Home | History | Annotate | Download | only in SystemZ
      1 //==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Basic SystemZ instruction definition
     12 //===----------------------------------------------------------------------===//
     13 
     14 class InstSystemZ<int size, dag outs, dag ins, string asmstr,
     15                   list<dag> pattern> : Instruction {
     16   let Namespace = "SystemZ";
     17 
     18   dag OutOperandList = outs;
     19   dag InOperandList = ins;
     20   let Size = size;
     21   let Pattern = pattern;
     22   let AsmString = asmstr;
     23 
     24   // Some instructions come in pairs, one having a 12-bit displacement
     25   // and the other having a 20-bit displacement.  Both instructions in
     26   // the pair have the same DispKey and their DispSizes are "12" and "20"
     27   // respectively.
     28   string DispKey = "";
     29   string DispSize = "none";
     30 
     31   // Many register-based <INSN>R instructions have a memory-based <INSN>
     32   // counterpart.  OpKey uniquely identifies <INSN>, while OpType is
     33   // "reg" for <INSN>R and "mem" for <INSN>.
     34   string OpKey = "";
     35   string OpType = "none";
     36 
     37   // Many distinct-operands instructions have older 2-operand equivalents.
     38   // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
     39   // with NumOpsValue being "2" or "3" as appropriate.
     40   string NumOpsKey = "";
     41   string NumOpsValue = "none";
     42 
     43   // True if this instruction is a simple D(X,B) load of a register
     44   // (with no sign or zero extension).
     45   bit SimpleBDXLoad = 0;
     46 
     47   // True if this instruction is a simple D(X,B) store of a register
     48   // (with no truncation).
     49   bit SimpleBDXStore = 0;
     50 
     51   // True if this instruction has a 20-bit displacement field.
     52   bit Has20BitOffset = 0;
     53 
     54   // True if addresses in this instruction have an index register.
     55   bit HasIndex = 0;
     56 
     57   // True if this is a 128-bit pseudo instruction that combines two 64-bit
     58   // operations.
     59   bit Is128Bit = 0;
     60 
     61   // The access size of all memory operands in bytes, or 0 if not known.
     62   bits<5> AccessBytes = 0;
     63 
     64   // If the instruction sets CC to a useful value, this gives the mask
     65   // of all possible CC results.  The mask has the same form as
     66   // SystemZ::CCMASK_*.
     67   bits<4> CCValues = 0;
     68 
     69   // The subset of CCValues that have the same meaning as they would after
     70   // a comparison of the first operand against zero.
     71   bits<4> CompareZeroCCMask = 0;
     72 
     73   // True if the instruction is conditional and if the CC mask operand
     74   // comes first (as for BRC, etc.).
     75   bit CCMaskFirst = 0;
     76 
     77   // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
     78   bit CCMaskLast = 0;
     79 
     80   // True if the instruction is the "logical" rather than "arithmetic" form,
     81   // in cases where a distinction exists.
     82   bit IsLogical = 0;
     83 
     84   let TSFlags{0}     = SimpleBDXLoad;
     85   let TSFlags{1}     = SimpleBDXStore;
     86   let TSFlags{2}     = Has20BitOffset;
     87   let TSFlags{3}     = HasIndex;
     88   let TSFlags{4}     = Is128Bit;
     89   let TSFlags{9-5}   = AccessBytes;
     90   let TSFlags{13-10} = CCValues;
     91   let TSFlags{17-14} = CompareZeroCCMask;
     92   let TSFlags{18}    = CCMaskFirst;
     93   let TSFlags{19}    = CCMaskLast;
     94   let TSFlags{20}    = IsLogical;
     95 }
     96 
     97 //===----------------------------------------------------------------------===//
     98 // Mappings between instructions
     99 //===----------------------------------------------------------------------===//
    100 
    101 // Return the version of an instruction that has an unsigned 12-bit
    102 // displacement.
    103 def getDisp12Opcode : InstrMapping {
    104   let FilterClass = "InstSystemZ";
    105   let RowFields = ["DispKey"];
    106   let ColFields = ["DispSize"];
    107   let KeyCol = ["20"];
    108   let ValueCols = [["12"]];
    109 }
    110 
    111 // Return the version of an instruction that has a signed 20-bit displacement.
    112 def getDisp20Opcode : InstrMapping {
    113   let FilterClass = "InstSystemZ";
    114   let RowFields = ["DispKey"];
    115   let ColFields = ["DispSize"];
    116   let KeyCol = ["12"];
    117   let ValueCols = [["20"]];
    118 }
    119 
    120 // Return the memory form of a register instruction.
    121 def getMemOpcode : InstrMapping {
    122   let FilterClass = "InstSystemZ";
    123   let RowFields = ["OpKey"];
    124   let ColFields = ["OpType"];
    125   let KeyCol = ["reg"];
    126   let ValueCols = [["mem"]];
    127 }
    128 
    129 // Return the 3-operand form of a 2-operand instruction.
    130 def getThreeOperandOpcode : InstrMapping {
    131   let FilterClass = "InstSystemZ";
    132   let RowFields = ["NumOpsKey"];
    133   let ColFields = ["NumOpsValue"];
    134   let KeyCol = ["2"];
    135   let ValueCols = [["3"]];
    136 }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // Instruction formats
    140 //===----------------------------------------------------------------------===//
    141 //
    142 // Formats are specified using operand field declarations of the form:
    143 //
    144 //   bits<4> Rn   : register input or output for operand n
    145 //   bits<m> In   : immediate value of width m for operand n
    146 //   bits<4> BDn  : address operand n, which has a base and a displacement
    147 //   bits<m> XBDn : address operand n, which has an index, a base and a
    148 //                  displacement
    149 //   bits<4> Xn   : index register for address operand n
    150 //   bits<4> Mn   : mode value for operand n
    151 //
    152 // The operand numbers ("n" in the list above) follow the architecture manual.
    153 // Assembly operands sometimes have a different order; in particular, R3 often
    154 // is often written between operands 1 and 2.
    155 //
    156 //===----------------------------------------------------------------------===//
    157 
    158 class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    159   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    160   field bits<32> Inst;
    161   field bits<32> SoftFail = 0;
    162 
    163   bits<4> R1;
    164   bits<16> I2;
    165 
    166   let Inst{31-24} = op{11-4};
    167   let Inst{23-20} = R1;
    168   let Inst{19-16} = op{3-0};
    169   let Inst{15-0}  = I2;
    170 }
    171 
    172 class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    173   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    174   field bits<48> Inst;
    175   field bits<48> SoftFail = 0;
    176 
    177   bits<4> R1;
    178   bits<4> R2;
    179   bits<4> M3;
    180   bits<16> RI4;
    181 
    182   let Inst{47-40} = op{15-8};
    183   let Inst{39-36} = R1;
    184   let Inst{35-32} = R2;
    185   let Inst{31-16} = RI4;
    186   let Inst{15-12} = M3;
    187   let Inst{11-8}  = 0;
    188   let Inst{7-0}   = op{7-0};
    189 }
    190 
    191 class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    192   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    193   field bits<48> Inst;
    194   field bits<48> SoftFail = 0;
    195 
    196   bits<4> R1;
    197   bits<8> I2;
    198   bits<4> M3;
    199   bits<16> RI4;
    200 
    201   let Inst{47-40} = op{15-8};
    202   let Inst{39-36} = R1;
    203   let Inst{35-32} = M3;
    204   let Inst{31-16} = RI4;
    205   let Inst{15-8}  = I2;
    206   let Inst{7-0}   = op{7-0};
    207 }
    208 
    209 class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    210   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    211   field bits<48> Inst;
    212   field bits<48> SoftFail = 0;
    213 
    214   bits<4> R1;
    215   bits<4> R3;
    216   bits<16> I2;
    217 
    218   let Inst{47-40} = op{15-8};
    219   let Inst{39-36} = R1;
    220   let Inst{35-32} = R3;
    221   let Inst{31-16} = I2;
    222   let Inst{15-8}  = 0;
    223   let Inst{7-0}   = op{7-0};
    224 }
    225 
    226 class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    227   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    228   field bits<48> Inst;
    229   field bits<48> SoftFail = 0;
    230 
    231   bits<4> R1;
    232   bits<4> R2;
    233   bits<8> I3;
    234   bits<8> I4;
    235   bits<8> I5;
    236 
    237   let Inst{47-40} = op{15-8};
    238   let Inst{39-36} = R1;
    239   let Inst{35-32} = R2;
    240   let Inst{31-24} = I3;
    241   let Inst{23-16} = I4;
    242   let Inst{15-8}  = I5;
    243   let Inst{7-0}   = op{7-0};
    244 }
    245 
    246 class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    247   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    248   field bits<48> Inst;
    249   field bits<48> SoftFail = 0;
    250 
    251   bits<4> R1;
    252   bits<32> I2;
    253 
    254   let Inst{47-40} = op{11-4};
    255   let Inst{39-36} = R1;
    256   let Inst{35-32} = op{3-0};
    257   let Inst{31-0}  = I2;
    258 }
    259 
    260 class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    261   : InstSystemZ<2, outs, ins, asmstr, pattern> {
    262   field bits<16> Inst;
    263   field bits<16> SoftFail = 0;
    264 
    265   bits<4> R1;
    266   bits<4> R2;
    267 
    268   let Inst{15-8} = op;
    269   let Inst{7-4}  = R1;
    270   let Inst{3-0}  = R2;
    271 }
    272 
    273 class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    274   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    275   field bits<32> Inst;
    276   field bits<32> SoftFail = 0;
    277 
    278   bits<4> R1;
    279   bits<4> R3;
    280   bits<4> R2;
    281 
    282   let Inst{31-16} = op;
    283   let Inst{15-12} = R1;
    284   let Inst{11-8}  = 0;
    285   let Inst{7-4}   = R3;
    286   let Inst{3-0}   = R2;
    287 }
    288 
    289 class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    290   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    291   field bits<32> Inst;
    292   field bits<32> SoftFail = 0;
    293 
    294   bits<4> R1;
    295   bits<4> R2;
    296 
    297   let Inst{31-16} = op;
    298   let Inst{15-8}  = 0;
    299   let Inst{7-4}   = R1;
    300   let Inst{3-0}   = R2;
    301 }
    302 
    303 class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    304   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    305   field bits<32> Inst;
    306   field bits<32> SoftFail = 0;
    307 
    308   bits<4> R1;
    309   bits<4> R2;
    310   bits<4> R3;
    311   bits<4> R4;
    312 
    313   let Inst{31-16} = op;
    314   let Inst{15-12} = R3;
    315   let Inst{11-8}  = R4;
    316   let Inst{7-4}   = R1;
    317   let Inst{3-0}   = R2;
    318 }
    319 
    320 class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    321   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    322   field bits<32> Inst;
    323   field bits<32> SoftFail = 0;
    324 
    325   bits<4> R1;
    326   bits<20> XBD2;
    327 
    328   let Inst{31-24} = op;
    329   let Inst{23-20} = R1;
    330   let Inst{19-0}  = XBD2;
    331 
    332   let HasIndex = 1;
    333 }
    334 
    335 class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    336   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    337   field bits<48> Inst;
    338   field bits<48> SoftFail = 0;
    339 
    340   bits<4> R1;
    341   bits<20> XBD2;
    342 
    343   let Inst{47-40} = op{15-8};
    344   let Inst{39-36} = R1;
    345   let Inst{35-16} = XBD2;
    346   let Inst{15-8}  = 0;
    347   let Inst{7-0}   = op{7-0};
    348 
    349   let HasIndex = 1;
    350 }
    351 
    352 class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    353   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    354   field bits<48> Inst;
    355   field bits<48> SoftFail = 0;
    356 
    357   bits<4> R1;
    358   bits<4> R3;
    359   bits<20> XBD2;
    360 
    361   let Inst{47-40} = op{15-8};
    362   let Inst{39-36} = R3;
    363   let Inst{35-16} = XBD2;
    364   let Inst{15-12} = R1;
    365   let Inst{11-8}  = 0;
    366   let Inst{7-0}   = op{7-0};
    367 
    368   let HasIndex = 1;
    369 }
    370 
    371 class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    372   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    373   field bits<48> Inst;
    374   field bits<48> SoftFail = 0;
    375 
    376   bits<4> R1;
    377   bits<28> XBD2;
    378 
    379   let Inst{47-40} = op{15-8};
    380   let Inst{39-36} = R1;
    381   let Inst{35-8}  = XBD2;
    382   let Inst{7-0}   = op{7-0};
    383 
    384   let Has20BitOffset = 1;
    385   let HasIndex = 1;
    386 }
    387 
    388 class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    389   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    390   field bits<32> Inst;
    391   field bits<32> SoftFail = 0;
    392 
    393   bits<4> R1;
    394   bits<4> R3;
    395   bits<16> BD2;
    396 
    397   let Inst{31-24} = op;
    398   let Inst{23-20} = R1;
    399   let Inst{19-16} = R3;
    400   let Inst{15-0}  = BD2;
    401 }
    402 
    403 class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    404   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    405   field bits<48> Inst;
    406   field bits<48> SoftFail = 0;
    407 
    408   bits<4> R1;
    409   bits<4> R3;
    410   bits<24> BD2;
    411 
    412   let Inst{47-40} = op{15-8};
    413   let Inst{39-36} = R1;
    414   let Inst{35-32} = R3;
    415   let Inst{31-8}  = BD2;
    416   let Inst{7-0}   = op{7-0};
    417 
    418   let Has20BitOffset = 1;
    419 }
    420 
    421 class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    422   : InstSystemZ<4, outs, ins, asmstr, pattern> {
    423   field bits<32> Inst;
    424   field bits<32> SoftFail = 0;
    425 
    426   bits<16> BD1;
    427   bits<8> I2;
    428 
    429   let Inst{31-24} = op;
    430   let Inst{23-16} = I2;
    431   let Inst{15-0}  = BD1;
    432 }
    433 
    434 class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    435   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    436   field bits<48> Inst;
    437   field bits<48> SoftFail = 0;
    438 
    439   bits<16> BD1;
    440   bits<16> I2;
    441 
    442   let Inst{47-32} = op;
    443   let Inst{31-16} = BD1;
    444   let Inst{15-0}  = I2;
    445 }
    446 
    447 class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    448   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    449   field bits<48> Inst;
    450   field bits<48> SoftFail = 0;
    451 
    452   bits<24> BD1;
    453   bits<8> I2;
    454 
    455   let Inst{47-40} = op{15-8};
    456   let Inst{39-32} = I2;
    457   let Inst{31-8}  = BD1;
    458   let Inst{7-0}   = op{7-0};
    459 
    460   let Has20BitOffset = 1;
    461 }
    462 
    463 class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
    464   : InstSystemZ<6, outs, ins, asmstr, pattern> {
    465   field bits<48> Inst;
    466   field bits<48> SoftFail = 0;
    467 
    468   bits<24> BDL1;
    469   bits<16> BD2;
    470 
    471   let Inst{47-40} = op;
    472   let Inst{39-16} = BDL1;
    473   let Inst{15-0}  = BD2;
    474 }
    475 
    476 //===----------------------------------------------------------------------===//
    477 // Instruction definitions with semantics
    478 //===----------------------------------------------------------------------===//
    479 //
    480 // These classes have the form [Cond]<Category><Format>, where <Format> is one
    481 // of the formats defined above and where <Category> describes the inputs
    482 // and outputs.  "Cond" is used if the instruction is conditional,
    483 // in which case the 4-bit condition-code mask is added as a final operand.
    484 // <Category> can be one of:
    485 //
    486 //   Inherent:
    487 //     One register output operand and no input operands.
    488 //
    489 //   BranchUnary:
    490 //     One register output operand, one register input operand and
    491 //     one branch displacement.  The instructions stores a modified
    492 //     form of the source register in the destination register and
    493 //     branches on the result.
    494 //
    495 //   Store:
    496 //     One register or immediate input operand and one address input operand.
    497 //     The instruction stores the first operand to the address.
    498 //
    499 //     This category is used for both pure and truncating stores.
    500 //
    501 //   LoadMultiple:
    502 //     One address input operand and two explicit output operands.
    503 //     The instruction loads a range of registers from the address,
    504 //     with the explicit operands giving the first and last register
    505 //     to load.  Other loaded registers are added as implicit definitions.
    506 //
    507 //   StoreMultiple:
    508 //     Two explicit input register operands and an address operand.
    509 //     The instruction stores a range of registers to the address,
    510 //     with the explicit operands giving the first and last register
    511 //     to store.  Other stored registers are added as implicit uses.
    512 //
    513 //   Unary:
    514 //     One register output operand and one input operand.
    515 //
    516 //   Binary:
    517 //     One register output operand and two input operands.
    518 //
    519 //   Compare:
    520 //     Two input operands and an implicit CC output operand.
    521 //
    522 //   Ternary:
    523 //     One register output operand and three input operands.
    524 //
    525 //   LoadAndOp:
    526 //     One output operand and two input operands, one of which is an address.
    527 //     The instruction both reads from and writes to the address.
    528 //
    529 //   CmpSwap:
    530 //     One output operand and three input operands, one of which is an address.
    531 //     The instruction both reads from and writes to the address.
    532 //
    533 //   RotateSelect:
    534 //     One output operand and five input operands.  The first two operands
    535 //     are registers and the other three are immediates.
    536 //
    537 //   Prefetch:
    538 //     One 4-bit immediate operand and one address operand.  The immediate
    539 //     operand is 1 for a load prefetch and 2 for a store prefetch.
    540 //
    541 // The format determines which input operands are tied to output operands,
    542 // and also determines the shape of any address operand.
    543 //
    544 // Multiclasses of the form <Category><Format>Pair define two instructions,
    545 // one with <Category><Format> and one with <Category><Format>Y.  The name
    546 // of the first instruction has no suffix, the name of the second has
    547 // an extra "y".
    548 //
    549 //===----------------------------------------------------------------------===//
    550 
    551 class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
    552                   dag src>
    553   : InstRRE<opcode, (outs cls:$R1), (ins),
    554             mnemonic#"\t$R1",
    555             [(set cls:$R1, src)]> {
    556   let R2 = 0;
    557 }
    558 
    559 class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
    560   : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
    561            mnemonic##"\t$R1, $I2", []> {
    562   let isBranch = 1;
    563   let isTerminator = 1;
    564   let Constraints = "$R1 = $R1src";
    565   let DisableEncoding = "$R1src";
    566 }
    567 
    568 class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
    569   : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
    570             mnemonic#"\t$R1, $R3, $BD2", []> {
    571   let mayLoad = 1;
    572 }
    573 
    574 class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    575                  RegisterOperand cls>
    576   : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
    577             mnemonic#"\t$R1, $I2",
    578             [(operator cls:$R1, pcrel32:$I2)]> {
    579   let mayStore = 1;
    580   // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
    581   // However, BDXs have two extra operands and are therefore 6 units more
    582   // complex.
    583   let AddedComplexity = 7;
    584 }
    585 
    586 class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    587               RegisterOperand cls, bits<5> bytes,
    588               AddressingMode mode = bdxaddr12only>
    589   : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
    590            mnemonic#"\t$R1, $XBD2",
    591            [(operator cls:$R1, mode:$XBD2)]> {
    592   let OpKey = mnemonic ## cls;
    593   let OpType = "mem";
    594   let mayStore = 1;
    595   let AccessBytes = bytes;
    596 }
    597 
    598 class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    599                RegisterOperand cls, bits<5> bytes,
    600                AddressingMode mode = bdxaddr20only>
    601   : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
    602             mnemonic#"\t$R1, $XBD2",
    603             [(operator cls:$R1, mode:$XBD2)]> {
    604   let OpKey = mnemonic ## cls;
    605   let OpType = "mem";
    606   let mayStore = 1;
    607   let AccessBytes = bytes;
    608 }
    609 
    610 multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
    611                        SDPatternOperator operator, RegisterOperand cls,
    612                        bits<5> bytes> {
    613   let DispKey = mnemonic ## #cls in {
    614     let DispSize = "12" in
    615       def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    616     let DispSize = "20" in
    617       def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
    618                         bdxaddr20pair>;
    619   }
    620 }
    621 
    622 class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
    623   : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
    624             mnemonic#"\t$R1, $R3, $BD2", []> {
    625   let mayStore = 1;
    626 }
    627 
    628 // StoreSI* instructions are used to store an integer to memory, but the
    629 // addresses are more restricted than for normal stores.  If we are in the
    630 // situation of having to force either the address into a register or the
    631 // constant into a register, it's usually better to do the latter.
    632 // We therefore match the address in the same way as a normal store and
    633 // only use the StoreSI* instruction if the matched address is suitable.
    634 class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    635               Immediate imm>
    636   : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
    637            mnemonic#"\t$BD1, $I2",
    638            [(operator imm:$I2, mviaddr12pair:$BD1)]> {
    639   let mayStore = 1;
    640 }
    641 
    642 class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    643                Immediate imm>
    644   : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
    645             mnemonic#"\t$BD1, $I2",
    646             [(operator imm:$I2, mviaddr20pair:$BD1)]> {
    647   let mayStore = 1;
    648 }
    649 
    650 class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    651                Immediate imm>
    652   : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
    653             mnemonic#"\t$BD1, $I2",
    654             [(operator imm:$I2, mviaddr12pair:$BD1)]> {
    655   let mayStore = 1;
    656 }
    657 
    658 multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
    659                        SDPatternOperator operator, Immediate imm> {
    660   let DispKey = mnemonic in {
    661     let DispSize = "12" in
    662       def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
    663     let DispSize = "20" in
    664       def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
    665   }
    666 }
    667 
    668 class CondStoreRSY<string mnemonic, bits<16> opcode,
    669                    RegisterOperand cls, bits<5> bytes,
    670                    AddressingMode mode = bdaddr20only>
    671   : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
    672             mnemonic#"$R3\t$R1, $BD2", []>,
    673     Requires<[FeatureLoadStoreOnCond]> {
    674   let mayStore = 1;
    675   let AccessBytes = bytes;
    676   let CCMaskLast = 1;
    677 }
    678 
    679 // Like CondStoreRSY, but used for the raw assembly form.  The condition-code
    680 // mask is the third operand rather than being part of the mnemonic.
    681 class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
    682                       RegisterOperand cls, bits<5> bytes,
    683                       AddressingMode mode = bdaddr20only>
    684   : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
    685             mnemonic#"\t$R1, $BD2, $R3", []>,
    686     Requires<[FeatureLoadStoreOnCond]> {
    687   let mayStore = 1;
    688   let AccessBytes = bytes;
    689 }
    690 
    691 // Like CondStoreRSY, but with a fixed CC mask.
    692 class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
    693                         RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
    694                         AddressingMode mode = bdaddr20only>
    695   : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
    696             mnemonic#"\t$R1, $BD2", []>,
    697     Requires<[FeatureLoadStoreOnCond]> {
    698   let mayStore = 1;
    699   let AccessBytes = bytes;
    700   let R3 = ccmask;
    701 }
    702 
    703 class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    704               RegisterOperand cls1, RegisterOperand cls2>
    705   : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
    706            mnemonic#"r\t$R1, $R2",
    707            [(set cls1:$R1, (operator cls2:$R2))]> {
    708   let OpKey = mnemonic ## cls1;
    709   let OpType = "reg";
    710 }
    711 
    712 class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    713                RegisterOperand cls1, RegisterOperand cls2>
    714   : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
    715             mnemonic#"r\t$R1, $R2",
    716             [(set cls1:$R1, (operator cls2:$R2))]> {
    717   let OpKey = mnemonic ## cls1;
    718   let OpType = "reg";
    719 }
    720 
    721 class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
    722                RegisterOperand cls2>
    723   : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
    724             mnemonic#"r\t$R1, $R3, $R2", []> {
    725   let OpKey = mnemonic ## cls1;
    726   let OpType = "reg";
    727   let R4 = 0;
    728 }
    729 
    730 class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
    731                 RegisterOperand cls2>
    732   : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
    733             mnemonic#"\t$R1, $R3, $R2, $R4", []>;
    734 
    735 // These instructions are generated by if conversion.  The old value of R1
    736 // is added as an implicit use.
    737 class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
    738                    RegisterOperand cls2>
    739   : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
    740             mnemonic#"r$R3\t$R1, $R2", []>,
    741     Requires<[FeatureLoadStoreOnCond]> {
    742   let CCMaskLast = 1;
    743   let R4 = 0;
    744 }
    745 
    746 // Like CondUnaryRRF, but used for the raw assembly form.  The condition-code
    747 // mask is the third operand rather than being part of the mnemonic.
    748 class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
    749                       RegisterOperand cls2>
    750   : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
    751             mnemonic#"r\t$R1, $R2, $R3", []>,
    752     Requires<[FeatureLoadStoreOnCond]> {
    753   let Constraints = "$R1 = $R1src";
    754   let DisableEncoding = "$R1src";
    755   let R4 = 0;
    756 }
    757 
    758 // Like CondUnaryRRF, but with a fixed CC mask.
    759 class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
    760                         RegisterOperand cls2, bits<4> ccmask>
    761   : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
    762             mnemonic#"\t$R1, $R2", []>,
    763     Requires<[FeatureLoadStoreOnCond]> {
    764   let Constraints = "$R1 = $R1src";
    765   let DisableEncoding = "$R1src";
    766   let R3 = ccmask;
    767   let R4 = 0;
    768 }
    769 
    770 class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    771               RegisterOperand cls, Immediate imm>
    772   : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
    773            mnemonic#"\t$R1, $I2",
    774            [(set cls:$R1, (operator imm:$I2))]>;
    775 
    776 class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    777                RegisterOperand cls, Immediate imm>
    778   : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
    779             mnemonic#"\t$R1, $I2",
    780             [(set cls:$R1, (operator imm:$I2))]>;
    781 
    782 class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    783                  RegisterOperand cls>
    784   : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
    785             mnemonic#"\t$R1, $I2",
    786             [(set cls:$R1, (operator pcrel32:$I2))]> {
    787   let mayLoad = 1;
    788   // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
    789   // However, BDXs have two extra operands and are therefore 6 units more
    790   // complex.
    791   let AddedComplexity = 7;
    792 }
    793 
    794 class CondUnaryRSY<string mnemonic, bits<16> opcode,
    795                    SDPatternOperator operator, RegisterOperand cls,
    796                    bits<5> bytes, AddressingMode mode = bdaddr20only>
    797   : InstRSY<opcode, (outs cls:$R1),
    798             (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
    799             mnemonic#"$R3\t$R1, $BD2",
    800             [(set cls:$R1,
    801                   (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
    802                                    cond4:$valid, cond4:$R3))]>,
    803     Requires<[FeatureLoadStoreOnCond]> {
    804   let Constraints = "$R1 = $R1src";
    805   let DisableEncoding = "$R1src";
    806   let mayLoad = 1;
    807   let AccessBytes = bytes;
    808   let CCMaskLast = 1;
    809 }
    810 
    811 // Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
    812 // mask is the third operand rather than being part of the mnemonic.
    813 class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
    814                       RegisterOperand cls, bits<5> bytes,
    815                       AddressingMode mode = bdaddr20only>
    816   : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
    817             mnemonic#"\t$R1, $BD2, $R3", []>,
    818     Requires<[FeatureLoadStoreOnCond]> {
    819   let mayLoad = 1;
    820   let AccessBytes = bytes;
    821   let Constraints = "$R1 = $R1src";
    822   let DisableEncoding = "$R1src";
    823 }
    824 
    825 // Like CondUnaryRSY, but with a fixed CC mask.
    826 class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
    827                         RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
    828                         AddressingMode mode = bdaddr20only>
    829   : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
    830             mnemonic#"\t$R1, $BD2", []>,
    831     Requires<[FeatureLoadStoreOnCond]> {
    832   let Constraints = "$R1 = $R1src";
    833   let DisableEncoding = "$R1src";
    834   let R3 = ccmask;
    835   let mayLoad = 1;
    836   let AccessBytes = bytes;
    837 }
    838 
    839 class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    840               RegisterOperand cls, bits<5> bytes,
    841               AddressingMode mode = bdxaddr12only>
    842   : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
    843            mnemonic#"\t$R1, $XBD2",
    844            [(set cls:$R1, (operator mode:$XBD2))]> {
    845   let OpKey = mnemonic ## cls;
    846   let OpType = "mem";
    847   let mayLoad = 1;
    848   let AccessBytes = bytes;
    849 }
    850 
    851 class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    852                RegisterOperand cls, bits<5> bytes>
    853   : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
    854             mnemonic#"\t$R1, $XBD2",
    855             [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
    856   let OpKey = mnemonic ## cls;
    857   let OpType = "mem";
    858   let mayLoad = 1;
    859   let AccessBytes = bytes;
    860 }
    861 
    862 class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    863                RegisterOperand cls, bits<5> bytes,
    864                AddressingMode mode = bdxaddr20only>
    865   : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
    866             mnemonic#"\t$R1, $XBD2",
    867             [(set cls:$R1, (operator mode:$XBD2))]> {
    868   let OpKey = mnemonic ## cls;
    869   let OpType = "mem";
    870   let mayLoad = 1;
    871   let AccessBytes = bytes;
    872 }
    873 
    874 multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
    875                        SDPatternOperator operator, RegisterOperand cls,
    876                        bits<5> bytes> {
    877   let DispKey = mnemonic ## #cls in {
    878     let DispSize = "12" in
    879       def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
    880     let DispSize = "20" in
    881       def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
    882                         bdxaddr20pair>;
    883   }
    884 }
    885 
    886 class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    887                RegisterOperand cls1, RegisterOperand cls2>
    888   : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
    889            mnemonic#"r\t$R1, $R2",
    890            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
    891   let OpKey = mnemonic ## cls1;
    892   let OpType = "reg";
    893   let Constraints = "$R1 = $R1src";
    894   let DisableEncoding = "$R1src";
    895 }
    896 
    897 class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    898                 RegisterOperand cls1, RegisterOperand cls2>
    899   : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
    900             mnemonic#"r\t$R1, $R2",
    901             [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
    902   let OpKey = mnemonic ## cls1;
    903   let OpType = "reg";
    904   let Constraints = "$R1 = $R1src";
    905   let DisableEncoding = "$R1src";
    906 }
    907 
    908 class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    909                 RegisterOperand cls1, RegisterOperand cls2>
    910   : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
    911             mnemonic#"r\t$R1, $R3, $R2",
    912             [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
    913   let OpKey = mnemonic ## cls1;
    914   let OpType = "reg";
    915   let R4 = 0;
    916 }
    917 
    918 class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    919                  RegisterOperand cls1, RegisterOperand cls2>
    920   : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
    921             mnemonic#"rk\t$R1, $R2, $R3",
    922             [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
    923   let R4 = 0;
    924 }
    925 
    926 multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
    927                         SDPatternOperator operator, RegisterOperand cls1,
    928                         RegisterOperand cls2> {
    929   let NumOpsKey = mnemonic in {
    930     let NumOpsValue = "3" in
    931       def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
    932               Requires<[FeatureDistinctOps]>;
    933     let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
    934       def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
    935   }
    936 }
    937 
    938 multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
    939                          SDPatternOperator operator, RegisterOperand cls1,
    940                          RegisterOperand cls2> {
    941   let NumOpsKey = mnemonic in {
    942     let NumOpsValue = "3" in
    943       def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
    944               Requires<[FeatureDistinctOps]>;
    945     let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
    946       def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
    947   }
    948 }
    949 
    950 class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    951                RegisterOperand cls, Immediate imm>
    952   : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
    953            mnemonic#"\t$R1, $I2",
    954            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
    955   let Constraints = "$R1 = $R1src";
    956   let DisableEncoding = "$R1src";
    957 }
    958 
    959 class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    960                 RegisterOperand cls, Immediate imm>
    961   : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
    962              mnemonic#"\t$R1, $R3, $I2",
    963              [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
    964 
    965 multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
    966                         SDPatternOperator operator, RegisterOperand cls,
    967                         Immediate imm> {
    968   let NumOpsKey = mnemonic in {
    969     let NumOpsValue = "3" in
    970       def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
    971               Requires<[FeatureDistinctOps]>;
    972     let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
    973       def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
    974   }
    975 }
    976 
    977 class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
    978                 RegisterOperand cls, Immediate imm>
    979   : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
    980             mnemonic#"\t$R1, $I2",
    981             [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
    982   let Constraints = "$R1 = $R1src";
    983   let DisableEncoding = "$R1src";
    984 }
    985 
    986 class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
    987                RegisterOperand cls>
    988   : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
    989            mnemonic#"\t$R1, $BD2",
    990            [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
    991   let R3 = 0;
    992   let Constraints = "$R1 = $R1src";
    993   let DisableEncoding = "$R1src";
    994 }
    995 
    996 class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
    997                 RegisterOperand cls>
    998   : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
    999             mnemonic#"\t$R1, $R3, $BD2",
   1000             [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
   1001 
   1002 multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
   1003                         SDPatternOperator operator, RegisterOperand cls> {
   1004   let NumOpsKey = mnemonic in {
   1005     let NumOpsValue = "3" in
   1006       def K  : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
   1007                Requires<[FeatureDistinctOps]>;
   1008     let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
   1009       def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
   1010   }
   1011 }
   1012 
   1013 class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1014                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
   1015                AddressingMode mode = bdxaddr12only>
   1016   : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
   1017            mnemonic#"\t$R1, $XBD2",
   1018            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
   1019   let OpKey = mnemonic ## cls;
   1020   let OpType = "mem";
   1021   let Constraints = "$R1 = $R1src";
   1022   let DisableEncoding = "$R1src";
   1023   let mayLoad = 1;
   1024   let AccessBytes = bytes;
   1025 }
   1026 
   1027 class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1028                   RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
   1029   : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
   1030             mnemonic#"\t$R1, $XBD2",
   1031             [(set cls:$R1, (operator cls:$R1src,
   1032                                      (load bdxaddr12only:$XBD2)))]> {
   1033   let OpKey = mnemonic ## cls;
   1034   let OpType = "mem";
   1035   let Constraints = "$R1 = $R1src";
   1036   let DisableEncoding = "$R1src";
   1037   let mayLoad = 1;
   1038   let AccessBytes = bytes;
   1039 }
   1040 
   1041 class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1042                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
   1043                 AddressingMode mode = bdxaddr20only>
   1044   : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
   1045             mnemonic#"\t$R1, $XBD2",
   1046             [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
   1047   let OpKey = mnemonic ## cls;
   1048   let OpType = "mem";
   1049   let Constraints = "$R1 = $R1src";
   1050   let DisableEncoding = "$R1src";
   1051   let mayLoad = 1;
   1052   let AccessBytes = bytes;
   1053 }
   1054 
   1055 multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
   1056                         SDPatternOperator operator, RegisterOperand cls,
   1057                         SDPatternOperator load, bits<5> bytes> {
   1058   let DispKey = mnemonic ## #cls in {
   1059     let DispSize = "12" in
   1060       def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
   1061                         bdxaddr12pair>;
   1062     let DispSize = "20" in
   1063       def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
   1064                          bdxaddr20pair>;
   1065   }
   1066 }
   1067 
   1068 class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1069                Operand imm, AddressingMode mode = bdaddr12only>
   1070   : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
   1071            mnemonic#"\t$BD1, $I2",
   1072            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
   1073   let mayLoad = 1;
   1074   let mayStore = 1;
   1075 }
   1076 
   1077 class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1078                 Operand imm, AddressingMode mode = bdaddr20only>
   1079   : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
   1080             mnemonic#"\t$BD1, $I2",
   1081             [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
   1082   let mayLoad = 1;
   1083   let mayStore = 1;
   1084 }
   1085 
   1086 multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
   1087                         bits<16> siyOpcode, SDPatternOperator operator,
   1088                         Operand imm> {
   1089   let DispKey = mnemonic ## #cls in {
   1090     let DispSize = "12" in
   1091       def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
   1092     let DispSize = "20" in
   1093       def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
   1094   }
   1095 }
   1096 
   1097 class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1098                 RegisterOperand cls1, RegisterOperand cls2>
   1099   : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
   1100            mnemonic#"r\t$R1, $R2",
   1101            [(operator cls1:$R1, cls2:$R2)]> {
   1102   let OpKey = mnemonic ## cls1;
   1103   let OpType = "reg";
   1104   let isCompare = 1;
   1105 }
   1106 
   1107 class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1108                  RegisterOperand cls1, RegisterOperand cls2>
   1109   : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
   1110             mnemonic#"r\t$R1, $R2",
   1111             [(operator cls1:$R1, cls2:$R2)]> {
   1112   let OpKey = mnemonic ## cls1;
   1113   let OpType = "reg";
   1114   let isCompare = 1;
   1115 }
   1116 
   1117 class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
   1118                 RegisterOperand cls, Immediate imm>
   1119   : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
   1120            mnemonic#"\t$R1, $I2",
   1121            [(operator cls:$R1, imm:$I2)]> {
   1122   let isCompare = 1;
   1123 }
   1124 
   1125 class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
   1126                  RegisterOperand cls, Immediate imm>
   1127   : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
   1128             mnemonic#"\t$R1, $I2",
   1129             [(operator cls:$R1, imm:$I2)]> {
   1130   let isCompare = 1;
   1131 }
   1132 
   1133 class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
   1134                    RegisterOperand cls, SDPatternOperator load>
   1135   : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
   1136             mnemonic#"\t$R1, $I2",
   1137             [(operator cls:$R1, (load pcrel32:$I2))]> {
   1138   let isCompare = 1;
   1139   let mayLoad = 1;
   1140   // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
   1141   // However, BDXs have two extra operands and are therefore 6 units more
   1142   // complex.
   1143   let AddedComplexity = 7;
   1144 }
   1145 
   1146 class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1147                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
   1148                 AddressingMode mode = bdxaddr12only>
   1149   : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
   1150            mnemonic#"\t$R1, $XBD2",
   1151            [(operator cls:$R1, (load mode:$XBD2))]> {
   1152   let OpKey = mnemonic ## cls;
   1153   let OpType = "mem";
   1154   let isCompare = 1;
   1155   let mayLoad = 1;
   1156   let AccessBytes = bytes;
   1157 }
   1158 
   1159 class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1160                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
   1161   : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
   1162             mnemonic#"\t$R1, $XBD2",
   1163             [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
   1164   let OpKey = mnemonic ## cls;
   1165   let OpType = "mem";
   1166   let isCompare = 1;
   1167   let mayLoad = 1;
   1168   let AccessBytes = bytes;
   1169 }
   1170 
   1171 class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1172                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
   1173                  AddressingMode mode = bdxaddr20only>
   1174   : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
   1175             mnemonic#"\t$R1, $XBD2",
   1176             [(operator cls:$R1, (load mode:$XBD2))]> {
   1177   let OpKey = mnemonic ## cls;
   1178   let OpType = "mem";
   1179   let isCompare = 1;
   1180   let mayLoad = 1;
   1181   let AccessBytes = bytes;
   1182 }
   1183 
   1184 multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
   1185                          SDPatternOperator operator, RegisterOperand cls,
   1186                          SDPatternOperator load, bits<5> bytes> {
   1187   let DispKey = mnemonic ## #cls in {
   1188     let DispSize = "12" in
   1189       def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
   1190                          load, bytes, bdxaddr12pair>;
   1191     let DispSize = "20" in
   1192       def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
   1193                           load, bytes, bdxaddr20pair>;
   1194   }
   1195 }
   1196 
   1197 class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1198                 SDPatternOperator load, Immediate imm,
   1199                 AddressingMode mode = bdaddr12only>
   1200   : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
   1201            mnemonic#"\t$BD1, $I2",
   1202            [(operator (load mode:$BD1), imm:$I2)]> {
   1203   let isCompare = 1;
   1204   let mayLoad = 1;
   1205 }
   1206 
   1207 class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1208                  SDPatternOperator load, Immediate imm>
   1209   : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
   1210             mnemonic#"\t$BD1, $I2",
   1211             [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
   1212   let isCompare = 1;
   1213   let mayLoad = 1;
   1214 }
   1215 
   1216 class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1217                  SDPatternOperator load, Immediate imm,
   1218                  AddressingMode mode = bdaddr20only>
   1219   : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
   1220             mnemonic#"\t$BD1, $I2",
   1221             [(operator (load mode:$BD1), imm:$I2)]> {
   1222   let isCompare = 1;
   1223   let mayLoad = 1;
   1224 }
   1225 
   1226 multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
   1227                          SDPatternOperator operator, SDPatternOperator load,
   1228                          Immediate imm> {
   1229   let DispKey = mnemonic in {
   1230     let DispSize = "12" in
   1231       def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
   1232     let DispSize = "20" in
   1233       def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
   1234                           bdaddr20pair>;
   1235   }
   1236 }
   1237 
   1238 class TernaryRRD<string mnemonic, bits<16> opcode,
   1239                  SDPatternOperator operator, RegisterOperand cls>
   1240   : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
   1241             mnemonic#"r\t$R1, $R3, $R2",
   1242             [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
   1243   let OpKey = mnemonic ## cls;
   1244   let OpType = "reg";
   1245   let Constraints = "$R1 = $R1src";
   1246   let DisableEncoding = "$R1src";
   1247 }
   1248 
   1249 class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1250                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
   1251   : InstRXF<opcode, (outs cls:$R1),
   1252             (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
   1253             mnemonic#"\t$R1, $R3, $XBD2",
   1254             [(set cls:$R1, (operator cls:$R1src, cls:$R3,
   1255                                      (load bdxaddr12only:$XBD2)))]> {
   1256   let OpKey = mnemonic ## cls;
   1257   let OpType = "mem";
   1258   let Constraints = "$R1 = $R1src";
   1259   let DisableEncoding = "$R1src";
   1260   let mayLoad = 1;
   1261   let AccessBytes = bytes;
   1262 }
   1263 
   1264 class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1265                   RegisterOperand cls, AddressingMode mode = bdaddr20only>
   1266   : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
   1267             mnemonic#"\t$R1, $R3, $BD2",
   1268             [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
   1269   let mayLoad = 1;
   1270   let mayStore = 1;
   1271 }
   1272 
   1273 class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
   1274                 RegisterOperand cls, AddressingMode mode = bdaddr12only>
   1275   : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
   1276            mnemonic#"\t$R1, $R3, $BD2",
   1277            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
   1278   let Constraints = "$R1 = $R1src";
   1279   let DisableEncoding = "$R1src";
   1280   let mayLoad = 1;
   1281   let mayStore = 1;
   1282 }
   1283 
   1284 class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
   1285                  RegisterOperand cls, AddressingMode mode = bdaddr20only>
   1286   : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
   1287             mnemonic#"\t$R1, $R3, $BD2",
   1288             [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
   1289   let Constraints = "$R1 = $R1src";
   1290   let DisableEncoding = "$R1src";
   1291   let mayLoad = 1;
   1292   let mayStore = 1;
   1293 }
   1294 
   1295 multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
   1296                          SDPatternOperator operator, RegisterOperand cls> {
   1297   let DispKey = mnemonic ## #cls in {
   1298     let DispSize = "12" in
   1299       def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
   1300     let DispSize = "20" in
   1301       def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
   1302   }
   1303 }
   1304 
   1305 class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
   1306                        RegisterOperand cls2>
   1307   : InstRIEf<opcode, (outs cls1:$R1),
   1308              (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
   1309                   imm32zx6:$I5),
   1310              mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
   1311   let Constraints = "$R1 = $R1src";
   1312   let DisableEncoding = "$R1src";
   1313 }
   1314 
   1315 class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
   1316   : InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
   1317             mnemonic##"\t$R1, $XBD2",
   1318             [(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;
   1319 
   1320 class PrefetchRILPC<string mnemonic, bits<12> opcode,
   1321                     SDPatternOperator operator>
   1322   : InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
   1323             mnemonic##"\t$R1, $I2",
   1324             [(operator imm32zx4:$R1, pcrel32:$I2)]> {
   1325   // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
   1326   // However, BDXs have two extra operands and are therefore 6 units more
   1327   // complex.
   1328   let AddedComplexity = 7;
   1329 }
   1330 
   1331 // A floating-point load-and test operation.  Create both a normal unary
   1332 // operation and one that acts as a comparison against zero.
   1333 multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
   1334                           RegisterOperand cls> {
   1335   def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
   1336   let isCodeGenOnly = 1 in
   1337     def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
   1338 }
   1339 
   1340 //===----------------------------------------------------------------------===//
   1341 // Pseudo instructions
   1342 //===----------------------------------------------------------------------===//
   1343 //
   1344 // Convenience instructions that get lowered to real instructions
   1345 // by either SystemZTargetLowering::EmitInstrWithCustomInserter()
   1346 // or SystemZInstrInfo::expandPostRAPseudo().
   1347 //
   1348 //===----------------------------------------------------------------------===//
   1349 
   1350 class Pseudo<dag outs, dag ins, list<dag> pattern>
   1351   : InstSystemZ<0, outs, ins, "", pattern> {
   1352   let isPseudo = 1;
   1353   let isCodeGenOnly = 1;
   1354 }
   1355 
   1356 // Like UnaryRI, but expanded after RA depending on the choice of register.
   1357 class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
   1358                     Immediate imm>
   1359   : Pseudo<(outs cls:$R1), (ins imm:$I2),
   1360            [(set cls:$R1, (operator imm:$I2))]>;
   1361 
   1362 // Like UnaryRXY, but expanded after RA depending on the choice of register.
   1363 class UnaryRXYPseudo<string key, SDPatternOperator operator,
   1364                      RegisterOperand cls, bits<5> bytes,
   1365                      AddressingMode mode = bdxaddr20only>
   1366   : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
   1367            [(set cls:$R1, (operator mode:$XBD2))]> {
   1368   let OpKey = key ## cls;
   1369   let OpType = "mem";
   1370   let mayLoad = 1;
   1371   let Has20BitOffset = 1;
   1372   let HasIndex = 1;
   1373   let AccessBytes = bytes;
   1374 }
   1375 
   1376 // Like UnaryRR, but expanded after RA depending on the choice of registers.
   1377 class UnaryRRPseudo<string key, SDPatternOperator operator,
   1378                     RegisterOperand cls1, RegisterOperand cls2>
   1379   : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
   1380            [(set cls1:$R1, (operator cls2:$R2))]> {
   1381   let OpKey = key ## cls1;
   1382   let OpType = "reg";
   1383 }
   1384 
   1385 // Like BinaryRI, but expanded after RA depending on the choice of register.
   1386 class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
   1387                      Immediate imm>
   1388   : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
   1389            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
   1390   let Constraints = "$R1 = $R1src";
   1391 }
   1392 
   1393 // Like BinaryRIE, but expanded after RA depending on the choice of register.
   1394 class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
   1395                       Immediate imm>
   1396   : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
   1397            [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
   1398 
   1399 // Like BinaryRIAndK, but expanded after RA depending on the choice of register.
   1400 multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
   1401                               RegisterOperand cls, Immediate imm> {
   1402   let NumOpsKey = key in {
   1403     let NumOpsValue = "3" in
   1404       def K : BinaryRIEPseudo<null_frag, cls, imm>,
   1405               Requires<[FeatureHighWord, FeatureDistinctOps]>;
   1406     let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
   1407       def "" : BinaryRIPseudo<operator, cls, imm>,
   1408                Requires<[FeatureHighWord]>;
   1409   }
   1410 }
   1411 
   1412 // Like CompareRI, but expanded after RA depending on the choice of register.
   1413 class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
   1414                       Immediate imm>
   1415   : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
   1416 
   1417 // Like CompareRXY, but expanded after RA depending on the choice of register.
   1418 class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
   1419                        SDPatternOperator load, bits<5> bytes,
   1420                        AddressingMode mode = bdxaddr20only>
   1421   : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
   1422            [(operator cls:$R1, (load mode:$XBD2))]> {
   1423   let mayLoad = 1;
   1424   let Has20BitOffset = 1;
   1425   let HasIndex = 1;
   1426   let AccessBytes = bytes;
   1427 }
   1428 
   1429 // Like StoreRXY, but expanded after RA depending on the choice of register.
   1430 class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
   1431                      bits<5> bytes, AddressingMode mode = bdxaddr20only>
   1432   : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
   1433            [(operator cls:$R1, mode:$XBD2)]> {
   1434   let mayStore = 1;
   1435   let Has20BitOffset = 1;
   1436   let HasIndex = 1;
   1437   let AccessBytes = bytes;
   1438 }
   1439 
   1440 // Like RotateSelectRIEf, but expanded after RA depending on the choice
   1441 // of registers.
   1442 class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
   1443   : Pseudo<(outs cls1:$R1),
   1444            (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
   1445                 imm32zx6:$I5),
   1446            []> {
   1447   let Constraints = "$R1 = $R1src";
   1448   let DisableEncoding = "$R1src";
   1449 }
   1450 
   1451 // Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
   1452 // the value of the PSW's 2-bit condition code field.
   1453 class SelectWrapper<RegisterOperand cls>
   1454   : Pseudo<(outs cls:$dst),
   1455            (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
   1456            [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
   1457                                             imm32zx4:$valid, imm32zx4:$cc))]> {
   1458   let usesCustomInserter = 1;
   1459   // Although the instructions used by these nodes do not in themselves
   1460   // change CC, the insertion requires new blocks, and CC cannot be live
   1461   // across them.
   1462   let Defs = [CC];
   1463   let Uses = [CC];
   1464 }
   1465 
   1466 // Stores $new to $addr if $cc is true ("" case) or false (Inv case).
   1467 multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
   1468                       SDPatternOperator load, AddressingMode mode> {
   1469   let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
   1470     def "" : Pseudo<(outs),
   1471                     (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
   1472                     [(store (z_select_ccmask cls:$new, (load mode:$addr),
   1473                                              imm32zx4:$valid, imm32zx4:$cc),
   1474                             mode:$addr)]>;
   1475     def Inv : Pseudo<(outs),
   1476                      (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
   1477                      [(store (z_select_ccmask (load mode:$addr), cls:$new,
   1478                                               imm32zx4:$valid, imm32zx4:$cc),
   1479                               mode:$addr)]>;
   1480   }
   1481 }
   1482 
   1483 // OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
   1484 // describe the second (non-memory) operand.
   1485 class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
   1486                        dag pat, DAGOperand operand>
   1487   : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
   1488            [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
   1489   let Defs = [CC];
   1490   let Has20BitOffset = 1;
   1491   let mayLoad = 1;
   1492   let mayStore = 1;
   1493   let usesCustomInserter = 1;
   1494 }
   1495 
   1496 // Specializations of AtomicLoadWBinary.
   1497 class AtomicLoadBinaryReg32<SDPatternOperator operator>
   1498   : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
   1499 class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
   1500   : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
   1501 class AtomicLoadBinaryReg64<SDPatternOperator operator>
   1502   : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
   1503 class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
   1504   : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
   1505 
   1506 // OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
   1507 // describe the second (non-memory) operand.
   1508 class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
   1509                         DAGOperand operand>
   1510   : Pseudo<(outs GR32:$dst),
   1511            (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
   1512                 ADDR32:$negbitshift, uimm32:$bitsize),
   1513            [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
   1514                                       ADDR32:$negbitshift, uimm32:$bitsize))]> {
   1515   let Defs = [CC];
   1516   let Has20BitOffset = 1;
   1517   let mayLoad = 1;
   1518   let mayStore = 1;
   1519   let usesCustomInserter = 1;
   1520 }
   1521 
   1522 // Specializations of AtomicLoadWBinary.
   1523 class AtomicLoadWBinaryReg<SDPatternOperator operator>
   1524   : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
   1525 class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
   1526   : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
   1527 
   1528 // Define an instruction that operates on two fixed-length blocks of memory,
   1529 // and associated pseudo instructions for operating on blocks of any size.
   1530 // The Sequence form uses a straight-line sequence of instructions and
   1531 // the Loop form uses a loop of length-256 instructions followed by
   1532 // another instruction to handle the excess.
   1533 multiclass MemorySS<string mnemonic, bits<8> opcode,
   1534                     SDPatternOperator sequence, SDPatternOperator loop> {
   1535   def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
   1536                                        bdaddr12only:$BD2),
   1537                   mnemonic##"\t$BDL1, $BD2", []>;
   1538   let usesCustomInserter = 1 in {
   1539     def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
   1540                                        imm64:$length),
   1541                            [(sequence bdaddr12only:$dest, bdaddr12only:$src,
   1542                                       imm64:$length)]>;
   1543     def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
   1544                                    imm64:$length, GR64:$count256),
   1545                       [(loop bdaddr12only:$dest, bdaddr12only:$src,
   1546                              imm64:$length, GR64:$count256)]>;
   1547   }
   1548 }
   1549 
   1550 // Define an instruction that operates on two strings, both terminated
   1551 // by the character in R0.  The instruction processes a CPU-determinated
   1552 // number of bytes at a time and sets CC to 3 if the instruction needs
   1553 // to be repeated.  Also define a pseudo instruction that represents
   1554 // the full loop (the main instruction plus the branch on CC==3).
   1555 multiclass StringRRE<string mnemonic, bits<16> opcode,
   1556                      SDPatternOperator operator> {
   1557   def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
   1558                    (ins GR64:$R1src, GR64:$R2src),
   1559                    mnemonic#"\t$R1, $R2", []> {
   1560     let Constraints = "$R1 = $R1src, $R2 = $R2src";
   1561     let DisableEncoding = "$R1src, $R2src";
   1562   }
   1563   let usesCustomInserter = 1 in
   1564     def Loop : Pseudo<(outs GR64:$end),
   1565                       (ins GR64:$start1, GR64:$start2, GR32:$char),
   1566                       [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
   1567                                                  GR32:$char))]>;
   1568 }
   1569 
   1570 // A pseudo instruction that is a direct alias of a real instruction.
   1571 // These aliases are used in cases where a particular register operand is
   1572 // fixed or where the same instruction is used with different register sizes.
   1573 // The size parameter is the size in bytes of the associated real instruction.
   1574 class Alias<int size, dag outs, dag ins, list<dag> pattern>
   1575   : InstSystemZ<size, outs, ins, "", pattern> {
   1576   let isPseudo = 1;
   1577   let isCodeGenOnly = 1;
   1578 }
   1579 
   1580 // An alias of a BinaryRI, but with different register sizes.
   1581 class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
   1582                     Immediate imm>
   1583   : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
   1584           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
   1585   let Constraints = "$R1 = $R1src";
   1586 }
   1587 
   1588 // An alias of a BinaryRIL, but with different register sizes.
   1589 class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
   1590                      Immediate imm>
   1591   : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
   1592           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
   1593   let Constraints = "$R1 = $R1src";
   1594 }
   1595 
   1596 // An alias of a CompareRI, but with different register sizes.
   1597 class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
   1598                      Immediate imm>
   1599   : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
   1600   let isCompare = 1;
   1601 }
   1602 
   1603 // An alias of a RotateSelectRIEf, but with different register sizes.
   1604 class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
   1605   : Alias<6, (outs cls1:$R1),
   1606           (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
   1607                imm32zx6:$I5), []> {
   1608   let Constraints = "$R1 = $R1src";
   1609 }
   1610