226 class FunctionAST {
    227   PrototypeAST *Proto;
    228   ExprAST *Body;
    229 public:
    230   FunctionAST(PrototypeAST *proto, ExprAST *body)
    231     : Proto(proto), Body(body) {}
    232 
    233   Function *Codegen();
    234 };
    235 
    236 //===----------------------------------------------------------------------===//
    237 // Parser
    238 //===----------------------------------------------------------------------===//
    239 
    240 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    241 /// token the parser is looking at.  getNextToken reads another token from the
    242 /// lexer and updates CurTok with its results.
    243 static int CurTok;
    244 static int getNextToken() {
    245   return CurTok = gettok();
    246 }
    247 
    248 /// BinopPrecedence - This holds the precedence for each binary operator that is
    249 /// defined.
    250 static std::map<char, int> BinopPrecedence;
    251 
    252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    253 static int GetTokPrecedence() {
    254   if (!isascii(CurTok))
    255     return -1;
    256 
    257   // Make sure it's a declared binop.
    258   int TokPrec = BinopPrecedence[CurTok];
    259   if (TokPrec <= 0) return -1;
    260   return TokPrec;
    261 }
    262 
    263 /// Error* - These are little helper functions for error handling.
    264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    267 
    268 static ExprAST *ParseExpression();
    269 
    270 /// identifierexpr
    271 ///   ::= identifier
    272 ///   ::= identifier '(' expression* ')'
    273 static ExprAST *ParseIdentifierExpr() {
    274   std::string IdName = IdentifierStr;
    275 
    276   getNextToken();  // eat identifier.
    277 
    278   if (CurTok != '(') // Simple variable ref.
    279     return new VariableExprAST(IdName);
    280 
    281   // Call.
    282   getNextToken();  // eat (
    283   std::vector<ExprAST*> Args;
    284   if (CurTok != ')') {
    285     while (1) {
    286       ExprAST *Arg = ParseExpression();
    287       if (!Arg) return 0;
    288       Args.push_back(Arg);
    289 
    290       if (CurTok == ')') break;
    291 
    292       if (CurTok != ',')
    293         return Error("Expected ')' or ',' in argument list");
    294       getNextToken();
    295     }
    296   }
    297 
    298   // Eat the ')'.
    299   getNextToken();
    300 
    301   return new CallExprAST(IdName, Args);
    302 }
    303 
    304 /// numberexpr ::= number
    305 static ExprAST *ParseNumberExpr() {
    306   ExprAST *Result = new NumberExprAST(NumVal);
    307   getNextToken(); // consume the number
    308   return Result;
    309 }
    310 
    311 /// parenexpr ::= '(' expression ')'
    312 static ExprAST *ParseParenExpr() {
    313   getNextToken();  // eat (.
    314   ExprAST *V = ParseExpression();
    315   if (!V) return 0;
    316 
    317   if (CurTok != ')')
    318     return Error("expected ')'");
    319   getNextToken();  // eat ).
    320   return V;
    321 }
    322 
    323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    324 static ExprAST *ParseIfExpr() {
    325   getNextToken();  // eat the if.
    326 
    327   // condition.
    328   ExprAST *Cond = ParseExpression();
    329   if (!Cond) return 0;
    330 
    331   if (CurTok != tok_then)
    332     return Error("expected then");
    333   getNextToken();  // eat the then
    334 
    335   ExprAST *Then = ParseExpression();
    336   if (Then == 0) return 0;
    337 
    338   if (CurTok != tok_else)
    339     return Error("expected else");
    340 
    341   getNextToken();
    342 
    343   ExprAST *Else = ParseExpression();
    344   if (!Else) return 0;
    345 
    346   return new IfExprAST(Cond, Then, Else);
    347 }
    348 
    349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    350 static ExprAST *ParseForExpr() {
    351   getNextToken();  // eat the for.
    352 
    353   if (CurTok != tok_identifier)
    354     return Error("expected identifier after for");
    355 
    356   std::string IdName = IdentifierStr;
    357   getNextToken();  // eat identifier.
    358 
    359   if (CurTok != '=')
    360     return Error("expected '=' after for");
    361   getNextToken();  // eat '='.
    362 
    363 
    364   ExprAST *Start = ParseExpression();
    365   if (Start == 0) return 0;
    366   if (CurTok != ',')
    367     return Error("expected ',' after for start value");
    368   getNextToken();
    369 
    370   ExprAST *End = ParseExpression();
    371   if (End == 0) return 0;
    372 
    373   // The step value is optional.
    374   ExprAST *Step = 0;
    375   if (CurTok == ',') {
    376     getNextToken();
    377     Step = ParseExpression();
    378     if (Step == 0) return 0;
    379   }
    380 
    381   if (CurTok != tok_in)
    382     return Error("expected 'in' after for");
    383   getNextToken();  // eat 'in'.
    384 
    385   ExprAST *Body = ParseExpression();
    386   if (Body == 0) return 0;
    387 
    388   return new ForExprAST(IdName, Start, End, Step, Body);
    389 }
    390 
    391 /// varexpr ::= 'var' identifier ('=' expression)?
    392 //                    (',' identifier ('=' expression)?)* 'in' expression
    393 static ExprAST *ParseVarExpr() {
    394   getNextToken();  // eat the var.
    395 
    396   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    397 
    398   // At least one variable name is required.
    399   if (CurTok != tok_identifier)
    400     return Error("expected identifier after var");
    401 
    402   while (1) {
    403     std::string Name = IdentifierStr;
    404     getNextToken();  // eat identifier.
    405 
    406     // Read the optional initializer.
    407     ExprAST *Init = 0;
    408     if (CurTok == '=') {
    409       getNextToken(); // eat the '='.
    410 
    411       Init = ParseExpression();
    412       if (Init == 0) return 0;
    413     }
    414 
    415     VarNames.push_back(std::make_pair(Name, Init));
    416 
    417     // End of var list, exit loop.
    418     if (CurTok != ',') break;
    419     getNextToken(); // eat the ','.
    420 
    421     if (CurTok != tok_identifier)
    422       return Error("expected identifier list after var");
    423   }
    424 
    425   // At this point, we have to have 'in'.
    426   if (CurTok != tok_in)
    427     return Error("expected 'in' keyword after 'var'");
    428   getNextToken();  // eat 'in'.
    429 
    430   ExprAST *Body = ParseExpression();
    431   if (Body == 0) return 0;
    432 
    433   return new VarExprAST(VarNames, Body);
    434 }
    435 
    436 /// primary
    437 ///   ::= identifierexpr
    438 ///   ::= numberexpr
    439 ///   ::= parenexpr
    440 ///   ::= ifexpr
    441 ///   ::= forexpr
    442 ///   ::= varexpr
    443 static ExprAST *ParsePrimary() {
    444   switch (CurTok) {
    445   default: return Error("unknown token when expecting an expression");
    446   case tok_identifier: return ParseIdentifierExpr();
    447   case tok_number:     return ParseNumberExpr();
    448   case '(':            return ParseParenExpr();
    449   case tok_if:         return ParseIfExpr();
    450   case tok_for:        return ParseForExpr();
    451   case tok_var:        return ParseVarExpr();
    452   }
    453 }
    454 
    455 /// unary
    456 ///   ::= primary
    457 ///   ::= '!' unary
    458 static ExprAST *ParseUnary() {
    459   // If the current token is not an operator, it must be a primary expr.
    460   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    461     return ParsePrimary();
    462 
    463   // If this is a unary operator, read it.
    464   int Opc = CurTok;
    465   getNextToken();
    466   if (ExprAST *Operand = ParseUnary())
    467     return new UnaryExprAST(Opc, Operand);
    468   return 0;
    469 }
    470 
    471 /// binoprhs
    472 ///   ::= ('+' unary)*
    473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    474   // If this is a binop, find its precedence.
    475   while (1) {
    476     int TokPrec = GetTokPrecedence();
    477 
    478     // If this is a binop that binds at least as tightly as the current binop,
    479     // consume it, otherwise we are done.
    480     if (TokPrec < ExprPrec)
    481       return LHS;
    482 
    483     // Okay, we know this is a binop.
    484     int BinOp = CurTok;
    485     getNextToken();  // eat binop
    486 
    487     // Parse the unary expression after the binary operator.
    488     ExprAST *RHS = ParseUnary();
    489     if (!RHS) return 0;
    490 
    491     // If BinOp binds less tightly with RHS than the operator after RHS, let
    492     // the pending operator take RHS as its LHS.
    493     int NextPrec = GetTokPrecedence();
    494     if (TokPrec < NextPrec) {
    495       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    496       if (RHS == 0) return 0;
    497     }
    498 
    499     // Merge LHS/RHS.
    500     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    501   }
    502 }
    503 
    504 /// expression
    505 ///   ::= unary binoprhs
    506 ///
    507 static ExprAST *ParseExpression() {
    508   ExprAST *LHS = ParseUnary();
    509   if (!LHS) return 0;
    510 
    511   return ParseBinOpRHS(0, LHS);
    512 }
    513 
    514 /// prototype
    515 ///   ::= id '(' id* ')'
    516 ///   ::= binary LETTER number? (id, id)
    517 ///   ::= unary LETTER (id)
    518 static PrototypeAST *ParsePrototype() {
    519   std::string FnName;
    520 
    521   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    522   unsigned BinaryPrecedence = 30;
    523 
    524   switch (CurTok) {
    525   default:
    526     return ErrorP("Expected function name in prototype");
    527   case tok_identifier:
    528     FnName = IdentifierStr;
    529     Kind = 0;
    530     getNextToken();
    531     break;
    532   case tok_unary:
    533     getNextToken();
    534     if (!isascii(CurTok))
    535       return ErrorP("Expected unary operator");
    536     FnName = "unary";
    537     FnName += (char)CurTok;
    538     Kind = 1;
    539     getNextToken();
    540     break;
    541   case tok_binary:
    542     getNextToken();
    543     if (!isascii(CurTok))
    544       return ErrorP("Expected binary operator");
    545     FnName = "binary";
    546     FnName += (char)CurTok;
    547     Kind = 2;
    548     getNextToken();
    549 
    550     // Read the precedence if present.
    551     if (CurTok == tok_number) {
    552       if (NumVal < 1 || NumVal > 100)
    553         return ErrorP("Invalid precedecnce: must be 1..100");
    554       BinaryPrecedence = (unsigned)NumVal;
    555       getNextToken();
    556     }
    557     break;
    558   }
    559 
    560   if (CurTok != '(')
    561     return ErrorP("Expected '(' in prototype");
    562 
    563   std::vector<std::string> ArgNames;
    564   while (getNextToken() == tok_identifier)
    565     ArgNames.push_back(IdentifierStr);
    566   if (CurTok != ')')
    567     return ErrorP("Expected ')' in prototype");
    568 
    569   // success.
    570   getNextToken();  // eat ')'.
    571 
    572   // Verify right number of names for operator.
    573   if (Kind && ArgNames.size() != Kind)
    574     return ErrorP("Invalid number of operands for operator");
    575 
    576   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    577 }
    578 
    579 /// definition ::= 'def' prototype expression
    580 static FunctionAST *ParseDefinition() {
    581   getNextToken();  // eat def.
    582   PrototypeAST *Proto = ParsePrototype();
    583   if (Proto == 0) return 0;
    584 
    585   if (ExprAST *E = ParseExpression())
    586     return new FunctionAST(Proto, E);
    587   return 0;
    588 }
    589 
    590 /// toplevelexpr ::= expression
    591 static FunctionAST *ParseTopLevelExpr() {
    592   if (ExprAST *E = ParseExpression()) {
    593     // Make an anonymous proto.
    594     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    595     return new FunctionAST(Proto, E);
    596   }
    597   return 0;
    598 }
    599 
    600 /// external ::= 'extern' prototype
    601 static PrototypeAST *ParseExtern() {
    602   getNextToken();  // eat extern.
    603   return ParsePrototype();
    604 }
    605 
    606 //===----------------------------------------------------------------------===//
    607 // Code Generation
    608 //===----------------------------------------------------------------------===//
    609 
    610 static Module *TheModule;
    611 static FunctionPassManager *TheFPM;
    612 static IRBuilder<> Builder(getGlobalContext());
    613 static std::map<std::string, AllocaInst*> NamedValues;
    614 
    615 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    616 
    617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
    618 /// the function.  This is used for mutable variables etc.
    619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
    620                                           const std::string &VarName) {
    621   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
    622                  TheFunction->getEntryBlock().begin());
    623   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
    624                            VarName.c_str());
    625 }
    626 
    627 Value *NumberExprAST::Codegen() {
    628   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    629 }
    630 
    631 Value *VariableExprAST::Codegen() {
    632   // Look this variable up in the function.
    633   Value *V = NamedValues[Name];
    634   if (V == 0) return ErrorV("Unknown variable name");
    635 
    636   // Load the value.
    637   return Builder.CreateLoad(V, Name.c_str());
    638 }
    639 
    640 Value *UnaryExprAST::Codegen() {
    641   Value *OperandV = Operand->Codegen();
    642   if (OperandV == 0) return 0;
    643 #ifdef USE_MCJIT
    644   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
    645 #else
    646   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
    647 #endif
    648   if (F == 0)
    649     return ErrorV("Unknown unary operator");
    650 
    651   return Builder.CreateCall(F, OperandV, "unop");
    652 }
    653 
    654 Value *BinaryExprAST::Codegen() {
    655   // Special case '=' because we don't want to emit the LHS as an expression.
    656   if (Op == '=') {
    657     // Assignment requires the LHS to be an identifier.
    658     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
    659     if (!LHSE)
    660       return ErrorV("destination of '=' must be a variable");
    661     // Codegen the RHS.
    662     Value *Val = RHS->Codegen();
    663     if (Val == 0) return 0;
    664 
    665     // Look up the name.
    666     Value *Variable = NamedValues[LHSE->getName()];
    667     if (Variable == 0) return ErrorV("Unknown variable name");
    668 
    669     Builder.CreateStore(Val, Variable);
    670     return Val;
    671   }
    672 
    673   Value *L = LHS->Codegen();
    674   Value *R = RHS->Codegen();
    675   if (L == 0 || R == 0) return 0;
    676 
    677   switch (Op) {
    678   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    679   case '-': return Builder.CreateFSub(L, R, "subtmp");
    680   case '*': return Builder.CreateFMul(L, R, "multmp");
    681   case '/': return Builder.CreateFDiv(L, R, "divtmp");
    682   case '<':
    683     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    684     // Convert bool 0/1 to double 0.0 or 1.0
    685     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    686                                 "booltmp");
    687   default: break;
    688   }
    689 
    690   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
    691   // a call to it.
    692   Function *F = TheModule->getFunction(std::string("binary")+Op);
    693   assert(F && "binary operator not found!");
    694 
    695   Value *Ops[] = { L, R };
    696   return Builder.CreateCall(F, Ops, "binop");
    697 }
    698 
    699 Value *CallExprAST::Codegen() {
    700   // Look up the name in the global module table.
    701   Function *CalleeF = TheModule->getFunction(Callee);
    702   if (CalleeF == 0) {
    703     char error_str[64];
    704     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
    705     return ErrorV(error_str);
    706   }
    707 
    708   // If argument mismatch error.
    709   if (CalleeF->arg_size() != Args.size())
    710     return ErrorV("Incorrect # arguments passed");
    711 
    712   std::vector<Value*> ArgsV;
    713   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    714     ArgsV.push_back(Args[i]->Codegen());
    715     if (ArgsV.back() == 0) return 0;
    716   }
    717 
    718   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    719 }
    720 
    721 Value *IfExprAST::Codegen() {
    722   Value *CondV = Cond->Codegen();
    723   if (CondV == 0) return 0;
    724 
    725   // Convert condition to a bool by comparing equal to 0.0.
    726   CondV = Builder.CreateFCmpONE(CondV,
    727                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    728                                 "ifcond");
    729 
    730   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    731 
    732   // Create blocks for the then and else cases.  Insert the 'then' block at the
    733   // end of the function.
    734   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
    735   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
    736   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
    737 
    738   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    739 
    740   // Emit then value.
    741   Builder.SetInsertPoint(ThenBB);
    742 
    743   Value *ThenV = Then->Codegen();
    744   if (ThenV == 0) return 0;
    745 
    746   Builder.CreateBr(MergeBB);
    747   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    748   ThenBB = Builder.GetInsertBlock();
    749 
    750   // Emit else block.
    751   TheFunction->getBasicBlockList().push_back(ElseBB);
    752   Builder.SetInsertPoint(ElseBB);
    753 
    754   Value *ElseV = Else->Codegen();
    755   if (ElseV == 0) return 0;
    756 
    757   Builder.CreateBr(MergeBB);
    758   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    759   ElseBB = Builder.GetInsertBlock();
    760 
    761   // Emit merge block.
    762   TheFunction->getBasicBlockList().push_back(MergeBB);
    763   Builder.SetInsertPoint(MergeBB);
    764   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
    765                                   "iftmp");
    766 
    767   PN->addIncoming(ThenV, ThenBB);
    768   PN->addIncoming(ElseV, ElseBB);
    769   return PN;
    770 }
    771 
    772 Value *ForExprAST::Codegen() {
    773   // Output this as:
    774   //   var = alloca double
    775   //   ...
    776   //   start = startexpr
    777   //   store start -> var
    778   //   goto loop
    779   // loop:
    780   //   ...
    781   //   bodyexpr
    782   //   ...
    783   // loopend:
    784   //   step = stepexpr
    785   //   endcond = endexpr
    786   //
    787   //   curvar = load var
    788   //   nextvar = curvar + step
    789   //   store nextvar -> var
    790   //   br endcond, loop, endloop
    791   // outloop:
    792 
    793   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    794 
    795   // Create an alloca for the variable in the entry block.
    796   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    797 
    798   // Emit the start code first, without 'variable' in scope.
    799   Value *StartVal = Start->Codegen();
    800   if (StartVal == 0) return 0;
    801 
    802   // Store the value into the alloca.
    803   Builder.CreateStore(StartVal, Alloca);
    804 
    805   // Make the new basic block for the loop header, inserting after current
    806   // block.
    807   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
    808 
    809   // Insert an explicit fall through from the current block to the LoopBB.
    810   Builder.CreateBr(LoopBB);
    811 
    812   // Start insertion in LoopBB.
    813   Builder.SetInsertPoint(LoopBB);
    814 
    815   // Within the loop, the variable is defined equal to the PHI node.  If it
    816   // shadows an existing variable, we have to restore it, so save it now.
    817   AllocaInst *OldVal = NamedValues[VarName];
    818   NamedValues[VarName] = Alloca;
    819 
    820   // Emit the body of the loop.  This, like any other expr, can change the
    821   // current BB.  Note that we ignore the value computed by the body, but don't
    822   // allow an error.
    823   if (Body->Codegen() == 0)
    824     return 0;
    825 
    826   // Emit the step value.
    827   Value *StepVal;
    828   if (Step) {
    829     StepVal = Step->Codegen();
    830     if (StepVal == 0) return 0;
    831   } else {
    832     // If not specified, use 1.0.
    833     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
    834   }
    835 
    836   // Compute the end condition.
    837   Value *EndCond = End->Codegen();
    838   if (EndCond == 0) return EndCond;
    839 
    840   // Reload, increment, and restore the alloca.  This handles the case where
    841   // the body of the loop mutates the variable.
    842   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
    843   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
    844   Builder.CreateStore(NextVar, Alloca);
    845 
    846   // Convert condition to a bool by comparing equal to 0.0.
    847   EndCond = Builder.CreateFCmpONE(EndCond,
    848                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    849                                   "loopcond");
    850 
    851   // Create the "after loop" block and insert it.
    852   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
    853 
    854   // Insert the conditional branch into the end of LoopEndBB.
    855   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
    856 
    857   // Any new code will be inserted in AfterBB.
    858   Builder.SetInsertPoint(AfterBB);
    859 
    860   // Restore the unshadowed variable.
    861   if (OldVal)
    862     NamedValues[VarName] = OldVal;
    863   else
    864     NamedValues.erase(VarName);
    865 
    866 
    867   // for expr always returns 0.0.
    868   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
    869 }
    870 
    871 Value *VarExprAST::Codegen() {
    872   std::vector<AllocaInst *> OldBindings;
    873 
    874   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    875 
    876   // Register all variables and emit their initializer.
    877   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
    878     const std::string &VarName = VarNames[i].first;
    879     ExprAST *Init = VarNames[i].second;
    880 
    881     // Emit the initializer before adding the variable to scope, this prevents
    882     // the initializer from referencing the variable itself, and permits stuff
    883     // like this:
    884     //  var a = 1 in
    885     //    var a = a in ...   # refers to outer 'a'.
    886     Value *InitVal;
    887     if (Init) {
    888       InitVal = Init->Codegen();
    889       if (InitVal == 0) return 0;
    890     } else { // If not specified, use 0.0.
    891       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
    892     }
    893 
    894     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    895     Builder.CreateStore(InitVal, Alloca);
    896 
    897     // Remember the old variable binding so that we can restore the binding when
    898     // we unrecurse.
    899     OldBindings.push_back(NamedValues[VarName]);
    900 
    901     // Remember this binding.
    902     NamedValues[VarName] = Alloca;
    903   }
    904 
    905   // Codegen the body, now that all vars are in scope.
    906   Value *BodyVal = Body->Codegen();
    907   if (BodyVal == 0) return 0;
    908 
    909   // Pop all our variables from scope.
    910   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
    911     NamedValues[VarNames[i].first] = OldBindings[i];
    912 
    913   // Return the body computation.
    914   return BodyVal;
    915 }
    916 
    917 Function *PrototypeAST::Codegen() {
    918   // Make the function type:  double(double,double) etc.
    919   std::vector<Type*> Doubles(Args.size(),
    920                              Type::getDoubleTy(getGlobalContext()));
    921   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
    922                                        Doubles, false);
    923 
    924   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    925   // If F conflicted, there was already something named 'Name'.  If it has a
    926   // body, don't allow redefinition or reextern.
    927   if (F->getName() != Name) {
    928     // Delete the one we just made and get the existing one.
    929     F->eraseFromParent();
    930     F = TheModule->getFunction(Name);
    931     // If F already has a body, reject this.
    932     if (!F->empty()) {
    933       ErrorF("redefinition of function");
    934       return 0;
    935     }
    936     // If F took a different number of args, reject.
    937     if (F->arg_size() != Args.size()) {
    938       ErrorF("redefinition of function with different # args");
    939       return 0;
    940     }
    941   }
    942 
    943   // Set names for all arguments.
    944   unsigned Idx = 0;
    945   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
    946        ++AI, ++Idx)
    947     AI->setName(Args[Idx]);
    948 
    949   return F;
    950 }
    951 
    952 /// CreateArgumentAllocas - Create an alloca for each argument and register the
    953 /// argument in the symbol table so that references to it will succeed.
    954 void PrototypeAST::CreateArgumentAllocas(Function *F) {
    955   Function::arg_iterator AI = F->arg_begin();
    956   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
    957     // Create an alloca for this variable.
    958     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
    959 
    960     // Store the initial value into the alloca.
    961     Builder.CreateStore(AI, Alloca);
    962 
    963     // Add arguments to variable symbol table.
    964     NamedValues[Args[Idx]] = Alloca;
    965   }
    966 }
    967 
    968 Function *FunctionAST::Codegen() {
    969   NamedValues.clear();
    970 
    971   Function *TheFunction = Proto->Codegen();
    972   if (TheFunction == 0)
    973     return 0;
    974 
    975   // If this is an operator, install it.
    976   if (Proto->isBinaryOp())
    977     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
    978 
    979   // Create a new basic block to start insertion into.
    980   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
    981   Builder.SetInsertPoint(BB);
    982 
    983   // Add all arguments to the symbol table and create their allocas.
    984   Proto->CreateArgumentAllocas(TheFunction);
    985 
    986   if (Value *RetVal = Body->Codegen()) {
    987     // Finish off the function.
    988     Builder.CreateRet(RetVal);
    989 
    990     // Validate the generated code, checking for consistency.
    991     verifyFunction(*TheFunction);
    992 
    993     // Optimize the function.
    994     TheFPM->run(*TheFunction);
    995 
    996     return TheFunction;
    997   }
    998 
    999   // Error reading body, remove function.
   1000   TheFunction->eraseFromParent();
   1001 
   1002   if (Proto->isBinaryOp())
   1003     BinopPrecedence.erase(Proto->getOperatorName());
   1004   return 0;
   1005 }
   1006 
   1007 //===----------------------------------------------------------------------===//
   1008 // Top-Level parsing and JIT Driver
   1009 //===----------------------------------------------------------------------===//
   1010 
   1011 static ExecutionEngine *TheExecutionEngine;
   1012 
   1013 static void HandleDefinition() {
   1014   if (FunctionAST *F = ParseDefinition()) {
   1015     if (Function *LF = F->Codegen()) {
   1016 #ifndef MINIMAL_STDERR_OUTPUT
   1017       fprintf(stderr, "Read function definition:");
   1018       LF->dump();
   1019 #endif
   1020     }
   1021   } else {
   1022     // Skip token for error recovery.
   1023     getNextToken();
   1024   }
   1025 }
   1026 
   1027 static void HandleExtern() {
   1028   if (PrototypeAST *P = ParseExtern()) {
   1029     if (Function *F = P->Codegen()) {
   1030 #ifndef MINIMAL_STDERR_OUTPUT
   1031       fprintf(stderr, "Read extern: ");
   1032       F->dump();
   1033 #endif
   1034     }
   1035   } else {
   1036     // Skip token for error recovery.
   1037     getNextToken();
   1038   }
   1039 }
   1040 
   1041 static void HandleTopLevelExpression() {
   1042   // Evaluate a top-level expression into an anonymous function.
   1043   if (FunctionAST *F = ParseTopLevelExpr()) {
   1044     if (Function *LF = F->Codegen()) {
   1045       // JIT the function, returning a function pointer.
   1046       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
   1047       // Cast it to the right type (takes no arguments, returns a double) so we
   1048       // can call it as a native function.
   1049       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1050 #ifdef MINIMAL_STDERR_OUTPUT
   1051       FP();
   1052 #else
   1053       fprintf(stderr, "Evaluated to %f\n", FP());
   1054 #endif
   1055     }
   1056   } else {
   1057     // Skip token for error recovery.
   1058     getNextToken();
   1059   }
   1060 }
   1061 
   1062 /// top ::= definition | external | expression | ';'
   1063 static void MainLoop() {
   1064   while (1) {
   1065 #ifndef MINIMAL_STDERR_OUTPUT
   1066     fprintf(stderr, "ready> ");
   1067 #endif
   1068     switch (CurTok) {
   1069     case tok_eof:    return;
   1070     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1071     case tok_def:    HandleDefinition(); break;
   1072     case tok_extern: HandleExtern(); break;
   1073     default:         HandleTopLevelExpression(); break;
   1074     }
   1075   }
   1076 }
   1077 
   1078 //===----------------------------------------------------------------------===//
   1079 // "Library" functions that can be "extern'd" from user code.
   1080 //===----------------------------------------------------------------------===//
   1081 
   1082 /// putchard - putchar that takes a double and returns 0.
   1083 extern "C"
   1084 double putchard(double X) {
   1085   putchar((char)X);
   1086   return 0;
   1087 }
   1088 
   1089 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1090 extern "C"
   1091 double printd(double X) {
   1092   printf("%f", X);
   1093   return 0;
   1094 }
   1095 
   1096 extern "C"
   1097 double printlf() {
   1098   printf("\n");
   1099   return 0;
   1100 }
   1101 
   1102 //===----------------------------------------------------------------------===//
   1103 // Main driver code.
   1104 //===----------------------------------------------------------------------===//
   1105 
   1106 int main(int argc, char **argv) {
   1107   InitializeNativeTarget();
   1108   LLVMContext &Context = getGlobalContext();
   1109 
   1110   // Install standard binary operators.
   1111   // 1 is lowest precedence.
   1112   BinopPrecedence['='] = 2;
   1113   BinopPrecedence['<'] = 10;
   1114   BinopPrecedence['+'] = 20;
   1115   BinopPrecedence['-'] = 20;
   1116   BinopPrecedence['/'] = 40;
   1117   BinopPrecedence['*'] = 40;  // highest.
   1118 
   1119   // Make the module, which holds all the code.
   1120   TheModule = new Module("my cool jit", Context);
   1121 
   1122   // Create the JIT.  This takes ownership of the module.
   1123   std::string ErrStr;
   1124   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
   1125   if (!TheExecutionEngine) {
   1126     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1127     exit(1);
   1128   }
   1129 
   1130   FunctionPassManager OurFPM(TheModule);
   1131 
   1132   // Set up the optimizer pipeline.  Start with registering info about how the
   1133   // target lays out data structures.
   1134   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
   1135   // Provide basic AliasAnalysis support for GVN.
   1136   OurFPM.add(createBasicAliasAnalysisPass());
   1137   // Promote allocas to registers.
   1138   OurFPM.add(createPromoteMemoryToRegisterPass());
   1139   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1140   OurFPM.add(createInstructionCombiningPass());
   1141   // Reassociate expressions.
   1142   OurFPM.add(createReassociatePass());
   1143   // Eliminate Common SubExpressions.
   1144   OurFPM.add(createGVNPass());
   1145   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1146   OurFPM.add(createCFGSimplificationPass());
   1147 
   1148   OurFPM.doInitialization();
   1149 
   1150   // Set the global so the code gen can use this.
   1151   TheFPM = &OurFPM;
   1152 
   1153   // Prime the first token.
   1154 #ifndef MINIMAL_STDERR_OUTPUT
   1155   fprintf(stderr, "ready> ");
   1156 #endif
   1157   getNextToken();
   1158 
   1159   // Run the main "interpreter loop" now.
   1160   MainLoop();
   1161 
   1162   // Print out all of the generated code.
   1163   TheFPM = 0;
   1164 #ifndef MINIMAL_STDERR_OUTPUT
   1165   TheModule->dump();
   1166 #endif
   1167   return 0;
   1168 }
   1169