Home | History | Annotate | Download | only in x86
      1 /*
      2  * This file is part of ltrace.
      3  * Copyright (C) 2013 Petr Machata, Red Hat Inc.
      4  * Copyright (C) 2004,2008,2009 Juan Cespedes
      5  *
      6  * This program is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU General Public License as
      8  * published by the Free Software Foundation; either version 2 of the
      9  * License, or (at your option) any later version.
     10  *
     11  * This program is distributed in the hope that it will be useful, but
     12  * WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU General Public License
     17  * along with this program; if not, write to the Free Software
     18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
     19  * 02110-1301 USA
     20  */
     21 
     22 #include <gelf.h>
     23 #include <stdbool.h>
     24 
     25 #include "proc.h"
     26 #include "common.h"
     27 #include "library.h"
     28 #include "trace.h"
     29 
     30 static GElf_Addr
     31 x86_plt_offset(uint32_t i)
     32 {
     33 	/* Skip the first PLT entry, which contains a stub to call the
     34 	 * resolver.  */
     35 	return (i + 1) * 16;
     36 }
     37 
     38 GElf_Addr
     39 arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
     40 {
     41 	uint32_t i = *VECT_ELEMENT(&lte->arch.plt_map, uint32_t, ndx);
     42 	return x86_plt_offset(i) + lte->plt_addr;
     43 }
     44 
     45 void *
     46 sym2addr(struct process *proc, struct library_symbol *sym)
     47 {
     48 	return sym->enter_addr;
     49 }
     50 
     51 enum plt_status
     52 arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
     53 		       const char *a_name, GElf_Rela *rela, size_t ndx,
     54 		       struct library_symbol **ret)
     55 {
     56 	bool irelative = false;
     57 	if (lte->ehdr.e_machine == EM_X86_64) {
     58 #ifdef R_X86_64_IRELATIVE
     59 		irelative = GELF_R_TYPE(rela->r_info) == R_X86_64_IRELATIVE;
     60 #endif
     61 	} else {
     62 		assert(lte->ehdr.e_machine == EM_386);
     63 #ifdef R_386_IRELATIVE
     64 		irelative = GELF_R_TYPE(rela->r_info) == R_386_IRELATIVE;
     65 #endif
     66 	}
     67 
     68 	if (irelative)
     69 		return linux_elf_add_plt_entry_irelative(proc, lte, rela,
     70 							 ndx, ret);
     71 
     72 	return PLT_DEFAULT;
     73 }
     74 
     75 int
     76 arch_elf_init(struct ltelf *lte, struct library *lib)
     77 {
     78 	VECT_INIT(&lte->arch.plt_map, unsigned int);
     79 
     80 	/* IRELATIVE slots may make the whole situation a fair deal
     81 	 * more complex.  On x86{,_64}, the PLT slots are not
     82 	 * presented in the order of the corresponding relocations,
     83 	 * but in the order it which these symbols are in the symbol
     84 	 * table.  That's static symbol table, which may be stripped
     85 	 * off, not dynsym--that doesn't contain IFUNC symbols at all.
     86 	 * So we have to decode each PLT entry to figure out what
     87 	 * entry it corresponds to.  We need to interpret the PLT
     88 	 * table to figure this out.
     89 	 *
     90 	 * On i386, the PLT entry format is as follows:
     91 	 *
     92 	 *	8048300:   ff 25 0c a0 04 08       jmp    *0x804a00c
     93 	 *	8048306:   68 20 00 00 00          push   $0x20
     94 	 *	804830b:   e9 e0 ff ff ff          jmp    80482f0 <_init+0x30>
     95 	 *
     96 	 * For PIE binaries it is the following:
     97 	 *
     98 	 *	    410:   ff a3 10 00 00 00       jmp    *0x10(%ebx)
     99 	 *	    416:   68 00 00 00 00          push   $0x0
    100 	 *	    41b:   e9 d0 ff ff ff          jmp    3f0 <_init+0x30>
    101 	 *
    102 	 * On x86_64, it is:
    103 	 *
    104 	 *	 400420:   ff 25 f2 0b 20 00       jmpq   *0x200bf2(%rip)        # 601018 <_GLOBAL_OFFSET_TABLE_+0x18>
    105 	 *	 400426:   68 00 00 00 00          pushq  $0x0
    106 	 *	 40042b:   e9 e0 ff ff ff          jmpq   400410 <_init+0x18>
    107 	 *
    108          * On i386, the argument to push is an offset of relocation to
    109 	 * use.  The first PLT slot has an offset of 0x0, the second
    110 	 * 0x8, etc.  On x86_64, it's directly the index that we are
    111 	 * looking for.
    112 	 */
    113 
    114 	/* Here we scan the PLT table and initialize a map of
    115 	 * relocation->slot number in lte->arch.plt_map.  */
    116 
    117 	size_t i;
    118 	for (i = 0; i < vect_size(&lte->plt_relocs); ++i) {
    119 
    120 		GElf_Addr offset = x86_plt_offset(i);
    121 		uint32_t reloc_arg = 0;
    122 
    123 		uint8_t byte;
    124 		if (elf_read_next_u8(lte->plt_data, &offset, &byte) < 0
    125 		    || byte != 0xff
    126 		    || elf_read_next_u8(lte->plt_data, &offset, &byte) < 0
    127 		    || (byte != 0xa3 && byte != 0x25))
    128 			goto next;
    129 
    130 		/* Skip immediate argument in the instruction.  */
    131 		offset += 4;
    132 
    133 		if (elf_read_next_u8(lte->plt_data, &offset, &byte) < 0
    134 		    || byte != 0x68
    135 		    || elf_read_next_u32(lte->plt_data,
    136 					 &offset, &reloc_arg) < 0) {
    137 			reloc_arg = 0;
    138 			goto next;
    139 		}
    140 
    141 		if (lte->ehdr.e_machine == EM_386) {
    142 			if (reloc_arg % 8 != 0) {
    143 				reloc_arg = 0;
    144 				goto next;
    145 			}
    146 			reloc_arg /= 8;
    147 		}
    148 
    149 	next:
    150 		if (VECT_PUSHBACK(&lte->arch.plt_map, &reloc_arg) < 0) {
    151 			arch_elf_destroy(lte);
    152 			return -1;
    153 		}
    154 	}
    155 
    156 	return 0;
    157 }
    158 
    159 void
    160 arch_elf_destroy(struct ltelf *lte)
    161 {
    162 	VECT_DESTROY(&lte->arch.plt_map, uint32_t, NULL, NULL);
    163 }
    164