1 ; RUN: llc < %s -mtriple=x86_64-apple-darwin -mcpu=corei7-avx -mattr=+avx | FileCheck %s 2 3 ; AVX128 tests: 4 5 ;CHECK-LABEL: vsel_float: 6 ; select mask is <i1 true, i1 false, i1 true, i1 false>. 7 ; Big endian representation is 0101 = 5. 8 ; '1' means takes the first argument, '0' means takes the second argument. 9 ; This is the opposite of the intel syntax, thus we expect 10 ; the inverted mask: 1010 = 10. 11 ; According to the ABI: 12 ; v1 is in xmm0 => first argument is xmm0. 13 ; v2 is in xmm1 => second argument is xmm1. 14 ; result is in xmm0 => destination argument. 15 ;CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 16 ;CHECK: ret 17 define <4 x float> @vsel_float(<4 x float> %v1, <4 x float> %v2) { 18 %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x float> %v1, <4 x float> %v2 19 ret <4 x float> %vsel 20 } 21 22 23 ;CHECK-LABEL: vsel_i32: 24 ;CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 25 ;CHECK: ret 26 define <4 x i32> @vsel_i32(<4 x i32> %v1, <4 x i32> %v2) { 27 %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x i32> %v1, <4 x i32> %v2 28 ret <4 x i32> %vsel 29 } 30 31 32 ;CHECK-LABEL: vsel_double: 33 ;CHECK: vmovsd 34 ;CHECK: ret 35 define <2 x double> @vsel_double(<2 x double> %v1, <2 x double> %v2) { 36 %vsel = select <2 x i1> <i1 true, i1 false>, <2 x double> %v1, <2 x double> %v2 37 ret <2 x double> %vsel 38 } 39 40 41 ;CHECK-LABEL: vsel_i64: 42 ;CHECK: vmovsd 43 ;CHECK: ret 44 define <2 x i64> @vsel_i64(<2 x i64> %v1, <2 x i64> %v2) { 45 %vsel = select <2 x i1> <i1 true, i1 false>, <2 x i64> %v1, <2 x i64> %v2 46 ret <2 x i64> %vsel 47 } 48 49 50 ;CHECK-LABEL: vsel_i8: 51 ;CHECK: vpblendvb 52 ;CHECK: ret 53 define <16 x i8> @vsel_i8(<16 x i8> %v1, <16 x i8> %v2) { 54 %vsel = select <16 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <16 x i8> %v1, <16 x i8> %v2 55 ret <16 x i8> %vsel 56 } 57 58 59 ; AVX256 tests: 60 61 62 ;CHECK-LABEL: vsel_float8: 63 ;CHECK-NOT: vinsertf128 64 ; <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false> 65 ; which translates into the boolean mask (big endian representation): 66 ; 00010001 = 17. 67 ; '1' means takes the first argument, '0' means takes the second argument. 68 ; This is the opposite of the intel syntax, thus we expect 69 ; the inverted mask: 11101110 = 238. 70 ;CHECK: vblendps $238, %ymm1, %ymm0, %ymm0 71 ;CHECK: ret 72 define <8 x float> @vsel_float8(<8 x float> %v1, <8 x float> %v2) { 73 %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x float> %v1, <8 x float> %v2 74 ret <8 x float> %vsel 75 } 76 77 ;CHECK-LABEL: vsel_i328: 78 ;CHECK-NOT: vinsertf128 79 ;CHECK: vblendps $238, %ymm1, %ymm0, %ymm0 80 ;CHECK-NEXT: ret 81 define <8 x i32> @vsel_i328(<8 x i32> %v1, <8 x i32> %v2) { 82 %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x i32> %v1, <8 x i32> %v2 83 ret <8 x i32> %vsel 84 } 85 86 ;CHECK-LABEL: vsel_double8: 87 ; select mask is 2x: 0001 => intel mask: ~0001 = 14 88 ; ABI: 89 ; v1 is in ymm0 and ymm1. 90 ; v2 is in ymm2 and ymm3. 91 ; result is in ymm0 and ymm1. 92 ; Compute the low part: res.low = blend v1.low, v2.low, blendmask 93 ;CHECK: vblendpd $14, %ymm2, %ymm0, %ymm0 94 ; Compute the high part. 95 ;CHECK: vblendpd $14, %ymm3, %ymm1, %ymm1 96 ;CHECK: ret 97 define <8 x double> @vsel_double8(<8 x double> %v1, <8 x double> %v2) { 98 %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x double> %v1, <8 x double> %v2 99 ret <8 x double> %vsel 100 } 101 102 ;CHECK-LABEL: vsel_i648: 103 ;CHECK: vblendpd $14, %ymm2, %ymm0, %ymm0 104 ;CHECK: vblendpd $14, %ymm3, %ymm1, %ymm1 105 ;CHECK: ret 106 define <8 x i64> @vsel_i648(<8 x i64> %v1, <8 x i64> %v2) { 107 %vsel = select <8 x i1> <i1 true, i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false>, <8 x i64> %v1, <8 x i64> %v2 108 ret <8 x i64> %vsel 109 } 110 111 ;CHECK-LABEL: vsel_double4: 112 ;CHECK-NOT: vinsertf128 113 ;CHECK: vblendpd $10 114 ;CHECK-NEXT: ret 115 define <4 x double> @vsel_double4(<4 x double> %v1, <4 x double> %v2) { 116 %vsel = select <4 x i1> <i1 true, i1 false, i1 true, i1 false>, <4 x double> %v1, <4 x double> %v2 117 ret <4 x double> %vsel 118 } 119 120 ;; TEST blend + compares 121 ; CHECK: testa 122 define <2 x double> @testa(<2 x double> %x, <2 x double> %y) { 123 ; CHECK: vcmplepd 124 ; CHECK: vblendvpd 125 %max_is_x = fcmp oge <2 x double> %x, %y 126 %max = select <2 x i1> %max_is_x, <2 x double> %x, <2 x double> %y 127 ret <2 x double> %max 128 } 129 130 ; CHECK: testb 131 define <2 x double> @testb(<2 x double> %x, <2 x double> %y) { 132 ; CHECK: vcmpnlepd 133 ; CHECK: vblendvpd 134 %min_is_x = fcmp ult <2 x double> %x, %y 135 %min = select <2 x i1> %min_is_x, <2 x double> %x, <2 x double> %y 136 ret <2 x double> %min 137 } 138 139 ; If we can figure out a blend has a constant mask, we should emit the 140 ; blend instruction with an immediate mask 141 define <4 x double> @constant_blendvpd_avx(<4 x double> %xy, <4 x double> %ab) { 142 ; CHECK-LABEL: constant_blendvpd_avx: 143 ; CHECK-NOT: mov 144 ; CHECK: vblendpd 145 ; CHECK: ret 146 %1 = select <4 x i1> <i1 false, i1 false, i1 true, i1 false>, <4 x double> %xy, <4 x double> %ab 147 ret <4 x double> %1 148 } 149 150 define <8 x float> @constant_blendvps_avx(<8 x float> %xyzw, <8 x float> %abcd) { 151 ; CHECK-LABEL: constant_blendvps_avx: 152 ; CHECK-NOT: mov 153 ; CHECK: vblendps 154 ; CHECK: ret 155 %1 = select <8 x i1> <i1 false, i1 false, i1 false, i1 true, i1 false, i1 false, i1 false, i1 true>, <8 x float> %xyzw, <8 x float> %abcd 156 ret <8 x float> %1 157 } 158 159 declare <8 x float> @llvm.x86.avx.blendv.ps.256(<8 x float>, <8 x float>, <8 x float>) 160 declare <4 x double> @llvm.x86.avx.blendv.pd.256(<4 x double>, <4 x double>, <4 x double>) 161 162 ;; 4 tests for shufflevectors that optimize to blend + immediate 163 ; CHECK-LABEL: @blend_shufflevector_4xfloat 164 define <4 x float> @blend_shufflevector_4xfloat(<4 x float> %a, <4 x float> %b) { 165 ; Equivalent select mask is <i1 true, i1 false, i1 true, i1 false>. 166 ; Big endian representation is 0101 = 5. 167 ; '1' means takes the first argument, '0' means takes the second argument. 168 ; This is the opposite of the intel syntax, thus we expect 169 ; Inverted mask: 1010 = 10. 170 ; According to the ABI: 171 ; a is in xmm0 => first argument is xmm0. 172 ; b is in xmm1 => second argument is xmm1. 173 ; Result is in xmm0 => destination argument. 174 ; CHECK: vblendps $10, %xmm1, %xmm0, %xmm0 175 ; CHECK: ret 176 %1 = shufflevector <4 x float> %a, <4 x float> %b, <4 x i32> <i32 0, i32 5, i32 2, i32 7> 177 ret <4 x float> %1 178 } 179 180 ; CHECK-LABEL: @blend_shufflevector_8xfloat 181 define <8 x float> @blend_shufflevector_8xfloat(<8 x float> %a, <8 x float> %b) { 182 ; CHECK: vblendps $190, %ymm1, %ymm0, %ymm0 183 ; CHECK: ret 184 %1 = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 0, i32 9, i32 10, i32 11, i32 12, i32 13, i32 6, i32 15> 185 ret <8 x float> %1 186 } 187 188 ; CHECK-LABEL: @blend_shufflevector_4xdouble 189 define <4 x double> @blend_shufflevector_4xdouble(<4 x double> %a, <4 x double> %b) { 190 ; CHECK: vblendpd $2, %ymm1, %ymm0, %ymm0 191 ; CHECK: ret 192 %1 = shufflevector <4 x double> %a, <4 x double> %b, <4 x i32> <i32 0, i32 5, i32 2, i32 3> 193 ret <4 x double> %1 194 } 195 196 ; CHECK-LABEL: @blend_shufflevector_4xi64 197 define <4 x i64> @blend_shufflevector_4xi64(<4 x i64> %a, <4 x i64> %b) { 198 ; CHECK: vblendpd $13, %ymm1, %ymm0, %ymm0 199 ; CHECK: ret 200 %1 = shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32> <i32 4, i32 1, i32 6, i32 7> 201 ret <4 x i64> %1 202 } 203