1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Class definitions 12 //===----------------------------------------------------------------------===// 13 14 class ImmediateAsmOperand<string name> 15 : AsmOperandClass { 16 let Name = name; 17 let RenderMethod = "addImmOperands"; 18 } 19 20 // Constructs both a DAG pattern and instruction operand for an immediate 21 // of type VT. PRED returns true if a node is acceptable and XFORM returns 22 // the operand value associated with the node. ASMOP is the name of the 23 // associated asm operand, and also forms the basis of the asm print method. 24 class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> 25 : PatLeaf<(vt imm), pred, xform>, Operand<vt> { 26 let PrintMethod = "print"##asmop##"Operand"; 27 let DecoderMethod = "decode"##asmop##"Operand"; 28 let ParserMatchClass = !cast<AsmOperandClass>(asmop); 29 } 30 31 // Constructs an asm operand for a PC-relative address. SIZE says how 32 // many bits there are. 33 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> { 34 let PredicateMethod = "isImm"; 35 let ParserMethod = "parsePCRel"##size; 36 } 37 38 // Constructs an operand for a PC-relative address with address type VT. 39 // ASMOP is the associated asm operand. 40 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { 41 let PrintMethod = "printPCRelOperand"; 42 let ParserMatchClass = asmop; 43 } 44 45 // Constructs both a DAG pattern and instruction operand for a PC-relative 46 // address with address size VT. SELF is the name of the operand and 47 // ASMOP is the associated asm operand. 48 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> 49 : ComplexPattern<vt, 1, "selectPCRelAddress", 50 [z_pcrel_wrapper, z_pcrel_offset]>, 51 PCRelOperand<vt, asmop> { 52 let MIOperandInfo = (ops !cast<Operand>(self)); 53 } 54 55 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the 56 // registers as having BITSIZE bits and displacements as having DISPSIZE bits. 57 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it 58 // is "". 59 class AddressAsmOperand<string format, string bitsize, string dispsize, 60 string length = ""> 61 : AsmOperandClass { 62 let Name = format##bitsize##"Disp"##dispsize##length; 63 let ParserMethod = "parse"##format##bitsize; 64 let RenderMethod = "add"##format##"Operands"; 65 } 66 67 // Constructs both a DAG pattern and instruction operand for an addressing mode. 68 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated 69 // AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands 70 // (base register, displacement, etc.). SELTYPE is the type of the memory 71 // operand for selection purposes; sometimes we want different selection 72 // choices for the same underlying addressing mode. SUFFIX is similarly 73 // a suffix appended to the displacement for selection purposes; 74 // e.g. we want to reject small 20-bit displacements if a 12-bit form 75 // also exists, but we want to accept them otherwise. 76 class AddressingMode<string seltype, string bitsize, string dispsize, 77 string suffix, string length, int numops, string format, 78 dag operands> 79 : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, 80 "select"##seltype##dispsize##suffix##length, 81 [add, sub, or, frameindex, z_adjdynalloc]>, 82 Operand<!cast<ValueType>("i"##bitsize)> { 83 let PrintMethod = "print"##format##"Operand"; 84 let EncoderMethod = "get"##format##dispsize##length##"Encoding"; 85 let DecoderMethod = 86 "decode"##format##bitsize##"Disp"##dispsize##length##"Operand"; 87 let MIOperandInfo = operands; 88 let ParserMatchClass = 89 !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length); 90 } 91 92 // An addressing mode with a base and displacement but no index. 93 class BDMode<string type, string bitsize, string dispsize, string suffix> 94 : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", 95 (ops !cast<RegisterOperand>("ADDR"##bitsize), 96 !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; 97 98 // An addressing mode with a base, displacement and index. 99 class BDXMode<string type, string bitsize, string dispsize, string suffix> 100 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", 101 (ops !cast<RegisterOperand>("ADDR"##bitsize), 102 !cast<Immediate>("disp"##dispsize##"imm"##bitsize), 103 !cast<RegisterOperand>("ADDR"##bitsize))>; 104 105 // A BDMode paired with an immediate length operand of LENSIZE bits. 106 class BDLMode<string type, string bitsize, string dispsize, string suffix, 107 string lensize> 108 : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3, 109 "BDLAddr", 110 (ops !cast<RegisterOperand>("ADDR"##bitsize), 111 !cast<Immediate>("disp"##dispsize##"imm"##bitsize), 112 !cast<Immediate>("imm"##bitsize))>; 113 114 //===----------------------------------------------------------------------===// 115 // Extracting immediate operands from nodes 116 // These all create MVT::i64 nodes to ensure the value is not sign-extended 117 // when converted from an SDNode to a MachineOperand later on. 118 //===----------------------------------------------------------------------===// 119 120 // Bits 0-15 (counting from the lsb). 121 def LL16 : SDNodeXForm<imm, [{ 122 uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; 123 return CurDAG->getTargetConstant(Value, MVT::i64); 124 }]>; 125 126 // Bits 16-31 (counting from the lsb). 127 def LH16 : SDNodeXForm<imm, [{ 128 uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; 129 return CurDAG->getTargetConstant(Value, MVT::i64); 130 }]>; 131 132 // Bits 32-47 (counting from the lsb). 133 def HL16 : SDNodeXForm<imm, [{ 134 uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; 135 return CurDAG->getTargetConstant(Value, MVT::i64); 136 }]>; 137 138 // Bits 48-63 (counting from the lsb). 139 def HH16 : SDNodeXForm<imm, [{ 140 uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; 141 return CurDAG->getTargetConstant(Value, MVT::i64); 142 }]>; 143 144 // Low 32 bits. 145 def LF32 : SDNodeXForm<imm, [{ 146 uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; 147 return CurDAG->getTargetConstant(Value, MVT::i64); 148 }]>; 149 150 // High 32 bits. 151 def HF32 : SDNodeXForm<imm, [{ 152 uint64_t Value = N->getZExtValue() >> 32; 153 return CurDAG->getTargetConstant(Value, MVT::i64); 154 }]>; 155 156 // Truncate an immediate to a 8-bit signed quantity. 157 def SIMM8 : SDNodeXForm<imm, [{ 158 return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64); 159 }]>; 160 161 // Truncate an immediate to a 8-bit unsigned quantity. 162 def UIMM8 : SDNodeXForm<imm, [{ 163 return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64); 164 }]>; 165 166 // Truncate an immediate to a 16-bit signed quantity. 167 def SIMM16 : SDNodeXForm<imm, [{ 168 return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64); 169 }]>; 170 171 // Truncate an immediate to a 16-bit unsigned quantity. 172 def UIMM16 : SDNodeXForm<imm, [{ 173 return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64); 174 }]>; 175 176 // Truncate an immediate to a 32-bit signed quantity. 177 def SIMM32 : SDNodeXForm<imm, [{ 178 return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64); 179 }]>; 180 181 // Truncate an immediate to a 32-bit unsigned quantity. 182 def UIMM32 : SDNodeXForm<imm, [{ 183 return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64); 184 }]>; 185 186 // Negate and then truncate an immediate to a 32-bit unsigned quantity. 187 def NEGIMM32 : SDNodeXForm<imm, [{ 188 return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64); 189 }]>; 190 191 //===----------------------------------------------------------------------===// 192 // Immediate asm operands. 193 //===----------------------------------------------------------------------===// 194 195 def U4Imm : ImmediateAsmOperand<"U4Imm">; 196 def U6Imm : ImmediateAsmOperand<"U6Imm">; 197 def S8Imm : ImmediateAsmOperand<"S8Imm">; 198 def U8Imm : ImmediateAsmOperand<"U8Imm">; 199 def S16Imm : ImmediateAsmOperand<"S16Imm">; 200 def U16Imm : ImmediateAsmOperand<"U16Imm">; 201 def S32Imm : ImmediateAsmOperand<"S32Imm">; 202 def U32Imm : ImmediateAsmOperand<"U32Imm">; 203 204 //===----------------------------------------------------------------------===// 205 // i32 immediates 206 //===----------------------------------------------------------------------===// 207 208 // Immediates for the lower and upper 16 bits of an i32, with the other 209 // bits of the i32 being zero. 210 def imm32ll16 : Immediate<i32, [{ 211 return SystemZ::isImmLL(N->getZExtValue()); 212 }], LL16, "U16Imm">; 213 214 def imm32lh16 : Immediate<i32, [{ 215 return SystemZ::isImmLH(N->getZExtValue()); 216 }], LH16, "U16Imm">; 217 218 // Immediates for the lower and upper 16 bits of an i32, with the other 219 // bits of the i32 being one. 220 def imm32ll16c : Immediate<i32, [{ 221 return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); 222 }], LL16, "U16Imm">; 223 224 def imm32lh16c : Immediate<i32, [{ 225 return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); 226 }], LH16, "U16Imm">; 227 228 // Short immediates 229 def imm32zx4 : Immediate<i32, [{ 230 return isUInt<4>(N->getZExtValue()); 231 }], NOOP_SDNodeXForm, "U4Imm">; 232 233 def imm32zx6 : Immediate<i32, [{ 234 return isUInt<6>(N->getZExtValue()); 235 }], NOOP_SDNodeXForm, "U6Imm">; 236 237 def imm32sx8 : Immediate<i32, [{ 238 return isInt<8>(N->getSExtValue()); 239 }], SIMM8, "S8Imm">; 240 241 def imm32zx8 : Immediate<i32, [{ 242 return isUInt<8>(N->getZExtValue()); 243 }], UIMM8, "U8Imm">; 244 245 def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; 246 247 def imm32sx16 : Immediate<i32, [{ 248 return isInt<16>(N->getSExtValue()); 249 }], SIMM16, "S16Imm">; 250 251 def imm32zx16 : Immediate<i32, [{ 252 return isUInt<16>(N->getZExtValue()); 253 }], UIMM16, "U16Imm">; 254 255 def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; 256 257 // Full 32-bit immediates. we need both signed and unsigned versions 258 // because the assembler is picky. E.g. AFI requires signed operands 259 // while NILF requires unsigned ones. 260 def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; 261 def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; 262 263 def imm32 : ImmLeaf<i32, [{}]>; 264 265 //===----------------------------------------------------------------------===// 266 // 64-bit immediates 267 //===----------------------------------------------------------------------===// 268 269 // Immediates for 16-bit chunks of an i64, with the other bits of the 270 // i32 being zero. 271 def imm64ll16 : Immediate<i64, [{ 272 return SystemZ::isImmLL(N->getZExtValue()); 273 }], LL16, "U16Imm">; 274 275 def imm64lh16 : Immediate<i64, [{ 276 return SystemZ::isImmLH(N->getZExtValue()); 277 }], LH16, "U16Imm">; 278 279 def imm64hl16 : Immediate<i64, [{ 280 return SystemZ::isImmHL(N->getZExtValue()); 281 }], HL16, "U16Imm">; 282 283 def imm64hh16 : Immediate<i64, [{ 284 return SystemZ::isImmHH(N->getZExtValue()); 285 }], HH16, "U16Imm">; 286 287 // Immediates for 16-bit chunks of an i64, with the other bits of the 288 // i32 being one. 289 def imm64ll16c : Immediate<i64, [{ 290 return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); 291 }], LL16, "U16Imm">; 292 293 def imm64lh16c : Immediate<i64, [{ 294 return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); 295 }], LH16, "U16Imm">; 296 297 def imm64hl16c : Immediate<i64, [{ 298 return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); 299 }], HL16, "U16Imm">; 300 301 def imm64hh16c : Immediate<i64, [{ 302 return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); 303 }], HH16, "U16Imm">; 304 305 // Immediates for the lower and upper 32 bits of an i64, with the other 306 // bits of the i32 being zero. 307 def imm64lf32 : Immediate<i64, [{ 308 return SystemZ::isImmLF(N->getZExtValue()); 309 }], LF32, "U32Imm">; 310 311 def imm64hf32 : Immediate<i64, [{ 312 return SystemZ::isImmHF(N->getZExtValue()); 313 }], HF32, "U32Imm">; 314 315 // Immediates for the lower and upper 32 bits of an i64, with the other 316 // bits of the i32 being one. 317 def imm64lf32c : Immediate<i64, [{ 318 return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); 319 }], LF32, "U32Imm">; 320 321 def imm64hf32c : Immediate<i64, [{ 322 return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); 323 }], HF32, "U32Imm">; 324 325 // Short immediates. 326 def imm64sx8 : Immediate<i64, [{ 327 return isInt<8>(N->getSExtValue()); 328 }], SIMM8, "S8Imm">; 329 330 def imm64zx8 : Immediate<i64, [{ 331 return isUInt<8>(N->getSExtValue()); 332 }], UIMM8, "U8Imm">; 333 334 def imm64sx16 : Immediate<i64, [{ 335 return isInt<16>(N->getSExtValue()); 336 }], SIMM16, "S16Imm">; 337 338 def imm64zx16 : Immediate<i64, [{ 339 return isUInt<16>(N->getZExtValue()); 340 }], UIMM16, "U16Imm">; 341 342 def imm64sx32 : Immediate<i64, [{ 343 return isInt<32>(N->getSExtValue()); 344 }], SIMM32, "S32Imm">; 345 346 def imm64zx32 : Immediate<i64, [{ 347 return isUInt<32>(N->getZExtValue()); 348 }], UIMM32, "U32Imm">; 349 350 def imm64zx32n : Immediate<i64, [{ 351 return isUInt<32>(-N->getSExtValue()); 352 }], NEGIMM32, "U32Imm">; 353 354 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>; 355 356 //===----------------------------------------------------------------------===// 357 // Floating-point immediates 358 //===----------------------------------------------------------------------===// 359 360 // Floating-point zero. 361 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; 362 363 // Floating point negative zero. 364 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; 365 366 //===----------------------------------------------------------------------===// 367 // Symbolic address operands 368 //===----------------------------------------------------------------------===// 369 370 // PC-relative asm operands. 371 def PCRel16 : PCRelAsmOperand<"16">; 372 def PCRel32 : PCRelAsmOperand<"32">; 373 374 // PC-relative offsets of a basic block. The offset is sign-extended 375 // and multiplied by 2. 376 def brtarget16 : PCRelOperand<OtherVT, PCRel16> { 377 let EncoderMethod = "getPC16DBLEncoding"; 378 let DecoderMethod = "decodePC16DBLOperand"; 379 } 380 def brtarget32 : PCRelOperand<OtherVT, PCRel32> { 381 let EncoderMethod = "getPC32DBLEncoding"; 382 let DecoderMethod = "decodePC32DBLOperand"; 383 } 384 385 // A PC-relative offset of a global value. The offset is sign-extended 386 // and multiplied by 2. 387 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { 388 let EncoderMethod = "getPC32DBLEncoding"; 389 let DecoderMethod = "decodePC32DBLOperand"; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // Addressing modes 394 //===----------------------------------------------------------------------===// 395 396 // 12-bit displacement operands. 397 def disp12imm32 : Operand<i32>; 398 def disp12imm64 : Operand<i64>; 399 400 // 20-bit displacement operands. 401 def disp20imm32 : Operand<i32>; 402 def disp20imm64 : Operand<i64>; 403 404 def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; 405 def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; 406 def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; 407 def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; 408 def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; 409 def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; 410 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">; 411 412 // DAG patterns and operands for addressing modes. Each mode has 413 // the form <type><range><group>[<len>] where: 414 // 415 // <type> is one of: 416 // shift : base + displacement (32-bit) 417 // bdaddr : base + displacement 418 // mviaddr : like bdaddr, but reject cases with a natural index 419 // bdxaddr : base + displacement + index 420 // laaddr : like bdxaddr, but used for Load Address operations 421 // dynalloc : base + displacement + index + ADJDYNALLOC 422 // bdladdr : base + displacement with a length field 423 // 424 // <range> is one of: 425 // 12 : the displacement is an unsigned 12-bit value 426 // 20 : the displacement is a signed 20-bit value 427 // 428 // <group> is one of: 429 // pair : used when there is an equivalent instruction with the opposite 430 // range value (12 or 20) 431 // only : used when there is no equivalent instruction with the opposite 432 // range value 433 // 434 // <len> is one of: 435 // 436 // <empty> : there is no length field 437 // len8 : the length field is 8 bits, with a range of [1, 0x100]. 438 def shift12only : BDMode <"BDAddr", "32", "12", "Only">; 439 def shift20only : BDMode <"BDAddr", "32", "20", "Only">; 440 def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; 441 def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; 442 def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; 443 def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; 444 def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">; 445 def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">; 446 def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; 447 def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; 448 def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; 449 def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; 450 def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; 451 def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; 452 def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; 453 def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; 454 def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">; 455 456 //===----------------------------------------------------------------------===// 457 // Miscellaneous 458 //===----------------------------------------------------------------------===// 459 460 // Access registers. At present we just use them for accessing the thread 461 // pointer, so we don't expose them as register to LLVM. 462 def AccessReg : AsmOperandClass { 463 let Name = "AccessReg"; 464 let ParserMethod = "parseAccessReg"; 465 } 466 def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }], 467 NOOP_SDNodeXForm, "AccessReg"> { 468 let ParserMatchClass = AccessReg; 469 } 470 471 // A 4-bit condition-code mask. 472 def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>, 473 Operand<i32> { 474 let PrintMethod = "printCond4Operand"; 475 } 476