1 //==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 //===----------------------------------------------------------------------===// 11 // Class definitions. 12 //===----------------------------------------------------------------------===// 13 14 class SystemZReg<string n> : Register<n> { 15 let Namespace = "SystemZ"; 16 } 17 18 class SystemZRegWithSubregs<string n, list<Register> subregs> 19 : RegisterWithSubRegs<n, subregs> { 20 let Namespace = "SystemZ"; 21 } 22 23 let Namespace = "SystemZ" in { 24 def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. 25 def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. 26 def subreg_l64 : SubRegIndex<64, 0>; 27 def subreg_h64 : SubRegIndex<64, 64>; 28 def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; 29 def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; 30 } 31 32 // Define a register class that contains values of type TYPE and an 33 // associated operand called NAME. SIZE is the size and alignment 34 // of the registers and REGLIST is the list of individual registers. 35 multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> { 36 def AsmOperand : AsmOperandClass { 37 let Name = name; 38 let ParserMethod = "parse"##name; 39 let RenderMethod = "addRegOperands"; 40 } 41 def Bit : RegisterClass<"SystemZ", [type], size, regList> { 42 let Size = size; 43 } 44 def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { 45 let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); 46 } 47 } 48 49 //===----------------------------------------------------------------------===// 50 // General-purpose registers 51 //===----------------------------------------------------------------------===// 52 53 // Lower 32 bits of one of the 16 64-bit general-purpose registers 54 class GPR32<bits<16> num, string n> : SystemZReg<n> { 55 let HWEncoding = num; 56 } 57 58 // One of the 16 64-bit general-purpose registers. 59 class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> 60 : SystemZRegWithSubregs<n, [low, high]> { 61 let HWEncoding = num; 62 let SubRegIndices = [subreg_l32, subreg_h32]; 63 } 64 65 // 8 even-odd pairs of GPR64s. 66 class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> 67 : SystemZRegWithSubregs<n, [low, high]> { 68 let HWEncoding = num; 69 let SubRegIndices = [subreg_l64, subreg_h64]; 70 } 71 72 // General-purpose registers 73 foreach I = 0-15 in { 74 def R#I#L : GPR32<I, "r"#I>; 75 def R#I#H : GPR32<I, "r"#I>; 76 def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, 77 DwarfRegNum<[I]>; 78 } 79 80 foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { 81 def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), 82 !cast<GPR64>("R"#I#"D")>; 83 } 84 85 /// Allocate the callee-saved R6-R13 backwards. That way they can be saved 86 /// together with R14 and R15 in one prolog instruction. 87 defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uL", 0, 5), 88 (sequence "R%uL", 15, 6))>; 89 defm GRH32 : SystemZRegClass<"GRH32", i32, 32, (add (sequence "R%uH", 0, 5), 90 (sequence "R%uH", 15, 6))>; 91 defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD", 0, 5), 92 (sequence "R%uD", 15, 6))>; 93 94 // Combine the low and high GR32s into a single class. This can only be 95 // used for virtual registers if the high-word facility is available. 96 defm GRX32 : SystemZRegClass<"GRX32", i32, 32, 97 (add (sequence "R%uL", 0, 5), 98 (sequence "R%uH", 0, 5), 99 R15L, R15H, R14L, R14H, R13L, R13H, 100 R12L, R12H, R11L, R11H, R10L, R10H, 101 R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; 102 103 // The architecture doesn't really have any i128 support, so model the 104 // register pairs as untyped instead. 105 defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q, 106 R12Q, R10Q, R8Q, R6Q, 107 R14Q)>; 108 109 // Base and index registers. Everything except R0, which in an address 110 // context evaluates as 0. 111 defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0L)>; 112 defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>; 113 114 // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs 115 // of a GR128. 116 defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>; 117 118 //===----------------------------------------------------------------------===// 119 // Floating-point registers 120 //===----------------------------------------------------------------------===// 121 122 // Maps FPR register numbers to their DWARF encoding. 123 class DwarfMapping<int id> { int Id = id; } 124 125 def F0Dwarf : DwarfMapping<16>; 126 def F2Dwarf : DwarfMapping<17>; 127 def F4Dwarf : DwarfMapping<18>; 128 def F6Dwarf : DwarfMapping<19>; 129 130 def F1Dwarf : DwarfMapping<20>; 131 def F3Dwarf : DwarfMapping<21>; 132 def F5Dwarf : DwarfMapping<22>; 133 def F7Dwarf : DwarfMapping<23>; 134 135 def F8Dwarf : DwarfMapping<24>; 136 def F10Dwarf : DwarfMapping<25>; 137 def F12Dwarf : DwarfMapping<26>; 138 def F14Dwarf : DwarfMapping<27>; 139 140 def F9Dwarf : DwarfMapping<28>; 141 def F11Dwarf : DwarfMapping<29>; 142 def F13Dwarf : DwarfMapping<30>; 143 def F15Dwarf : DwarfMapping<31>; 144 145 // Lower 32 bits of one of the 16 64-bit floating-point registers 146 class FPR32<bits<16> num, string n> : SystemZReg<n> { 147 let HWEncoding = num; 148 } 149 150 // One of the 16 64-bit floating-point registers 151 class FPR64<bits<16> num, string n, FPR32 low> 152 : SystemZRegWithSubregs<n, [low]> { 153 let HWEncoding = num; 154 let SubRegIndices = [subreg_h32]; 155 } 156 157 // 8 pairs of FPR64s, with a one-register gap inbetween. 158 class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> 159 : SystemZRegWithSubregs<n, [low, high]> { 160 let HWEncoding = num; 161 let SubRegIndices = [subreg_l64, subreg_h64]; 162 } 163 164 // Floating-point registers 165 foreach I = 0-15 in { 166 def F#I#S : FPR32<I, "f"#I>; 167 def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, 168 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 169 } 170 171 foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { 172 def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), 173 !cast<FPR64>("F"#I#"D")>; 174 } 175 176 // There's no store-multiple instruction for FPRs, so we're not fussy 177 // about the order in which call-saved registers are allocated. 178 defm FP32 : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>; 179 defm FP64 : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>; 180 defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q, 181 F8Q, F9Q, F12Q, F13Q)>; 182 183 //===----------------------------------------------------------------------===// 184 // Other registers 185 //===----------------------------------------------------------------------===// 186 187 // The 2-bit condition code field of the PSW. Every register named in an 188 // inline asm needs a class associated with it. 189 def CC : SystemZReg<"cc">; 190 def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>; 191