Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Stack allocation
     12 //===----------------------------------------------------------------------===//
     13 
     14 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
     15                               [(callseq_start timm:$amt)]>;
     16 def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
     17                               [(callseq_end timm:$amt1, timm:$amt2)]>;
     18 
     19 let neverHasSideEffects = 1 in {
     20   // Takes as input the value of the stack pointer after a dynamic allocation
     21   // has been made.  Sets the output to the address of the dynamically-
     22   // allocated area itself, skipping the outgoing arguments.
     23   //
     24   // This expands to an LA or LAY instruction.  We restrict the offset
     25   // to the range of LA and keep the LAY range in reserve for when
     26   // the size of the outgoing arguments is added.
     27   def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
     28                            [(set GR64:$dst, dynalloc12only:$src)]>;
     29 }
     30 
     31 //===----------------------------------------------------------------------===//
     32 // Control flow instructions
     33 //===----------------------------------------------------------------------===//
     34 
     35 // A return instruction (br %r14).
     36 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
     37   def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
     38 
     39 // Unconditional branches.  R1 is the condition-code mask (all 1s).
     40 let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
     41   let isIndirectBranch = 1 in
     42     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
     43                     "br\t$R2", [(brind ADDR64:$R2)]>;
     44 
     45   // An assembler extended mnemonic for BRC.
     46   def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
     47                  [(br bb:$I2)]>;
     48 
     49   // An assembler extended mnemonic for BRCL.  (The extension is "G"
     50   // rather than "L" because "JL" is "Jump if Less".)
     51   def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
     52 }
     53 
     54 // Conditional branches.  It's easier for LLVM to handle these branches
     55 // in their raw BRC/BRCL form, with the 4-bit condition-code mask being
     56 // the first operand.  It seems friendlier to use mnemonic forms like
     57 // JE and JLH when writing out the assembly though.
     58 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
     59   let isCodeGenOnly = 1, CCMaskFirst = 1 in {
     60     def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
     61                                          brtarget16:$I2), "j$R1\t$I2",
     62                      [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
     63     def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
     64                                            brtarget32:$I2), "jg$R1\t$I2", []>;
     65   }
     66   def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
     67                       "brc\t$R1, $I2", []>;
     68   def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
     69                         "brcl\t$R1, $I2", []>;
     70   def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
     71                       "bcr\t$R1, $R2", []>;
     72 }
     73 
     74 // Fused compare-and-branch instructions.  As for normal branches,
     75 // we handle these instructions internally in their raw CRJ-like form,
     76 // but use assembly macros like CRJE when writing them out.
     77 //
     78 // These instructions do not use or clobber the condition codes.
     79 // We nevertheless pretend that they clobber CC, so that we can lower
     80 // them to separate comparisons and BRCLs if the branch ends up being
     81 // out of range.
     82 multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
     83   let isBranch = 1, isTerminator = 1, Defs = [CC] in {
     84     def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
     85                                             brtarget16:$RI4),
     86                        "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     87     def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
     88                                             brtarget16:$RI4),
     89                        "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     90     def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
     91                                             brtarget16:$RI4),
     92                        "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     93     def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
     94                                             brtarget16:$RI4),
     95                        "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
     96     def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
     97                                              brtarget16:$RI4),
     98                         "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
     99     def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    100                                              brtarget16:$RI4),
    101                         "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
    102     def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
    103                                              brtarget16:$RI4),
    104                         "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
    105     def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
    106                                              brtarget16:$RI4),
    107                         "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
    108   }
    109 }
    110 let isCodeGenOnly = 1 in
    111   defm C : CompareBranches<cond4, "$M3", "">;
    112 defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">;
    113 
    114 // Define AsmParser mnemonics for each general condition-code mask
    115 // (integer or floating-point)
    116 multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
    117   let R1 = ccmask in {
    118     def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
    119                    "j"##name##"\t$I2", []>;
    120     def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
    121                      "jg"##name##"\t$I2", []>;
    122     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
    123   }
    124   def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
    125   def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
    126   def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
    127   def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
    128   def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
    129   def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
    130 }
    131 defm AsmO   : CondExtendedMnemonic<1,  "o">;
    132 defm AsmH   : CondExtendedMnemonic<2,  "h">;
    133 defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
    134 defm AsmL   : CondExtendedMnemonic<4,  "l">;
    135 defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
    136 defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
    137 defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
    138 defm AsmE   : CondExtendedMnemonic<8,  "e">;
    139 defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
    140 defm AsmHE  : CondExtendedMnemonic<10, "he">;
    141 defm AsmNL  : CondExtendedMnemonic<11, "nl">;
    142 defm AsmLE  : CondExtendedMnemonic<12, "le">;
    143 defm AsmNH  : CondExtendedMnemonic<13, "nh">;
    144 defm AsmNO  : CondExtendedMnemonic<14, "no">;
    145 
    146 // Define AsmParser mnemonics for each integer condition-code mask.
    147 // This is like the list above, except that condition 3 is not possible
    148 // and that the low bit of the mask is therefore always 0.  This means
    149 // that each condition has two names.  Conditions "o" and "no" are not used.
    150 //
    151 // We don't make one of the two names an alias of the other because
    152 // we need the custom parsing routines to select the correct register class.
    153 multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
    154   let M3 = ccmask in {
    155     def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
    156                                             brtarget16:$RI4),
    157                        "crj"##name##"\t$R1, $R2, $RI4", []>;
    158     def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
    159                                             brtarget16:$RI4),
    160                        "cgrj"##name##"\t$R1, $R2, $RI4", []>;
    161     def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
    162                                             brtarget16:$RI4),
    163                        "cij"##name##"\t$R1, $I2, $RI4", []>;
    164     def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
    165                                             brtarget16:$RI4),
    166                        "cgij"##name##"\t$R1, $I2, $RI4", []>;
    167     def CLR  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
    168                                             brtarget16:$RI4),
    169                         "clrj"##name##"\t$R1, $R2, $RI4", []>;
    170     def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
    171                                              brtarget16:$RI4),
    172                         "clgrj"##name##"\t$R1, $R2, $RI4", []>;
    173     def CLI  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
    174                                              brtarget16:$RI4),
    175                         "clij"##name##"\t$R1, $I2, $RI4", []>;
    176     def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
    177                                              brtarget16:$RI4),
    178                         "clgij"##name##"\t$R1, $I2, $RI4", []>;
    179   }
    180 }
    181 multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
    182   : IntCondExtendedMnemonicA<ccmask, name1> {
    183   let isAsmParserOnly = 1 in
    184     defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
    185 }
    186 defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
    187 defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
    188 defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
    189 defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
    190 defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
    191 defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
    192 
    193 // Decrement a register and branch if it is nonzero.  These don't clobber CC,
    194 // but we might need to split long branches into sequences that do.
    195 let Defs = [CC] in {
    196   def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    197   def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
    198 }
    199 
    200 //===----------------------------------------------------------------------===//
    201 // Select instructions
    202 //===----------------------------------------------------------------------===//
    203 
    204 def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
    205 def Select32    : SelectWrapper<GR32>;
    206 def Select64    : SelectWrapper<GR64>;
    207 
    208 // We don't define 32-bit Mux stores because the low-only STOC should
    209 // always be used if possible.
    210 defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
    211                                  nonvolatile_anyextloadi8, bdxaddr20only>,
    212                       Requires<[FeatureHighWord]>;
    213 defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
    214                                  nonvolatile_anyextloadi16, bdxaddr20only>,
    215                       Requires<[FeatureHighWord]>;
    216 defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
    217                                  nonvolatile_anyextloadi8, bdxaddr20only>;
    218 defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
    219                                  nonvolatile_anyextloadi16, bdxaddr20only>;
    220 defm CondStore32    : CondStores<GR32, nonvolatile_store,
    221                                  nonvolatile_load, bdxaddr20only>;
    222 
    223 defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
    224                     nonvolatile_anyextloadi8, bdxaddr20only>;
    225 defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
    226                     nonvolatile_anyextloadi16, bdxaddr20only>;
    227 defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
    228                     nonvolatile_anyextloadi32, bdxaddr20only>;
    229 defm CondStore64 : CondStores<GR64, nonvolatile_store,
    230                               nonvolatile_load, bdxaddr20only>;
    231 
    232 //===----------------------------------------------------------------------===//
    233 // Call instructions
    234 //===----------------------------------------------------------------------===//
    235 
    236 let isCall = 1, Defs = [R14D, CC] in {
    237   def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
    238                         [(z_call pcrel32:$I2)]>;
    239   def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
    240                         [(z_call ADDR64:$R2)]>;
    241 }
    242 
    243 // Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
    244 // are argument registers and since branching to R0 is a no-op.
    245 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    246   def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
    247                      [(z_sibcall pcrel32:$I2)]>;
    248   let Uses = [R1D] in
    249     def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
    250 }
    251 
    252 // Define the general form of the call instructions for the asm parser.
    253 // These instructions don't hard-code %r14 as the return address register.
    254 def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
    255                    "bras\t$R1, $I2", []>;
    256 def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
    257                     "brasl\t$R1, $I2", []>;
    258 def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
    259                    "basr\t$R1, $R2", []>;
    260 
    261 //===----------------------------------------------------------------------===//
    262 // Move instructions
    263 //===----------------------------------------------------------------------===//
    264 
    265 // Register moves.
    266 let neverHasSideEffects = 1 in {
    267   // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
    268   def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
    269               Requires<[FeatureHighWord]>;
    270   def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
    271   def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
    272 }
    273 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    274   def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
    275   def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
    276 }
    277 
    278 // Move on condition.
    279 let isCodeGenOnly = 1, Uses = [CC] in {
    280   def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    281   def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    282 }
    283 let Uses = [CC] in {
    284   def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    285   def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    286 }
    287 
    288 // Immediate moves.
    289 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    290     isReMaterializable = 1 in {
    291   // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
    292   // deopending on the choice of register.
    293   def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
    294                Requires<[FeatureHighWord]>;
    295   def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
    296   def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
    297 
    298   // Other 16-bit immediates.
    299   def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
    300   def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
    301   def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
    302   def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
    303 
    304   // 32-bit immediates.
    305   def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
    306   def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
    307   def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
    308 }
    309 
    310 // Register loads.
    311 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
    312   // Expands to L, LY or LFH, depending on the choice of register.
    313   def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
    314              Requires<[FeatureHighWord]>;
    315   defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
    316   def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
    317             Requires<[FeatureHighWord]>;
    318   def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
    319 
    320   // These instructions are split after register allocation, so we don't
    321   // want a custom inserter.
    322   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    323     def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
    324                       [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
    325   }
    326 }
    327 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    328   def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
    329   def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
    330 }
    331 
    332 let canFoldAsLoad = 1 in {
    333   def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
    334   def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
    335 }
    336 
    337 // Load on condition.
    338 let isCodeGenOnly = 1, Uses = [CC] in {
    339   def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
    340   def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
    341 }
    342 let Uses = [CC] in {
    343   def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
    344   def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
    345 }
    346 
    347 // Register stores.
    348 let SimpleBDXStore = 1 in {
    349   // Expands to ST, STY or STFH, depending on the choice of register.
    350   def STMux : StoreRXYPseudo<store, GRX32, 4>,
    351               Requires<[FeatureHighWord]>;
    352   defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
    353   def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
    354              Requires<[FeatureHighWord]>;
    355   def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
    356 
    357   // These instructions are split after register allocation, so we don't
    358   // want a custom inserter.
    359   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    360     def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
    361                        [(store GR128:$src, bdxaddr20only128:$dst)]>;
    362   }
    363 }
    364 def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
    365 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
    366 
    367 // Store on condition.
    368 let isCodeGenOnly = 1, Uses = [CC] in {
    369   def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    370   def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    371 }
    372 let Uses = [CC] in {
    373   def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    374   def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    375 }
    376 
    377 // 8-bit immediate stores to 8-bit fields.
    378 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
    379 
    380 // 16-bit immediate stores to 16-, 32- or 64-bit fields.
    381 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
    382 def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
    383 def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
    384 
    385 // Memory-to-memory moves.
    386 let mayLoad = 1, mayStore = 1 in
    387   defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
    388 
    389 // String moves.
    390 let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
    391   defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
    392 
    393 //===----------------------------------------------------------------------===//
    394 // Sign extensions
    395 //===----------------------------------------------------------------------===//
    396 //
    397 // Note that putting these before zero extensions mean that we will prefer
    398 // them for anyextload*.  There's not really much to choose between the two
    399 // either way, but signed-extending loads have a short LH and a long LHY,
    400 // while zero-extending loads have only the long LLH.
    401 //
    402 //===----------------------------------------------------------------------===//
    403 
    404 // 32-bit extensions from registers.
    405 let neverHasSideEffects = 1 in {
    406   def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
    407   def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
    408 }
    409 
    410 // 64-bit extensions from registers.
    411 let neverHasSideEffects = 1 in {
    412   def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
    413   def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
    414   def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
    415 }
    416 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    417   def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
    418 
    419 // Match 32-to-64-bit sign extensions in which the source is already
    420 // in a 64-bit register.
    421 def : Pat<(sext_inreg GR64:$src, i32),
    422           (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    423 
    424 // 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
    425 // depending on the choice of register.
    426 def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
    427             Requires<[FeatureHighWord]>;
    428 def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
    429 def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
    430           Requires<[FeatureHighWord]>;
    431 
    432 // 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
    433 // depending on the choice of register.
    434 def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
    435             Requires<[FeatureHighWord]>;
    436 defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
    437 def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
    438             Requires<[FeatureHighWord]>;
    439 def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
    440 
    441 // 64-bit extensions from memory.
    442 def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
    443 def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
    444 def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
    445 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
    446 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
    447 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    448   def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
    449 
    450 //===----------------------------------------------------------------------===//
    451 // Zero extensions
    452 //===----------------------------------------------------------------------===//
    453 
    454 // 32-bit extensions from registers.
    455 let neverHasSideEffects = 1 in {
    456   // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
    457   def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
    458                 Requires<[FeatureHighWord]>;
    459   def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
    460   // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
    461   def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
    462                 Requires<[FeatureHighWord]>;
    463   def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
    464 }
    465 
    466 // 64-bit extensions from registers.
    467 let neverHasSideEffects = 1 in {
    468   def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
    469   def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
    470   def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
    471 }
    472 
    473 // Match 32-to-64-bit zero extensions in which the source is already
    474 // in a 64-bit register.
    475 def : Pat<(and GR64:$src, 0xffffffff),
    476           (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    477 
    478 // 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
    479 // depending on the choice of register.
    480 def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
    481              Requires<[FeatureHighWord]>;
    482 def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
    483 def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>,
    484            Requires<[FeatureHighWord]>;
    485 
    486 // 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
    487 // depending on the choice of register.
    488 def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
    489              Requires<[FeatureHighWord]>;
    490 def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
    491 def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>,
    492             Requires<[FeatureHighWord]>;
    493 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
    494 
    495 // 64-bit extensions from memory.
    496 def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
    497 def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
    498 def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
    499 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
    500 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
    501 
    502 //===----------------------------------------------------------------------===//
    503 // Truncations
    504 //===----------------------------------------------------------------------===//
    505 
    506 // Truncations of 64-bit registers to 32-bit registers.
    507 def : Pat<(i32 (trunc GR64:$src)),
    508           (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
    509 
    510 // Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
    511 // STC, STCY or STCH, depending on the choice of register.
    512 def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
    513              Requires<[FeatureHighWord]>;
    514 defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
    515 def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
    516            Requires<[FeatureHighWord]>;
    517 
    518 // Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
    519 // STH, STHY or STHH, depending on the choice of register.
    520 def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
    521              Requires<[FeatureHighWord]>;
    522 defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
    523 def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
    524            Requires<[FeatureHighWord]>;
    525 def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
    526 
    527 // Truncations of 64-bit registers to memory.
    528 defm : StoreGR64Pair<STC, STCY, truncstorei8>;
    529 defm : StoreGR64Pair<STH, STHY, truncstorei16>;
    530 def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
    531 defm : StoreGR64Pair<ST, STY, truncstorei32>;
    532 def  : StoreGR64PC<STRL, aligned_truncstorei32>;
    533 
    534 //===----------------------------------------------------------------------===//
    535 // Multi-register moves
    536 //===----------------------------------------------------------------------===//
    537 
    538 // Multi-register loads.
    539 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
    540 
    541 // Multi-register stores.
    542 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
    543 
    544 //===----------------------------------------------------------------------===//
    545 // Byte swaps
    546 //===----------------------------------------------------------------------===//
    547 
    548 // Byte-swapping register moves.
    549 let neverHasSideEffects = 1 in {
    550   def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
    551   def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
    552 }
    553 
    554 // Byte-swapping loads.  Unlike normal loads, these instructions are
    555 // allowed to access storage more than once.
    556 def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
    557 def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
    558 
    559 // Likewise byte-swapping stores.
    560 def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
    561 def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
    562                      GR64, 8>;
    563 
    564 //===----------------------------------------------------------------------===//
    565 // Load address instructions
    566 //===----------------------------------------------------------------------===//
    567 
    568 // Load BDX-style addresses.
    569 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
    570     DispKey = "la" in {
    571   let DispSize = "12" in
    572     def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
    573                     "la\t$R1, $XBD2",
    574                     [(set GR64:$R1, laaddr12pair:$XBD2)]>;
    575   let DispSize = "20" in
    576     def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
    577                       "lay\t$R1, $XBD2",
    578                       [(set GR64:$R1, laaddr20pair:$XBD2)]>;
    579 }
    580 
    581 // Load a PC-relative address.  There's no version of this instruction
    582 // with a 16-bit offset, so there's no relaxation.
    583 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
    584     isReMaterializable = 1 in {
    585   def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
    586                      "larl\t$R1, $I2",
    587                      [(set GR64:$R1, pcrel32:$I2)]>;
    588 }
    589 
    590 //===----------------------------------------------------------------------===//
    591 // Absolute and Negation
    592 //===----------------------------------------------------------------------===//
    593 
    594 let Defs = [CC] in {
    595   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    596     def LPR  : UnaryRR <"lp",  0x10,   z_iabs, GR32, GR32>;
    597     def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
    598   }
    599   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    600     def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
    601 }
    602 def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
    603 def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
    604 defm : SXU<z_iabs,   LPGFR>;
    605 defm : SXU<z_iabs64, LPGFR>;
    606 
    607 let Defs = [CC] in {
    608   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    609     def LNR  : UnaryRR <"ln",  0x11,   z_inegabs, GR32, GR32>;
    610     def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
    611   }
    612   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    613     def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
    614 }
    615 def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
    616 def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
    617 defm : SXU<z_inegabs,   LNGFR>;
    618 defm : SXU<z_inegabs64, LNGFR>;
    619 
    620 let Defs = [CC] in {
    621   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    622     def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
    623     def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
    624   }
    625   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    626     def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
    627 }
    628 defm : SXU<ineg, LCGFR>;
    629 
    630 //===----------------------------------------------------------------------===//
    631 // Insertion
    632 //===----------------------------------------------------------------------===//
    633 
    634 let isCodeGenOnly = 1 in
    635   defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
    636 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
    637 
    638 defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
    639 defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
    640 
    641 defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
    642 defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
    643 
    644 // Insertions of a 16-bit immediate, leaving other bits unaffected.
    645 // We don't have or_as_insert equivalents of these operations because
    646 // OI is available instead.
    647 //
    648 // IIxMux expands to II[LH]x, depending on the choice of register.
    649 def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
    650              Requires<[FeatureHighWord]>;
    651 def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
    652              Requires<[FeatureHighWord]>;
    653 def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
    654 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
    655 def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
    656 def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
    657 def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
    658 def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
    659 def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
    660 def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
    661 
    662 // ...likewise for 32-bit immediates.  For GR32s this is a general
    663 // full-width move.  (We use IILF rather than something like LLILF
    664 // for 32-bit moves because IILF leaves the upper 32 bits of the
    665 // GR64 unchanged.)
    666 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
    667   def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
    668                Requires<[FeatureHighWord]>;
    669   def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
    670   def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
    671 }
    672 def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
    673 def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
    674 
    675 // An alternative model of inserthf, with the first operand being
    676 // a zero-extended value.
    677 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
    678           (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
    679                   imm64hf32:$imm)>;
    680 
    681 //===----------------------------------------------------------------------===//
    682 // Addition
    683 //===----------------------------------------------------------------------===//
    684 
    685 // Plain addition.
    686 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    687   // Addition of a register.
    688   let isCommutable = 1 in {
    689     defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
    690     defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
    691   }
    692   def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
    693 
    694   // Addition of signed 16-bit immediates.
    695   defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
    696   defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
    697   defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
    698 
    699   // Addition of signed 32-bit immediates.
    700   def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
    701                Requires<[FeatureHighWord]>;
    702   def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
    703   def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
    704              Requires<[FeatureHighWord]>;
    705   def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
    706 
    707   // Addition of memory.
    708   defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
    709   defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
    710   def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
    711   def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
    712 
    713   // Addition to memory.
    714   def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
    715   def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
    716 }
    717 defm : SXB<add, GR64, AGFR>;
    718 
    719 // Addition producing a carry.
    720 let Defs = [CC] in {
    721   // Addition of a register.
    722   let isCommutable = 1 in {
    723     defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
    724     defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
    725   }
    726   def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
    727 
    728   // Addition of signed 16-bit immediates.
    729   def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
    730                 Requires<[FeatureDistinctOps]>;
    731   def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
    732                 Requires<[FeatureDistinctOps]>;
    733 
    734   // Addition of unsigned 32-bit immediates.
    735   def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
    736   def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
    737 
    738   // Addition of memory.
    739   defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
    740   def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
    741   def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
    742 }
    743 defm : ZXB<addc, GR64, ALGFR>;
    744 
    745 // Addition producing and using a carry.
    746 let Defs = [CC], Uses = [CC] in {
    747   // Addition of a register.
    748   def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
    749   def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
    750 
    751   // Addition of memory.
    752   def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
    753   def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
    754 }
    755 
    756 //===----------------------------------------------------------------------===//
    757 // Subtraction
    758 //===----------------------------------------------------------------------===//
    759 
    760 // Plain subtraction.  Although immediate forms exist, we use the
    761 // add-immediate instruction instead.
    762 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    763   // Subtraction of a register.
    764   defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
    765   def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
    766   defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
    767 
    768   // Subtraction of memory.
    769   defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
    770   defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
    771   def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
    772   def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
    773 }
    774 defm : SXB<sub, GR64, SGFR>;
    775 
    776 // Subtraction producing a carry.
    777 let Defs = [CC] in {
    778   // Subtraction of a register.
    779   defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
    780   def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
    781   defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
    782 
    783   // Subtraction of unsigned 32-bit immediates.  These don't match
    784   // subc because we prefer addc for constants.
    785   def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
    786   def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
    787 
    788   // Subtraction of memory.
    789   defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
    790   def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
    791   def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
    792 }
    793 defm : ZXB<subc, GR64, SLGFR>;
    794 
    795 // Subtraction producing and using a carry.
    796 let Defs = [CC], Uses = [CC] in {
    797   // Subtraction of a register.
    798   def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
    799   def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
    800 
    801   // Subtraction of memory.
    802   def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
    803   def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
    804 }
    805 
    806 //===----------------------------------------------------------------------===//
    807 // AND
    808 //===----------------------------------------------------------------------===//
    809 
    810 let Defs = [CC] in {
    811   // ANDs of a register.
    812   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    813     defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
    814     defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
    815   }
    816 
    817   let isConvertibleToThreeAddress = 1 in {
    818     // ANDs of a 16-bit immediate, leaving other bits unaffected.
    819     // The CC result only reflects the 16-bit field, not the full register.
    820     //
    821     // NIxMux expands to NI[LH]x, depending on the choice of register.
    822     def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
    823                  Requires<[FeatureHighWord]>;
    824     def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
    825                  Requires<[FeatureHighWord]>;
    826     def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    827     def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    828     def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
    829     def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
    830     def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
    831     def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
    832     def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
    833     def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
    834 
    835     // ANDs of a 32-bit immediate, leaving other bits unaffected.
    836     // The CC result only reflects the 32-bit field, which means we can
    837     // use it as a zero indicator for i32 operations but not otherwise.
    838     let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    839       // Expands to NILF or NIHF, depending on the choice of register.
    840       def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
    841                    Requires<[FeatureHighWord]>;
    842       def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
    843       def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
    844     }
    845     def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
    846     def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
    847   }
    848 
    849   // ANDs of memory.
    850   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    851     defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
    852     def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
    853   }
    854 
    855   // AND to memory
    856   defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
    857 
    858   // Block AND.
    859   let mayLoad = 1, mayStore = 1 in
    860     defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
    861 }
    862 defm : RMWIByte<and, bdaddr12pair, NI>;
    863 defm : RMWIByte<and, bdaddr20pair, NIY>;
    864 
    865 //===----------------------------------------------------------------------===//
    866 // OR
    867 //===----------------------------------------------------------------------===//
    868 
    869 let Defs = [CC] in {
    870   // ORs of a register.
    871   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    872     defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
    873     defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
    874   }
    875 
    876   // ORs of a 16-bit immediate, leaving other bits unaffected.
    877   // The CC result only reflects the 16-bit field, not the full register.
    878   //
    879   // OIxMux expands to OI[LH]x, depending on the choice of register.
    880   def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
    881                Requires<[FeatureHighWord]>;
    882   def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
    883                Requires<[FeatureHighWord]>;
    884   def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
    885   def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
    886   def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
    887   def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
    888   def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
    889   def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
    890   def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
    891   def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
    892 
    893   // ORs of a 32-bit immediate, leaving other bits unaffected.
    894   // The CC result only reflects the 32-bit field, which means we can
    895   // use it as a zero indicator for i32 operations but not otherwise.
    896   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    897     // Expands to OILF or OIHF, depending on the choice of register.
    898     def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
    899                  Requires<[FeatureHighWord]>;
    900     def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    901     def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
    902   }
    903   def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
    904   def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
    905 
    906   // ORs of memory.
    907   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    908     defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
    909     def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
    910   }
    911 
    912   // OR to memory
    913   defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
    914 
    915   // Block OR.
    916   let mayLoad = 1, mayStore = 1 in
    917     defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
    918 }
    919 defm : RMWIByte<or, bdaddr12pair, OI>;
    920 defm : RMWIByte<or, bdaddr20pair, OIY>;
    921 
    922 //===----------------------------------------------------------------------===//
    923 // XOR
    924 //===----------------------------------------------------------------------===//
    925 
    926 let Defs = [CC] in {
    927   // XORs of a register.
    928   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    929     defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
    930     defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
    931   }
    932 
    933   // XORs of a 32-bit immediate, leaving other bits unaffected.
    934   // The CC result only reflects the 32-bit field, which means we can
    935   // use it as a zero indicator for i32 operations but not otherwise.
    936   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    937     // Expands to XILF or XIHF, depending on the choice of register.
    938     def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
    939                  Requires<[FeatureHighWord]>;
    940     def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    941     def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
    942   }
    943   def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
    944   def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
    945 
    946   // XORs of memory.
    947   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    948     defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
    949     def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
    950   }
    951 
    952   // XOR to memory
    953   defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
    954 
    955   // Block XOR.
    956   let mayLoad = 1, mayStore = 1 in
    957     defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
    958 }
    959 defm : RMWIByte<xor, bdaddr12pair, XI>;
    960 defm : RMWIByte<xor, bdaddr20pair, XIY>;
    961 
    962 //===----------------------------------------------------------------------===//
    963 // Multiplication
    964 //===----------------------------------------------------------------------===//
    965 
    966 // Multiplication of a register.
    967 let isCommutable = 1 in {
    968   def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
    969   def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
    970 }
    971 def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
    972 defm : SXB<mul, GR64, MSGFR>;
    973 
    974 // Multiplication of a signed 16-bit immediate.
    975 def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
    976 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
    977 
    978 // Multiplication of a signed 32-bit immediate.
    979 def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
    980 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
    981 
    982 // Multiplication of memory.
    983 defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
    984 defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
    985 def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
    986 def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
    987 
    988 // Multiplication of a register, producing two results.
    989 def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
    990 
    991 // Multiplication of memory, producing two results.
    992 def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
    993 
    994 //===----------------------------------------------------------------------===//
    995 // Division and remainder
    996 //===----------------------------------------------------------------------===//
    997 
    998 // Division and remainder, from registers.
    999 def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
   1000 def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
   1001 def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
   1002 def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
   1003 
   1004 // Division and remainder, from memory.
   1005 def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
   1006 def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
   1007 def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
   1008 def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
   1009 
   1010 //===----------------------------------------------------------------------===//
   1011 // Shifts
   1012 //===----------------------------------------------------------------------===//
   1013 
   1014 // Shift left.
   1015 let neverHasSideEffects = 1 in {
   1016   defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
   1017   def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
   1018 }
   1019 
   1020 // Logical shift right.
   1021 let neverHasSideEffects = 1 in {
   1022   defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
   1023   def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
   1024 }
   1025 
   1026 // Arithmetic shift right.
   1027 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
   1028   defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
   1029   def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
   1030 }
   1031 
   1032 // Rotate left.
   1033 let neverHasSideEffects = 1 in {
   1034   def RLL  : BinaryRSY<"rll",  0xEB1D, rotl, GR32>;
   1035   def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
   1036 }
   1037 
   1038 // Rotate second operand left and inserted selected bits into first operand.
   1039 // These can act like 32-bit operands provided that the constant start and
   1040 // end bits (operands 2 and 3) are in the range [32, 64).
   1041 let Defs = [CC] in {
   1042   let isCodeGenOnly = 1 in
   1043     def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
   1044   let CCValues = 0xE, CompareZeroCCMask = 0xE in
   1045     def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
   1046 }
   1047 
   1048 // Forms of RISBG that only affect one word of the destination register.
   1049 // They do not set CC.
   1050 let Predicates = [FeatureHighWord] in {
   1051   def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
   1052   def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
   1053   def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
   1054   def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
   1055   def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
   1056   def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
   1057   def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
   1058 }
   1059 
   1060 // Rotate second operand left and perform a logical operation with selected
   1061 // bits of the first operand.  The CC result only describes the selected bits,
   1062 // so isn't useful for a full comparison against zero.
   1063 let Defs = [CC] in {
   1064   def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
   1065   def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
   1066   def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
   1067 }
   1068 
   1069 //===----------------------------------------------------------------------===//
   1070 // Comparison
   1071 //===----------------------------------------------------------------------===//
   1072 
   1073 // Signed comparisons.  We put these before the unsigned comparisons because
   1074 // some of the signed forms have COMPARE AND BRANCH equivalents whereas none
   1075 // of the unsigned forms do.
   1076 let Defs = [CC], CCValues = 0xE in {
   1077   // Comparison with a register.
   1078   def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
   1079   def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
   1080   def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
   1081 
   1082   // Comparison with a signed 16-bit immediate.
   1083   def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
   1084   def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
   1085 
   1086   // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
   1087   // depending on the choice of register.
   1088   def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
   1089                Requires<[FeatureHighWord]>;
   1090   def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
   1091   def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
   1092              Requires<[FeatureHighWord]>;
   1093   def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
   1094 
   1095   // Comparison with memory.
   1096   defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
   1097   def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
   1098                Requires<[FeatureHighWord]>;
   1099   defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
   1100   def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
   1101                Requires<[FeatureHighWord]>;
   1102   def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
   1103   def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
   1104   def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
   1105   def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
   1106   def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
   1107   def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
   1108   def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
   1109   def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
   1110 
   1111   // Comparison between memory and a signed 16-bit immediate.
   1112   def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
   1113   def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
   1114   def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
   1115 }
   1116 defm : SXB<z_scmp, GR64, CGFR>;
   1117 
   1118 // Unsigned comparisons.
   1119 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
   1120   // Comparison with a register.
   1121   def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
   1122   def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
   1123   def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
   1124 
   1125   // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
   1126   // or CLIH, depending on the choice of register.
   1127   def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
   1128                 Requires<[FeatureHighWord]>;
   1129   def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
   1130   def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GR32, uimm32>,
   1131               Requires<[FeatureHighWord]>;
   1132   def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
   1133 
   1134   // Comparison with memory.
   1135   def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
   1136                 Requires<[FeatureHighWord]>;
   1137   defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
   1138   def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
   1139                 Requires<[FeatureHighWord]>;
   1140   def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
   1141   def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
   1142   def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
   1143                              aligned_azextloadi16>;
   1144   def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
   1145                              aligned_load>;
   1146   def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
   1147                              aligned_azextloadi16>;
   1148   def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
   1149                              aligned_azextloadi32>;
   1150   def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
   1151                              aligned_load>;
   1152 
   1153   // Comparison between memory and an unsigned 8-bit immediate.
   1154   defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
   1155 
   1156   // Comparison between memory and an unsigned 16-bit immediate.
   1157   def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
   1158   def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
   1159   def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
   1160 }
   1161 defm : ZXB<z_ucmp, GR64, CLGFR>;
   1162 
   1163 // Memory-to-memory comparison.
   1164 let mayLoad = 1, Defs = [CC] in
   1165   defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
   1166 
   1167 // String comparison.
   1168 let mayLoad = 1, Defs = [CC], Uses = [R0L] in
   1169   defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
   1170 
   1171 // Test under mask.
   1172 let Defs = [CC] in {
   1173   // TMxMux expands to TM[LH]x, depending on the choice of register.
   1174   def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
   1175                Requires<[FeatureHighWord]>;
   1176   def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
   1177                Requires<[FeatureHighWord]>;
   1178   def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
   1179   def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
   1180   def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
   1181   def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
   1182 
   1183   def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
   1184   def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
   1185   def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
   1186   def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
   1187 
   1188   defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
   1189 }
   1190 
   1191 //===----------------------------------------------------------------------===//
   1192 // Prefetch
   1193 //===----------------------------------------------------------------------===//
   1194 
   1195 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
   1196 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
   1197 
   1198 //===----------------------------------------------------------------------===//
   1199 // Atomic operations
   1200 //===----------------------------------------------------------------------===//
   1201 
   1202 def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
   1203 
   1204 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
   1205   def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
   1206   def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
   1207   def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
   1208   def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
   1209   def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
   1210   def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
   1211   def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
   1212   def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
   1213   def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
   1214   def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
   1215 }
   1216 
   1217 def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
   1218 def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
   1219 def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
   1220 
   1221 def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
   1222 def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
   1223 let Predicates = [FeatureNoInterlockedAccess1] in {
   1224   def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
   1225   def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
   1226   def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
   1227   def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
   1228   def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
   1229   def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
   1230 }
   1231 
   1232 def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
   1233 def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
   1234 def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
   1235 
   1236 def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
   1237 def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
   1238 let Predicates = [FeatureNoInterlockedAccess1] in {
   1239   def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
   1240   def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1241                                                  imm32ll16c>;
   1242   def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1243                                                  imm32lh16c>;
   1244   def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
   1245   def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
   1246   def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1247                                                  imm64ll16c>;
   1248   def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1249                                                  imm64lh16c>;
   1250   def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1251                                                  imm64hl16c>;
   1252   def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1253                                                  imm64hh16c>;
   1254   def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1255                                                  imm64lf32c>;
   1256   def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1257                                                  imm64hf32c>;
   1258 }
   1259 
   1260 def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
   1261 def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
   1262 let Predicates = [FeatureNoInterlockedAccess1] in {
   1263   def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
   1264   def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
   1265   def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
   1266   def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
   1267   def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
   1268   def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
   1269   def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
   1270   def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
   1271   def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
   1272   def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
   1273   def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
   1274 }
   1275 
   1276 def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
   1277 def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
   1278 let Predicates = [FeatureNoInterlockedAccess1] in {
   1279   def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
   1280   def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
   1281   def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
   1282   def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
   1283   def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
   1284 }
   1285 
   1286 def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
   1287 def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
   1288                                                imm32lh16c>;
   1289 def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
   1290 def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1291                                                 imm32ll16c>;
   1292 def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1293                                                 imm32lh16c>;
   1294 def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
   1295 def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
   1296 def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1297                                                 imm64ll16c>;
   1298 def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1299                                                 imm64lh16c>;
   1300 def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1301                                                 imm64hl16c>;
   1302 def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1303                                                 imm64hh16c>;
   1304 def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1305                                                 imm64lf32c>;
   1306 def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1307                                                 imm64hf32c>;
   1308 
   1309 def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
   1310 def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
   1311 def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
   1312 
   1313 def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
   1314 def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
   1315 def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
   1316 
   1317 def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
   1318 def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
   1319 def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
   1320 
   1321 def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
   1322 def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
   1323 def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
   1324 
   1325 def ATOMIC_CMP_SWAPW
   1326   : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1327                                   ADDR32:$bitshift, ADDR32:$negbitshift,
   1328                                   uimm32:$bitsize),
   1329            [(set GR32:$dst,
   1330                  (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1331                                      ADDR32:$bitshift, ADDR32:$negbitshift,
   1332                                      uimm32:$bitsize))]> {
   1333   let Defs = [CC];
   1334   let mayLoad = 1;
   1335   let mayStore = 1;
   1336   let usesCustomInserter = 1;
   1337 }
   1338 
   1339 let Defs = [CC] in {
   1340   defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
   1341   def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
   1342 }
   1343 
   1344 //===----------------------------------------------------------------------===//
   1345 // Miscellaneous Instructions.
   1346 //===----------------------------------------------------------------------===//
   1347 
   1348 // Extract CC into bits 29 and 28 of a register.
   1349 let Uses = [CC] in
   1350   def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
   1351 
   1352 // Read a 32-bit access register into a GR32.  As with all GR32 operations,
   1353 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
   1354 // when a 64-bit address is stored in a pair of access registers.
   1355 def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
   1356                   "ear\t$R1, $R2",
   1357                   [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
   1358 
   1359 // Find leftmost one, AKA count leading zeros.  The instruction actually
   1360 // returns a pair of GR64s, the first giving the number of leading zeros
   1361 // and the second giving a copy of the source with the leftmost one bit
   1362 // cleared.  We only use the first result here.
   1363 let Defs = [CC] in {
   1364   def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
   1365 }
   1366 def : Pat<(ctlz GR64:$src),
   1367           (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
   1368 
   1369 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
   1370 def : Pat<(i64 (anyext GR32:$src)),
   1371           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
   1372 
   1373 // Extend GR32s and GR64s to GR128s.
   1374 let usesCustomInserter = 1 in {
   1375   def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1376   def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
   1377   def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1378 }
   1379 
   1380 // Search a block of memory for a character.
   1381 let mayLoad = 1, Defs = [CC], Uses = [R0L] in
   1382   defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
   1383 
   1384 //===----------------------------------------------------------------------===//
   1385 // Peepholes.
   1386 //===----------------------------------------------------------------------===//
   1387 
   1388 // Use AL* for GR64 additions of unsigned 32-bit values.
   1389 defm : ZXB<add, GR64, ALGFR>;
   1390 def  : Pat<(add GR64:$src1, imm64zx32:$src2),
   1391            (ALGFI GR64:$src1, imm64zx32:$src2)>;
   1392 def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1393            (ALGF GR64:$src1, bdxaddr20only:$addr)>;
   1394 
   1395 // Use SL* for GR64 subtractions of unsigned 32-bit values.
   1396 defm : ZXB<sub, GR64, SLGFR>;
   1397 def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
   1398            (SLGFI GR64:$src1, imm64zx32n:$src2)>;
   1399 def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1400            (SLGF GR64:$src1, bdxaddr20only:$addr)>;
   1401 
   1402 // Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
   1403 // for vector legalization.
   1404 def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
   1405                          (i32 31)),
   1406                     (i32 31)),
   1407           (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1408 def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
   1409                                                        imm32zx4:$cc)))),
   1410                     (i32 63)),
   1411                (i32 63)),
   1412           (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1413 
   1414 // Peepholes for turning scalar operations into block operations.
   1415 defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
   1416                       XCSequence, 1>;
   1417 defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
   1418                       XCSequence, 2>;
   1419 defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
   1420                       XCSequence, 4>;
   1421 defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
   1422                       OCSequence, XCSequence, 1>;
   1423 defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
   1424                       XCSequence, 2>;
   1425 defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
   1426                       XCSequence, 4>;
   1427 defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
   1428                       XCSequence, 8>;
   1429