Home | History | Annotate | Download | only in TableGen
      1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DAGISelMatcher.h"
     11 #include "CodeGenDAGPatterns.h"
     12 #include "CodeGenRegisters.h"
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/SmallVector.h"
     15 #include "llvm/ADT/StringMap.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include <utility>
     19 using namespace llvm;
     20 
     21 
     22 /// getRegisterValueType - Look up and return the ValueType of the specified
     23 /// register. If the register is a member of multiple register classes which
     24 /// have different associated types, return MVT::Other.
     25 static MVT::SimpleValueType getRegisterValueType(Record *R,
     26                                                  const CodeGenTarget &T) {
     27   bool FoundRC = false;
     28   MVT::SimpleValueType VT = MVT::Other;
     29   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
     30   ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
     31 
     32   for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
     33     const CodeGenRegisterClass &RC = *RCs[rc];
     34     if (!RC.contains(Reg))
     35       continue;
     36 
     37     if (!FoundRC) {
     38       FoundRC = true;
     39       VT = RC.getValueTypeNum(0);
     40       continue;
     41     }
     42 
     43     // If this occurs in multiple register classes, they all have to agree.
     44     assert(VT == RC.getValueTypeNum(0));
     45   }
     46   return VT;
     47 }
     48 
     49 
     50 namespace {
     51   class MatcherGen {
     52     const PatternToMatch &Pattern;
     53     const CodeGenDAGPatterns &CGP;
     54 
     55     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
     56     /// out with all of the types removed.  This allows us to insert type checks
     57     /// as we scan the tree.
     58     TreePatternNode *PatWithNoTypes;
     59 
     60     /// VariableMap - A map from variable names ('$dst') to the recorded operand
     61     /// number that they were captured as.  These are biased by 1 to make
     62     /// insertion easier.
     63     StringMap<unsigned> VariableMap;
     64 
     65     /// This maintains the recorded operand number that OPC_CheckComplexPattern
     66     /// drops each sub-operand into. We don't want to insert these into
     67     /// VariableMap because that leads to identity checking if they are
     68     /// encountered multiple times. Biased by 1 like VariableMap for
     69     /// consistency.
     70     StringMap<unsigned> NamedComplexPatternOperands;
     71 
     72     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
     73     /// the RecordedNodes array, this keeps track of which slot will be next to
     74     /// record into.
     75     unsigned NextRecordedOperandNo;
     76 
     77     /// MatchedChainNodes - This maintains the position in the recorded nodes
     78     /// array of all of the recorded input nodes that have chains.
     79     SmallVector<unsigned, 2> MatchedChainNodes;
     80 
     81     /// MatchedGlueResultNodes - This maintains the position in the recorded
     82     /// nodes array of all of the recorded input nodes that have glue results.
     83     SmallVector<unsigned, 2> MatchedGlueResultNodes;
     84 
     85     /// MatchedComplexPatterns - This maintains a list of all of the
     86     /// ComplexPatterns that we need to check. The second element of each pair
     87     /// is the recorded operand number of the input node.
     88     SmallVector<std::pair<const TreePatternNode*,
     89                           unsigned>, 2> MatchedComplexPatterns;
     90 
     91     /// PhysRegInputs - List list has an entry for each explicitly specified
     92     /// physreg input to the pattern.  The first elt is the Register node, the
     93     /// second is the recorded slot number the input pattern match saved it in.
     94     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
     95 
     96     /// Matcher - This is the top level of the generated matcher, the result.
     97     Matcher *TheMatcher;
     98 
     99     /// CurPredicate - As we emit matcher nodes, this points to the latest check
    100     /// which should have future checks stuck into its Next position.
    101     Matcher *CurPredicate;
    102   public:
    103     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
    104 
    105     ~MatcherGen() {
    106       delete PatWithNoTypes;
    107     }
    108 
    109     bool EmitMatcherCode(unsigned Variant);
    110     void EmitResultCode();
    111 
    112     Matcher *GetMatcher() const { return TheMatcher; }
    113   private:
    114     void AddMatcher(Matcher *NewNode);
    115     void InferPossibleTypes();
    116 
    117     // Matcher Generation.
    118     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
    119     void EmitLeafMatchCode(const TreePatternNode *N);
    120     void EmitOperatorMatchCode(const TreePatternNode *N,
    121                                TreePatternNode *NodeNoTypes);
    122 
    123     /// If this is the first time a node with unique identifier Name has been
    124     /// seen, record it. Otherwise, emit a check to make sure this is the same
    125     /// node. Returns true if this is the first encounter.
    126     bool recordUniqueNode(std::string Name);
    127 
    128     // Result Code Generation.
    129     unsigned getNamedArgumentSlot(StringRef Name) {
    130       unsigned VarMapEntry = VariableMap[Name];
    131       assert(VarMapEntry != 0 &&
    132              "Variable referenced but not defined and not caught earlier!");
    133       return VarMapEntry-1;
    134     }
    135 
    136     /// GetInstPatternNode - Get the pattern for an instruction.
    137     const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
    138                                               const TreePatternNode *N);
    139 
    140     void EmitResultOperand(const TreePatternNode *N,
    141                            SmallVectorImpl<unsigned> &ResultOps);
    142     void EmitResultOfNamedOperand(const TreePatternNode *N,
    143                                   SmallVectorImpl<unsigned> &ResultOps);
    144     void EmitResultLeafAsOperand(const TreePatternNode *N,
    145                                  SmallVectorImpl<unsigned> &ResultOps);
    146     void EmitResultInstructionAsOperand(const TreePatternNode *N,
    147                                         SmallVectorImpl<unsigned> &ResultOps);
    148     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    149                                         SmallVectorImpl<unsigned> &ResultOps);
    150     };
    151 
    152 } // end anon namespace.
    153 
    154 MatcherGen::MatcherGen(const PatternToMatch &pattern,
    155                        const CodeGenDAGPatterns &cgp)
    156 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
    157   TheMatcher(nullptr), CurPredicate(nullptr) {
    158   // We need to produce the matcher tree for the patterns source pattern.  To do
    159   // this we need to match the structure as well as the types.  To do the type
    160   // matching, we want to figure out the fewest number of type checks we need to
    161   // emit.  For example, if there is only one integer type supported by a
    162   // target, there should be no type comparisons at all for integer patterns!
    163   //
    164   // To figure out the fewest number of type checks needed, clone the pattern,
    165   // remove the types, then perform type inference on the pattern as a whole.
    166   // If there are unresolved types, emit an explicit check for those types,
    167   // apply the type to the tree, then rerun type inference.  Iterate until all
    168   // types are resolved.
    169   //
    170   PatWithNoTypes = Pattern.getSrcPattern()->clone();
    171   PatWithNoTypes->RemoveAllTypes();
    172 
    173   // If there are types that are manifestly known, infer them.
    174   InferPossibleTypes();
    175 }
    176 
    177 /// InferPossibleTypes - As we emit the pattern, we end up generating type
    178 /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
    179 /// want to propagate implied types as far throughout the tree as possible so
    180 /// that we avoid doing redundant type checks.  This does the type propagation.
    181 void MatcherGen::InferPossibleTypes() {
    182   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
    183   // diagnostics, which we know are impossible at this point.
    184   TreePattern &TP = *CGP.pf_begin()->second;
    185 
    186   bool MadeChange = true;
    187   while (MadeChange)
    188     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
    189                                               true/*Ignore reg constraints*/);
    190 }
    191 
    192 
    193 /// AddMatcher - Add a matcher node to the current graph we're building.
    194 void MatcherGen::AddMatcher(Matcher *NewNode) {
    195   if (CurPredicate)
    196     CurPredicate->setNext(NewNode);
    197   else
    198     TheMatcher = NewNode;
    199   CurPredicate = NewNode;
    200 }
    201 
    202 
    203 //===----------------------------------------------------------------------===//
    204 // Pattern Match Generation
    205 //===----------------------------------------------------------------------===//
    206 
    207 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
    208 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
    209   assert(N->isLeaf() && "Not a leaf?");
    210 
    211   // Direct match against an integer constant.
    212   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    213     // If this is the root of the dag we're matching, we emit a redundant opcode
    214     // check to ensure that this gets folded into the normal top-level
    215     // OpcodeSwitch.
    216     if (N == Pattern.getSrcPattern()) {
    217       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
    218       AddMatcher(new CheckOpcodeMatcher(NI));
    219     }
    220 
    221     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
    222   }
    223 
    224   // An UnsetInit represents a named node without any constraints.
    225   if (N->getLeafValue() == UnsetInit::get()) {
    226     assert(N->hasName() && "Unnamed ? leaf");
    227     return;
    228   }
    229 
    230   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
    231   if (!DI) {
    232     errs() << "Unknown leaf kind: " << *N << "\n";
    233     abort();
    234   }
    235 
    236   Record *LeafRec = DI->getDef();
    237 
    238   // A ValueType leaf node can represent a register when named, or itself when
    239   // unnamed.
    240   if (LeafRec->isSubClassOf("ValueType")) {
    241     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    242     if (N->hasName())
    243       return;
    244     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    245     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
    246   }
    247 
    248   if (// Handle register references.  Nothing to do here, they always match.
    249       LeafRec->isSubClassOf("RegisterClass") ||
    250       LeafRec->isSubClassOf("RegisterOperand") ||
    251       LeafRec->isSubClassOf("PointerLikeRegClass") ||
    252       LeafRec->isSubClassOf("SubRegIndex") ||
    253       // Place holder for SRCVALUE nodes. Nothing to do here.
    254       LeafRec->getName() == "srcvalue")
    255     return;
    256 
    257   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
    258   // record the register
    259   if (LeafRec->isSubClassOf("Register")) {
    260     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
    261                                  NextRecordedOperandNo));
    262     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    263     return;
    264   }
    265 
    266   if (LeafRec->isSubClassOf("CondCode"))
    267     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
    268 
    269   if (LeafRec->isSubClassOf("ComplexPattern")) {
    270     // We can't model ComplexPattern uses that don't have their name taken yet.
    271     // The OPC_CheckComplexPattern operation implicitly records the results.
    272     if (N->getName().empty()) {
    273       errs() << "We expect complex pattern uses to have names: " << *N << "\n";
    274       exit(1);
    275     }
    276 
    277     // Remember this ComplexPattern so that we can emit it after all the other
    278     // structural matches are done.
    279     unsigned InputOperand = VariableMap[N->getName()] - 1;
    280     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
    281     return;
    282   }
    283 
    284   errs() << "Unknown leaf kind: " << *N << "\n";
    285   abort();
    286 }
    287 
    288 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
    289                                        TreePatternNode *NodeNoTypes) {
    290   assert(!N->isLeaf() && "Not an operator?");
    291 
    292   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
    293     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
    294     // "MY_PAT:op1:op2". We should already have validated that the uses are
    295     // consistent.
    296     std::string PatternName = N->getOperator()->getName();
    297     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    298       PatternName += ":";
    299       PatternName += N->getChild(i)->getName();
    300     }
    301 
    302     if (recordUniqueNode(PatternName)) {
    303       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
    304       MatchedComplexPatterns.push_back(NodeAndOpNum);
    305     }
    306 
    307     return;
    308   }
    309 
    310   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
    311 
    312   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
    313   // a constant without a predicate fn that has more that one bit set, handle
    314   // this as a special case.  This is usually for targets that have special
    315   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
    316   // handling stuff).  Using these instructions is often far more efficient
    317   // than materializing the constant.  Unfortunately, both the instcombiner
    318   // and the dag combiner can often infer that bits are dead, and thus drop
    319   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
    320   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
    321   // to handle this.
    322   if ((N->getOperator()->getName() == "and" ||
    323        N->getOperator()->getName() == "or") &&
    324       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
    325       N->getPredicateFns().empty()) {
    326     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
    327       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
    328         // If this is at the root of the pattern, we emit a redundant
    329         // CheckOpcode so that the following checks get factored properly under
    330         // a single opcode check.
    331         if (N == Pattern.getSrcPattern())
    332           AddMatcher(new CheckOpcodeMatcher(CInfo));
    333 
    334         // Emit the CheckAndImm/CheckOrImm node.
    335         if (N->getOperator()->getName() == "and")
    336           AddMatcher(new CheckAndImmMatcher(II->getValue()));
    337         else
    338           AddMatcher(new CheckOrImmMatcher(II->getValue()));
    339 
    340         // Match the LHS of the AND as appropriate.
    341         AddMatcher(new MoveChildMatcher(0));
    342         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
    343         AddMatcher(new MoveParentMatcher());
    344         return;
    345       }
    346     }
    347   }
    348 
    349   // Check that the current opcode lines up.
    350   AddMatcher(new CheckOpcodeMatcher(CInfo));
    351 
    352   // If this node has memory references (i.e. is a load or store), tell the
    353   // interpreter to capture them in the memref array.
    354   if (N->NodeHasProperty(SDNPMemOperand, CGP))
    355     AddMatcher(new RecordMemRefMatcher());
    356 
    357   // If this node has a chain, then the chain is operand #0 is the SDNode, and
    358   // the child numbers of the node are all offset by one.
    359   unsigned OpNo = 0;
    360   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
    361     // Record the node and remember it in our chained nodes list.
    362     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    363                                          "' chained node",
    364                                  NextRecordedOperandNo));
    365     // Remember all of the input chains our pattern will match.
    366     MatchedChainNodes.push_back(NextRecordedOperandNo++);
    367 
    368     // Don't look at the input chain when matching the tree pattern to the
    369     // SDNode.
    370     OpNo = 1;
    371 
    372     // If this node is not the root and the subtree underneath it produces a
    373     // chain, then the result of matching the node is also produce a chain.
    374     // Beyond that, this means that we're also folding (at least) the root node
    375     // into the node that produce the chain (for example, matching
    376     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
    377     // problematic, if the 'reg' node also uses the load (say, its chain).
    378     // Graphically:
    379     //
    380     //         [LD]
    381     //         ^  ^
    382     //         |  \                              DAG's like cheese.
    383     //        /    |
    384     //       /    [YY]
    385     //       |     ^
    386     //      [XX]--/
    387     //
    388     // It would be invalid to fold XX and LD.  In this case, folding the two
    389     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
    390     // To prevent this, we emit a dynamic check for legality before allowing
    391     // this to be folded.
    392     //
    393     const TreePatternNode *Root = Pattern.getSrcPattern();
    394     if (N != Root) {                             // Not the root of the pattern.
    395       // If there is a node between the root and this node, then we definitely
    396       // need to emit the check.
    397       bool NeedCheck = !Root->hasChild(N);
    398 
    399       // If it *is* an immediate child of the root, we can still need a check if
    400       // the root SDNode has multiple inputs.  For us, this means that it is an
    401       // intrinsic, has multiple operands, or has other inputs like chain or
    402       // glue).
    403       if (!NeedCheck) {
    404         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
    405         NeedCheck =
    406           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
    407           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
    408           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
    409           PInfo.getNumOperands() > 1 ||
    410           PInfo.hasProperty(SDNPHasChain) ||
    411           PInfo.hasProperty(SDNPInGlue) ||
    412           PInfo.hasProperty(SDNPOptInGlue);
    413       }
    414 
    415       if (NeedCheck)
    416         AddMatcher(new CheckFoldableChainNodeMatcher());
    417     }
    418   }
    419 
    420   // If this node has an output glue and isn't the root, remember it.
    421   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
    422       N != Pattern.getSrcPattern()) {
    423     // TODO: This redundantly records nodes with both glues and chains.
    424 
    425     // Record the node and remember it in our chained nodes list.
    426     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
    427                                          "' glue output node",
    428                                  NextRecordedOperandNo));
    429     // Remember all of the nodes with output glue our pattern will match.
    430     MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
    431   }
    432 
    433   // If this node is known to have an input glue or if it *might* have an input
    434   // glue, capture it as the glue input of the pattern.
    435   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
    436       N->NodeHasProperty(SDNPInGlue, CGP))
    437     AddMatcher(new CaptureGlueInputMatcher());
    438 
    439   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
    440     // Get the code suitable for matching this child.  Move to the child, check
    441     // it then move back to the parent.
    442     AddMatcher(new MoveChildMatcher(OpNo));
    443     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
    444     AddMatcher(new MoveParentMatcher());
    445   }
    446 }
    447 
    448 bool MatcherGen::recordUniqueNode(std::string Name) {
    449   unsigned &VarMapEntry = VariableMap[Name];
    450   if (VarMapEntry == 0) {
    451     // If it is a named node, we must emit a 'Record' opcode.
    452     AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
    453     VarMapEntry = ++NextRecordedOperandNo;
    454     return true;
    455   }
    456 
    457   // If we get here, this is a second reference to a specific name.  Since
    458   // we already have checked that the first reference is valid, we don't
    459   // have to recursively match it, just check that it's the same as the
    460   // previously named thing.
    461   AddMatcher(new CheckSameMatcher(VarMapEntry-1));
    462   return false;
    463 }
    464 
    465 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
    466                                TreePatternNode *NodeNoTypes) {
    467   // If N and NodeNoTypes don't agree on a type, then this is a case where we
    468   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
    469   // reinfer any correlated types.
    470   SmallVector<unsigned, 2> ResultsToTypeCheck;
    471 
    472   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
    473     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
    474     NodeNoTypes->setType(i, N->getExtType(i));
    475     InferPossibleTypes();
    476     ResultsToTypeCheck.push_back(i);
    477   }
    478 
    479   // If this node has a name associated with it, capture it in VariableMap. If
    480   // we already saw this in the pattern, emit code to verify dagness.
    481   if (!N->getName().empty())
    482     if (!recordUniqueNode(N->getName()))
    483       return;
    484 
    485   if (N->isLeaf())
    486     EmitLeafMatchCode(N);
    487   else
    488     EmitOperatorMatchCode(N, NodeNoTypes);
    489 
    490   // If there are node predicates for this node, generate their checks.
    491   for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
    492     AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
    493 
    494   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
    495     AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
    496                                     ResultsToTypeCheck[i]));
    497 }
    498 
    499 /// EmitMatcherCode - Generate the code that matches the predicate of this
    500 /// pattern for the specified Variant.  If the variant is invalid this returns
    501 /// true and does not generate code, if it is valid, it returns false.
    502 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
    503   // If the root of the pattern is a ComplexPattern and if it is specified to
    504   // match some number of root opcodes, these are considered to be our variants.
    505   // Depending on which variant we're generating code for, emit the root opcode
    506   // check.
    507   if (const ComplexPattern *CP =
    508                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
    509     const std::vector<Record*> &OpNodes = CP->getRootNodes();
    510     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
    511     if (Variant >= OpNodes.size()) return true;
    512 
    513     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
    514   } else {
    515     if (Variant != 0) return true;
    516   }
    517 
    518   // Emit the matcher for the pattern structure and types.
    519   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
    520 
    521   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
    522   // feature is around, do the check).
    523   if (!Pattern.getPredicateCheck().empty())
    524     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
    525 
    526   // Now that we've completed the structural type match, emit any ComplexPattern
    527   // checks (e.g. addrmode matches).  We emit this after the structural match
    528   // because they are generally more expensive to evaluate and more difficult to
    529   // factor.
    530   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
    531     const TreePatternNode *N = MatchedComplexPatterns[i].first;
    532 
    533     // Remember where the results of this match get stuck.
    534     if (N->isLeaf()) {
    535       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
    536     } else {
    537       unsigned CurOp = NextRecordedOperandNo;
    538       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
    539         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
    540         CurOp += N->getChild(i)->getNumMIResults(CGP);
    541       }
    542     }
    543 
    544     // Get the slot we recorded the value in from the name on the node.
    545     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
    546 
    547     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
    548 
    549     // Emit a CheckComplexPat operation, which does the match (aborting if it
    550     // fails) and pushes the matched operands onto the recorded nodes list.
    551     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
    552                                           N->getName(), NextRecordedOperandNo));
    553 
    554     // Record the right number of operands.
    555     NextRecordedOperandNo += CP.getNumOperands();
    556     if (CP.hasProperty(SDNPHasChain)) {
    557       // If the complex pattern has a chain, then we need to keep track of the
    558       // fact that we just recorded a chain input.  The chain input will be
    559       // matched as the last operand of the predicate if it was successful.
    560       ++NextRecordedOperandNo; // Chained node operand.
    561 
    562       // It is the last operand recorded.
    563       assert(NextRecordedOperandNo > 1 &&
    564              "Should have recorded input/result chains at least!");
    565       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
    566     }
    567 
    568     // TODO: Complex patterns can't have output glues, if they did, we'd want
    569     // to record them.
    570   }
    571 
    572   return false;
    573 }
    574 
    575 
    576 //===----------------------------------------------------------------------===//
    577 // Node Result Generation
    578 //===----------------------------------------------------------------------===//
    579 
    580 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
    581                                           SmallVectorImpl<unsigned> &ResultOps){
    582   assert(!N->getName().empty() && "Operand not named!");
    583 
    584   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
    585     // Complex operands have already been completely selected, just find the
    586     // right slot ant add the arguments directly.
    587     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    588       ResultOps.push_back(SlotNo - 1 + i);
    589 
    590     return;
    591   }
    592 
    593   unsigned SlotNo = getNamedArgumentSlot(N->getName());
    594 
    595   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
    596   // version of the immediate so that it doesn't get selected due to some other
    597   // node use.
    598   if (!N->isLeaf()) {
    599     StringRef OperatorName = N->getOperator()->getName();
    600     if (OperatorName == "imm" || OperatorName == "fpimm") {
    601       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
    602       ResultOps.push_back(NextRecordedOperandNo++);
    603       return;
    604     }
    605   }
    606 
    607   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
    608     ResultOps.push_back(SlotNo + i);
    609 }
    610 
    611 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
    612                                          SmallVectorImpl<unsigned> &ResultOps) {
    613   assert(N->isLeaf() && "Must be a leaf");
    614 
    615   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    616     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
    617     ResultOps.push_back(NextRecordedOperandNo++);
    618     return;
    619   }
    620 
    621   // If this is an explicit register reference, handle it.
    622   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
    623     Record *Def = DI->getDef();
    624     if (Def->isSubClassOf("Register")) {
    625       const CodeGenRegister *Reg =
    626         CGP.getTargetInfo().getRegBank().getReg(Def);
    627       AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
    628       ResultOps.push_back(NextRecordedOperandNo++);
    629       return;
    630     }
    631 
    632     if (Def->getName() == "zero_reg") {
    633       AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
    634       ResultOps.push_back(NextRecordedOperandNo++);
    635       return;
    636     }
    637 
    638     // Handle a reference to a register class. This is used
    639     // in COPY_TO_SUBREG instructions.
    640     if (Def->isSubClassOf("RegisterOperand"))
    641       Def = Def->getValueAsDef("RegClass");
    642     if (Def->isSubClassOf("RegisterClass")) {
    643       std::string Value = getQualifiedName(Def) + "RegClassID";
    644       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    645       ResultOps.push_back(NextRecordedOperandNo++);
    646       return;
    647     }
    648 
    649     // Handle a subregister index. This is used for INSERT_SUBREG etc.
    650     if (Def->isSubClassOf("SubRegIndex")) {
    651       std::string Value = getQualifiedName(Def);
    652       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
    653       ResultOps.push_back(NextRecordedOperandNo++);
    654       return;
    655     }
    656   }
    657 
    658   errs() << "unhandled leaf node: \n";
    659   N->dump();
    660 }
    661 
    662 /// GetInstPatternNode - Get the pattern for an instruction.
    663 ///
    664 const TreePatternNode *MatcherGen::
    665 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
    666   const TreePattern *InstPat = Inst.getPattern();
    667 
    668   // FIXME2?: Assume actual pattern comes before "implicit".
    669   TreePatternNode *InstPatNode;
    670   if (InstPat)
    671     InstPatNode = InstPat->getTree(0);
    672   else if (/*isRoot*/ N == Pattern.getDstPattern())
    673     InstPatNode = Pattern.getSrcPattern();
    674   else
    675     return nullptr;
    676 
    677   if (InstPatNode && !InstPatNode->isLeaf() &&
    678       InstPatNode->getOperator()->getName() == "set")
    679     InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
    680 
    681   return InstPatNode;
    682 }
    683 
    684 static bool
    685 mayInstNodeLoadOrStore(const TreePatternNode *N,
    686                        const CodeGenDAGPatterns &CGP) {
    687   Record *Op = N->getOperator();
    688   const CodeGenTarget &CGT = CGP.getTargetInfo();
    689   CodeGenInstruction &II = CGT.getInstruction(Op);
    690   return II.mayLoad || II.mayStore;
    691 }
    692 
    693 static unsigned
    694 numNodesThatMayLoadOrStore(const TreePatternNode *N,
    695                            const CodeGenDAGPatterns &CGP) {
    696   if (N->isLeaf())
    697     return 0;
    698 
    699   Record *OpRec = N->getOperator();
    700   if (!OpRec->isSubClassOf("Instruction"))
    701     return 0;
    702 
    703   unsigned Count = 0;
    704   if (mayInstNodeLoadOrStore(N, CGP))
    705     ++Count;
    706 
    707   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
    708     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
    709 
    710   return Count;
    711 }
    712 
    713 void MatcherGen::
    714 EmitResultInstructionAsOperand(const TreePatternNode *N,
    715                                SmallVectorImpl<unsigned> &OutputOps) {
    716   Record *Op = N->getOperator();
    717   const CodeGenTarget &CGT = CGP.getTargetInfo();
    718   CodeGenInstruction &II = CGT.getInstruction(Op);
    719   const DAGInstruction &Inst = CGP.getInstruction(Op);
    720 
    721   // If we can, get the pattern for the instruction we're generating.  We derive
    722   // a variety of information from this pattern, such as whether it has a chain.
    723   //
    724   // FIXME2: This is extremely dubious for several reasons, not the least of
    725   // which it gives special status to instructions with patterns that Pat<>
    726   // nodes can't duplicate.
    727   const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
    728 
    729   // NodeHasChain - Whether the instruction node we're creating takes chains.
    730   bool NodeHasChain = InstPatNode &&
    731                       InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
    732 
    733   // Instructions which load and store from memory should have a chain,
    734   // regardless of whether they happen to have an internal pattern saying so.
    735   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
    736       && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
    737           II.hasSideEffects))
    738       NodeHasChain = true;
    739 
    740   bool isRoot = N == Pattern.getDstPattern();
    741 
    742   // TreeHasOutGlue - True if this tree has glue.
    743   bool TreeHasInGlue = false, TreeHasOutGlue = false;
    744   if (isRoot) {
    745     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
    746     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
    747                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
    748 
    749     // FIXME2: this is checking the entire pattern, not just the node in
    750     // question, doing this just for the root seems like a total hack.
    751     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
    752   }
    753 
    754   // NumResults - This is the number of results produced by the instruction in
    755   // the "outs" list.
    756   unsigned NumResults = Inst.getNumResults();
    757 
    758   // Loop over all of the operands of the instruction pattern, emitting code
    759   // to fill them all in.  The node 'N' usually has number children equal to
    760   // the number of input operands of the instruction.  However, in cases
    761   // where there are predicate operands for an instruction, we need to fill
    762   // in the 'execute always' values.  Match up the node operands to the
    763   // instruction operands to do this.
    764   SmallVector<unsigned, 8> InstOps;
    765   for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
    766        InstOpNo != e; ++InstOpNo) {
    767 
    768     // Determine what to emit for this operand.
    769     Record *OperandNode = II.Operands[InstOpNo].Rec;
    770     if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
    771         !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
    772       // This is a predicate or optional def operand; emit the
    773       // 'default ops' operands.
    774       const DAGDefaultOperand &DefaultOp
    775         = CGP.getDefaultOperand(OperandNode);
    776       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
    777         EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
    778       continue;
    779     }
    780 
    781     // Otherwise this is a normal operand or a predicate operand without
    782     // 'execute always'; emit it.
    783 
    784     // For operands with multiple sub-operands we may need to emit
    785     // multiple child patterns to cover them all.  However, ComplexPattern
    786     // children may themselves emit multiple MI operands.
    787     unsigned NumSubOps = 1;
    788     if (OperandNode->isSubClassOf("Operand")) {
    789       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
    790       if (unsigned NumArgs = MIOpInfo->getNumArgs())
    791         NumSubOps = NumArgs;
    792     }
    793 
    794     unsigned FinalNumOps = InstOps.size() + NumSubOps;
    795     while (InstOps.size() < FinalNumOps) {
    796       const TreePatternNode *Child = N->getChild(ChildNo);
    797       unsigned BeforeAddingNumOps = InstOps.size();
    798       EmitResultOperand(Child, InstOps);
    799       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
    800 
    801       // If the operand is an instruction and it produced multiple results, just
    802       // take the first one.
    803       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
    804         InstOps.resize(BeforeAddingNumOps+1);
    805 
    806       ++ChildNo;
    807     }
    808   }
    809 
    810   // If this node has input glue or explicitly specified input physregs, we
    811   // need to add chained and glued copyfromreg nodes and materialize the glue
    812   // input.
    813   if (isRoot && !PhysRegInputs.empty()) {
    814     // Emit all of the CopyToReg nodes for the input physical registers.  These
    815     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
    816     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
    817       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
    818                                           PhysRegInputs[i].first));
    819     // Even if the node has no other glue inputs, the resultant node must be
    820     // glued to the CopyFromReg nodes we just generated.
    821     TreeHasInGlue = true;
    822   }
    823 
    824   // Result order: node results, chain, glue
    825 
    826   // Determine the result types.
    827   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
    828   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
    829     ResultVTs.push_back(N->getType(i));
    830 
    831   // If this is the root instruction of a pattern that has physical registers in
    832   // its result pattern, add output VTs for them.  For example, X86 has:
    833   //   (set AL, (mul ...))
    834   // This also handles implicit results like:
    835   //   (implicit EFLAGS)
    836   if (isRoot && !Pattern.getDstRegs().empty()) {
    837     // If the root came from an implicit def in the instruction handling stuff,
    838     // don't re-add it.
    839     Record *HandledReg = nullptr;
    840     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    841       HandledReg = II.ImplicitDefs[0];
    842 
    843     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    844       Record *Reg = Pattern.getDstRegs()[i];
    845       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    846       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
    847     }
    848   }
    849 
    850   // If this is the root of the pattern and the pattern we're matching includes
    851   // a node that is variadic, mark the generated node as variadic so that it
    852   // gets the excess operands from the input DAG.
    853   int NumFixedArityOperands = -1;
    854   if (isRoot &&
    855       (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
    856     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
    857 
    858   // If this is the root node and multiple matched nodes in the input pattern
    859   // have MemRefs in them, have the interpreter collect them and plop them onto
    860   // this node. If there is just one node with MemRefs, leave them on that node
    861   // even if it is not the root.
    862   //
    863   // FIXME3: This is actively incorrect for result patterns with multiple
    864   // memory-referencing instructions.
    865   bool PatternHasMemOperands =
    866     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
    867 
    868   bool NodeHasMemRefs = false;
    869   if (PatternHasMemOperands) {
    870     unsigned NumNodesThatLoadOrStore =
    871       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
    872     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
    873                                    NumNodesThatLoadOrStore == 1;
    874     NodeHasMemRefs =
    875       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
    876                                              NumNodesThatLoadOrStore != 1));
    877   }
    878 
    879   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
    880          "Node has no result");
    881 
    882   AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
    883                                  ResultVTs, InstOps,
    884                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
    885                                  NodeHasMemRefs, NumFixedArityOperands,
    886                                  NextRecordedOperandNo));
    887 
    888   // The non-chain and non-glue results of the newly emitted node get recorded.
    889   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
    890     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
    891     OutputOps.push_back(NextRecordedOperandNo++);
    892   }
    893 }
    894 
    895 void MatcherGen::
    896 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
    897                                SmallVectorImpl<unsigned> &ResultOps) {
    898   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
    899 
    900   // Emit the operand.
    901   SmallVector<unsigned, 8> InputOps;
    902 
    903   // FIXME2: Could easily generalize this to support multiple inputs and outputs
    904   // to the SDNodeXForm.  For now we just support one input and one output like
    905   // the old instruction selector.
    906   assert(N->getNumChildren() == 1);
    907   EmitResultOperand(N->getChild(0), InputOps);
    908 
    909   // The input currently must have produced exactly one result.
    910   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
    911 
    912   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
    913   ResultOps.push_back(NextRecordedOperandNo++);
    914 }
    915 
    916 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
    917                                    SmallVectorImpl<unsigned> &ResultOps) {
    918   // This is something selected from the pattern we matched.
    919   if (!N->getName().empty())
    920     return EmitResultOfNamedOperand(N, ResultOps);
    921 
    922   if (N->isLeaf())
    923     return EmitResultLeafAsOperand(N, ResultOps);
    924 
    925   Record *OpRec = N->getOperator();
    926   if (OpRec->isSubClassOf("Instruction"))
    927     return EmitResultInstructionAsOperand(N, ResultOps);
    928   if (OpRec->isSubClassOf("SDNodeXForm"))
    929     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
    930   errs() << "Unknown result node to emit code for: " << *N << '\n';
    931   PrintFatalError("Unknown node in result pattern!");
    932 }
    933 
    934 void MatcherGen::EmitResultCode() {
    935   // Patterns that match nodes with (potentially multiple) chain inputs have to
    936   // merge them together into a token factor.  This informs the generated code
    937   // what all the chained nodes are.
    938   if (!MatchedChainNodes.empty())
    939     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
    940 
    941   // Codegen the root of the result pattern, capturing the resulting values.
    942   SmallVector<unsigned, 8> Ops;
    943   EmitResultOperand(Pattern.getDstPattern(), Ops);
    944 
    945   // At this point, we have however many values the result pattern produces.
    946   // However, the input pattern might not need all of these.  If there are
    947   // excess values at the end (such as implicit defs of condition codes etc)
    948   // just lop them off.  This doesn't need to worry about glue or chains, just
    949   // explicit results.
    950   //
    951   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
    952 
    953   // If the pattern also has (implicit) results, count them as well.
    954   if (!Pattern.getDstRegs().empty()) {
    955     // If the root came from an implicit def in the instruction handling stuff,
    956     // don't re-add it.
    957     Record *HandledReg = nullptr;
    958     const TreePatternNode *DstPat = Pattern.getDstPattern();
    959     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
    960       const CodeGenTarget &CGT = CGP.getTargetInfo();
    961       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
    962 
    963       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
    964         HandledReg = II.ImplicitDefs[0];
    965     }
    966 
    967     for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
    968       Record *Reg = Pattern.getDstRegs()[i];
    969       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
    970       ++NumSrcResults;
    971     }
    972   }
    973 
    974   assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
    975   Ops.resize(NumSrcResults);
    976 
    977   // If the matched pattern covers nodes which define a glue result, emit a node
    978   // that tells the matcher about them so that it can update their results.
    979   if (!MatchedGlueResultNodes.empty())
    980     AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes));
    981 
    982   AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
    983 }
    984 
    985 
    986 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
    987 /// the specified variant.  If the variant number is invalid, this returns null.
    988 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
    989                                        unsigned Variant,
    990                                        const CodeGenDAGPatterns &CGP) {
    991   MatcherGen Gen(Pattern, CGP);
    992 
    993   // Generate the code for the matcher.
    994   if (Gen.EmitMatcherCode(Variant))
    995     return nullptr;
    996 
    997   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
    998   // FIXME2: Split result code out to another table, and make the matcher end
    999   // with an "Emit <index>" command.  This allows result generation stuff to be
   1000   // shared and factored?
   1001 
   1002   // If the match succeeds, then we generate Pattern.
   1003   Gen.EmitResultCode();
   1004 
   1005   // Unconditional match.
   1006   return Gen.GetMatcher();
   1007 }
   1008