Home | History | Annotate | Download | only in SystemZ
      1 //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Select instructions
     12 //===----------------------------------------------------------------------===//
     13 
     14 // C's ?: operator for floating-point operands.
     15 def SelectF32  : SelectWrapper<FP32>;
     16 def SelectF64  : SelectWrapper<FP64>;
     17 def SelectF128 : SelectWrapper<FP128>;
     18 
     19 defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
     20                                nonvolatile_load, bdxaddr20only>;
     21 defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
     22                                nonvolatile_load, bdxaddr20only>;
     23 
     24 //===----------------------------------------------------------------------===//
     25 // Move instructions
     26 //===----------------------------------------------------------------------===//
     27 
     28 // Load zero.
     29 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
     30   def LZER : InherentRRE<"lzer", 0xB374, FP32,  (fpimm0)>;
     31   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  (fpimm0)>;
     32   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
     33 }
     34 
     35 // Moves between two floating-point registers.
     36 let neverHasSideEffects = 1 in {
     37   def LER : UnaryRR <"le", 0x38,   null_frag, FP32,  FP32>;
     38   def LDR : UnaryRR <"ld", 0x28,   null_frag, FP64,  FP64>;
     39   def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>;
     40 }
     41 
     42 // Moves between two floating-point registers that also set the condition
     43 // codes.
     44 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
     45   defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>;
     46   defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>;
     47   defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>;
     48 }
     49 defm : CompareZeroFP<LTEBRCompare, FP32>;
     50 defm : CompareZeroFP<LTDBRCompare, FP64>;
     51 defm : CompareZeroFP<LTXBRCompare, FP128>;
     52 
     53 // Moves between 64-bit integer and floating-point registers.
     54 def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>;
     55 def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>;
     56 
     57 // fcopysign with an FP32 result.
     58 let isCodeGenOnly = 1 in {
     59   def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>;
     60   def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>;
     61 }
     62 
     63 // The sign of an FP128 is in the high register.
     64 def : Pat<(fcopysign FP32:$src1, FP128:$src2),
     65           (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     66 
     67 // fcopysign with an FP64 result.
     68 let isCodeGenOnly = 1 in
     69   def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>;
     70 def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>;
     71 
     72 // The sign of an FP128 is in the high register.
     73 def : Pat<(fcopysign FP64:$src1, FP128:$src2),
     74           (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     75 
     76 // fcopysign with an FP128 result.  Use "upper" as the high half and leave
     77 // the low half as-is.
     78 class CopySign128<RegisterOperand cls, dag upper>
     79   : Pat<(fcopysign FP128:$src1, cls:$src2),
     80         (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
     81 
     82 def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
     83                                   FP32:$src2)>;
     84 def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
     85                                   FP64:$src2)>;
     86 def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
     87                                   (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     88 
     89 defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
     90 defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
     91 defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
     92 
     93 //===----------------------------------------------------------------------===//
     94 // Load instructions
     95 //===----------------------------------------------------------------------===//
     96 
     97 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
     98   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
     99   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
    100 
    101   // These instructions are split after register allocation, so we don't
    102   // want a custom inserter.
    103   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    104     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
    105                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
    106   }
    107 }
    108 
    109 //===----------------------------------------------------------------------===//
    110 // Store instructions
    111 //===----------------------------------------------------------------------===//
    112 
    113 let SimpleBDXStore = 1 in {
    114   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
    115   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
    116 
    117   // These instructions are split after register allocation, so we don't
    118   // want a custom inserter.
    119   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    120     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
    121                      [(store FP128:$src, bdxaddr20only128:$dst)]>;
    122   }
    123 }
    124 
    125 //===----------------------------------------------------------------------===//
    126 // Conversion instructions
    127 //===----------------------------------------------------------------------===//
    128 
    129 // Convert floating-point values to narrower representations, rounding
    130 // according to the current mode.  The destination of LEXBR and LDXBR
    131 // is a 128-bit value, but only the first register of the pair is used.
    132 def LEDBR : UnaryRRE<"ledb", 0xB344, fround,    FP32,  FP64>;
    133 def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>;
    134 def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>;
    135 
    136 def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32,  FP64>,
    137              Requires<[FeatureFPExtension]>;
    138 def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>,
    139              Requires<[FeatureFPExtension]>;
    140 def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>,
    141              Requires<[FeatureFPExtension]>;
    142 
    143 def : Pat<(f32 (fround FP128:$src)),
    144           (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
    145 def : Pat<(f64 (fround FP128:$src)),
    146           (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
    147 
    148 // Extend register floating-point values to wider representations.
    149 def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64,  FP32>;
    150 def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>;
    151 def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>;
    152 
    153 // Extend memory floating-point values to wider representations.
    154 def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64,  4>;
    155 def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>;
    156 def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>;
    157 
    158 // Convert a signed integer register value to a floating-point one.
    159 def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32,  GR32>;
    160 def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64,  GR32>;
    161 def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>;
    162 
    163 def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32,  GR64>;
    164 def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64,  GR64>;
    165 def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>;
    166 
    167 // Convert am unsigned integer register value to a floating-point one.
    168 let Predicates = [FeatureFPExtension] in {
    169   def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32,  GR32>;
    170   def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64,  GR32>;
    171   def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>;
    172 
    173   def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32,  GR64>;
    174   def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64,  GR64>;
    175   def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>;
    176 
    177   def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
    178   def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
    179   def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
    180 
    181   def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
    182   def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
    183   def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
    184 }
    185 
    186 // Convert a floating-point register value to a signed integer value,
    187 // with the second operand (modifier M3) specifying the rounding mode.
    188 let Defs = [CC] in {
    189   def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>;
    190   def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>;
    191   def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>;
    192 
    193   def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>;
    194   def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>;
    195   def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>;
    196 }
    197 
    198 // fp_to_sint always rounds towards zero, which is modifier value 5.
    199 def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
    200 def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
    201 def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
    202 
    203 def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
    204 def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
    205 def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
    206 
    207 // Convert a floating-point register value to an unsigned integer value.
    208 let Predicates = [FeatureFPExtension] in {
    209   let Defs = [CC] in {
    210     def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>;
    211     def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>;
    212     def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>;
    213 
    214     def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>;
    215     def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>;
    216     def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>;
    217   }
    218 
    219   def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
    220   def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
    221   def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
    222 
    223   def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
    224   def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
    225   def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
    226 }
    227 
    228 
    229 //===----------------------------------------------------------------------===//
    230 // Unary arithmetic
    231 //===----------------------------------------------------------------------===//
    232 
    233 // Negation (Load Complement).
    234 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    235   def LCEBR : UnaryRRE<"lceb", 0xB303, fneg, FP32,  FP32>;
    236   def LCDBR : UnaryRRE<"lcdb", 0xB313, fneg, FP64,  FP64>;
    237   def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>;
    238 }
    239 
    240 // Absolute value (Load Positive).
    241 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    242   def LPEBR : UnaryRRE<"lpeb", 0xB300, fabs, FP32,  FP32>;
    243   def LPDBR : UnaryRRE<"lpdb", 0xB310, fabs, FP64,  FP64>;
    244   def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>;
    245 }
    246 
    247 // Negative absolute value (Load Negative).
    248 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    249   def LNEBR : UnaryRRE<"lneb", 0xB301, fnabs, FP32,  FP32>;
    250   def LNDBR : UnaryRRE<"lndb", 0xB311, fnabs, FP64,  FP64>;
    251   def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>;
    252 }
    253 
    254 // Square root.
    255 def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32,  FP32>;
    256 def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64,  FP64>;
    257 def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>;
    258 
    259 def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
    260 def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
    261 
    262 // Round to an integer, with the second operand (modifier M3) specifying
    263 // the rounding mode.  These forms always check for inexact conditions.
    264 def FIEBR : UnaryRRF<"fieb", 0xB357, FP32,  FP32>;
    265 def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64,  FP64>;
    266 def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>;
    267 
    268 // frint rounds according to the current mode (modifier 0) and detects
    269 // inexact conditions.
    270 def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
    271 def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
    272 def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
    273 
    274 let Predicates = [FeatureFPExtension] in {
    275   // Extended forms of the FIxBR instructions.  M4 can be set to 4
    276   // to suppress detection of inexact conditions.
    277   def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32,  FP32>;
    278   def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64,  FP64>;
    279   def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>;
    280 
    281   // fnearbyint is like frint but does not detect inexact conditions.
    282   def : Pat<(fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
    283   def : Pat<(fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
    284   def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
    285 
    286   // floor is no longer allowed to raise an inexact condition,
    287   // so restrict it to the cases where the condition can be suppressed.
    288   // Mode 7 is round towards -inf.
    289   def : Pat<(ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
    290   def : Pat<(ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
    291   def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
    292 
    293   // Same idea for ceil, where mode 6 is round towards +inf.
    294   def : Pat<(fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
    295   def : Pat<(fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
    296   def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
    297 
    298   // Same idea for trunc, where mode 5 is round towards zero.
    299   def : Pat<(ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
    300   def : Pat<(ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
    301   def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
    302 
    303   // Same idea for round, where mode 1 is round towards nearest with
    304   // ties away from zero.
    305   def : Pat<(frnd FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
    306   def : Pat<(frnd FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
    307   def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
    308 }
    309 
    310 //===----------------------------------------------------------------------===//
    311 // Binary arithmetic
    312 //===----------------------------------------------------------------------===//
    313 
    314 // Addition.
    315 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    316   let isCommutable = 1 in {
    317     def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32,  FP32>;
    318     def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64,  FP64>;
    319     def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>;
    320   }
    321   def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
    322   def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
    323 }
    324 
    325 // Subtraction.
    326 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    327   def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32,  FP32>;
    328   def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64,  FP64>;
    329   def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>;
    330 
    331   def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load, 4>;
    332   def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load, 8>;
    333 }
    334 
    335 // Multiplication.
    336 let isCommutable = 1 in {
    337   def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32,  FP32>;
    338   def MDBR  : BinaryRRE<"mdb",  0xB31C, fmul, FP64,  FP64>;
    339   def MXBR  : BinaryRRE<"mxb",  0xB34C, fmul, FP128, FP128>;
    340 }
    341 def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
    342 def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load, 8>;
    343 
    344 // f64 multiplication of two FP32 registers.
    345 def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>;
    346 def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
    347           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
    348                                 FP32:$src1, subreg_h32), FP32:$src2)>;
    349 
    350 // f64 multiplication of an FP32 register and an f32 memory.
    351 def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
    352 def : Pat<(fmul (f64 (fextend FP32:$src1)),
    353                 (f64 (extloadf32 bdxaddr12only:$addr))),
    354           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
    355                 bdxaddr12only:$addr)>;
    356 
    357 // f128 multiplication of two FP64 registers.
    358 def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>;
    359 def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
    360           (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
    361                                 FP64:$src1, subreg_h64), FP64:$src2)>;
    362 
    363 // f128 multiplication of an FP64 register and an f64 memory.
    364 def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
    365 def : Pat<(fmul (f128 (fextend FP64:$src1)),
    366                 (f128 (extloadf64 bdxaddr12only:$addr))),
    367           (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
    368                 bdxaddr12only:$addr)>;
    369 
    370 // Fused multiply-add.
    371 def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>;
    372 def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>;
    373 
    374 def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>;
    375 def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>;
    376 
    377 // Fused multiply-subtract.
    378 def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>;
    379 def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>;
    380 
    381 def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>;
    382 def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>;
    383 
    384 // Division.
    385 def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32,  FP32>;
    386 def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64,  FP64>;
    387 def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>;
    388 
    389 def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
    390 def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
    391 
    392 //===----------------------------------------------------------------------===//
    393 // Comparisons
    394 //===----------------------------------------------------------------------===//
    395 
    396 let Defs = [CC], CCValues = 0xF in {
    397   def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32,  FP32>;
    398   def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64,  FP64>;
    399   def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>;
    400 
    401   def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
    402   def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
    403 }
    404 
    405 //===----------------------------------------------------------------------===//
    406 // Peepholes
    407 //===----------------------------------------------------------------------===//
    408 
    409 def : Pat<(f32  fpimmneg0), (LCEBR (LZER))>;
    410 def : Pat<(f64  fpimmneg0), (LCDBR (LZDR))>;
    411 def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
    412