1 #define MINIMAL_STDERR_OUTPUT 2 3 #include "llvm/Analysis/Passes.h" 4 #include "llvm/ExecutionEngine/ExecutionEngine.h" 5 #include "llvm/ExecutionEngine/JIT.h" 6 #include "llvm/IR/DataLayout.h" 7 #include "llvm/IR/DerivedTypes.h" 8 #include "llvm/IR/IRBuilder.h" 9 #include "llvm/IR/LLVMContext.h" 10 #include "llvm/IR/Module.h" 11 #include "llvm/IR/Verifier.h" 12 #include "llvm/PassManager.h" 13 #include "llvm/Support/TargetSelect.h" 14 #include "llvm/Transforms/Scalar.h" 15 #include <cctype> 16 #include <cstdio> 17 #include <map> 18 #include <string> 19 #include <vector> 20 21 using namespace llvm; 22 23 //===----------------------------------------------------------------------===// 24 // Lexer 25 //===----------------------------------------------------------------------===// 26 27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 28 // of these for known things. 29 enum Token { 30 tok_eof = -1, 31 32 // commands 33 tok_def = -2, tok_extern = -3, 34 35 // primary 36 tok_identifier = -4, tok_number = -5, 37 38 // control 39 tok_if = -6, tok_then = -7, tok_else = -8, 40 tok_for = -9, tok_in = -10, 41 42 // operators 43 tok_binary = -11, tok_unary = -12, 44 45 // var definition 46 tok_var = -13 47 }; 48 49 static std::string IdentifierStr; // Filled in if tok_identifier 50 static double NumVal; // Filled in if tok_number 51 52 /// gettok - Return the next token from standard input. 53 static int gettok() { 54 static int LastChar = ' '; 55 56 // Skip any whitespace. 57 while (isspace(LastChar)) 58 LastChar = getchar(); 59 60 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 61 IdentifierStr = LastChar; 62 while (isalnum((LastChar = getchar()))) 63 IdentifierStr += LastChar; 64 65 if (IdentifierStr == "def") return tok_def; 66 if (IdentifierStr == "extern") return tok_extern; 67 if (IdentifierStr == "if") return tok_if; 68 if (IdentifierStr == "then") return tok_then; 69 if (IdentifierStr == "else") return tok_else; 70 if (IdentifierStr == "for") return tok_for; 71 if (IdentifierStr == "in") return tok_in; 72 if (IdentifierStr == "binary") return tok_binary; 73 if (IdentifierStr == "unary") return tok_unary; 74 if (IdentifierStr == "var") return tok_var; 75 return tok_identifier; 76 } 77 78 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 79 std::string NumStr; 80 do { 81 NumStr += LastChar; 82 LastChar = getchar(); 83 } while (isdigit(LastChar) || LastChar == '.'); 84 85 NumVal = strtod(NumStr.c_str(), 0); 86 return tok_number; 87 } 88 89 if (LastChar == '#') { 90 // Comment until end of line. 91 do LastChar = getchar(); 92 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 93 94 if (LastChar != EOF) 95 return gettok(); 96 } 97 98 // Check for end of file. Don't eat the EOF. 99 if (LastChar == EOF) 100 return tok_eof; 101 102 // Otherwise, just return the character as its ascii value. 103 int ThisChar = LastChar; 104 LastChar = getchar(); 105 return ThisChar; 106 } 107 108 //===----------------------------------------------------------------------===// 109 // Abstract Syntax Tree (aka Parse Tree) 110 //===----------------------------------------------------------------------===// 111 112 /// ExprAST - Base class for all expression nodes. 113 class ExprAST { 114 public: 115 virtual ~ExprAST() {} 116 virtual Value *Codegen() = 0; 117 }; 118 119 /// NumberExprAST - Expression class for numeric literals like "1.0". 120 class NumberExprAST : public ExprAST { 121 double Val; 122 public: 123 NumberExprAST(double val) : Val(val) {} 124 virtual Value *Codegen(); 125 }; 126 127 /// VariableExprAST - Expression class for referencing a variable, like "a". 128 class VariableExprAST : public ExprAST { 129 std::string Name; 130 public: 131 VariableExprAST(const std::string &name) : Name(name) {} 132 const std::string &getName() const { return Name; } 133 virtual Value *Codegen(); 134 }; 135 136 /// UnaryExprAST - Expression class for a unary operator. 137 class UnaryExprAST : public ExprAST { 138 char Opcode; 139 ExprAST *Operand; 140 public: 141 UnaryExprAST(char opcode, ExprAST *operand) 142 : Opcode(opcode), Operand(operand) {} 143 virtual Value *Codegen(); 144 }; 145 146 /// BinaryExprAST - Expression class for a binary operator. 147 class BinaryExprAST : public ExprAST { 148 char Op; 149 ExprAST *LHS, *RHS; 150 public: 151 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 152 : Op(op), LHS(lhs), RHS(rhs) {} 153 virtual Value *Codegen(); 154 }; 155 156 /// CallExprAST - Expression class for function calls. 157 class CallExprAST : public ExprAST { 158 std::string Callee; 159 std::vector<ExprAST*> Args; 160 public: 161 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 162 : Callee(callee), Args(args) {} 163 virtual Value *Codegen(); 164 }; 165 166 /// IfExprAST - Expression class for if/then/else. 167 class IfExprAST : public ExprAST { 168 ExprAST *Cond, *Then, *Else; 169 public: 170 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 171 : Cond(cond), Then(then), Else(_else) {} 172 virtual Value *Codegen(); 173 }; 174 175 /// ForExprAST - Expression class for for/in. 176 class ForExprAST : public ExprAST { 177 std::string VarName; 178 ExprAST *Start, *End, *Step, *Body; 179 public: 180 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 181 ExprAST *step, ExprAST *body) 182 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 183 virtual Value *Codegen(); 184 }; 185 186 /// VarExprAST - Expression class for var/in 187 class VarExprAST : public ExprAST { 188 std::vector<std::pair<std::string, ExprAST*> > VarNames; 189 ExprAST *Body; 190 public: 191 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 192 ExprAST *body) 193 : VarNames(varnames), Body(body) {} 194 195 virtual Value *Codegen(); 196 }; 197 198 /// PrototypeAST - This class represents the "prototype" for a function, 199 /// which captures its argument names as well as if it is an operator. 200 class PrototypeAST { 201 std::string Name; 202 std::vector<std::string> Args; 203 bool isOperator; 204 unsigned Precedence; // Precedence if a binary op. 205 public: 206 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 207 bool isoperator = false, unsigned prec = 0) 208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 209 210 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 211 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 212 213 char getOperatorName() const { 214 assert(isUnaryOp() || isBinaryOp()); 215 return Name[Name.size()-1]; 216 } 217 218 unsigned getBinaryPrecedence() const { return Precedence; } 219 220 Function *Codegen(); 221 222 void CreateArgumentAllocas(Function *F); 223 }; 224 225 /// FunctionAST - This class represents a function definition itself. 226 class FunctionAST { 227 PrototypeAST *Proto; 228 ExprAST *Body; 229 public: 230 FunctionAST(PrototypeAST *proto, ExprAST *body) 231 : Proto(proto), Body(body) {} 232 233 Function *Codegen(); 234 }; 235 236 //===----------------------------------------------------------------------===// 237 // Parser 238 //===----------------------------------------------------------------------===// 239 240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 241 /// token the parser is looking at. getNextToken reads another token from the 242 /// lexer and updates CurTok with its results. 243 static int CurTok; 244 static int getNextToken() { 245 return CurTok = gettok(); 246 } 247 248 /// BinopPrecedence - This holds the precedence for each binary operator that is 249 /// defined. 250 static std::map<char, int> BinopPrecedence; 251 252 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 253 static int GetTokPrecedence() { 254 if (!isascii(CurTok)) 255 return -1; 256 257 // Make sure it's a declared binop. 258 int TokPrec = BinopPrecedence[CurTok]; 259 if (TokPrec <= 0) return -1; 260 return TokPrec; 261 } 262 263 /// Error* - These are little helper functions for error handling. 264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 267 268 static ExprAST *ParseExpression(); 269 270 /// identifierexpr 271 /// ::= identifier 272 /// ::= identifier '(' expression* ')' 273 static ExprAST *ParseIdentifierExpr() { 274 std::string IdName = IdentifierStr; 275 276 getNextToken(); // eat identifier. 277 278 if (CurTok != '(') // Simple variable ref. 279 return new VariableExprAST(IdName); 280 281 // Call. 282 getNextToken(); // eat ( 283 std::vector<ExprAST*> Args; 284 if (CurTok != ')') { 285 while (1) { 286 ExprAST *Arg = ParseExpression(); 287 if (!Arg) return 0; 288 Args.push_back(Arg); 289 290 if (CurTok == ')') break; 291 292 if (CurTok != ',') 293 return Error("Expected ')' or ',' in argument list"); 294 getNextToken(); 295 } 296 } 297 298 // Eat the ')'. 299 getNextToken(); 300 301 return new CallExprAST(IdName, Args); 302 } 303 304 /// numberexpr ::= number 305 static ExprAST *ParseNumberExpr() { 306 ExprAST *Result = new NumberExprAST(NumVal); 307 getNextToken(); // consume the number 308 return Result; 309 } 310 311 /// parenexpr ::= '(' expression ')' 312 static ExprAST *ParseParenExpr() { 313 getNextToken(); // eat (. 314 ExprAST *V = ParseExpression(); 315 if (!V) return 0; 316 317 if (CurTok != ')') 318 return Error("expected ')'"); 319 getNextToken(); // eat ). 320 return V; 321 } 322 323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 324 static ExprAST *ParseIfExpr() { 325 getNextToken(); // eat the if. 326 327 // condition. 328 ExprAST *Cond = ParseExpression(); 329 if (!Cond) return 0; 330 331 if (CurTok != tok_then) 332 return Error("expected then"); 333 getNextToken(); // eat the then 334 335 ExprAST *Then = ParseExpression(); 336 if (Then == 0) return 0; 337 338 if (CurTok != tok_else) 339 return Error("expected else"); 340 341 getNextToken(); 342 343 ExprAST *Else = ParseExpression(); 344 if (!Else) return 0; 345 346 return new IfExprAST(Cond, Then, Else); 347 } 348 349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 350 static ExprAST *ParseForExpr() { 351 getNextToken(); // eat the for. 352 353 if (CurTok != tok_identifier) 354 return Error("expected identifier after for"); 355 356 std::string IdName = IdentifierStr; 357 getNextToken(); // eat identifier. 358 359 if (CurTok != '=') 360 return Error("expected '=' after for"); 361 getNextToken(); // eat '='. 362 363 364 ExprAST *Start = ParseExpression(); 365 if (Start == 0) return 0; 366 if (CurTok != ',') 367 return Error("expected ',' after for start value"); 368 getNextToken(); 369 370 ExprAST *End = ParseExpression(); 371 if (End == 0) return 0; 372 373 // The step value is optional. 374 ExprAST *Step = 0; 375 if (CurTok == ',') { 376 getNextToken(); 377 Step = ParseExpression(); 378 if (Step == 0) return 0; 379 } 380 381 if (CurTok != tok_in) 382 return Error("expected 'in' after for"); 383 getNextToken(); // eat 'in'. 384 385 ExprAST *Body = ParseExpression(); 386 if (Body == 0) return 0; 387 388 return new ForExprAST(IdName, Start, End, Step, Body); 389 } 390 391 /// varexpr ::= 'var' identifier ('=' expression)? 392 // (',' identifier ('=' expression)?)* 'in' expression 393 static ExprAST *ParseVarExpr() { 394 getNextToken(); // eat the var. 395 396 std::vector<std::pair<std::string, ExprAST*> > VarNames; 397 398 // At least one variable name is required. 399 if (CurTok != tok_identifier) 400 return Error("expected identifier after var"); 401 402 while (1) { 403 std::string Name = IdentifierStr; 404 getNextToken(); // eat identifier. 405 406 // Read the optional initializer. 407 ExprAST *Init = 0; 408 if (CurTok == '=') { 409 getNextToken(); // eat the '='. 410 411 Init = ParseExpression(); 412 if (Init == 0) return 0; 413 } 414 415 VarNames.push_back(std::make_pair(Name, Init)); 416 417 // End of var list, exit loop. 418 if (CurTok != ',') break; 419 getNextToken(); // eat the ','. 420 421 if (CurTok != tok_identifier) 422 return Error("expected identifier list after var"); 423 } 424 425 // At this point, we have to have 'in'. 426 if (CurTok != tok_in) 427 return Error("expected 'in' keyword after 'var'"); 428 getNextToken(); // eat 'in'. 429 430 ExprAST *Body = ParseExpression(); 431 if (Body == 0) return 0; 432 433 return new VarExprAST(VarNames, Body); 434 } 435 436 /// primary 437 /// ::= identifierexpr 438 /// ::= numberexpr 439 /// ::= parenexpr 440 /// ::= ifexpr 441 /// ::= forexpr 442 /// ::= varexpr 443 static ExprAST *ParsePrimary() { 444 switch (CurTok) { 445 default: return Error("unknown token when expecting an expression"); 446 case tok_identifier: return ParseIdentifierExpr(); 447 case tok_number: return ParseNumberExpr(); 448 case '(': return ParseParenExpr(); 449 case tok_if: return ParseIfExpr(); 450 case tok_for: return ParseForExpr(); 451 case tok_var: return ParseVarExpr(); 452 } 453 } 454 455 /// unary 456 /// ::= primary 457 /// ::= '!' unary 458 static ExprAST *ParseUnary() { 459 // If the current token is not an operator, it must be a primary expr. 460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 461 return ParsePrimary(); 462 463 // If this is a unary operator, read it. 464 int Opc = CurTok; 465 getNextToken(); 466 if (ExprAST *Operand = ParseUnary()) 467 return new UnaryExprAST(Opc, Operand); 468 return 0; 469 } 470 471 /// binoprhs 472 /// ::= ('+' unary)* 473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 474 // If this is a binop, find its precedence. 475 while (1) { 476 int TokPrec = GetTokPrecedence(); 477 478 // If this is a binop that binds at least as tightly as the current binop, 479 // consume it, otherwise we are done. 480 if (TokPrec < ExprPrec) 481 return LHS; 482 483 // Okay, we know this is a binop. 484 int BinOp = CurTok; 485 getNextToken(); // eat binop 486 487 // Parse the unary expression after the binary operator. 488 ExprAST *RHS = ParseUnary(); 489 if (!RHS) return 0; 490 491 // If BinOp binds less tightly with RHS than the operator after RHS, let 492 // the pending operator take RHS as its LHS. 493 int NextPrec = GetTokPrecedence(); 494 if (TokPrec < NextPrec) { 495 RHS = ParseBinOpRHS(TokPrec+1, RHS); 496 if (RHS == 0) return 0; 497 } 498 499 // Merge LHS/RHS. 500 LHS = new BinaryExprAST(BinOp, LHS, RHS); 501 } 502 } 503 504 /// expression 505 /// ::= unary binoprhs 506 /// 507 static ExprAST *ParseExpression() { 508 ExprAST *LHS = ParseUnary(); 509 if (!LHS) return 0; 510 511 return ParseBinOpRHS(0, LHS); 512 } 513 514 /// prototype 515 /// ::= id '(' id* ')' 516 /// ::= binary LETTER number? (id, id) 517 /// ::= unary LETTER (id) 518 static PrototypeAST *ParsePrototype() { 519 std::string FnName; 520 521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 522 unsigned BinaryPrecedence = 30; 523 524 switch (CurTok) { 525 default: 526 return ErrorP("Expected function name in prototype"); 527 case tok_identifier: 528 FnName = IdentifierStr; 529 Kind = 0; 530 getNextToken(); 531 break; 532 case tok_unary: 533 getNextToken(); 534 if (!isascii(CurTok)) 535 return ErrorP("Expected unary operator"); 536 FnName = "unary"; 537 FnName += (char)CurTok; 538 Kind = 1; 539 getNextToken(); 540 break; 541 case tok_binary: 542 getNextToken(); 543 if (!isascii(CurTok)) 544 return ErrorP("Expected binary operator"); 545 FnName = "binary"; 546 FnName += (char)CurTok; 547 Kind = 2; 548 getNextToken(); 549 550 // Read the precedence if present. 551 if (CurTok == tok_number) { 552 if (NumVal < 1 || NumVal > 100) 553 return ErrorP("Invalid precedecnce: must be 1..100"); 554 BinaryPrecedence = (unsigned)NumVal; 555 getNextToken(); 556 } 557 break; 558 } 559 560 if (CurTok != '(') 561 return ErrorP("Expected '(' in prototype"); 562 563 std::vector<std::string> ArgNames; 564 while (getNextToken() == tok_identifier) 565 ArgNames.push_back(IdentifierStr); 566 if (CurTok != ')') 567 return ErrorP("Expected ')' in prototype"); 568 569 // success. 570 getNextToken(); // eat ')'. 571 572 // Verify right number of names for operator. 573 if (Kind && ArgNames.size() != Kind) 574 return ErrorP("Invalid number of operands for operator"); 575 576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 577 } 578 579 /// definition ::= 'def' prototype expression 580 static FunctionAST *ParseDefinition() { 581 getNextToken(); // eat def. 582 PrototypeAST *Proto = ParsePrototype(); 583 if (Proto == 0) return 0; 584 585 if (ExprAST *E = ParseExpression()) 586 return new FunctionAST(Proto, E); 587 return 0; 588 } 589 590 /// toplevelexpr ::= expression 591 static FunctionAST *ParseTopLevelExpr() { 592 if (ExprAST *E = ParseExpression()) { 593 // Make an anonymous proto. 594 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 595 return new FunctionAST(Proto, E); 596 } 597 return 0; 598 } 599 600 /// external ::= 'extern' prototype 601 static PrototypeAST *ParseExtern() { 602 getNextToken(); // eat extern. 603 return ParsePrototype(); 604 } 605 606 //===----------------------------------------------------------------------===// 607 // Code Generation 608 //===----------------------------------------------------------------------===// 609 610 static Module *TheModule; 611 static FunctionPassManager *TheFPM; 612 static IRBuilder<> Builder(getGlobalContext()); 613 static std::map<std::string, AllocaInst*> NamedValues; 614 615 Value *ErrorV(const char *Str) { Error(Str); return 0; } 616 617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 618 /// the function. This is used for mutable variables etc. 619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 620 const std::string &VarName) { 621 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 622 TheFunction->getEntryBlock().begin()); 623 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, 624 VarName.c_str()); 625 } 626 627 Value *NumberExprAST::Codegen() { 628 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 629 } 630 631 Value *VariableExprAST::Codegen() { 632 // Look this variable up in the function. 633 Value *V = NamedValues[Name]; 634 if (V == 0) return ErrorV("Unknown variable name"); 635 636 // Load the value. 637 return Builder.CreateLoad(V, Name.c_str()); 638 } 639 640 Value *UnaryExprAST::Codegen() { 641 Value *OperandV = Operand->Codegen(); 642 if (OperandV == 0) return 0; 643 #ifdef USE_MCJIT 644 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 645 #else 646 Function *F = TheModule->getFunction(std::string("unary")+Opcode); 647 #endif 648 if (F == 0) 649 return ErrorV("Unknown unary operator"); 650 651 return Builder.CreateCall(F, OperandV, "unop"); 652 } 653 654 Value *BinaryExprAST::Codegen() { 655 // Special case '=' because we don't want to emit the LHS as an expression. 656 if (Op == '=') { 657 // Assignment requires the LHS to be an identifier. 658 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); 659 if (!LHSE) 660 return ErrorV("destination of '=' must be a variable"); 661 // Codegen the RHS. 662 Value *Val = RHS->Codegen(); 663 if (Val == 0) return 0; 664 665 // Look up the name. 666 Value *Variable = NamedValues[LHSE->getName()]; 667 if (Variable == 0) return ErrorV("Unknown variable name"); 668 669 Builder.CreateStore(Val, Variable); 670 return Val; 671 } 672 673 Value *L = LHS->Codegen(); 674 Value *R = RHS->Codegen(); 675 if (L == 0 || R == 0) return 0; 676 677 switch (Op) { 678 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 679 case '-': return Builder.CreateFSub(L, R, "subtmp"); 680 case '*': return Builder.CreateFMul(L, R, "multmp"); 681 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 682 case '<': 683 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 684 // Convert bool 0/1 to double 0.0 or 1.0 685 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 686 "booltmp"); 687 default: break; 688 } 689 690 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 691 // a call to it. 692 Function *F = TheModule->getFunction(std::string("binary")+Op); 693 assert(F && "binary operator not found!"); 694 695 Value *Ops[] = { L, R }; 696 return Builder.CreateCall(F, Ops, "binop"); 697 } 698 699 Value *CallExprAST::Codegen() { 700 // Look up the name in the global module table. 701 Function *CalleeF = TheModule->getFunction(Callee); 702 if (CalleeF == 0) { 703 char error_str[64]; 704 sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); 705 return ErrorV(error_str); 706 } 707 708 // If argument mismatch error. 709 if (CalleeF->arg_size() != Args.size()) 710 return ErrorV("Incorrect # arguments passed"); 711 712 std::vector<Value*> ArgsV; 713 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 714 ArgsV.push_back(Args[i]->Codegen()); 715 if (ArgsV.back() == 0) return 0; 716 } 717 718 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 719 } 720 721 Value *IfExprAST::Codegen() { 722 Value *CondV = Cond->Codegen(); 723 if (CondV == 0) return 0; 724 725 // Convert condition to a bool by comparing equal to 0.0. 726 CondV = Builder.CreateFCmpONE(CondV, 727 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 728 "ifcond"); 729 730 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 731 732 // Create blocks for the then and else cases. Insert the 'then' block at the 733 // end of the function. 734 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 735 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 736 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 737 738 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 739 740 // Emit then value. 741 Builder.SetInsertPoint(ThenBB); 742 743 Value *ThenV = Then->Codegen(); 744 if (ThenV == 0) return 0; 745 746 Builder.CreateBr(MergeBB); 747 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 748 ThenBB = Builder.GetInsertBlock(); 749 750 // Emit else block. 751 TheFunction->getBasicBlockList().push_back(ElseBB); 752 Builder.SetInsertPoint(ElseBB); 753 754 Value *ElseV = Else->Codegen(); 755 if (ElseV == 0) return 0; 756 757 Builder.CreateBr(MergeBB); 758 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 759 ElseBB = Builder.GetInsertBlock(); 760 761 // Emit merge block. 762 TheFunction->getBasicBlockList().push_back(MergeBB); 763 Builder.SetInsertPoint(MergeBB); 764 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 765 "iftmp"); 766 767 PN->addIncoming(ThenV, ThenBB); 768 PN->addIncoming(ElseV, ElseBB); 769 return PN; 770 } 771 772 Value *ForExprAST::Codegen() { 773 // Output this as: 774 // var = alloca double 775 // ... 776 // start = startexpr 777 // store start -> var 778 // goto loop 779 // loop: 780 // ... 781 // bodyexpr 782 // ... 783 // loopend: 784 // step = stepexpr 785 // endcond = endexpr 786 // 787 // curvar = load var 788 // nextvar = curvar + step 789 // store nextvar -> var 790 // br endcond, loop, endloop 791 // outloop: 792 793 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 794 795 // Create an alloca for the variable in the entry block. 796 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 797 798 // Emit the start code first, without 'variable' in scope. 799 Value *StartVal = Start->Codegen(); 800 if (StartVal == 0) return 0; 801 802 // Store the value into the alloca. 803 Builder.CreateStore(StartVal, Alloca); 804 805 // Make the new basic block for the loop header, inserting after current 806 // block. 807 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 808 809 // Insert an explicit fall through from the current block to the LoopBB. 810 Builder.CreateBr(LoopBB); 811 812 // Start insertion in LoopBB. 813 Builder.SetInsertPoint(LoopBB); 814 815 // Within the loop, the variable is defined equal to the PHI node. If it 816 // shadows an existing variable, we have to restore it, so save it now. 817 AllocaInst *OldVal = NamedValues[VarName]; 818 NamedValues[VarName] = Alloca; 819 820 // Emit the body of the loop. This, like any other expr, can change the 821 // current BB. Note that we ignore the value computed by the body, but don't 822 // allow an error. 823 if (Body->Codegen() == 0) 824 return 0; 825 826 // Emit the step value. 827 Value *StepVal; 828 if (Step) { 829 StepVal = Step->Codegen(); 830 if (StepVal == 0) return 0; 831 } else { 832 // If not specified, use 1.0. 833 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 834 } 835 836 // Compute the end condition. 837 Value *EndCond = End->Codegen(); 838 if (EndCond == 0) return EndCond; 839 840 // Reload, increment, and restore the alloca. This handles the case where 841 // the body of the loop mutates the variable. 842 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 843 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 844 Builder.CreateStore(NextVar, Alloca); 845 846 // Convert condition to a bool by comparing equal to 0.0. 847 EndCond = Builder.CreateFCmpONE(EndCond, 848 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 849 "loopcond"); 850 851 // Create the "after loop" block and insert it. 852 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 853 854 // Insert the conditional branch into the end of LoopEndBB. 855 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 856 857 // Any new code will be inserted in AfterBB. 858 Builder.SetInsertPoint(AfterBB); 859 860 // Restore the unshadowed variable. 861 if (OldVal) 862 NamedValues[VarName] = OldVal; 863 else 864 NamedValues.erase(VarName); 865 866 867 // for expr always returns 0.0. 868 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 869 } 870 871 Value *VarExprAST::Codegen() { 872 std::vector<AllocaInst *> OldBindings; 873 874 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 875 876 // Register all variables and emit their initializer. 877 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 878 const std::string &VarName = VarNames[i].first; 879 ExprAST *Init = VarNames[i].second; 880 881 // Emit the initializer before adding the variable to scope, this prevents 882 // the initializer from referencing the variable itself, and permits stuff 883 // like this: 884 // var a = 1 in 885 // var a = a in ... # refers to outer 'a'. 886 Value *InitVal; 887 if (Init) { 888 InitVal = Init->Codegen(); 889 if (InitVal == 0) return 0; 890 } else { // If not specified, use 0.0. 891 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); 892 } 893 894 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 895 Builder.CreateStore(InitVal, Alloca); 896 897 // Remember the old variable binding so that we can restore the binding when 898 // we unrecurse. 899 OldBindings.push_back(NamedValues[VarName]); 900 901 // Remember this binding. 902 NamedValues[VarName] = Alloca; 903 } 904 905 // Codegen the body, now that all vars are in scope. 906 Value *BodyVal = Body->Codegen(); 907 if (BodyVal == 0) return 0; 908 909 // Pop all our variables from scope. 910 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 911 NamedValues[VarNames[i].first] = OldBindings[i]; 912 913 // Return the body computation. 914 return BodyVal; 915 } 916 917 Function *PrototypeAST::Codegen() { 918 // Make the function type: double(double,double) etc. 919 std::vector<Type*> Doubles(Args.size(), 920 Type::getDoubleTy(getGlobalContext())); 921 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 922 Doubles, false); 923 924 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 925 // If F conflicted, there was already something named 'Name'. If it has a 926 // body, don't allow redefinition or reextern. 927 if (F->getName() != Name) { 928 // Delete the one we just made and get the existing one. 929 F->eraseFromParent(); 930 F = TheModule->getFunction(Name); 931 // If F already has a body, reject this. 932 if (!F->empty()) { 933 ErrorF("redefinition of function"); 934 return 0; 935 } 936 // If F took a different number of args, reject. 937 if (F->arg_size() != Args.size()) { 938 ErrorF("redefinition of function with different # args"); 939 return 0; 940 } 941 } 942 943 // Set names for all arguments. 944 unsigned Idx = 0; 945 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 946 ++AI, ++Idx) 947 AI->setName(Args[Idx]); 948 949 return F; 950 } 951 952 /// CreateArgumentAllocas - Create an alloca for each argument and register the 953 /// argument in the symbol table so that references to it will succeed. 954 void PrototypeAST::CreateArgumentAllocas(Function *F) { 955 Function::arg_iterator AI = F->arg_begin(); 956 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 957 // Create an alloca for this variable. 958 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 959 960 // Store the initial value into the alloca. 961 Builder.CreateStore(AI, Alloca); 962 963 // Add arguments to variable symbol table. 964 NamedValues[Args[Idx]] = Alloca; 965 } 966 } 967 968 Function *FunctionAST::Codegen() { 969 NamedValues.clear(); 970 971 Function *TheFunction = Proto->Codegen(); 972 if (TheFunction == 0) 973 return 0; 974 975 // If this is an operator, install it. 976 if (Proto->isBinaryOp()) 977 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 978 979 // Create a new basic block to start insertion into. 980 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 981 Builder.SetInsertPoint(BB); 982 983 // Add all arguments to the symbol table and create their allocas. 984 Proto->CreateArgumentAllocas(TheFunction); 985 986 if (Value *RetVal = Body->Codegen()) { 987 // Finish off the function. 988 Builder.CreateRet(RetVal); 989 990 // Validate the generated code, checking for consistency. 991 verifyFunction(*TheFunction); 992 993 // Optimize the function. 994 TheFPM->run(*TheFunction); 995 996 return TheFunction; 997 } 998 999 // Error reading body, remove function. 1000 TheFunction->eraseFromParent(); 1001 1002 if (Proto->isBinaryOp()) 1003 BinopPrecedence.erase(Proto->getOperatorName()); 1004 return 0; 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Top-Level parsing and JIT Driver 1009 //===----------------------------------------------------------------------===// 1010 1011 static ExecutionEngine *TheExecutionEngine; 1012 1013 static void HandleDefinition() { 1014 if (FunctionAST *F = ParseDefinition()) { 1015 if (Function *LF = F->Codegen()) { 1016 #ifndef MINIMAL_STDERR_OUTPUT 1017 fprintf(stderr, "Read function definition:"); 1018 LF->dump(); 1019 #endif 1020 } 1021 } else { 1022 // Skip token for error recovery. 1023 getNextToken(); 1024 } 1025 } 1026 1027 static void HandleExtern() { 1028 if (PrototypeAST *P = ParseExtern()) { 1029 if (Function *F = P->Codegen()) { 1030 #ifndef MINIMAL_STDERR_OUTPUT 1031 fprintf(stderr, "Read extern: "); 1032 F->dump(); 1033 #endif 1034 } 1035 } else { 1036 // Skip token for error recovery. 1037 getNextToken(); 1038 } 1039 } 1040 1041 static void HandleTopLevelExpression() { 1042 // Evaluate a top-level expression into an anonymous function. 1043 if (FunctionAST *F = ParseTopLevelExpr()) { 1044 if (Function *LF = F->Codegen()) { 1045 // JIT the function, returning a function pointer. 1046 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 1047 // Cast it to the right type (takes no arguments, returns a double) so we 1048 // can call it as a native function. 1049 double (*FP)() = (double (*)())(intptr_t)FPtr; 1050 #ifdef MINIMAL_STDERR_OUTPUT 1051 FP(); 1052 #else 1053 fprintf(stderr, "Evaluated to %f\n", FP()); 1054 #endif 1055 } 1056 } else { 1057 // Skip token for error recovery. 1058 getNextToken(); 1059 } 1060 } 1061 1062 /// top ::= definition | external | expression | ';' 1063 static void MainLoop() { 1064 while (1) { 1065 #ifndef MINIMAL_STDERR_OUTPUT 1066 fprintf(stderr, "ready> "); 1067 #endif 1068 switch (CurTok) { 1069 case tok_eof: return; 1070 case ';': getNextToken(); break; // ignore top-level semicolons. 1071 case tok_def: HandleDefinition(); break; 1072 case tok_extern: HandleExtern(); break; 1073 default: HandleTopLevelExpression(); break; 1074 } 1075 } 1076 } 1077 1078 //===----------------------------------------------------------------------===// 1079 // "Library" functions that can be "extern'd" from user code. 1080 //===----------------------------------------------------------------------===// 1081 1082 /// putchard - putchar that takes a double and returns 0. 1083 extern "C" 1084 double putchard(double X) { 1085 putchar((char)X); 1086 return 0; 1087 } 1088 1089 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1090 extern "C" 1091 double printd(double X) { 1092 printf("%f", X); 1093 return 0; 1094 } 1095 1096 extern "C" 1097 double printlf() { 1098 printf("\n"); 1099 return 0; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Main driver code. 1104 //===----------------------------------------------------------------------===// 1105 1106 int main(int argc, char **argv) { 1107 InitializeNativeTarget(); 1108 LLVMContext &Context = getGlobalContext(); 1109 1110 // Install standard binary operators. 1111 // 1 is lowest precedence. 1112 BinopPrecedence['='] = 2; 1113 BinopPrecedence['<'] = 10; 1114 BinopPrecedence['+'] = 20; 1115 BinopPrecedence['-'] = 20; 1116 BinopPrecedence['/'] = 40; 1117 BinopPrecedence['*'] = 40; // highest. 1118 1119 // Make the module, which holds all the code. 1120 TheModule = new Module("my cool jit", Context); 1121 1122 // Create the JIT. This takes ownership of the module. 1123 std::string ErrStr; 1124 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 1125 if (!TheExecutionEngine) { 1126 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 1127 exit(1); 1128 } 1129 1130 FunctionPassManager OurFPM(TheModule); 1131 1132 // Set up the optimizer pipeline. Start with registering info about how the 1133 // target lays out data structures. 1134 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); 1135 // Provide basic AliasAnalysis support for GVN. 1136 OurFPM.add(createBasicAliasAnalysisPass()); 1137 // Promote allocas to registers. 1138 OurFPM.add(createPromoteMemoryToRegisterPass()); 1139 // Do simple "peephole" optimizations and bit-twiddling optzns. 1140 OurFPM.add(createInstructionCombiningPass()); 1141 // Reassociate expressions. 1142 OurFPM.add(createReassociatePass()); 1143 // Eliminate Common SubExpressions. 1144 OurFPM.add(createGVNPass()); 1145 // Simplify the control flow graph (deleting unreachable blocks, etc). 1146 OurFPM.add(createCFGSimplificationPass()); 1147 1148 OurFPM.doInitialization(); 1149 1150 // Set the global so the code gen can use this. 1151 TheFPM = &OurFPM; 1152 1153 // Prime the first token. 1154 #ifndef MINIMAL_STDERR_OUTPUT 1155 fprintf(stderr, "ready> "); 1156 #endif 1157 getNextToken(); 1158 1159 // Run the main "interpreter loop" now. 1160 MainLoop(); 1161 1162 // Print out all of the generated code. 1163 TheFPM = 0; 1164 #ifndef MINIMAL_STDERR_OUTPUT 1165 TheModule->dump(); 1166 #endif 1167 return 0; 1168 } 1169