1 //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Select instructions 12 //===----------------------------------------------------------------------===// 13 14 // C's ?: operator for floating-point operands. 15 def SelectF32 : SelectWrapper<FP32>; 16 def SelectF64 : SelectWrapper<FP64>; 17 def SelectF128 : SelectWrapper<FP128>; 18 19 defm CondStoreF32 : CondStores<FP32, nonvolatile_store, 20 nonvolatile_load, bdxaddr20only>; 21 defm CondStoreF64 : CondStores<FP64, nonvolatile_store, 22 nonvolatile_load, bdxaddr20only>; 23 24 //===----------------------------------------------------------------------===// 25 // Move instructions 26 //===----------------------------------------------------------------------===// 27 28 // Load zero. 29 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { 30 def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>; 31 def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>; 32 def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>; 33 } 34 35 // Moves between two floating-point registers. 36 let neverHasSideEffects = 1 in { 37 def LER : UnaryRR <"le", 0x38, null_frag, FP32, FP32>; 38 def LDR : UnaryRR <"ld", 0x28, null_frag, FP64, FP64>; 39 def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>; 40 } 41 42 // Moves between two floating-point registers that also set the condition 43 // codes. 44 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 45 defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>; 46 defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>; 47 defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>; 48 } 49 defm : CompareZeroFP<LTEBRCompare, FP32>; 50 defm : CompareZeroFP<LTDBRCompare, FP64>; 51 defm : CompareZeroFP<LTXBRCompare, FP128>; 52 53 // Moves between 64-bit integer and floating-point registers. 54 def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>; 55 def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>; 56 57 // fcopysign with an FP32 result. 58 let isCodeGenOnly = 1 in { 59 def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>; 60 def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>; 61 } 62 63 // The sign of an FP128 is in the high register. 64 def : Pat<(fcopysign FP32:$src1, FP128:$src2), 65 (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 66 67 // fcopysign with an FP64 result. 68 let isCodeGenOnly = 1 in 69 def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>; 70 def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>; 71 72 // The sign of an FP128 is in the high register. 73 def : Pat<(fcopysign FP64:$src1, FP128:$src2), 74 (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 75 76 // fcopysign with an FP128 result. Use "upper" as the high half and leave 77 // the low half as-is. 78 class CopySign128<RegisterOperand cls, dag upper> 79 : Pat<(fcopysign FP128:$src1, cls:$src2), 80 (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>; 81 82 def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64), 83 FP32:$src2)>; 84 def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), 85 FP64:$src2)>; 86 def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), 87 (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 88 89 defm LoadStoreF32 : MVCLoadStore<load, f32, MVCSequence, 4>; 90 defm LoadStoreF64 : MVCLoadStore<load, f64, MVCSequence, 8>; 91 defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>; 92 93 //===----------------------------------------------------------------------===// 94 // Load instructions 95 //===----------------------------------------------------------------------===// 96 97 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { 98 defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>; 99 defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>; 100 101 // These instructions are split after register allocation, so we don't 102 // want a custom inserter. 103 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 104 def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), 105 [(set FP128:$dst, (load bdxaddr20only128:$src))]>; 106 } 107 } 108 109 //===----------------------------------------------------------------------===// 110 // Store instructions 111 //===----------------------------------------------------------------------===// 112 113 let SimpleBDXStore = 1 in { 114 defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>; 115 defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>; 116 117 // These instructions are split after register allocation, so we don't 118 // want a custom inserter. 119 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 120 def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), 121 [(store FP128:$src, bdxaddr20only128:$dst)]>; 122 } 123 } 124 125 //===----------------------------------------------------------------------===// 126 // Conversion instructions 127 //===----------------------------------------------------------------------===// 128 129 // Convert floating-point values to narrower representations, rounding 130 // according to the current mode. The destination of LEXBR and LDXBR 131 // is a 128-bit value, but only the first register of the pair is used. 132 def LEDBR : UnaryRRE<"ledb", 0xB344, fround, FP32, FP64>; 133 def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>; 134 def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>; 135 136 def LEDBRA : UnaryRRF4<"ledbra", 0xB344, FP32, FP64>, 137 Requires<[FeatureFPExtension]>; 138 def LEXBRA : UnaryRRF4<"lexbra", 0xB346, FP128, FP128>, 139 Requires<[FeatureFPExtension]>; 140 def LDXBRA : UnaryRRF4<"ldxbra", 0xB345, FP128, FP128>, 141 Requires<[FeatureFPExtension]>; 142 143 def : Pat<(f32 (fround FP128:$src)), 144 (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>; 145 def : Pat<(f64 (fround FP128:$src)), 146 (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>; 147 148 // Extend register floating-point values to wider representations. 149 def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64, FP32>; 150 def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>; 151 def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>; 152 153 // Extend memory floating-point values to wider representations. 154 def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64, 4>; 155 def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>; 156 def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>; 157 158 // Convert a signed integer register value to a floating-point one. 159 def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32, GR32>; 160 def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64, GR32>; 161 def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>; 162 163 def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32, GR64>; 164 def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64, GR64>; 165 def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>; 166 167 // Convert am unsigned integer register value to a floating-point one. 168 let Predicates = [FeatureFPExtension] in { 169 def CELFBR : UnaryRRF4<"celfbr", 0xB390, FP32, GR32>; 170 def CDLFBR : UnaryRRF4<"cdlfbr", 0xB391, FP64, GR32>; 171 def CXLFBR : UnaryRRF4<"cxlfbr", 0xB392, FP128, GR32>; 172 173 def CELGBR : UnaryRRF4<"celgbr", 0xB3A0, FP32, GR64>; 174 def CDLGBR : UnaryRRF4<"cdlgbr", 0xB3A1, FP64, GR64>; 175 def CXLGBR : UnaryRRF4<"cxlgbr", 0xB3A2, FP128, GR64>; 176 177 def : Pat<(f32 (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>; 178 def : Pat<(f64 (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>; 179 def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>; 180 181 def : Pat<(f32 (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>; 182 def : Pat<(f64 (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>; 183 def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>; 184 } 185 186 // Convert a floating-point register value to a signed integer value, 187 // with the second operand (modifier M3) specifying the rounding mode. 188 let Defs = [CC] in { 189 def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>; 190 def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>; 191 def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>; 192 193 def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>; 194 def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>; 195 def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>; 196 } 197 198 // fp_to_sint always rounds towards zero, which is modifier value 5. 199 def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>; 200 def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>; 201 def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; 202 203 def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>; 204 def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>; 205 def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; 206 207 // Convert a floating-point register value to an unsigned integer value. 208 let Predicates = [FeatureFPExtension] in { 209 let Defs = [CC] in { 210 def CLFEBR : UnaryRRF4<"clfebr", 0xB39C, GR32, FP32>; 211 def CLFDBR : UnaryRRF4<"clfdbr", 0xB39D, GR32, FP64>; 212 def CLFXBR : UnaryRRF4<"clfxbr", 0xB39E, GR32, FP128>; 213 214 def CLGEBR : UnaryRRF4<"clgebr", 0xB3AC, GR64, FP32>; 215 def CLGDBR : UnaryRRF4<"clgdbr", 0xB3AD, GR64, FP64>; 216 def CLGXBR : UnaryRRF4<"clgxbr", 0xB3AE, GR64, FP128>; 217 } 218 219 def : Pat<(i32 (fp_to_uint FP32:$src)), (CLFEBR 5, FP32:$src, 0)>; 220 def : Pat<(i32 (fp_to_uint FP64:$src)), (CLFDBR 5, FP64:$src, 0)>; 221 def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>; 222 223 def : Pat<(i64 (fp_to_uint FP32:$src)), (CLGEBR 5, FP32:$src, 0)>; 224 def : Pat<(i64 (fp_to_uint FP64:$src)), (CLGDBR 5, FP64:$src, 0)>; 225 def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>; 226 } 227 228 229 //===----------------------------------------------------------------------===// 230 // Unary arithmetic 231 //===----------------------------------------------------------------------===// 232 233 // Negation (Load Complement). 234 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 235 def LCEBR : UnaryRRE<"lceb", 0xB303, fneg, FP32, FP32>; 236 def LCDBR : UnaryRRE<"lcdb", 0xB313, fneg, FP64, FP64>; 237 def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>; 238 } 239 240 // Absolute value (Load Positive). 241 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 242 def LPEBR : UnaryRRE<"lpeb", 0xB300, fabs, FP32, FP32>; 243 def LPDBR : UnaryRRE<"lpdb", 0xB310, fabs, FP64, FP64>; 244 def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>; 245 } 246 247 // Negative absolute value (Load Negative). 248 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 249 def LNEBR : UnaryRRE<"lneb", 0xB301, fnabs, FP32, FP32>; 250 def LNDBR : UnaryRRE<"lndb", 0xB311, fnabs, FP64, FP64>; 251 def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>; 252 } 253 254 // Square root. 255 def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32, FP32>; 256 def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64, FP64>; 257 def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>; 258 259 def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>; 260 def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>; 261 262 // Round to an integer, with the second operand (modifier M3) specifying 263 // the rounding mode. These forms always check for inexact conditions. 264 def FIEBR : UnaryRRF<"fieb", 0xB357, FP32, FP32>; 265 def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64, FP64>; 266 def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>; 267 268 // frint rounds according to the current mode (modifier 0) and detects 269 // inexact conditions. 270 def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>; 271 def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>; 272 def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>; 273 274 let Predicates = [FeatureFPExtension] in { 275 // Extended forms of the FIxBR instructions. M4 can be set to 4 276 // to suppress detection of inexact conditions. 277 def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32, FP32>; 278 def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64, FP64>; 279 def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>; 280 281 // fnearbyint is like frint but does not detect inexact conditions. 282 def : Pat<(fnearbyint FP32:$src), (FIEBRA 0, FP32:$src, 4)>; 283 def : Pat<(fnearbyint FP64:$src), (FIDBRA 0, FP64:$src, 4)>; 284 def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>; 285 286 // floor is no longer allowed to raise an inexact condition, 287 // so restrict it to the cases where the condition can be suppressed. 288 // Mode 7 is round towards -inf. 289 def : Pat<(ffloor FP32:$src), (FIEBRA 7, FP32:$src, 4)>; 290 def : Pat<(ffloor FP64:$src), (FIDBRA 7, FP64:$src, 4)>; 291 def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>; 292 293 // Same idea for ceil, where mode 6 is round towards +inf. 294 def : Pat<(fceil FP32:$src), (FIEBRA 6, FP32:$src, 4)>; 295 def : Pat<(fceil FP64:$src), (FIDBRA 6, FP64:$src, 4)>; 296 def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>; 297 298 // Same idea for trunc, where mode 5 is round towards zero. 299 def : Pat<(ftrunc FP32:$src), (FIEBRA 5, FP32:$src, 4)>; 300 def : Pat<(ftrunc FP64:$src), (FIDBRA 5, FP64:$src, 4)>; 301 def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>; 302 303 // Same idea for round, where mode 1 is round towards nearest with 304 // ties away from zero. 305 def : Pat<(frnd FP32:$src), (FIEBRA 1, FP32:$src, 4)>; 306 def : Pat<(frnd FP64:$src), (FIDBRA 1, FP64:$src, 4)>; 307 def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>; 308 } 309 310 //===----------------------------------------------------------------------===// 311 // Binary arithmetic 312 //===----------------------------------------------------------------------===// 313 314 // Addition. 315 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 316 let isCommutable = 1 in { 317 def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32, FP32>; 318 def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64, FP64>; 319 def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>; 320 } 321 def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>; 322 def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>; 323 } 324 325 // Subtraction. 326 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 327 def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32, FP32>; 328 def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64, FP64>; 329 def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>; 330 331 def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load, 4>; 332 def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load, 8>; 333 } 334 335 // Multiplication. 336 let isCommutable = 1 in { 337 def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32, FP32>; 338 def MDBR : BinaryRRE<"mdb", 0xB31C, fmul, FP64, FP64>; 339 def MXBR : BinaryRRE<"mxb", 0xB34C, fmul, FP128, FP128>; 340 } 341 def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>; 342 def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load, 8>; 343 344 // f64 multiplication of two FP32 registers. 345 def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>; 346 def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))), 347 (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 348 FP32:$src1, subreg_h32), FP32:$src2)>; 349 350 // f64 multiplication of an FP32 register and an f32 memory. 351 def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>; 352 def : Pat<(fmul (f64 (fextend FP32:$src1)), 353 (f64 (extloadf32 bdxaddr12only:$addr))), 354 (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32), 355 bdxaddr12only:$addr)>; 356 357 // f128 multiplication of two FP64 registers. 358 def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>; 359 def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))), 360 (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), 361 FP64:$src1, subreg_h64), FP64:$src2)>; 362 363 // f128 multiplication of an FP64 register and an f64 memory. 364 def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>; 365 def : Pat<(fmul (f128 (fextend FP64:$src1)), 366 (f128 (extloadf64 bdxaddr12only:$addr))), 367 (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), 368 bdxaddr12only:$addr)>; 369 370 // Fused multiply-add. 371 def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>; 372 def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>; 373 374 def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>; 375 def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>; 376 377 // Fused multiply-subtract. 378 def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>; 379 def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>; 380 381 def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>; 382 def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>; 383 384 // Division. 385 def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32, FP32>; 386 def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64, FP64>; 387 def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>; 388 389 def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>; 390 def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>; 391 392 //===----------------------------------------------------------------------===// 393 // Comparisons 394 //===----------------------------------------------------------------------===// 395 396 let Defs = [CC], CCValues = 0xF in { 397 def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32, FP32>; 398 def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64, FP64>; 399 def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>; 400 401 def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>; 402 def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>; 403 } 404 405 //===----------------------------------------------------------------------===// 406 // Peepholes 407 //===----------------------------------------------------------------------===// 408 409 def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>; 410 def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>; 411 def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>; 412