Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains support for DWARF4 hashing of DIEs.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ByteStreamer.h"
     15 #include "DIEHash.h"
     16 #include "DIE.h"
     17 #include "DwarfDebug.h"
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/CodeGen/AsmPrinter.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/Dwarf.h"
     23 #include "llvm/Support/Endian.h"
     24 #include "llvm/Support/MD5.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "dwarfdebug"
     30 
     31 /// \brief Grabs the string in whichever attribute is passed in and returns
     32 /// a reference to it.
     33 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
     34   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
     35   const DIEAbbrev &Abbrevs = Die.getAbbrev();
     36 
     37   // Iterate through all the attributes until we find the one we're
     38   // looking for, if we can't find it return an empty string.
     39   for (size_t i = 0; i < Values.size(); ++i) {
     40     if (Abbrevs.getData()[i].getAttribute() == Attr) {
     41       DIEValue *V = Values[i];
     42       assert(isa<DIEString>(V) && "String requested. Not a string.");
     43       DIEString *S = cast<DIEString>(V);
     44       return S->getString();
     45     }
     46   }
     47   return StringRef("");
     48 }
     49 
     50 /// \brief Adds the string in \p Str to the hash. This also hashes
     51 /// a trailing NULL with the string.
     52 void DIEHash::addString(StringRef Str) {
     53   DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
     54   Hash.update(Str);
     55   Hash.update(makeArrayRef((uint8_t)'\0'));
     56 }
     57 
     58 // FIXME: The LEB128 routines are copied and only slightly modified out of
     59 // LEB128.h.
     60 
     61 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
     62 void DIEHash::addULEB128(uint64_t Value) {
     63   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
     64   do {
     65     uint8_t Byte = Value & 0x7f;
     66     Value >>= 7;
     67     if (Value != 0)
     68       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
     69     Hash.update(Byte);
     70   } while (Value != 0);
     71 }
     72 
     73 void DIEHash::addSLEB128(int64_t Value) {
     74   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
     75   bool More;
     76   do {
     77     uint8_t Byte = Value & 0x7f;
     78     Value >>= 7;
     79     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
     80               ((Value == -1) && ((Byte & 0x40) != 0))));
     81     if (More)
     82       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
     83     Hash.update(Byte);
     84   } while (More);
     85 }
     86 
     87 /// \brief Including \p Parent adds the context of Parent to the hash..
     88 void DIEHash::addParentContext(const DIE &Parent) {
     89 
     90   DEBUG(dbgs() << "Adding parent context to hash...\n");
     91 
     92   // [7.27.2] For each surrounding type or namespace beginning with the
     93   // outermost such construct...
     94   SmallVector<const DIE *, 1> Parents;
     95   const DIE *Cur = &Parent;
     96   while (Cur->getParent()) {
     97     Parents.push_back(Cur);
     98     Cur = Cur->getParent();
     99   }
    100   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
    101          Cur->getTag() == dwarf::DW_TAG_type_unit);
    102 
    103   // Reverse iterate over our list to go from the outermost construct to the
    104   // innermost.
    105   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
    106                                                       E = Parents.rend();
    107        I != E; ++I) {
    108     const DIE &Die = **I;
    109 
    110     // ... Append the letter "C" to the sequence...
    111     addULEB128('C');
    112 
    113     // ... Followed by the DWARF tag of the construct...
    114     addULEB128(Die.getTag());
    115 
    116     // ... Then the name, taken from the DW_AT_name attribute.
    117     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
    118     DEBUG(dbgs() << "... adding context: " << Name << "\n");
    119     if (!Name.empty())
    120       addString(Name);
    121   }
    122 }
    123 
    124 // Collect all of the attributes for a particular DIE in single structure.
    125 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
    126   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
    127   const DIEAbbrev &Abbrevs = Die.getAbbrev();
    128 
    129 #define COLLECT_ATTR(NAME)                                                     \
    130   case dwarf::NAME:                                                            \
    131     Attrs.NAME.Val = Values[i];                                                \
    132     Attrs.NAME.Desc = &Abbrevs.getData()[i];                                   \
    133     break
    134 
    135   for (size_t i = 0, e = Values.size(); i != e; ++i) {
    136     DEBUG(dbgs() << "Attribute: "
    137                  << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
    138                  << " added.\n");
    139     switch (Abbrevs.getData()[i].getAttribute()) {
    140       COLLECT_ATTR(DW_AT_name);
    141       COLLECT_ATTR(DW_AT_accessibility);
    142       COLLECT_ATTR(DW_AT_address_class);
    143       COLLECT_ATTR(DW_AT_allocated);
    144       COLLECT_ATTR(DW_AT_artificial);
    145       COLLECT_ATTR(DW_AT_associated);
    146       COLLECT_ATTR(DW_AT_binary_scale);
    147       COLLECT_ATTR(DW_AT_bit_offset);
    148       COLLECT_ATTR(DW_AT_bit_size);
    149       COLLECT_ATTR(DW_AT_bit_stride);
    150       COLLECT_ATTR(DW_AT_byte_size);
    151       COLLECT_ATTR(DW_AT_byte_stride);
    152       COLLECT_ATTR(DW_AT_const_expr);
    153       COLLECT_ATTR(DW_AT_const_value);
    154       COLLECT_ATTR(DW_AT_containing_type);
    155       COLLECT_ATTR(DW_AT_count);
    156       COLLECT_ATTR(DW_AT_data_bit_offset);
    157       COLLECT_ATTR(DW_AT_data_location);
    158       COLLECT_ATTR(DW_AT_data_member_location);
    159       COLLECT_ATTR(DW_AT_decimal_scale);
    160       COLLECT_ATTR(DW_AT_decimal_sign);
    161       COLLECT_ATTR(DW_AT_default_value);
    162       COLLECT_ATTR(DW_AT_digit_count);
    163       COLLECT_ATTR(DW_AT_discr);
    164       COLLECT_ATTR(DW_AT_discr_list);
    165       COLLECT_ATTR(DW_AT_discr_value);
    166       COLLECT_ATTR(DW_AT_encoding);
    167       COLLECT_ATTR(DW_AT_enum_class);
    168       COLLECT_ATTR(DW_AT_endianity);
    169       COLLECT_ATTR(DW_AT_explicit);
    170       COLLECT_ATTR(DW_AT_is_optional);
    171       COLLECT_ATTR(DW_AT_location);
    172       COLLECT_ATTR(DW_AT_lower_bound);
    173       COLLECT_ATTR(DW_AT_mutable);
    174       COLLECT_ATTR(DW_AT_ordering);
    175       COLLECT_ATTR(DW_AT_picture_string);
    176       COLLECT_ATTR(DW_AT_prototyped);
    177       COLLECT_ATTR(DW_AT_small);
    178       COLLECT_ATTR(DW_AT_segment);
    179       COLLECT_ATTR(DW_AT_string_length);
    180       COLLECT_ATTR(DW_AT_threads_scaled);
    181       COLLECT_ATTR(DW_AT_upper_bound);
    182       COLLECT_ATTR(DW_AT_use_location);
    183       COLLECT_ATTR(DW_AT_use_UTF8);
    184       COLLECT_ATTR(DW_AT_variable_parameter);
    185       COLLECT_ATTR(DW_AT_virtuality);
    186       COLLECT_ATTR(DW_AT_visibility);
    187       COLLECT_ATTR(DW_AT_vtable_elem_location);
    188       COLLECT_ATTR(DW_AT_type);
    189     default:
    190       break;
    191     }
    192   }
    193 }
    194 
    195 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
    196                                        const DIE &Entry, StringRef Name) {
    197   // append the letter 'N'
    198   addULEB128('N');
    199 
    200   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
    201   addULEB128(Attribute);
    202 
    203   // the context of the tag,
    204   if (const DIE *Parent = Entry.getParent())
    205     addParentContext(*Parent);
    206 
    207   // the letter 'E',
    208   addULEB128('E');
    209 
    210   // and the name of the type.
    211   addString(Name);
    212 
    213   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
    214   // here's the relevant spec text to implement:
    215   //
    216   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
    217   // the context is omitted and the name to be used is the ABI-specific name
    218   // of the subprogram (e.g., the mangled linker name).
    219 }
    220 
    221 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
    222                                         unsigned DieNumber) {
    223   // a) If T is in the list of [previously hashed types], use the letter
    224   // 'R' as the marker
    225   addULEB128('R');
    226 
    227   addULEB128(Attribute);
    228 
    229   // and use the unsigned LEB128 encoding of [the index of T in the
    230   // list] as the attribute value;
    231   addULEB128(DieNumber);
    232 }
    233 
    234 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
    235                            const DIE &Entry) {
    236   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
    237                                         "tags. Add support here when there's "
    238                                         "a use case");
    239   // Step 5
    240   // If the tag in Step 3 is one of [the below tags]
    241   if ((Tag == dwarf::DW_TAG_pointer_type ||
    242        Tag == dwarf::DW_TAG_reference_type ||
    243        Tag == dwarf::DW_TAG_rvalue_reference_type ||
    244        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
    245       // and the referenced type (via the [below attributes])
    246       // FIXME: This seems overly restrictive, and causes hash mismatches
    247       // there's a decl/def difference in the containing type of a
    248       // ptr_to_member_type, but it's what DWARF says, for some reason.
    249       Attribute == dwarf::DW_AT_type) {
    250     // ... has a DW_AT_name attribute,
    251     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
    252     if (!Name.empty()) {
    253       hashShallowTypeReference(Attribute, Entry, Name);
    254       return;
    255     }
    256   }
    257 
    258   unsigned &DieNumber = Numbering[&Entry];
    259   if (DieNumber) {
    260     hashRepeatedTypeReference(Attribute, DieNumber);
    261     return;
    262   }
    263 
    264   // otherwise, b) use the letter 'T' as a the marker, ...
    265   addULEB128('T');
    266 
    267   addULEB128(Attribute);
    268 
    269   // ... process the type T recursively by performing Steps 2 through 7, and
    270   // use the result as the attribute value.
    271   DieNumber = Numbering.size();
    272   computeHash(Entry);
    273 }
    274 
    275 // Hash all of the values in a block like set of values. This assumes that
    276 // all of the data is going to be added as integers.
    277 void DIEHash::hashBlockData(const SmallVectorImpl<DIEValue *> &Values) {
    278   for (SmallVectorImpl<DIEValue *>::const_iterator I = Values.begin(),
    279                                                    E = Values.end();
    280        I != E; ++I)
    281     Hash.update((uint64_t)cast<DIEInteger>(*I)->getValue());
    282 }
    283 
    284 // Hash the contents of a loclistptr class.
    285 void DIEHash::hashLocList(const DIELocList &LocList) {
    286   HashingByteStreamer Streamer(*this);
    287   DwarfDebug &DD = *AP->getDwarfDebug();
    288   for (const auto &Entry :
    289        DD.getDebugLocEntries()[LocList.getValue()].List)
    290     DD.emitDebugLocEntry(Streamer, Entry);
    291 }
    292 
    293 // Hash an individual attribute \param Attr based on the type of attribute and
    294 // the form.
    295 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
    296   const DIEValue *Value = Attr.Val;
    297   const DIEAbbrevData *Desc = Attr.Desc;
    298   dwarf::Attribute Attribute = Desc->getAttribute();
    299 
    300   // Other attribute values use the letter 'A' as the marker, and the value
    301   // consists of the form code (encoded as an unsigned LEB128 value) followed by
    302   // the encoding of the value according to the form code. To ensure
    303   // reproducibility of the signature, the set of forms used in the signature
    304   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
    305   // DW_FORM_string, and DW_FORM_block.
    306 
    307   switch (Value->getType()) {
    308     // 7.27 Step 3
    309     // ... An attribute that refers to another type entry T is processed as
    310     // follows:
    311   case DIEValue::isEntry:
    312     hashDIEEntry(Attribute, Tag, cast<DIEEntry>(Value)->getEntry());
    313     break;
    314   case DIEValue::isInteger: {
    315     addULEB128('A');
    316     addULEB128(Attribute);
    317     switch (Desc->getForm()) {
    318     case dwarf::DW_FORM_data1:
    319     case dwarf::DW_FORM_data2:
    320     case dwarf::DW_FORM_data4:
    321     case dwarf::DW_FORM_data8:
    322     case dwarf::DW_FORM_udata:
    323     case dwarf::DW_FORM_sdata:
    324       addULEB128(dwarf::DW_FORM_sdata);
    325       addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
    326       break;
    327     // DW_FORM_flag_present is just flag with a value of one. We still give it a
    328     // value so just use the value.
    329     case dwarf::DW_FORM_flag_present:
    330     case dwarf::DW_FORM_flag:
    331       addULEB128(dwarf::DW_FORM_flag);
    332       addULEB128((int64_t)cast<DIEInteger>(Value)->getValue());
    333       break;
    334     default:
    335       llvm_unreachable("Unknown integer form!");
    336     }
    337     break;
    338   }
    339   case DIEValue::isString:
    340     addULEB128('A');
    341     addULEB128(Attribute);
    342     addULEB128(dwarf::DW_FORM_string);
    343     addString(cast<DIEString>(Value)->getString());
    344     break;
    345   case DIEValue::isBlock:
    346   case DIEValue::isLoc:
    347   case DIEValue::isLocList:
    348     addULEB128('A');
    349     addULEB128(Attribute);
    350     addULEB128(dwarf::DW_FORM_block);
    351     if (isa<DIEBlock>(Value)) {
    352       addULEB128(cast<DIEBlock>(Value)->ComputeSize(AP));
    353       hashBlockData(cast<DIEBlock>(Value)->getValues());
    354     } else if (isa<DIELoc>(Value)) {
    355       addULEB128(cast<DIELoc>(Value)->ComputeSize(AP));
    356       hashBlockData(cast<DIELoc>(Value)->getValues());
    357     } else {
    358       // We could add the block length, but that would take
    359       // a bit of work and not add a lot of uniqueness
    360       // to the hash in some way we could test.
    361       hashLocList(*cast<DIELocList>(Value));
    362     }
    363     break;
    364     // FIXME: It's uncertain whether or not we should handle this at the moment.
    365   case DIEValue::isExpr:
    366   case DIEValue::isLabel:
    367   case DIEValue::isDelta:
    368   case DIEValue::isTypeSignature:
    369     llvm_unreachable("Add support for additional value types.");
    370   }
    371 }
    372 
    373 // Go through the attributes from \param Attrs in the order specified in 7.27.4
    374 // and hash them.
    375 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
    376 #define ADD_ATTR(ATTR)                                                         \
    377   {                                                                            \
    378     if (ATTR.Val != 0)                                                         \
    379       hashAttribute(ATTR, Tag);                                                \
    380   }
    381 
    382   ADD_ATTR(Attrs.DW_AT_name);
    383   ADD_ATTR(Attrs.DW_AT_accessibility);
    384   ADD_ATTR(Attrs.DW_AT_address_class);
    385   ADD_ATTR(Attrs.DW_AT_allocated);
    386   ADD_ATTR(Attrs.DW_AT_artificial);
    387   ADD_ATTR(Attrs.DW_AT_associated);
    388   ADD_ATTR(Attrs.DW_AT_binary_scale);
    389   ADD_ATTR(Attrs.DW_AT_bit_offset);
    390   ADD_ATTR(Attrs.DW_AT_bit_size);
    391   ADD_ATTR(Attrs.DW_AT_bit_stride);
    392   ADD_ATTR(Attrs.DW_AT_byte_size);
    393   ADD_ATTR(Attrs.DW_AT_byte_stride);
    394   ADD_ATTR(Attrs.DW_AT_const_expr);
    395   ADD_ATTR(Attrs.DW_AT_const_value);
    396   ADD_ATTR(Attrs.DW_AT_containing_type);
    397   ADD_ATTR(Attrs.DW_AT_count);
    398   ADD_ATTR(Attrs.DW_AT_data_bit_offset);
    399   ADD_ATTR(Attrs.DW_AT_data_location);
    400   ADD_ATTR(Attrs.DW_AT_data_member_location);
    401   ADD_ATTR(Attrs.DW_AT_decimal_scale);
    402   ADD_ATTR(Attrs.DW_AT_decimal_sign);
    403   ADD_ATTR(Attrs.DW_AT_default_value);
    404   ADD_ATTR(Attrs.DW_AT_digit_count);
    405   ADD_ATTR(Attrs.DW_AT_discr);
    406   ADD_ATTR(Attrs.DW_AT_discr_list);
    407   ADD_ATTR(Attrs.DW_AT_discr_value);
    408   ADD_ATTR(Attrs.DW_AT_encoding);
    409   ADD_ATTR(Attrs.DW_AT_enum_class);
    410   ADD_ATTR(Attrs.DW_AT_endianity);
    411   ADD_ATTR(Attrs.DW_AT_explicit);
    412   ADD_ATTR(Attrs.DW_AT_is_optional);
    413   ADD_ATTR(Attrs.DW_AT_location);
    414   ADD_ATTR(Attrs.DW_AT_lower_bound);
    415   ADD_ATTR(Attrs.DW_AT_mutable);
    416   ADD_ATTR(Attrs.DW_AT_ordering);
    417   ADD_ATTR(Attrs.DW_AT_picture_string);
    418   ADD_ATTR(Attrs.DW_AT_prototyped);
    419   ADD_ATTR(Attrs.DW_AT_small);
    420   ADD_ATTR(Attrs.DW_AT_segment);
    421   ADD_ATTR(Attrs.DW_AT_string_length);
    422   ADD_ATTR(Attrs.DW_AT_threads_scaled);
    423   ADD_ATTR(Attrs.DW_AT_upper_bound);
    424   ADD_ATTR(Attrs.DW_AT_use_location);
    425   ADD_ATTR(Attrs.DW_AT_use_UTF8);
    426   ADD_ATTR(Attrs.DW_AT_variable_parameter);
    427   ADD_ATTR(Attrs.DW_AT_virtuality);
    428   ADD_ATTR(Attrs.DW_AT_visibility);
    429   ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
    430   ADD_ATTR(Attrs.DW_AT_type);
    431 
    432   // FIXME: Add the extended attributes.
    433 }
    434 
    435 // Add all of the attributes for \param Die to the hash.
    436 void DIEHash::addAttributes(const DIE &Die) {
    437   DIEAttrs Attrs = {};
    438   collectAttributes(Die, Attrs);
    439   hashAttributes(Attrs, Die.getTag());
    440 }
    441 
    442 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
    443   // 7.27 Step 7
    444   // ... append the letter 'S',
    445   addULEB128('S');
    446 
    447   // the tag of C,
    448   addULEB128(Die.getTag());
    449 
    450   // and the name.
    451   addString(Name);
    452 }
    453 
    454 // Compute the hash of a DIE. This is based on the type signature computation
    455 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
    456 // flattened description of the DIE.
    457 void DIEHash::computeHash(const DIE &Die) {
    458   // Append the letter 'D', followed by the DWARF tag of the DIE.
    459   addULEB128('D');
    460   addULEB128(Die.getTag());
    461 
    462   // Add each of the attributes of the DIE.
    463   addAttributes(Die);
    464 
    465   // Then hash each of the children of the DIE.
    466   for (auto &C : Die.getChildren()) {
    467     // 7.27 Step 7
    468     // If C is a nested type entry or a member function entry, ...
    469     if (isType(C->getTag()) || C->getTag() == dwarf::DW_TAG_subprogram) {
    470       StringRef Name = getDIEStringAttr(*C, dwarf::DW_AT_name);
    471       // ... and has a DW_AT_name attribute
    472       if (!Name.empty()) {
    473         hashNestedType(*C, Name);
    474         continue;
    475       }
    476     }
    477     computeHash(*C);
    478   }
    479 
    480   // Following the last (or if there are no children), append a zero byte.
    481   Hash.update(makeArrayRef((uint8_t)'\0'));
    482 }
    483 
    484 /// This is based on the type signature computation given in section 7.27 of the
    485 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
    486 /// with the exception that we are hashing only the context and the name of the
    487 /// type.
    488 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
    489 
    490   // Add the contexts to the hash. We won't be computing the ODR hash for
    491   // function local types so it's safe to use the generic context hashing
    492   // algorithm here.
    493   // FIXME: If we figure out how to account for linkage in some way we could
    494   // actually do this with a slight modification to the parent hash algorithm.
    495   if (const DIE *Parent = Die.getParent())
    496     addParentContext(*Parent);
    497 
    498   // Add the current DIE information.
    499 
    500   // Add the DWARF tag of the DIE.
    501   addULEB128(Die.getTag());
    502 
    503   // Add the name of the type to the hash.
    504   addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
    505 
    506   // Now get the result.
    507   MD5::MD5Result Result;
    508   Hash.final(Result);
    509 
    510   // ... take the least significant 8 bytes and return those. Our MD5
    511   // implementation always returns its results in little endian, swap bytes
    512   // appropriately.
    513   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
    514 }
    515 
    516 /// This is based on the type signature computation given in section 7.27 of the
    517 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
    518 /// with the inclusion of the full CU and all top level CU entities.
    519 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
    520 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
    521   Numbering.clear();
    522   Numbering[&Die] = 1;
    523 
    524   // Hash the DIE.
    525   computeHash(Die);
    526 
    527   // Now return the result.
    528   MD5::MD5Result Result;
    529   Hash.final(Result);
    530 
    531   // ... take the least significant 8 bytes and return those. Our MD5
    532   // implementation always returns its results in little endian, swap bytes
    533   // appropriately.
    534   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
    535 }
    536 
    537 /// This is based on the type signature computation given in section 7.27 of the
    538 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
    539 /// with the inclusion of additional forms not specifically called out in the
    540 /// standard.
    541 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
    542   Numbering.clear();
    543   Numbering[&Die] = 1;
    544 
    545   if (const DIE *Parent = Die.getParent())
    546     addParentContext(*Parent);
    547 
    548   // Hash the DIE.
    549   computeHash(Die);
    550 
    551   // Now return the result.
    552   MD5::MD5Result Result;
    553   Hash.final(Result);
    554 
    555   // ... take the least significant 8 bytes and return those. Our MD5
    556   // implementation always returns its results in little endian, swap bytes
    557   // appropriately.
    558   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
    559 }
    560