1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Stack allocation 12 //===----------------------------------------------------------------------===// 13 14 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt), 15 [(callseq_start timm:$amt)]>; 16 def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), 17 [(callseq_end timm:$amt1, timm:$amt2)]>; 18 19 let neverHasSideEffects = 1 in { 20 // Takes as input the value of the stack pointer after a dynamic allocation 21 // has been made. Sets the output to the address of the dynamically- 22 // allocated area itself, skipping the outgoing arguments. 23 // 24 // This expands to an LA or LAY instruction. We restrict the offset 25 // to the range of LA and keep the LAY range in reserve for when 26 // the size of the outgoing arguments is added. 27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), 28 [(set GR64:$dst, dynalloc12only:$src)]>; 29 } 30 31 //===----------------------------------------------------------------------===// 32 // Control flow instructions 33 //===----------------------------------------------------------------------===// 34 35 // A return instruction (br %r14). 36 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in 37 def Return : Alias<2, (outs), (ins), [(z_retflag)]>; 38 39 // Unconditional branches. R1 is the condition-code mask (all 1s). 40 let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in { 41 let isIndirectBranch = 1 in 42 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), 43 "br\t$R2", [(brind ADDR64:$R2)]>; 44 45 // An assembler extended mnemonic for BRC. 46 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2", 47 [(br bb:$I2)]>; 48 49 // An assembler extended mnemonic for BRCL. (The extension is "G" 50 // rather than "L" because "JL" is "Jump if Less".) 51 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>; 52 } 53 54 // Conditional branches. It's easier for LLVM to handle these branches 55 // in their raw BRC/BRCL form, with the 4-bit condition-code mask being 56 // the first operand. It seems friendlier to use mnemonic forms like 57 // JE and JLH when writing out the assembly though. 58 let isBranch = 1, isTerminator = 1, Uses = [CC] in { 59 let isCodeGenOnly = 1, CCMaskFirst = 1 in { 60 def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1, 61 brtarget16:$I2), "j$R1\t$I2", 62 [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>; 63 def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1, 64 brtarget32:$I2), "jg$R1\t$I2", []>; 65 } 66 def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2), 67 "brc\t$R1, $I2", []>; 68 def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2), 69 "brcl\t$R1, $I2", []>; 70 def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2), 71 "bcr\t$R1, $R2", []>; 72 } 73 74 // Fused compare-and-branch instructions. As for normal branches, 75 // we handle these instructions internally in their raw CRJ-like form, 76 // but use assembly macros like CRJE when writing them out. 77 // 78 // These instructions do not use or clobber the condition codes. 79 // We nevertheless pretend that they clobber CC, so that we can lower 80 // them to separate comparisons and BRCLs if the branch ends up being 81 // out of range. 82 multiclass CompareBranches<Operand ccmask, string pos1, string pos2> { 83 let isBranch = 1, isTerminator = 1, Defs = [CC] in { 84 def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3, 85 brtarget16:$RI4), 86 "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; 87 def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3, 88 brtarget16:$RI4), 89 "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; 90 def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3, 91 brtarget16:$RI4), 92 "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; 93 def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3, 94 brtarget16:$RI4), 95 "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; 96 def LRJ : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3, 97 brtarget16:$RI4), 98 "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; 99 def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3, 100 brtarget16:$RI4), 101 "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; 102 def LIJ : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3, 103 brtarget16:$RI4), 104 "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; 105 def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3, 106 brtarget16:$RI4), 107 "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; 108 } 109 } 110 let isCodeGenOnly = 1 in 111 defm C : CompareBranches<cond4, "$M3", "">; 112 defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">; 113 114 // Define AsmParser mnemonics for each general condition-code mask 115 // (integer or floating-point) 116 multiclass CondExtendedMnemonic<bits<4> ccmask, string name> { 117 let R1 = ccmask in { 118 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), 119 "j"##name##"\t$I2", []>; 120 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), 121 "jg"##name##"\t$I2", []>; 122 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>; 123 } 124 def LOCR : FixedCondUnaryRRF<"locr"##name, 0xB9F2, GR32, GR32, ccmask>; 125 def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>; 126 def LOC : FixedCondUnaryRSY<"loc"##name, 0xEBF2, GR32, ccmask, 4>; 127 def LOCG : FixedCondUnaryRSY<"locg"##name, 0xEBE2, GR64, ccmask, 8>; 128 def STOC : FixedCondStoreRSY<"stoc"##name, 0xEBF3, GR32, ccmask, 4>; 129 def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>; 130 } 131 defm AsmO : CondExtendedMnemonic<1, "o">; 132 defm AsmH : CondExtendedMnemonic<2, "h">; 133 defm AsmNLE : CondExtendedMnemonic<3, "nle">; 134 defm AsmL : CondExtendedMnemonic<4, "l">; 135 defm AsmNHE : CondExtendedMnemonic<5, "nhe">; 136 defm AsmLH : CondExtendedMnemonic<6, "lh">; 137 defm AsmNE : CondExtendedMnemonic<7, "ne">; 138 defm AsmE : CondExtendedMnemonic<8, "e">; 139 defm AsmNLH : CondExtendedMnemonic<9, "nlh">; 140 defm AsmHE : CondExtendedMnemonic<10, "he">; 141 defm AsmNL : CondExtendedMnemonic<11, "nl">; 142 defm AsmLE : CondExtendedMnemonic<12, "le">; 143 defm AsmNH : CondExtendedMnemonic<13, "nh">; 144 defm AsmNO : CondExtendedMnemonic<14, "no">; 145 146 // Define AsmParser mnemonics for each integer condition-code mask. 147 // This is like the list above, except that condition 3 is not possible 148 // and that the low bit of the mask is therefore always 0. This means 149 // that each condition has two names. Conditions "o" and "no" are not used. 150 // 151 // We don't make one of the two names an alias of the other because 152 // we need the custom parsing routines to select the correct register class. 153 multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> { 154 let M3 = ccmask in { 155 def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, 156 brtarget16:$RI4), 157 "crj"##name##"\t$R1, $R2, $RI4", []>; 158 def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, 159 brtarget16:$RI4), 160 "cgrj"##name##"\t$R1, $R2, $RI4", []>; 161 def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, 162 brtarget16:$RI4), 163 "cij"##name##"\t$R1, $I2, $RI4", []>; 164 def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, 165 brtarget16:$RI4), 166 "cgij"##name##"\t$R1, $I2, $RI4", []>; 167 def CLR : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, 168 brtarget16:$RI4), 169 "clrj"##name##"\t$R1, $R2, $RI4", []>; 170 def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, 171 brtarget16:$RI4), 172 "clgrj"##name##"\t$R1, $R2, $RI4", []>; 173 def CLI : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, 174 brtarget16:$RI4), 175 "clij"##name##"\t$R1, $I2, $RI4", []>; 176 def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, 177 brtarget16:$RI4), 178 "clgij"##name##"\t$R1, $I2, $RI4", []>; 179 } 180 } 181 multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2> 182 : IntCondExtendedMnemonicA<ccmask, name1> { 183 let isAsmParserOnly = 1 in 184 defm Alt : IntCondExtendedMnemonicA<ccmask, name2>; 185 } 186 defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">; 187 defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">; 188 defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">; 189 defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">; 190 defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">; 191 defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">; 192 193 // Decrement a register and branch if it is nonzero. These don't clobber CC, 194 // but we might need to split long branches into sequences that do. 195 let Defs = [CC] in { 196 def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>; 197 def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; 198 } 199 200 //===----------------------------------------------------------------------===// 201 // Select instructions 202 //===----------------------------------------------------------------------===// 203 204 def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>; 205 def Select32 : SelectWrapper<GR32>; 206 def Select64 : SelectWrapper<GR64>; 207 208 // We don't define 32-bit Mux stores because the low-only STOC should 209 // always be used if possible. 210 defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8, 211 nonvolatile_anyextloadi8, bdxaddr20only>, 212 Requires<[FeatureHighWord]>; 213 defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16, 214 nonvolatile_anyextloadi16, bdxaddr20only>, 215 Requires<[FeatureHighWord]>; 216 defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8, 217 nonvolatile_anyextloadi8, bdxaddr20only>; 218 defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16, 219 nonvolatile_anyextloadi16, bdxaddr20only>; 220 defm CondStore32 : CondStores<GR32, nonvolatile_store, 221 nonvolatile_load, bdxaddr20only>; 222 223 defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8, 224 nonvolatile_anyextloadi8, bdxaddr20only>; 225 defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16, 226 nonvolatile_anyextloadi16, bdxaddr20only>; 227 defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32, 228 nonvolatile_anyextloadi32, bdxaddr20only>; 229 defm CondStore64 : CondStores<GR64, nonvolatile_store, 230 nonvolatile_load, bdxaddr20only>; 231 232 //===----------------------------------------------------------------------===// 233 // Call instructions 234 //===----------------------------------------------------------------------===// 235 236 let isCall = 1, Defs = [R14D, CC] in { 237 def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops), 238 [(z_call pcrel32:$I2)]>; 239 def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops), 240 [(z_call ADDR64:$R2)]>; 241 } 242 243 // Sibling calls. Indirect sibling calls must be via R1, since R2 upwards 244 // are argument registers and since branching to R0 is a no-op. 245 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 246 def CallJG : Alias<6, (outs), (ins pcrel32:$I2), 247 [(z_sibcall pcrel32:$I2)]>; 248 let Uses = [R1D] in 249 def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>; 250 } 251 252 // Define the general form of the call instructions for the asm parser. 253 // These instructions don't hard-code %r14 as the return address register. 254 def BRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2), 255 "bras\t$R1, $I2", []>; 256 def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2), 257 "brasl\t$R1, $I2", []>; 258 def BASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2), 259 "basr\t$R1, $R2", []>; 260 261 //===----------------------------------------------------------------------===// 262 // Move instructions 263 //===----------------------------------------------------------------------===// 264 265 // Register moves. 266 let neverHasSideEffects = 1 in { 267 // Expands to LR, RISBHG or RISBLG, depending on the choice of registers. 268 def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>, 269 Requires<[FeatureHighWord]>; 270 def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>; 271 def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>; 272 } 273 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 274 def LTR : UnaryRR <"lt", 0x12, null_frag, GR32, GR32>; 275 def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>; 276 } 277 278 // Move on condition. 279 let isCodeGenOnly = 1, Uses = [CC] in { 280 def LOCR : CondUnaryRRF<"loc", 0xB9F2, GR32, GR32>; 281 def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>; 282 } 283 let Uses = [CC] in { 284 def AsmLOCR : AsmCondUnaryRRF<"loc", 0xB9F2, GR32, GR32>; 285 def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>; 286 } 287 288 // Immediate moves. 289 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1, 290 isReMaterializable = 1 in { 291 // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF, 292 // deopending on the choice of register. 293 def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>, 294 Requires<[FeatureHighWord]>; 295 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>; 296 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; 297 298 // Other 16-bit immediates. 299 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; 300 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; 301 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; 302 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; 303 304 // 32-bit immediates. 305 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>; 306 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; 307 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; 308 } 309 310 // Register loads. 311 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { 312 // Expands to L, LY or LFH, depending on the choice of register. 313 def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>, 314 Requires<[FeatureHighWord]>; 315 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; 316 def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>, 317 Requires<[FeatureHighWord]>; 318 def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; 319 320 // These instructions are split after register allocation, so we don't 321 // want a custom inserter. 322 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 323 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), 324 [(set GR128:$dst, (load bdxaddr20only128:$src))]>; 325 } 326 } 327 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 328 def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>; 329 def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; 330 } 331 332 let canFoldAsLoad = 1 in { 333 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>; 334 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; 335 } 336 337 // Load on condition. 338 let isCodeGenOnly = 1, Uses = [CC] in { 339 def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>; 340 def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>; 341 } 342 let Uses = [CC] in { 343 def AsmLOC : AsmCondUnaryRSY<"loc", 0xEBF2, GR32, 4>; 344 def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>; 345 } 346 347 // Register stores. 348 let SimpleBDXStore = 1 in { 349 // Expands to ST, STY or STFH, depending on the choice of register. 350 def STMux : StoreRXYPseudo<store, GRX32, 4>, 351 Requires<[FeatureHighWord]>; 352 defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; 353 def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>, 354 Requires<[FeatureHighWord]>; 355 def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; 356 357 // These instructions are split after register allocation, so we don't 358 // want a custom inserter. 359 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 360 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), 361 [(store GR128:$src, bdxaddr20only128:$dst)]>; 362 } 363 } 364 def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; 365 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; 366 367 // Store on condition. 368 let isCodeGenOnly = 1, Uses = [CC] in { 369 def STOC : CondStoreRSY<"stoc", 0xEBF3, GR32, 4>; 370 def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>; 371 } 372 let Uses = [CC] in { 373 def AsmSTOC : AsmCondStoreRSY<"stoc", 0xEBF3, GR32, 4>; 374 def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>; 375 } 376 377 // 8-bit immediate stores to 8-bit fields. 378 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; 379 380 // 16-bit immediate stores to 16-, 32- or 64-bit fields. 381 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; 382 def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>; 383 def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>; 384 385 // Memory-to-memory moves. 386 let mayLoad = 1, mayStore = 1 in 387 defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; 388 389 // String moves. 390 let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in 391 defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; 392 393 //===----------------------------------------------------------------------===// 394 // Sign extensions 395 //===----------------------------------------------------------------------===// 396 // 397 // Note that putting these before zero extensions mean that we will prefer 398 // them for anyextload*. There's not really much to choose between the two 399 // either way, but signed-extending loads have a short LH and a long LHY, 400 // while zero-extending loads have only the long LLH. 401 // 402 //===----------------------------------------------------------------------===// 403 404 // 32-bit extensions from registers. 405 let neverHasSideEffects = 1 in { 406 def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>; 407 def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>; 408 } 409 410 // 64-bit extensions from registers. 411 let neverHasSideEffects = 1 in { 412 def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>; 413 def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>; 414 def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>; 415 } 416 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in 417 def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>; 418 419 // Match 32-to-64-bit sign extensions in which the source is already 420 // in a 64-bit register. 421 def : Pat<(sext_inreg GR64:$src, i32), 422 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; 423 424 // 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH, 425 // depending on the choice of register. 426 def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>, 427 Requires<[FeatureHighWord]>; 428 def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; 429 def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>, 430 Requires<[FeatureHighWord]>; 431 432 // 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH, 433 // depending on the choice of register. 434 def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>, 435 Requires<[FeatureHighWord]>; 436 defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; 437 def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>, 438 Requires<[FeatureHighWord]>; 439 def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; 440 441 // 64-bit extensions from memory. 442 def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>; 443 def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; 444 def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; 445 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; 446 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; 447 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in 448 def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; 449 450 //===----------------------------------------------------------------------===// 451 // Zero extensions 452 //===----------------------------------------------------------------------===// 453 454 // 32-bit extensions from registers. 455 let neverHasSideEffects = 1 in { 456 // Expands to LLCR or RISB[LH]G, depending on the choice of registers. 457 def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>, 458 Requires<[FeatureHighWord]>; 459 def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>; 460 // Expands to LLHR or RISB[LH]G, depending on the choice of registers. 461 def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>, 462 Requires<[FeatureHighWord]>; 463 def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>; 464 } 465 466 // 64-bit extensions from registers. 467 let neverHasSideEffects = 1 in { 468 def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>; 469 def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>; 470 def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>; 471 } 472 473 // Match 32-to-64-bit zero extensions in which the source is already 474 // in a 64-bit register. 475 def : Pat<(and GR64:$src, 0xffffffff), 476 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; 477 478 // 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH, 479 // depending on the choice of register. 480 def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>, 481 Requires<[FeatureHighWord]>; 482 def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; 483 def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>, 484 Requires<[FeatureHighWord]>; 485 486 // 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH, 487 // depending on the choice of register. 488 def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>, 489 Requires<[FeatureHighWord]>; 490 def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; 491 def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>, 492 Requires<[FeatureHighWord]>; 493 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; 494 495 // 64-bit extensions from memory. 496 def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>; 497 def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; 498 def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; 499 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; 500 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; 501 502 //===----------------------------------------------------------------------===// 503 // Truncations 504 //===----------------------------------------------------------------------===// 505 506 // Truncations of 64-bit registers to 32-bit registers. 507 def : Pat<(i32 (trunc GR64:$src)), 508 (EXTRACT_SUBREG GR64:$src, subreg_l32)>; 509 510 // Truncations of 32-bit registers to 8-bit memory. STCMux expands to 511 // STC, STCY or STCH, depending on the choice of register. 512 def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>, 513 Requires<[FeatureHighWord]>; 514 defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; 515 def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>, 516 Requires<[FeatureHighWord]>; 517 518 // Truncations of 32-bit registers to 16-bit memory. STHMux expands to 519 // STH, STHY or STHH, depending on the choice of register. 520 def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>, 521 Requires<[FeatureHighWord]>; 522 defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; 523 def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>, 524 Requires<[FeatureHighWord]>; 525 def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; 526 527 // Truncations of 64-bit registers to memory. 528 defm : StoreGR64Pair<STC, STCY, truncstorei8>; 529 defm : StoreGR64Pair<STH, STHY, truncstorei16>; 530 def : StoreGR64PC<STHRL, aligned_truncstorei16>; 531 defm : StoreGR64Pair<ST, STY, truncstorei32>; 532 def : StoreGR64PC<STRL, aligned_truncstorei32>; 533 534 //===----------------------------------------------------------------------===// 535 // Multi-register moves 536 //===----------------------------------------------------------------------===// 537 538 // Multi-register loads. 539 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; 540 541 // Multi-register stores. 542 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; 543 544 //===----------------------------------------------------------------------===// 545 // Byte swaps 546 //===----------------------------------------------------------------------===// 547 548 // Byte-swapping register moves. 549 let neverHasSideEffects = 1 in { 550 def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>; 551 def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>; 552 } 553 554 // Byte-swapping loads. Unlike normal loads, these instructions are 555 // allowed to access storage more than once. 556 def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>; 557 def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>; 558 559 // Likewise byte-swapping stores. 560 def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>; 561 def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>, 562 GR64, 8>; 563 564 //===----------------------------------------------------------------------===// 565 // Load address instructions 566 //===----------------------------------------------------------------------===// 567 568 // Load BDX-style addresses. 569 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1, 570 DispKey = "la" in { 571 let DispSize = "12" in 572 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2), 573 "la\t$R1, $XBD2", 574 [(set GR64:$R1, laaddr12pair:$XBD2)]>; 575 let DispSize = "20" in 576 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2), 577 "lay\t$R1, $XBD2", 578 [(set GR64:$R1, laaddr20pair:$XBD2)]>; 579 } 580 581 // Load a PC-relative address. There's no version of this instruction 582 // with a 16-bit offset, so there's no relaxation. 583 let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1, 584 isReMaterializable = 1 in { 585 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2), 586 "larl\t$R1, $I2", 587 [(set GR64:$R1, pcrel32:$I2)]>; 588 } 589 590 //===----------------------------------------------------------------------===// 591 // Absolute and Negation 592 //===----------------------------------------------------------------------===// 593 594 let Defs = [CC] in { 595 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 596 def LPR : UnaryRR <"lp", 0x10, z_iabs, GR32, GR32>; 597 def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>; 598 } 599 let CCValues = 0xE, CompareZeroCCMask = 0xE in 600 def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>; 601 } 602 def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>; 603 def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>; 604 defm : SXU<z_iabs, LPGFR>; 605 defm : SXU<z_iabs64, LPGFR>; 606 607 let Defs = [CC] in { 608 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 609 def LNR : UnaryRR <"ln", 0x11, z_inegabs, GR32, GR32>; 610 def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>; 611 } 612 let CCValues = 0xE, CompareZeroCCMask = 0xE in 613 def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>; 614 } 615 def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>; 616 def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>; 617 defm : SXU<z_inegabs, LNGFR>; 618 defm : SXU<z_inegabs64, LNGFR>; 619 620 let Defs = [CC] in { 621 let CCValues = 0xF, CompareZeroCCMask = 0x8 in { 622 def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>; 623 def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>; 624 } 625 let CCValues = 0xE, CompareZeroCCMask = 0xE in 626 def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>; 627 } 628 defm : SXU<ineg, LCGFR>; 629 630 //===----------------------------------------------------------------------===// 631 // Insertion 632 //===----------------------------------------------------------------------===// 633 634 let isCodeGenOnly = 1 in 635 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; 636 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; 637 638 defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>; 639 defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; 640 641 defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>; 642 defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; 643 644 // Insertions of a 16-bit immediate, leaving other bits unaffected. 645 // We don't have or_as_insert equivalents of these operations because 646 // OI is available instead. 647 // 648 // IIxMux expands to II[LH]x, depending on the choice of register. 649 def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>, 650 Requires<[FeatureHighWord]>; 651 def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>, 652 Requires<[FeatureHighWord]>; 653 def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; 654 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; 655 def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>; 656 def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>; 657 def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>; 658 def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>; 659 def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>; 660 def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>; 661 662 // ...likewise for 32-bit immediates. For GR32s this is a general 663 // full-width move. (We use IILF rather than something like LLILF 664 // for 32-bit moves because IILF leaves the upper 32 bits of the 665 // GR64 unchanged.) 666 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { 667 def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>, 668 Requires<[FeatureHighWord]>; 669 def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; 670 def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>; 671 } 672 def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>; 673 def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>; 674 675 // An alternative model of inserthf, with the first operand being 676 // a zero-extended value. 677 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), 678 (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), 679 imm64hf32:$imm)>; 680 681 //===----------------------------------------------------------------------===// 682 // Addition 683 //===----------------------------------------------------------------------===// 684 685 // Plain addition. 686 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { 687 // Addition of a register. 688 let isCommutable = 1 in { 689 defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>; 690 defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>; 691 } 692 def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>; 693 694 // Addition of signed 16-bit immediates. 695 defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>; 696 defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, add, GR32, imm32sx16>; 697 defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>; 698 699 // Addition of signed 32-bit immediates. 700 def AFIMux : BinaryRIPseudo<add, GRX32, simm32>, 701 Requires<[FeatureHighWord]>; 702 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>; 703 def AIH : BinaryRIL<"aih", 0xCC8, add, GRH32, simm32>, 704 Requires<[FeatureHighWord]>; 705 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>; 706 707 // Addition of memory. 708 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>; 709 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>; 710 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>; 711 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>; 712 713 // Addition to memory. 714 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>; 715 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; 716 } 717 defm : SXB<add, GR64, AGFR>; 718 719 // Addition producing a carry. 720 let Defs = [CC] in { 721 // Addition of a register. 722 let isCommutable = 1 in { 723 defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>; 724 defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>; 725 } 726 def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>; 727 728 // Addition of signed 16-bit immediates. 729 def ALHSIK : BinaryRIE<"alhsik", 0xECDA, addc, GR32, imm32sx16>, 730 Requires<[FeatureDistinctOps]>; 731 def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>, 732 Requires<[FeatureDistinctOps]>; 733 734 // Addition of unsigned 32-bit immediates. 735 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>; 736 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>; 737 738 // Addition of memory. 739 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>; 740 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>; 741 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>; 742 } 743 defm : ZXB<addc, GR64, ALGFR>; 744 745 // Addition producing and using a carry. 746 let Defs = [CC], Uses = [CC] in { 747 // Addition of a register. 748 def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>; 749 def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>; 750 751 // Addition of memory. 752 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>; 753 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>; 754 } 755 756 //===----------------------------------------------------------------------===// 757 // Subtraction 758 //===----------------------------------------------------------------------===// 759 760 // Plain subtraction. Although immediate forms exist, we use the 761 // add-immediate instruction instead. 762 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { 763 // Subtraction of a register. 764 defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>; 765 def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>; 766 defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>; 767 768 // Subtraction of memory. 769 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>; 770 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>; 771 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>; 772 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>; 773 } 774 defm : SXB<sub, GR64, SGFR>; 775 776 // Subtraction producing a carry. 777 let Defs = [CC] in { 778 // Subtraction of a register. 779 defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>; 780 def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>; 781 defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>; 782 783 // Subtraction of unsigned 32-bit immediates. These don't match 784 // subc because we prefer addc for constants. 785 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>; 786 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>; 787 788 // Subtraction of memory. 789 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>; 790 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>; 791 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>; 792 } 793 defm : ZXB<subc, GR64, SLGFR>; 794 795 // Subtraction producing and using a carry. 796 let Defs = [CC], Uses = [CC] in { 797 // Subtraction of a register. 798 def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>; 799 def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>; 800 801 // Subtraction of memory. 802 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>; 803 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>; 804 } 805 806 //===----------------------------------------------------------------------===// 807 // AND 808 //===----------------------------------------------------------------------===// 809 810 let Defs = [CC] in { 811 // ANDs of a register. 812 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 813 defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>; 814 defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>; 815 } 816 817 let isConvertibleToThreeAddress = 1 in { 818 // ANDs of a 16-bit immediate, leaving other bits unaffected. 819 // The CC result only reflects the 16-bit field, not the full register. 820 // 821 // NIxMux expands to NI[LH]x, depending on the choice of register. 822 def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>, 823 Requires<[FeatureHighWord]>; 824 def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>, 825 Requires<[FeatureHighWord]>; 826 def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; 827 def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; 828 def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>; 829 def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>; 830 def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>; 831 def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>; 832 def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>; 833 def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>; 834 835 // ANDs of a 32-bit immediate, leaving other bits unaffected. 836 // The CC result only reflects the 32-bit field, which means we can 837 // use it as a zero indicator for i32 operations but not otherwise. 838 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 839 // Expands to NILF or NIHF, depending on the choice of register. 840 def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>, 841 Requires<[FeatureHighWord]>; 842 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; 843 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>; 844 } 845 def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>; 846 def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>; 847 } 848 849 // ANDs of memory. 850 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 851 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>; 852 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 853 } 854 855 // AND to memory 856 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>; 857 858 // Block AND. 859 let mayLoad = 1, mayStore = 1 in 860 defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; 861 } 862 defm : RMWIByte<and, bdaddr12pair, NI>; 863 defm : RMWIByte<and, bdaddr20pair, NIY>; 864 865 //===----------------------------------------------------------------------===// 866 // OR 867 //===----------------------------------------------------------------------===// 868 869 let Defs = [CC] in { 870 // ORs of a register. 871 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 872 defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>; 873 defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>; 874 } 875 876 // ORs of a 16-bit immediate, leaving other bits unaffected. 877 // The CC result only reflects the 16-bit field, not the full register. 878 // 879 // OIxMux expands to OI[LH]x, depending on the choice of register. 880 def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>, 881 Requires<[FeatureHighWord]>; 882 def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>, 883 Requires<[FeatureHighWord]>; 884 def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; 885 def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; 886 def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>; 887 def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>; 888 def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>; 889 def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>; 890 def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>; 891 def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>; 892 893 // ORs of a 32-bit immediate, leaving other bits unaffected. 894 // The CC result only reflects the 32-bit field, which means we can 895 // use it as a zero indicator for i32 operations but not otherwise. 896 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 897 // Expands to OILF or OIHF, depending on the choice of register. 898 def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>, 899 Requires<[FeatureHighWord]>; 900 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; 901 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>; 902 } 903 def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>; 904 def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>; 905 906 // ORs of memory. 907 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 908 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>; 909 def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>; 910 } 911 912 // OR to memory 913 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>; 914 915 // Block OR. 916 let mayLoad = 1, mayStore = 1 in 917 defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; 918 } 919 defm : RMWIByte<or, bdaddr12pair, OI>; 920 defm : RMWIByte<or, bdaddr20pair, OIY>; 921 922 //===----------------------------------------------------------------------===// 923 // XOR 924 //===----------------------------------------------------------------------===// 925 926 let Defs = [CC] in { 927 // XORs of a register. 928 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { 929 defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>; 930 defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>; 931 } 932 933 // XORs of a 32-bit immediate, leaving other bits unaffected. 934 // The CC result only reflects the 32-bit field, which means we can 935 // use it as a zero indicator for i32 operations but not otherwise. 936 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 937 // Expands to XILF or XIHF, depending on the choice of register. 938 def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>, 939 Requires<[FeatureHighWord]>; 940 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; 941 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>; 942 } 943 def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>; 944 def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>; 945 946 // XORs of memory. 947 let CCValues = 0xC, CompareZeroCCMask = 0x8 in { 948 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>; 949 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>; 950 } 951 952 // XOR to memory 953 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>; 954 955 // Block XOR. 956 let mayLoad = 1, mayStore = 1 in 957 defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; 958 } 959 defm : RMWIByte<xor, bdaddr12pair, XI>; 960 defm : RMWIByte<xor, bdaddr20pair, XIY>; 961 962 //===----------------------------------------------------------------------===// 963 // Multiplication 964 //===----------------------------------------------------------------------===// 965 966 // Multiplication of a register. 967 let isCommutable = 1 in { 968 def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>; 969 def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>; 970 } 971 def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>; 972 defm : SXB<mul, GR64, MSGFR>; 973 974 // Multiplication of a signed 16-bit immediate. 975 def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>; 976 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; 977 978 // Multiplication of a signed 32-bit immediate. 979 def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>; 980 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; 981 982 // Multiplication of memory. 983 defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; 984 defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; 985 def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; 986 def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>; 987 988 // Multiplication of a register, producing two results. 989 def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>; 990 991 // Multiplication of memory, producing two results. 992 def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>; 993 994 //===----------------------------------------------------------------------===// 995 // Division and remainder 996 //===----------------------------------------------------------------------===// 997 998 // Division and remainder, from registers. 999 def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>; 1000 def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>; 1001 def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>; 1002 def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>; 1003 1004 // Division and remainder, from memory. 1005 def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>; 1006 def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>; 1007 def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>; 1008 def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>; 1009 1010 //===----------------------------------------------------------------------===// 1011 // Shifts 1012 //===----------------------------------------------------------------------===// 1013 1014 // Shift left. 1015 let neverHasSideEffects = 1 in { 1016 defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>; 1017 def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>; 1018 } 1019 1020 // Logical shift right. 1021 let neverHasSideEffects = 1 in { 1022 defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>; 1023 def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>; 1024 } 1025 1026 // Arithmetic shift right. 1027 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { 1028 defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>; 1029 def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>; 1030 } 1031 1032 // Rotate left. 1033 let neverHasSideEffects = 1 in { 1034 def RLL : BinaryRSY<"rll", 0xEB1D, rotl, GR32>; 1035 def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>; 1036 } 1037 1038 // Rotate second operand left and inserted selected bits into first operand. 1039 // These can act like 32-bit operands provided that the constant start and 1040 // end bits (operands 2 and 3) are in the range [32, 64). 1041 let Defs = [CC] in { 1042 let isCodeGenOnly = 1 in 1043 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; 1044 let CCValues = 0xE, CompareZeroCCMask = 0xE in 1045 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; 1046 } 1047 1048 // Forms of RISBG that only affect one word of the destination register. 1049 // They do not set CC. 1050 let Predicates = [FeatureHighWord] in { 1051 def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>; 1052 def RISBLL : RotateSelectAliasRIEf<GR32, GR32>; 1053 def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>; 1054 def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>; 1055 def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>; 1056 def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>; 1057 def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>; 1058 } 1059 1060 // Rotate second operand left and perform a logical operation with selected 1061 // bits of the first operand. The CC result only describes the selected bits, 1062 // so isn't useful for a full comparison against zero. 1063 let Defs = [CC] in { 1064 def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; 1065 def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; 1066 def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; 1067 } 1068 1069 //===----------------------------------------------------------------------===// 1070 // Comparison 1071 //===----------------------------------------------------------------------===// 1072 1073 // Signed comparisons. We put these before the unsigned comparisons because 1074 // some of the signed forms have COMPARE AND BRANCH equivalents whereas none 1075 // of the unsigned forms do. 1076 let Defs = [CC], CCValues = 0xE in { 1077 // Comparison with a register. 1078 def CR : CompareRR <"c", 0x19, z_scmp, GR32, GR32>; 1079 def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>; 1080 def CGR : CompareRRE<"cg", 0xB920, z_scmp, GR64, GR64>; 1081 1082 // Comparison with a signed 16-bit immediate. 1083 def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>; 1084 def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; 1085 1086 // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH, 1087 // depending on the choice of register. 1088 def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>, 1089 Requires<[FeatureHighWord]>; 1090 def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>; 1091 def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>, 1092 Requires<[FeatureHighWord]>; 1093 def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; 1094 1095 // Comparison with memory. 1096 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; 1097 def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>, 1098 Requires<[FeatureHighWord]>; 1099 defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>; 1100 def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>, 1101 Requires<[FeatureHighWord]>; 1102 def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; 1103 def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; 1104 def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>; 1105 def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>; 1106 def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>; 1107 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; 1108 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; 1109 def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>; 1110 1111 // Comparison between memory and a signed 16-bit immediate. 1112 def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; 1113 def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>; 1114 def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; 1115 } 1116 defm : SXB<z_scmp, GR64, CGFR>; 1117 1118 // Unsigned comparisons. 1119 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { 1120 // Comparison with a register. 1121 def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>; 1122 def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>; 1123 def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>; 1124 1125 // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI 1126 // or CLIH, depending on the choice of register. 1127 def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>, 1128 Requires<[FeatureHighWord]>; 1129 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>; 1130 def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GR32, uimm32>, 1131 Requires<[FeatureHighWord]>; 1132 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; 1133 1134 // Comparison with memory. 1135 def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>, 1136 Requires<[FeatureHighWord]>; 1137 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; 1138 def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>, 1139 Requires<[FeatureHighWord]>; 1140 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; 1141 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>; 1142 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32, 1143 aligned_azextloadi16>; 1144 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32, 1145 aligned_load>; 1146 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, 1147 aligned_azextloadi16>; 1148 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, 1149 aligned_azextloadi32>; 1150 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64, 1151 aligned_load>; 1152 1153 // Comparison between memory and an unsigned 8-bit immediate. 1154 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; 1155 1156 // Comparison between memory and an unsigned 16-bit immediate. 1157 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; 1158 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; 1159 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; 1160 } 1161 defm : ZXB<z_ucmp, GR64, CLGFR>; 1162 1163 // Memory-to-memory comparison. 1164 let mayLoad = 1, Defs = [CC] in 1165 defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>; 1166 1167 // String comparison. 1168 let mayLoad = 1, Defs = [CC], Uses = [R0L] in 1169 defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; 1170 1171 // Test under mask. 1172 let Defs = [CC] in { 1173 // TMxMux expands to TM[LH]x, depending on the choice of register. 1174 def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>, 1175 Requires<[FeatureHighWord]>; 1176 def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>, 1177 Requires<[FeatureHighWord]>; 1178 def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; 1179 def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; 1180 def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>; 1181 def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>; 1182 1183 def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>; 1184 def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>; 1185 def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>; 1186 def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>; 1187 1188 defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // Prefetch 1193 //===----------------------------------------------------------------------===// 1194 1195 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; 1196 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; 1197 1198 //===----------------------------------------------------------------------===// 1199 // Atomic operations 1200 //===----------------------------------------------------------------------===// 1201 1202 def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>; 1203 1204 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { 1205 def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>; 1206 def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>; 1207 def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>; 1208 def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>; 1209 def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>; 1210 def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>; 1211 def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>; 1212 def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>; 1213 def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>; 1214 def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>; 1215 } 1216 1217 def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>; 1218 def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>; 1219 def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>; 1220 1221 def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>; 1222 def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>; 1223 let Predicates = [FeatureNoInterlockedAccess1] in { 1224 def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>; 1225 def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>; 1226 def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>; 1227 def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>; 1228 def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>; 1229 def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>; 1230 } 1231 1232 def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>; 1233 def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>; 1234 def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>; 1235 1236 def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>; 1237 def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>; 1238 let Predicates = [FeatureNoInterlockedAccess1] in { 1239 def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>; 1240 def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32, 1241 imm32ll16c>; 1242 def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32, 1243 imm32lh16c>; 1244 def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>; 1245 def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>; 1246 def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1247 imm64ll16c>; 1248 def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1249 imm64lh16c>; 1250 def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1251 imm64hl16c>; 1252 def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1253 imm64hh16c>; 1254 def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1255 imm64lf32c>; 1256 def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64, 1257 imm64hf32c>; 1258 } 1259 1260 def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>; 1261 def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>; 1262 let Predicates = [FeatureNoInterlockedAccess1] in { 1263 def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>; 1264 def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>; 1265 def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>; 1266 def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>; 1267 def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>; 1268 def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>; 1269 def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>; 1270 def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>; 1271 def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>; 1272 def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>; 1273 def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>; 1274 } 1275 1276 def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>; 1277 def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>; 1278 let Predicates = [FeatureNoInterlockedAccess1] in { 1279 def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>; 1280 def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>; 1281 def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>; 1282 def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>; 1283 def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>; 1284 } 1285 1286 def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>; 1287 def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand, 1288 imm32lh16c>; 1289 def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>; 1290 def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32, 1291 imm32ll16c>; 1292 def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32, 1293 imm32lh16c>; 1294 def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>; 1295 def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>; 1296 def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1297 imm64ll16c>; 1298 def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1299 imm64lh16c>; 1300 def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1301 imm64hl16c>; 1302 def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1303 imm64hh16c>; 1304 def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1305 imm64lf32c>; 1306 def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, 1307 imm64hf32c>; 1308 1309 def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>; 1310 def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>; 1311 def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>; 1312 1313 def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>; 1314 def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>; 1315 def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>; 1316 1317 def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>; 1318 def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>; 1319 def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>; 1320 1321 def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>; 1322 def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>; 1323 def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>; 1324 1325 def ATOMIC_CMP_SWAPW 1326 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, 1327 ADDR32:$bitshift, ADDR32:$negbitshift, 1328 uimm32:$bitsize), 1329 [(set GR32:$dst, 1330 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, 1331 ADDR32:$bitshift, ADDR32:$negbitshift, 1332 uimm32:$bitsize))]> { 1333 let Defs = [CC]; 1334 let mayLoad = 1; 1335 let mayStore = 1; 1336 let usesCustomInserter = 1; 1337 } 1338 1339 let Defs = [CC] in { 1340 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>; 1341 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>; 1342 } 1343 1344 //===----------------------------------------------------------------------===// 1345 // Miscellaneous Instructions. 1346 //===----------------------------------------------------------------------===// 1347 1348 // Extract CC into bits 29 and 28 of a register. 1349 let Uses = [CC] in 1350 def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>; 1351 1352 // Read a 32-bit access register into a GR32. As with all GR32 operations, 1353 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful 1354 // when a 64-bit address is stored in a pair of access registers. 1355 def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2), 1356 "ear\t$R1, $R2", 1357 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>; 1358 1359 // Find leftmost one, AKA count leading zeros. The instruction actually 1360 // returns a pair of GR64s, the first giving the number of leading zeros 1361 // and the second giving a copy of the source with the leftmost one bit 1362 // cleared. We only use the first result here. 1363 let Defs = [CC] in { 1364 def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>; 1365 } 1366 def : Pat<(ctlz GR64:$src), 1367 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>; 1368 1369 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. 1370 def : Pat<(i64 (anyext GR32:$src)), 1371 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>; 1372 1373 // Extend GR32s and GR64s to GR128s. 1374 let usesCustomInserter = 1 in { 1375 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; 1376 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>; 1377 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; 1378 } 1379 1380 // Search a block of memory for a character. 1381 let mayLoad = 1, Defs = [CC], Uses = [R0L] in 1382 defm SRST : StringRRE<"srst", 0xb25e, z_search_string>; 1383 1384 //===----------------------------------------------------------------------===// 1385 // Peepholes. 1386 //===----------------------------------------------------------------------===// 1387 1388 // Use AL* for GR64 additions of unsigned 32-bit values. 1389 defm : ZXB<add, GR64, ALGFR>; 1390 def : Pat<(add GR64:$src1, imm64zx32:$src2), 1391 (ALGFI GR64:$src1, imm64zx32:$src2)>; 1392 def : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)), 1393 (ALGF GR64:$src1, bdxaddr20only:$addr)>; 1394 1395 // Use SL* for GR64 subtractions of unsigned 32-bit values. 1396 defm : ZXB<sub, GR64, SLGFR>; 1397 def : Pat<(add GR64:$src1, imm64zx32n:$src2), 1398 (SLGFI GR64:$src1, imm64zx32n:$src2)>; 1399 def : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)), 1400 (SLGF GR64:$src1, bdxaddr20only:$addr)>; 1401 1402 // Optimize sign-extended 1/0 selects to -1/0 selects. This is important 1403 // for vector legalization. 1404 def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)), 1405 (i32 31)), 1406 (i32 31)), 1407 (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>; 1408 def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, 1409 imm32zx4:$cc)))), 1410 (i32 63)), 1411 (i32 63)), 1412 (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>; 1413 1414 // Peepholes for turning scalar operations into block operations. 1415 defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence, 1416 XCSequence, 1>; 1417 defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence, 1418 XCSequence, 2>; 1419 defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence, 1420 XCSequence, 4>; 1421 defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence, 1422 OCSequence, XCSequence, 1>; 1423 defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence, 1424 XCSequence, 2>; 1425 defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence, 1426 XCSequence, 4>; 1427 defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence, 1428 XCSequence, 8>; 1429