Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DAGTypeLegalizer class.  This is a private interface
     11 // shared between the code that implements the SelectionDAG::LegalizeTypes
     12 // method.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
     17 #define SELECTIONDAG_LEGALIZETYPES_H
     18 
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Target/TargetLowering.h"
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
     30 /// on it until only value types the target machine can handle are left.  This
     31 /// involves promoting small sizes to large sizes or splitting up large values
     32 /// into small values.
     33 ///
     34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
     35   const TargetLowering &TLI;
     36   SelectionDAG &DAG;
     37 public:
     38   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
     39   // about the state of the node.  The enum has all the values.
     40   enum NodeIdFlags {
     41     /// ReadyToProcess - All operands have been processed, so this node is ready
     42     /// to be handled.
     43     ReadyToProcess = 0,
     44 
     45     /// NewNode - This is a new node, not before seen, that was created in the
     46     /// process of legalizing some other node.
     47     NewNode = -1,
     48 
     49     /// Unanalyzed - This node's ID needs to be set to the number of its
     50     /// unprocessed operands.
     51     Unanalyzed = -2,
     52 
     53     /// Processed - This is a node that has already been processed.
     54     Processed = -3
     55 
     56     // 1+ - This is a node which has this many unprocessed operands.
     57   };
     58 private:
     59 
     60   /// ValueTypeActions - This is a bitvector that contains two bits for each
     61   /// simple value type, where the two bits correspond to the LegalizeAction
     62   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
     63   TargetLowering::ValueTypeActionImpl ValueTypeActions;
     64 
     65   /// getTypeAction - Return how we should legalize values of this type.
     66   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
     67     return TLI.getTypeAction(*DAG.getContext(), VT);
     68   }
     69 
     70   /// isTypeLegal - Return true if this type is legal on this target.
     71   bool isTypeLegal(EVT VT) const {
     72     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
     73   }
     74 
     75   EVT getSetCCResultType(EVT VT) const {
     76     return TLI.getSetCCResultType(*DAG.getContext(), VT);
     77   }
     78 
     79   /// IgnoreNodeResults - Pretend all of this node's results are legal.
     80   bool IgnoreNodeResults(SDNode *N) const {
     81     return N->getOpcode() == ISD::TargetConstant;
     82   }
     83 
     84   /// PromotedIntegers - For integer nodes that are below legal width, this map
     85   /// indicates what promoted value to use.
     86   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
     87 
     88   /// ExpandedIntegers - For integer nodes that need to be expanded this map
     89   /// indicates which operands are the expanded version of the input.
     90   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
     91 
     92   /// SoftenedFloats - For floating point nodes converted to integers of
     93   /// the same size, this map indicates the converted value to use.
     94   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
     95 
     96   /// ExpandedFloats - For float nodes that need to be expanded this map
     97   /// indicates which operands are the expanded version of the input.
     98   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
     99 
    100   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
    101   /// scalar value of type 'ty' to use.
    102   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
    103 
    104   /// SplitVectors - For nodes that need to be split this map indicates
    105   /// which operands are the expanded version of the input.
    106   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
    107 
    108   /// WidenedVectors - For vector nodes that need to be widened, indicates
    109   /// the widened value to use.
    110   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
    111 
    112   /// ReplacedValues - For values that have been replaced with another,
    113   /// indicates the replacement value to use.
    114   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
    115 
    116   /// Worklist - This defines a worklist of nodes to process.  In order to be
    117   /// pushed onto this worklist, all operands of a node must have already been
    118   /// processed.
    119   SmallVector<SDNode*, 128> Worklist;
    120 
    121 public:
    122   explicit DAGTypeLegalizer(SelectionDAG &dag)
    123     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    124     ValueTypeActions(TLI.getValueTypeActions()) {
    125     assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
    126            "Too many value types for ValueTypeActions to hold!");
    127   }
    128 
    129   /// run - This is the main entry point for the type legalizer.  This does a
    130   /// top-down traversal of the dag, legalizing types as it goes.  Returns
    131   /// "true" if it made any changes.
    132   bool run();
    133 
    134   void NoteDeletion(SDNode *Old, SDNode *New) {
    135     ExpungeNode(Old);
    136     ExpungeNode(New);
    137     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
    138       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
    139   }
    140 
    141   SelectionDAG &getDAG() const { return DAG; }
    142 
    143 private:
    144   SDNode *AnalyzeNewNode(SDNode *N);
    145   void AnalyzeNewValue(SDValue &Val);
    146   void ExpungeNode(SDNode *N);
    147   void PerformExpensiveChecks();
    148   void RemapValue(SDValue &N);
    149 
    150   // Common routines.
    151   SDValue BitConvertToInteger(SDValue Op);
    152   SDValue BitConvertVectorToIntegerVector(SDValue Op);
    153   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
    154   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
    155   bool CustomWidenLowerNode(SDNode *N, EVT VT);
    156 
    157   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
    158   /// node with the corresponding input operand, except for the result 'ResNo',
    159   /// for which the corresponding input operand is returned.
    160   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
    161 
    162   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
    163   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
    164   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
    165 
    166   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    167                                                  SDNode *Node, bool isSigned);
    168   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    169 
    170   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
    171   void ReplaceValueWith(SDValue From, SDValue To);
    172   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    173   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
    174                     SDValue &Lo, SDValue &Hi);
    175 
    176   //===--------------------------------------------------------------------===//
    177   // Integer Promotion Support: LegalizeIntegerTypes.cpp
    178   //===--------------------------------------------------------------------===//
    179 
    180   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
    181   /// larger integer type, this returns the promoted value.  The low bits of the
    182   /// promoted value corresponding to the original type are exactly equal to Op.
    183   /// The extra bits contain rubbish, so the promoted value may need to be zero-
    184   /// or sign-extended from the original type before it is usable (the helpers
    185   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
    186   /// For example, if Op is an i16 and was promoted to an i32, then this method
    187   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
    188   /// 16 bits of which contain rubbish.
    189   SDValue GetPromotedInteger(SDValue Op) {
    190     SDValue &PromotedOp = PromotedIntegers[Op];
    191     RemapValue(PromotedOp);
    192     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    193     return PromotedOp;
    194   }
    195   void SetPromotedInteger(SDValue Op, SDValue Result);
    196 
    197   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
    198   /// final size.
    199   SDValue SExtPromotedInteger(SDValue Op) {
    200     EVT OldVT = Op.getValueType();
    201     SDLoc dl(Op);
    202     Op = GetPromotedInteger(Op);
    203     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
    204                        DAG.getValueType(OldVT));
    205   }
    206 
    207   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
    208   /// final size.
    209   SDValue ZExtPromotedInteger(SDValue Op) {
    210     EVT OldVT = Op.getValueType();
    211     SDLoc dl(Op);
    212     Op = GetPromotedInteger(Op);
    213     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
    214   }
    215 
    216   // Integer Result Promotion.
    217   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
    218   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    219   SDValue PromoteIntRes_AssertSext(SDNode *N);
    220   SDValue PromoteIntRes_AssertZext(SDNode *N);
    221   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
    222   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
    223   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
    224   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
    225   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
    226   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
    227   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
    228   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
    229   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
    230   SDValue PromoteIntRes_BITCAST(SDNode *N);
    231   SDValue PromoteIntRes_BSWAP(SDNode *N);
    232   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
    233   SDValue PromoteIntRes_Constant(SDNode *N);
    234   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
    235   SDValue PromoteIntRes_CTLZ(SDNode *N);
    236   SDValue PromoteIntRes_CTPOP(SDNode *N);
    237   SDValue PromoteIntRes_CTTZ(SDNode *N);
    238   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
    239   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
    240   SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
    241   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
    242   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
    243   SDValue PromoteIntRes_Overflow(SDNode *N);
    244   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
    245   SDValue PromoteIntRes_SDIV(SDNode *N);
    246   SDValue PromoteIntRes_SELECT(SDNode *N);
    247   SDValue PromoteIntRes_VSELECT(SDNode *N);
    248   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
    249   SDValue PromoteIntRes_SETCC(SDNode *N);
    250   SDValue PromoteIntRes_SHL(SDNode *N);
    251   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
    252   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
    253   SDValue PromoteIntRes_SRA(SDNode *N);
    254   SDValue PromoteIntRes_SRL(SDNode *N);
    255   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
    256   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
    257   SDValue PromoteIntRes_UDIV(SDNode *N);
    258   SDValue PromoteIntRes_UNDEF(SDNode *N);
    259   SDValue PromoteIntRes_VAARG(SDNode *N);
    260   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
    261 
    262   // Integer Operand Promotion.
    263   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
    264   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
    265   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
    266   SDValue PromoteIntOp_BITCAST(SDNode *N);
    267   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
    268   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
    269   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
    270   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
    271   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
    272   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
    273   SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
    274   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
    275   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
    276   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
    277   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
    278   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
    279   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
    280   SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
    281   SDValue PromoteIntOp_Shift(SDNode *N);
    282   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
    283   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
    284   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    285   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
    286   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
    287   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
    288 
    289   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
    290 
    291   //===--------------------------------------------------------------------===//
    292   // Integer Expansion Support: LegalizeIntegerTypes.cpp
    293   //===--------------------------------------------------------------------===//
    294 
    295   /// GetExpandedInteger - Given a processed operand Op which was expanded into
    296   /// two integers of half the size, this returns the two halves.  The low bits
    297   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
    298   /// For example, if Op is an i64 which was expanded into two i32's, then this
    299   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
    300   /// Op, and Hi being equal to the upper 32 bits.
    301   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    302   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
    303 
    304   // Integer Result Expansion.
    305   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
    306   void ExpandIntRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    307                                        SDValue &Lo, SDValue &Hi);
    308   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
    309   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    310   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    311   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
    312   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    313   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    314   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    315   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    316   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    317   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
    318   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
    319   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    320   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    321   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    322 
    323   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
    324   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
    325   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
    326   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
    327   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    328   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
    329   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    330   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    331   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    332   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    333   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
    334 
    335   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    336   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    337   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
    338 
    339   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
    340 
    341   void ExpandShiftByConstant(SDNode *N, unsigned Amt,
    342                              SDValue &Lo, SDValue &Hi);
    343   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    344   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    345 
    346   // Integer Operand Expansion.
    347   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
    348   SDValue ExpandIntOp_BITCAST(SDNode *N);
    349   SDValue ExpandIntOp_BR_CC(SDNode *N);
    350   SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
    351   SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
    352   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
    353   SDValue ExpandIntOp_SETCC(SDNode *N);
    354   SDValue ExpandIntOp_Shift(SDNode *N);
    355   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
    356   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    357   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
    358   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
    359   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
    360   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
    361 
    362   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    363                                   ISD::CondCode &CCCode, SDLoc dl);
    364 
    365   //===--------------------------------------------------------------------===//
    366   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
    367   //===--------------------------------------------------------------------===//
    368 
    369   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
    370   /// integer of the same size, this returns the integer.  The integer contains
    371   /// exactly the same bits as Op - only the type changed.  For example, if Op
    372   /// is an f32 which was softened to an i32, then this method returns an i32,
    373   /// the bits of which coincide with those of Op.
    374   SDValue GetSoftenedFloat(SDValue Op) {
    375     SDValue &SoftenedOp = SoftenedFloats[Op];
    376     RemapValue(SoftenedOp);
    377     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
    378     return SoftenedOp;
    379   }
    380   void SetSoftenedFloat(SDValue Op, SDValue Result);
    381 
    382   // Result Float to Integer Conversion.
    383   void SoftenFloatResult(SDNode *N, unsigned OpNo);
    384   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    385   SDValue SoftenFloatRes_BITCAST(SDNode *N);
    386   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
    387   SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
    388   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    389   SDValue SoftenFloatRes_FABS(SDNode *N);
    390   SDValue SoftenFloatRes_FADD(SDNode *N);
    391   SDValue SoftenFloatRes_FCEIL(SDNode *N);
    392   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
    393   SDValue SoftenFloatRes_FCOS(SDNode *N);
    394   SDValue SoftenFloatRes_FDIV(SDNode *N);
    395   SDValue SoftenFloatRes_FEXP(SDNode *N);
    396   SDValue SoftenFloatRes_FEXP2(SDNode *N);
    397   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
    398   SDValue SoftenFloatRes_FLOG(SDNode *N);
    399   SDValue SoftenFloatRes_FLOG2(SDNode *N);
    400   SDValue SoftenFloatRes_FLOG10(SDNode *N);
    401   SDValue SoftenFloatRes_FMA(SDNode *N);
    402   SDValue SoftenFloatRes_FMUL(SDNode *N);
    403   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
    404   SDValue SoftenFloatRes_FNEG(SDNode *N);
    405   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
    406   SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
    407   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
    408   SDValue SoftenFloatRes_FPOW(SDNode *N);
    409   SDValue SoftenFloatRes_FPOWI(SDNode *N);
    410   SDValue SoftenFloatRes_FREM(SDNode *N);
    411   SDValue SoftenFloatRes_FRINT(SDNode *N);
    412   SDValue SoftenFloatRes_FROUND(SDNode *N);
    413   SDValue SoftenFloatRes_FSIN(SDNode *N);
    414   SDValue SoftenFloatRes_FSQRT(SDNode *N);
    415   SDValue SoftenFloatRes_FSUB(SDNode *N);
    416   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
    417   SDValue SoftenFloatRes_LOAD(SDNode *N);
    418   SDValue SoftenFloatRes_SELECT(SDNode *N);
    419   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
    420   SDValue SoftenFloatRes_UNDEF(SDNode *N);
    421   SDValue SoftenFloatRes_VAARG(SDNode *N);
    422   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
    423 
    424   // Operand Float to Integer Conversion.
    425   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
    426   SDValue SoftenFloatOp_BITCAST(SDNode *N);
    427   SDValue SoftenFloatOp_BR_CC(SDNode *N);
    428   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
    429   SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
    430   SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
    431   SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
    432   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
    433   SDValue SoftenFloatOp_SETCC(SDNode *N);
    434   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
    435 
    436   //===--------------------------------------------------------------------===//
    437   // Float Expansion Support: LegalizeFloatTypes.cpp
    438   //===--------------------------------------------------------------------===//
    439 
    440   /// GetExpandedFloat - Given a processed operand Op which was expanded into
    441   /// two floating point values of half the size, this returns the two halves.
    442   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
    443   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
    444   /// into two f64's, then this method returns the two f64's, with Lo being
    445   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
    446   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
    447   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
    448 
    449   // Float Result Expansion.
    450   void ExpandFloatResult(SDNode *N, unsigned ResNo);
    451   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
    452   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    453   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    454   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
    455   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
    456   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    457   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
    458   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
    459   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    460   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
    461   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    462   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    463   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
    464   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
    465   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
    466   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
    467   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    468   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
    469   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
    470   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
    471   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
    472   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    473   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
    474   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
    475   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    476   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
    477   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
    478   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    479   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
    480 
    481   // Float Operand Expansion.
    482   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
    483   SDValue ExpandFloatOp_BR_CC(SDNode *N);
    484   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
    485   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
    486   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
    487   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
    488   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
    489   SDValue ExpandFloatOp_SETCC(SDNode *N);
    490   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
    491 
    492   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    493                                 ISD::CondCode &CCCode, SDLoc dl);
    494 
    495   //===--------------------------------------------------------------------===//
    496   // Scalarization Support: LegalizeVectorTypes.cpp
    497   //===--------------------------------------------------------------------===//
    498 
    499   /// GetScalarizedVector - Given a processed one-element vector Op which was
    500   /// scalarized to its element type, this returns the element.  For example,
    501   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
    502   SDValue GetScalarizedVector(SDValue Op) {
    503     SDValue &ScalarizedOp = ScalarizedVectors[Op];
    504     RemapValue(ScalarizedOp);
    505     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
    506     return ScalarizedOp;
    507   }
    508   void SetScalarizedVector(SDValue Op, SDValue Result);
    509 
    510   // Vector Result Scalarization: <1 x ty> -> ty.
    511   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
    512   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    513   SDValue ScalarizeVecRes_BinOp(SDNode *N);
    514   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
    515   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
    516   SDValue ScalarizeVecRes_InregOp(SDNode *N);
    517 
    518   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
    519   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
    520   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
    521   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
    522   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
    523   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
    524   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
    525   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
    526   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
    527   SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
    528   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
    529   SDValue ScalarizeVecRes_SELECT(SDNode *N);
    530   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
    531   SDValue ScalarizeVecRes_SETCC(SDNode *N);
    532   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
    533   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
    534   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
    535 
    536   // Vector Operand Scalarization: <1 x ty> -> ty.
    537   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
    538   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
    539   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
    540   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
    541   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    542   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
    543   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    544   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
    545 
    546   //===--------------------------------------------------------------------===//
    547   // Vector Splitting Support: LegalizeVectorTypes.cpp
    548   //===--------------------------------------------------------------------===//
    549 
    550   /// GetSplitVector - Given a processed vector Op which was split into vectors
    551   /// of half the size, this method returns the halves.  The first elements of
    552   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
    553   /// with the elements of Hi: Op is what you would get by concatenating Lo and
    554   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
    555   /// this method returns the two v4i32's, with Lo corresponding to the first 4
    556   /// elements of Op, and Hi to the last 4 elements.
    557   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
    558   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
    559 
    560   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
    561   void SplitVectorResult(SDNode *N, unsigned OpNo);
    562   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    563   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    564   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    565   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    566   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    567 
    568   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
    569   void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
    570   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    571   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
    572   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    573   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    574   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
    575   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    576   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    577   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    578   void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
    579   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
    580   void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
    581   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
    582                                   SDValue &Hi);
    583 
    584   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
    585   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
    586   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
    587   SDValue SplitVecOp_UnaryOp(SDNode *N);
    588 
    589   SDValue SplitVecOp_BITCAST(SDNode *N);
    590   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    591   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    592   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    593   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
    594   SDValue SplitVecOp_TRUNCATE(SDNode *N);
    595   SDValue SplitVecOp_VSETCC(SDNode *N);
    596   SDValue SplitVecOp_FP_ROUND(SDNode *N);
    597 
    598   //===--------------------------------------------------------------------===//
    599   // Vector Widening Support: LegalizeVectorTypes.cpp
    600   //===--------------------------------------------------------------------===//
    601 
    602   /// GetWidenedVector - Given a processed vector Op which was widened into a
    603   /// larger vector, this method returns the larger vector.  The elements of
    604   /// the returned vector consist of the elements of Op followed by elements
    605   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
    606   /// v4i32, then this method returns a v4i32 for which the first two elements
    607   /// are the same as those of Op, while the last two elements contain rubbish.
    608   SDValue GetWidenedVector(SDValue Op) {
    609     SDValue &WidenedOp = WidenedVectors[Op];
    610     RemapValue(WidenedOp);
    611     assert(WidenedOp.getNode() && "Operand wasn't widened?");
    612     return WidenedOp;
    613   }
    614   void SetWidenedVector(SDValue Op, SDValue Result);
    615 
    616   // Widen Vector Result Promotion.
    617   void WidenVectorResult(SDNode *N, unsigned ResNo);
    618   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
    619   SDValue WidenVecRes_BITCAST(SDNode* N);
    620   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
    621   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
    622   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
    623   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
    624   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
    625   SDValue WidenVecRes_LOAD(SDNode* N);
    626   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
    627   SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
    628   SDValue WidenVecRes_SELECT(SDNode* N);
    629   SDValue WidenVecRes_SELECT_CC(SDNode* N);
    630   SDValue WidenVecRes_SETCC(SDNode* N);
    631   SDValue WidenVecRes_UNDEF(SDNode *N);
    632   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
    633   SDValue WidenVecRes_VSETCC(SDNode* N);
    634 
    635   SDValue WidenVecRes_Ternary(SDNode *N);
    636   SDValue WidenVecRes_Binary(SDNode *N);
    637   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
    638   SDValue WidenVecRes_Convert(SDNode *N);
    639   SDValue WidenVecRes_POWI(SDNode *N);
    640   SDValue WidenVecRes_Shift(SDNode *N);
    641   SDValue WidenVecRes_Unary(SDNode *N);
    642   SDValue WidenVecRes_InregOp(SDNode *N);
    643 
    644   // Widen Vector Operand.
    645   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
    646   SDValue WidenVecOp_BITCAST(SDNode *N);
    647   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
    648   SDValue WidenVecOp_EXTEND(SDNode *N);
    649   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    650   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    651   SDValue WidenVecOp_STORE(SDNode* N);
    652   SDValue WidenVecOp_SETCC(SDNode* N);
    653 
    654   SDValue WidenVecOp_Convert(SDNode *N);
    655 
    656   //===--------------------------------------------------------------------===//
    657   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
    658   //===--------------------------------------------------------------------===//
    659 
    660   /// Helper GenWidenVectorLoads - Helper function to generate a set of
    661   /// loads to load a vector with a resulting wider type. It takes
    662   ///   LdChain: list of chains for the load to be generated.
    663   ///   Ld:      load to widen
    664   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
    665                               LoadSDNode *LD);
    666 
    667   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
    668   /// loads to load a ector with a resulting wider type.  It takes
    669   ///   LdChain: list of chains for the load to be generated.
    670   ///   Ld:      load to widen
    671   ///   ExtType: extension element type
    672   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
    673                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
    674 
    675   /// Helper genWidenVectorStores - Helper function to generate a set of
    676   /// stores to store a widen vector into non-widen memory
    677   ///   StChain: list of chains for the stores we have generated
    678   ///   ST:      store of a widen value
    679   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
    680 
    681   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
    682   /// stores to store a truncate widen vector into non-widen memory
    683   ///   StChain: list of chains for the stores we have generated
    684   ///   ST:      store of a widen value
    685   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
    686                                  StoreSDNode *ST);
    687 
    688   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
    689   /// input vector must have the same element type as NVT.
    690   SDValue ModifyToType(SDValue InOp, EVT WidenVT);
    691 
    692 
    693   //===--------------------------------------------------------------------===//
    694   // Generic Splitting: LegalizeTypesGeneric.cpp
    695   //===--------------------------------------------------------------------===//
    696 
    697   // Legalization methods which only use that the illegal type is split into two
    698   // not necessarily identical types.  As such they can be used for splitting
    699   // vectors and expanding integers and floats.
    700 
    701   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    702     if (Op.getValueType().isVector())
    703       GetSplitVector(Op, Lo, Hi);
    704     else if (Op.getValueType().isInteger())
    705       GetExpandedInteger(Op, Lo, Hi);
    706     else
    707       GetExpandedFloat(Op, Lo, Hi);
    708   }
    709 
    710   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    711   /// high parts of the given value.
    712   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
    713 
    714   // Generic Result Splitting.
    715   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
    716                              SDValue &Lo, SDValue &Hi);
    717   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
    718   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
    719   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
    720 
    721   //===--------------------------------------------------------------------===//
    722   // Generic Expansion: LegalizeTypesGeneric.cpp
    723   //===--------------------------------------------------------------------===//
    724 
    725   // Legalization methods which only use that the illegal type is split into two
    726   // identical types of half the size, and that the Lo/Hi part is stored first
    727   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
    728   // such they can be used for expanding integers and floats.
    729 
    730   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    731     if (Op.getValueType().isInteger())
    732       GetExpandedInteger(Op, Lo, Hi);
    733     else
    734       GetExpandedFloat(Op, Lo, Hi);
    735   }
    736 
    737 
    738   /// This function will split the integer \p Op into \p NumElements
    739   /// operations of type \p EltVT and store them in \p Ops.
    740   void IntegerToVector(SDValue Op, unsigned NumElements,
    741                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
    742 
    743   // Generic Result Expansion.
    744   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    745                                     SDValue &Lo, SDValue &Hi);
    746   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
    747   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
    748   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
    749   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    750   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
    751   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
    752 
    753   // Generic Operand Expansion.
    754   SDValue ExpandOp_BITCAST          (SDNode *N);
    755   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
    756   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
    757   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
    758   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
    759   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
    760 };
    761 
    762 } // end namespace llvm.
    763 
    764 #endif
    765