Home | History | Annotate | Download | only in xz-embedded
      1 /*
      2  * LZMA2 decoder
      3  *
      4  * Authors: Lasse Collin <lasse.collin (at) tukaani.org>
      5  *          Igor Pavlov <http://7-zip.org/>
      6  *
      7  * This file has been put into the public domain.
      8  * You can do whatever you want with this file.
      9  */
     10 
     11 #include "xz_private.h"
     12 #include "xz_lzma2.h"
     13 
     14 /*
     15  * Range decoder initialization eats the first five bytes of each LZMA chunk.
     16  */
     17 #define RC_INIT_BYTES 5
     18 
     19 /*
     20  * Minimum number of usable input buffer to safely decode one LZMA symbol.
     21  * The worst case is that we decode 22 bits using probabilities and 26
     22  * direct bits. This may decode at maximum of 20 bytes of input. However,
     23  * lzma_main() does an extra normalization before returning, thus we
     24  * need to put 21 here.
     25  */
     26 #define LZMA_IN_REQUIRED 21
     27 
     28 /*
     29  * Dictionary (history buffer)
     30  *
     31  * These are always true:
     32  *    start <= pos <= full <= end
     33  *    pos <= limit <= end
     34  *
     35  * In multi-call mode, also these are true:
     36  *    end == size
     37  *    size <= size_max
     38  *    allocated <= size
     39  *
     40  * Most of these variables are size_t to support single-call mode,
     41  * in which the dictionary variables address the actual output
     42  * buffer directly.
     43  */
     44 struct dictionary {
     45 	/* Beginning of the history buffer */
     46 	uint8_t *buf;
     47 
     48 	/* Old position in buf (before decoding more data) */
     49 	size_t start;
     50 
     51 	/* Position in buf */
     52 	size_t pos;
     53 
     54 	/*
     55 	 * How full dictionary is. This is used to detect corrupt input that
     56 	 * would read beyond the beginning of the uncompressed stream.
     57 	 */
     58 	size_t full;
     59 
     60 	/* Write limit; we don't write to buf[limit] or later bytes. */
     61 	size_t limit;
     62 
     63 	/*
     64 	 * End of the dictionary buffer. In multi-call mode, this is
     65 	 * the same as the dictionary size. In single-call mode, this
     66 	 * indicates the size of the output buffer.
     67 	 */
     68 	size_t end;
     69 
     70 	/*
     71 	 * Size of the dictionary as specified in Block Header. This is used
     72 	 * together with "full" to detect corrupt input that would make us
     73 	 * read beyond the beginning of the uncompressed stream.
     74 	 */
     75 	uint32_t size;
     76 
     77 	/*
     78 	 * Maximum allowed dictionary size in multi-call mode.
     79 	 * This is ignored in single-call mode.
     80 	 */
     81 	uint32_t size_max;
     82 
     83 	/*
     84 	 * Amount of memory currently allocated for the dictionary.
     85 	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
     86 	 * size_max is always the same as the allocated size.)
     87 	 */
     88 	uint32_t allocated;
     89 
     90 	/* Operation mode */
     91 	enum xz_mode mode;
     92 };
     93 
     94 /* Range decoder */
     95 struct rc_dec {
     96 	uint32_t range;
     97 	uint32_t code;
     98 
     99 	/*
    100 	 * Number of initializing bytes remaining to be read
    101 	 * by rc_read_init().
    102 	 */
    103 	uint32_t init_bytes_left;
    104 
    105 	/*
    106 	 * Buffer from which we read our input. It can be either
    107 	 * temp.buf or the caller-provided input buffer.
    108 	 */
    109 	const uint8_t *in;
    110 	size_t in_pos;
    111 	size_t in_limit;
    112 };
    113 
    114 /* Probabilities for a length decoder. */
    115 struct lzma_len_dec {
    116 	/* Probability of match length being at least 10 */
    117 	uint16_t choice;
    118 
    119 	/* Probability of match length being at least 18 */
    120 	uint16_t choice2;
    121 
    122 	/* Probabilities for match lengths 2-9 */
    123 	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
    124 
    125 	/* Probabilities for match lengths 10-17 */
    126 	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
    127 
    128 	/* Probabilities for match lengths 18-273 */
    129 	uint16_t high[LEN_HIGH_SYMBOLS];
    130 };
    131 
    132 struct lzma_dec {
    133 	/* Distances of latest four matches */
    134 	uint32_t rep0;
    135 	uint32_t rep1;
    136 	uint32_t rep2;
    137 	uint32_t rep3;
    138 
    139 	/* Types of the most recently seen LZMA symbols */
    140 	enum lzma_state state;
    141 
    142 	/*
    143 	 * Length of a match. This is updated so that dict_repeat can
    144 	 * be called again to finish repeating the whole match.
    145 	 */
    146 	uint32_t len;
    147 
    148 	/*
    149 	 * LZMA properties or related bit masks (number of literal
    150 	 * context bits, a mask dervied from the number of literal
    151 	 * position bits, and a mask dervied from the number
    152 	 * position bits)
    153 	 */
    154 	uint32_t lc;
    155 	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
    156 	uint32_t pos_mask;         /* (1 << pb) - 1 */
    157 
    158 	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
    159 	uint16_t is_match[STATES][POS_STATES_MAX];
    160 
    161 	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
    162 	uint16_t is_rep[STATES];
    163 
    164 	/*
    165 	 * If 0, distance of a repeated match is rep0.
    166 	 * Otherwise check is_rep1.
    167 	 */
    168 	uint16_t is_rep0[STATES];
    169 
    170 	/*
    171 	 * If 0, distance of a repeated match is rep1.
    172 	 * Otherwise check is_rep2.
    173 	 */
    174 	uint16_t is_rep1[STATES];
    175 
    176 	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
    177 	uint16_t is_rep2[STATES];
    178 
    179 	/*
    180 	 * If 1, the repeated match has length of one byte. Otherwise
    181 	 * the length is decoded from rep_len_decoder.
    182 	 */
    183 	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
    184 
    185 	/*
    186 	 * Probability tree for the highest two bits of the match
    187 	 * distance. There is a separate probability tree for match
    188 	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
    189 	 */
    190 	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
    191 
    192 	/*
    193 	 * Probility trees for additional bits for match distance
    194 	 * when the distance is in the range [4, 127].
    195 	 */
    196 	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
    197 
    198 	/*
    199 	 * Probability tree for the lowest four bits of a match
    200 	 * distance that is equal to or greater than 128.
    201 	 */
    202 	uint16_t dist_align[ALIGN_SIZE];
    203 
    204 	/* Length of a normal match */
    205 	struct lzma_len_dec match_len_dec;
    206 
    207 	/* Length of a repeated match */
    208 	struct lzma_len_dec rep_len_dec;
    209 
    210 	/* Probabilities of literals */
    211 	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
    212 };
    213 
    214 struct lzma2_dec {
    215 	/* Position in xz_dec_lzma2_run(). */
    216 	enum lzma2_seq {
    217 		SEQ_CONTROL,
    218 		SEQ_UNCOMPRESSED_1,
    219 		SEQ_UNCOMPRESSED_2,
    220 		SEQ_COMPRESSED_0,
    221 		SEQ_COMPRESSED_1,
    222 		SEQ_PROPERTIES,
    223 		SEQ_LZMA_PREPARE,
    224 		SEQ_LZMA_RUN,
    225 		SEQ_COPY
    226 	} sequence;
    227 
    228 	/* Next position after decoding the compressed size of the chunk. */
    229 	enum lzma2_seq next_sequence;
    230 
    231 	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
    232 	uint32_t uncompressed;
    233 
    234 	/*
    235 	 * Compressed size of LZMA chunk or compressed/uncompressed
    236 	 * size of uncompressed chunk (64 KiB at maximum)
    237 	 */
    238 	uint32_t compressed;
    239 
    240 	/*
    241 	 * True if dictionary reset is needed. This is false before
    242 	 * the first chunk (LZMA or uncompressed).
    243 	 */
    244 	bool need_dict_reset;
    245 
    246 	/*
    247 	 * True if new LZMA properties are needed. This is false
    248 	 * before the first LZMA chunk.
    249 	 */
    250 	bool need_props;
    251 };
    252 
    253 struct xz_dec_lzma2 {
    254 	/*
    255 	 * The order below is important on x86 to reduce code size and
    256 	 * it shouldn't hurt on other platforms. Everything up to and
    257 	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
    258 	 * which allows using smaller instructions to access those
    259 	 * variables. On x86-64, fewer variables fit into the first 128
    260 	 * bytes, but this is still the best order without sacrificing
    261 	 * the readability by splitting the structures.
    262 	 */
    263 	struct rc_dec rc;
    264 	struct dictionary dict;
    265 	struct lzma2_dec lzma2;
    266 	struct lzma_dec lzma;
    267 
    268 	/*
    269 	 * Temporary buffer which holds small number of input bytes between
    270 	 * decoder calls. See lzma2_lzma() for details.
    271 	 */
    272 	struct {
    273 		uint32_t size;
    274 		uint8_t buf[3 * LZMA_IN_REQUIRED];
    275 	} temp;
    276 };
    277 
    278 /**************
    279  * Dictionary *
    280  **************/
    281 
    282 /*
    283  * Reset the dictionary state. When in single-call mode, set up the beginning
    284  * of the dictionary to point to the actual output buffer.
    285  */
    286 static void dict_reset(struct dictionary *dict, struct xz_buf *b)
    287 {
    288 	if (DEC_IS_SINGLE(dict->mode)) {
    289 		dict->buf = b->out + b->out_pos;
    290 		dict->end = b->out_size - b->out_pos;
    291 	}
    292 
    293 	dict->start = 0;
    294 	dict->pos = 0;
    295 	dict->limit = 0;
    296 	dict->full = 0;
    297 }
    298 
    299 /* Set dictionary write limit */
    300 static void dict_limit(struct dictionary *dict, size_t out_max)
    301 {
    302 	if (dict->end - dict->pos <= out_max)
    303 		dict->limit = dict->end;
    304 	else
    305 		dict->limit = dict->pos + out_max;
    306 }
    307 
    308 /* Return true if at least one byte can be written into the dictionary. */
    309 static inline bool dict_has_space(const struct dictionary *dict)
    310 {
    311 	return dict->pos < dict->limit;
    312 }
    313 
    314 /*
    315  * Get a byte from the dictionary at the given distance. The distance is
    316  * assumed to valid, or as a special case, zero when the dictionary is
    317  * still empty. This special case is needed for single-call decoding to
    318  * avoid writing a '\0' to the end of the destination buffer.
    319  */
    320 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
    321 {
    322 	size_t offset = dict->pos - dist - 1;
    323 
    324 	if (dist >= dict->pos)
    325 		offset += dict->end;
    326 
    327 	return dict->full > 0 ? dict->buf[offset] : 0;
    328 }
    329 
    330 /*
    331  * Put one byte into the dictionary. It is assumed that there is space for it.
    332  */
    333 static inline void dict_put(struct dictionary *dict, uint8_t byte)
    334 {
    335 	dict->buf[dict->pos++] = byte;
    336 
    337 	if (dict->full < dict->pos)
    338 		dict->full = dict->pos;
    339 }
    340 
    341 /*
    342  * Repeat given number of bytes from the given distance. If the distance is
    343  * invalid, false is returned. On success, true is returned and *len is
    344  * updated to indicate how many bytes were left to be repeated.
    345  */
    346 static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
    347 {
    348 	size_t back;
    349 	uint32_t left;
    350 
    351 	if (dist >= dict->full || dist >= dict->size)
    352 		return false;
    353 
    354 	left = min_t(size_t, dict->limit - dict->pos, *len);
    355 	*len -= left;
    356 
    357 	back = dict->pos - dist - 1;
    358 	if (dist >= dict->pos)
    359 		back += dict->end;
    360 
    361 	do {
    362 		dict->buf[dict->pos++] = dict->buf[back++];
    363 		if (back == dict->end)
    364 			back = 0;
    365 	} while (--left > 0);
    366 
    367 	if (dict->full < dict->pos)
    368 		dict->full = dict->pos;
    369 
    370 	return true;
    371 }
    372 
    373 /* Copy uncompressed data as is from input to dictionary and output buffers. */
    374 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
    375 			      uint32_t *left)
    376 {
    377 	size_t copy_size;
    378 
    379 	while (*left > 0 && b->in_pos < b->in_size
    380 			&& b->out_pos < b->out_size) {
    381 		copy_size = min(b->in_size - b->in_pos,
    382 				b->out_size - b->out_pos);
    383 		if (copy_size > dict->end - dict->pos)
    384 			copy_size = dict->end - dict->pos;
    385 		if (copy_size > *left)
    386 			copy_size = *left;
    387 
    388 		*left -= copy_size;
    389 
    390 		memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
    391 		dict->pos += copy_size;
    392 
    393 		if (dict->full < dict->pos)
    394 			dict->full = dict->pos;
    395 
    396 		if (DEC_IS_MULTI(dict->mode)) {
    397 			if (dict->pos == dict->end)
    398 				dict->pos = 0;
    399 
    400 			memcpy(b->out + b->out_pos, b->in + b->in_pos,
    401 					copy_size);
    402 		}
    403 
    404 		dict->start = dict->pos;
    405 
    406 		b->out_pos += copy_size;
    407 		b->in_pos += copy_size;
    408 	}
    409 }
    410 
    411 /*
    412  * Flush pending data from dictionary to b->out. It is assumed that there is
    413  * enough space in b->out. This is guaranteed because caller uses dict_limit()
    414  * before decoding data into the dictionary.
    415  */
    416 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
    417 {
    418 	size_t copy_size = dict->pos - dict->start;
    419 
    420 	if (DEC_IS_MULTI(dict->mode)) {
    421 		if (dict->pos == dict->end)
    422 			dict->pos = 0;
    423 
    424 		memcpy(b->out + b->out_pos, dict->buf + dict->start,
    425 				copy_size);
    426 	}
    427 
    428 	dict->start = dict->pos;
    429 	b->out_pos += copy_size;
    430 	return copy_size;
    431 }
    432 
    433 /*****************
    434  * Range decoder *
    435  *****************/
    436 
    437 /* Reset the range decoder. */
    438 static void rc_reset(struct rc_dec *rc)
    439 {
    440 	rc->range = (uint32_t)-1;
    441 	rc->code = 0;
    442 	rc->init_bytes_left = RC_INIT_BYTES;
    443 }
    444 
    445 /*
    446  * Read the first five initial bytes into rc->code if they haven't been
    447  * read already. (Yes, the first byte gets completely ignored.)
    448  */
    449 static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
    450 {
    451 	while (rc->init_bytes_left > 0) {
    452 		if (b->in_pos == b->in_size)
    453 			return false;
    454 
    455 		rc->code = (rc->code << 8) + b->in[b->in_pos++];
    456 		--rc->init_bytes_left;
    457 	}
    458 
    459 	return true;
    460 }
    461 
    462 /* Return true if there may not be enough input for the next decoding loop. */
    463 static inline bool rc_limit_exceeded(const struct rc_dec *rc)
    464 {
    465 	return rc->in_pos > rc->in_limit;
    466 }
    467 
    468 /*
    469  * Return true if it is possible (from point of view of range decoder) that
    470  * we have reached the end of the LZMA chunk.
    471  */
    472 static inline bool rc_is_finished(const struct rc_dec *rc)
    473 {
    474 	return rc->code == 0;
    475 }
    476 
    477 /* Read the next input byte if needed. */
    478 static __always_inline void rc_normalize(struct rc_dec *rc)
    479 {
    480 	if (rc->range < RC_TOP_VALUE) {
    481 		rc->range <<= RC_SHIFT_BITS;
    482 		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
    483 	}
    484 }
    485 
    486 /*
    487  * Decode one bit. In some versions, this function has been splitted in three
    488  * functions so that the compiler is supposed to be able to more easily avoid
    489  * an extra branch. In this particular version of the LZMA decoder, this
    490  * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
    491  * on x86). Using a non-splitted version results in nicer looking code too.
    492  *
    493  * NOTE: This must return an int. Do not make it return a bool or the speed
    494  * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
    495  * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
    496  */
    497 static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
    498 {
    499 	uint32_t bound;
    500 	int bit;
    501 
    502 	rc_normalize(rc);
    503 	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
    504 	if (rc->code < bound) {
    505 		rc->range = bound;
    506 		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
    507 		bit = 0;
    508 	} else {
    509 		rc->range -= bound;
    510 		rc->code -= bound;
    511 		*prob -= *prob >> RC_MOVE_BITS;
    512 		bit = 1;
    513 	}
    514 
    515 	return bit;
    516 }
    517 
    518 /* Decode a bittree starting from the most significant bit. */
    519 static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
    520 					   uint16_t *probs, uint32_t limit)
    521 {
    522 	uint32_t symbol = 1;
    523 
    524 	do {
    525 		if (rc_bit(rc, &probs[symbol]))
    526 			symbol = (symbol << 1) + 1;
    527 		else
    528 			symbol <<= 1;
    529 	} while (symbol < limit);
    530 
    531 	return symbol;
    532 }
    533 
    534 /* Decode a bittree starting from the least significant bit. */
    535 static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
    536 					       uint16_t *probs,
    537 					       uint32_t *dest, uint32_t limit)
    538 {
    539 	uint32_t symbol = 1;
    540 	uint32_t i = 0;
    541 
    542 	do {
    543 		if (rc_bit(rc, &probs[symbol])) {
    544 			symbol = (symbol << 1) + 1;
    545 			*dest += 1 << i;
    546 		} else {
    547 			symbol <<= 1;
    548 		}
    549 	} while (++i < limit);
    550 }
    551 
    552 /* Decode direct bits (fixed fifty-fifty probability) */
    553 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
    554 {
    555 	uint32_t mask;
    556 
    557 	do {
    558 		rc_normalize(rc);
    559 		rc->range >>= 1;
    560 		rc->code -= rc->range;
    561 		mask = (uint32_t)0 - (rc->code >> 31);
    562 		rc->code += rc->range & mask;
    563 		*dest = (*dest << 1) + (mask + 1);
    564 	} while (--limit > 0);
    565 }
    566 
    567 /********
    568  * LZMA *
    569  ********/
    570 
    571 /* Get pointer to literal coder probability array. */
    572 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
    573 {
    574 	uint32_t prev_byte = dict_get(&s->dict, 0);
    575 	uint32_t low = prev_byte >> (8 - s->lzma.lc);
    576 	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
    577 	return s->lzma.literal[low + high];
    578 }
    579 
    580 /* Decode a literal (one 8-bit byte) */
    581 static void lzma_literal(struct xz_dec_lzma2 *s)
    582 {
    583 	uint16_t *probs;
    584 	uint32_t symbol;
    585 	uint32_t match_byte;
    586 	uint32_t match_bit;
    587 	uint32_t offset;
    588 	uint32_t i;
    589 
    590 	probs = lzma_literal_probs(s);
    591 
    592 	if (lzma_state_is_literal(s->lzma.state)) {
    593 		symbol = rc_bittree(&s->rc, probs, 0x100);
    594 	} else {
    595 		symbol = 1;
    596 		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
    597 		offset = 0x100;
    598 
    599 		do {
    600 			match_bit = match_byte & offset;
    601 			match_byte <<= 1;
    602 			i = offset + match_bit + symbol;
    603 
    604 			if (rc_bit(&s->rc, &probs[i])) {
    605 				symbol = (symbol << 1) + 1;
    606 				offset &= match_bit;
    607 			} else {
    608 				symbol <<= 1;
    609 				offset &= ~match_bit;
    610 			}
    611 		} while (symbol < 0x100);
    612 	}
    613 
    614 	dict_put(&s->dict, (uint8_t)symbol);
    615 	lzma_state_literal(&s->lzma.state);
    616 }
    617 
    618 /* Decode the length of the match into s->lzma.len. */
    619 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
    620 		     uint32_t pos_state)
    621 {
    622 	uint16_t *probs;
    623 	uint32_t limit;
    624 
    625 	if (!rc_bit(&s->rc, &l->choice)) {
    626 		probs = l->low[pos_state];
    627 		limit = LEN_LOW_SYMBOLS;
    628 		s->lzma.len = MATCH_LEN_MIN;
    629 	} else {
    630 		if (!rc_bit(&s->rc, &l->choice2)) {
    631 			probs = l->mid[pos_state];
    632 			limit = LEN_MID_SYMBOLS;
    633 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
    634 		} else {
    635 			probs = l->high;
    636 			limit = LEN_HIGH_SYMBOLS;
    637 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
    638 					+ LEN_MID_SYMBOLS;
    639 		}
    640 	}
    641 
    642 	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
    643 }
    644 
    645 /* Decode a match. The distance will be stored in s->lzma.rep0. */
    646 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
    647 {
    648 	uint16_t *probs;
    649 	uint32_t dist_slot;
    650 	uint32_t limit;
    651 
    652 	lzma_state_match(&s->lzma.state);
    653 
    654 	s->lzma.rep3 = s->lzma.rep2;
    655 	s->lzma.rep2 = s->lzma.rep1;
    656 	s->lzma.rep1 = s->lzma.rep0;
    657 
    658 	lzma_len(s, &s->lzma.match_len_dec, pos_state);
    659 
    660 	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
    661 	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
    662 
    663 	if (dist_slot < DIST_MODEL_START) {
    664 		s->lzma.rep0 = dist_slot;
    665 	} else {
    666 		limit = (dist_slot >> 1) - 1;
    667 		s->lzma.rep0 = 2 + (dist_slot & 1);
    668 
    669 		if (dist_slot < DIST_MODEL_END) {
    670 			s->lzma.rep0 <<= limit;
    671 			probs = s->lzma.dist_special + s->lzma.rep0
    672 					- dist_slot - 1;
    673 			rc_bittree_reverse(&s->rc, probs,
    674 					&s->lzma.rep0, limit);
    675 		} else {
    676 			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
    677 			s->lzma.rep0 <<= ALIGN_BITS;
    678 			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
    679 					&s->lzma.rep0, ALIGN_BITS);
    680 		}
    681 	}
    682 }
    683 
    684 /*
    685  * Decode a repeated match. The distance is one of the four most recently
    686  * seen matches. The distance will be stored in s->lzma.rep0.
    687  */
    688 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
    689 {
    690 	uint32_t tmp;
    691 
    692 	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
    693 		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
    694 				s->lzma.state][pos_state])) {
    695 			lzma_state_short_rep(&s->lzma.state);
    696 			s->lzma.len = 1;
    697 			return;
    698 		}
    699 	} else {
    700 		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
    701 			tmp = s->lzma.rep1;
    702 		} else {
    703 			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
    704 				tmp = s->lzma.rep2;
    705 			} else {
    706 				tmp = s->lzma.rep3;
    707 				s->lzma.rep3 = s->lzma.rep2;
    708 			}
    709 
    710 			s->lzma.rep2 = s->lzma.rep1;
    711 		}
    712 
    713 		s->lzma.rep1 = s->lzma.rep0;
    714 		s->lzma.rep0 = tmp;
    715 	}
    716 
    717 	lzma_state_long_rep(&s->lzma.state);
    718 	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
    719 }
    720 
    721 /* LZMA decoder core */
    722 static bool lzma_main(struct xz_dec_lzma2 *s)
    723 {
    724 	uint32_t pos_state;
    725 
    726 	/*
    727 	 * If the dictionary was reached during the previous call, try to
    728 	 * finish the possibly pending repeat in the dictionary.
    729 	 */
    730 	if (dict_has_space(&s->dict) && s->lzma.len > 0)
    731 		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
    732 
    733 	/*
    734 	 * Decode more LZMA symbols. One iteration may consume up to
    735 	 * LZMA_IN_REQUIRED - 1 bytes.
    736 	 */
    737 	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
    738 		pos_state = s->dict.pos & s->lzma.pos_mask;
    739 
    740 		if (!rc_bit(&s->rc, &s->lzma.is_match[
    741 				s->lzma.state][pos_state])) {
    742 			lzma_literal(s);
    743 		} else {
    744 			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
    745 				lzma_rep_match(s, pos_state);
    746 			else
    747 				lzma_match(s, pos_state);
    748 
    749 			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
    750 				return false;
    751 		}
    752 	}
    753 
    754 	/*
    755 	 * Having the range decoder always normalized when we are outside
    756 	 * this function makes it easier to correctly handle end of the chunk.
    757 	 */
    758 	rc_normalize(&s->rc);
    759 
    760 	return true;
    761 }
    762 
    763 /*
    764  * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
    765  * here, because LZMA state may be reset without resetting the dictionary.
    766  */
    767 static void lzma_reset(struct xz_dec_lzma2 *s)
    768 {
    769 	uint16_t *probs;
    770 	size_t i;
    771 
    772 	s->lzma.state = STATE_LIT_LIT;
    773 	s->lzma.rep0 = 0;
    774 	s->lzma.rep1 = 0;
    775 	s->lzma.rep2 = 0;
    776 	s->lzma.rep3 = 0;
    777 
    778 	/*
    779 	 * All probabilities are initialized to the same value. This hack
    780 	 * makes the code smaller by avoiding a separate loop for each
    781 	 * probability array.
    782 	 *
    783 	 * This could be optimized so that only that part of literal
    784 	 * probabilities that are actually required. In the common case
    785 	 * we would write 12 KiB less.
    786 	 */
    787 	probs = s->lzma.is_match[0];
    788 	for (i = 0; i < PROBS_TOTAL; ++i)
    789 		probs[i] = RC_BIT_MODEL_TOTAL / 2;
    790 
    791 	rc_reset(&s->rc);
    792 }
    793 
    794 /*
    795  * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
    796  * from the decoded lp and pb values. On success, the LZMA decoder state is
    797  * reset and true is returned.
    798  */
    799 static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
    800 {
    801 	if (props > (4 * 5 + 4) * 9 + 8)
    802 		return false;
    803 
    804 	s->lzma.pos_mask = 0;
    805 	while (props >= 9 * 5) {
    806 		props -= 9 * 5;
    807 		++s->lzma.pos_mask;
    808 	}
    809 
    810 	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
    811 
    812 	s->lzma.literal_pos_mask = 0;
    813 	while (props >= 9) {
    814 		props -= 9;
    815 		++s->lzma.literal_pos_mask;
    816 	}
    817 
    818 	s->lzma.lc = props;
    819 
    820 	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
    821 		return false;
    822 
    823 	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
    824 
    825 	lzma_reset(s);
    826 
    827 	return true;
    828 }
    829 
    830 /*********
    831  * LZMA2 *
    832  *********/
    833 
    834 /*
    835  * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
    836  * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
    837  * wrapper function takes care of making the LZMA decoder's assumption safe.
    838  *
    839  * As long as there is plenty of input left to be decoded in the current LZMA
    840  * chunk, we decode directly from the caller-supplied input buffer until
    841  * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
    842  * s->temp.buf, which (hopefully) gets filled on the next call to this
    843  * function. We decode a few bytes from the temporary buffer so that we can
    844  * continue decoding from the caller-supplied input buffer again.
    845  */
    846 static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
    847 {
    848 	size_t in_avail;
    849 	uint32_t tmp;
    850 
    851 	in_avail = b->in_size - b->in_pos;
    852 	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
    853 		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
    854 		if (tmp > s->lzma2.compressed - s->temp.size)
    855 			tmp = s->lzma2.compressed - s->temp.size;
    856 		if (tmp > in_avail)
    857 			tmp = in_avail;
    858 
    859 		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
    860 
    861 		if (s->temp.size + tmp == s->lzma2.compressed) {
    862 			memzero(s->temp.buf + s->temp.size + tmp,
    863 					sizeof(s->temp.buf)
    864 						- s->temp.size - tmp);
    865 			s->rc.in_limit = s->temp.size + tmp;
    866 		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
    867 			s->temp.size += tmp;
    868 			b->in_pos += tmp;
    869 			return true;
    870 		} else {
    871 			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
    872 		}
    873 
    874 		s->rc.in = s->temp.buf;
    875 		s->rc.in_pos = 0;
    876 
    877 		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
    878 			return false;
    879 
    880 		s->lzma2.compressed -= s->rc.in_pos;
    881 
    882 		if (s->rc.in_pos < s->temp.size) {
    883 			s->temp.size -= s->rc.in_pos;
    884 			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
    885 					s->temp.size);
    886 			return true;
    887 		}
    888 
    889 		b->in_pos += s->rc.in_pos - s->temp.size;
    890 		s->temp.size = 0;
    891 	}
    892 
    893 	in_avail = b->in_size - b->in_pos;
    894 	if (in_avail >= LZMA_IN_REQUIRED) {
    895 		s->rc.in = b->in;
    896 		s->rc.in_pos = b->in_pos;
    897 
    898 		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
    899 			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
    900 		else
    901 			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
    902 
    903 		if (!lzma_main(s))
    904 			return false;
    905 
    906 		in_avail = s->rc.in_pos - b->in_pos;
    907 		if (in_avail > s->lzma2.compressed)
    908 			return false;
    909 
    910 		s->lzma2.compressed -= in_avail;
    911 		b->in_pos = s->rc.in_pos;
    912 	}
    913 
    914 	in_avail = b->in_size - b->in_pos;
    915 	if (in_avail < LZMA_IN_REQUIRED) {
    916 		if (in_avail > s->lzma2.compressed)
    917 			in_avail = s->lzma2.compressed;
    918 
    919 		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
    920 		s->temp.size = in_avail;
    921 		b->in_pos += in_avail;
    922 	}
    923 
    924 	return true;
    925 }
    926 
    927 /*
    928  * Take care of the LZMA2 control layer, and forward the job of actual LZMA
    929  * decoding or copying of uncompressed chunks to other functions.
    930  */
    931 XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
    932 				       struct xz_buf *b)
    933 {
    934 	uint32_t tmp;
    935 
    936 	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
    937 		switch (s->lzma2.sequence) {
    938 		case SEQ_CONTROL:
    939 			/*
    940 			 * LZMA2 control byte
    941 			 *
    942 			 * Exact values:
    943 			 *   0x00   End marker
    944 			 *   0x01   Dictionary reset followed by
    945 			 *          an uncompressed chunk
    946 			 *   0x02   Uncompressed chunk (no dictionary reset)
    947 			 *
    948 			 * Highest three bits (s->control & 0xE0):
    949 			 *   0xE0   Dictionary reset, new properties and state
    950 			 *          reset, followed by LZMA compressed chunk
    951 			 *   0xC0   New properties and state reset, followed
    952 			 *          by LZMA compressed chunk (no dictionary
    953 			 *          reset)
    954 			 *   0xA0   State reset using old properties,
    955 			 *          followed by LZMA compressed chunk (no
    956 			 *          dictionary reset)
    957 			 *   0x80   LZMA chunk (no dictionary or state reset)
    958 			 *
    959 			 * For LZMA compressed chunks, the lowest five bits
    960 			 * (s->control & 1F) are the highest bits of the
    961 			 * uncompressed size (bits 16-20).
    962 			 *
    963 			 * A new LZMA2 stream must begin with a dictionary
    964 			 * reset. The first LZMA chunk must set new
    965 			 * properties and reset the LZMA state.
    966 			 *
    967 			 * Values that don't match anything described above
    968 			 * are invalid and we return XZ_DATA_ERROR.
    969 			 */
    970 			tmp = b->in[b->in_pos++];
    971 
    972 			if (tmp == 0x00)
    973 				return XZ_STREAM_END;
    974 
    975 			if (tmp >= 0xE0 || tmp == 0x01) {
    976 				s->lzma2.need_props = true;
    977 				s->lzma2.need_dict_reset = false;
    978 				dict_reset(&s->dict, b);
    979 			} else if (s->lzma2.need_dict_reset) {
    980 				return XZ_DATA_ERROR;
    981 			}
    982 
    983 			if (tmp >= 0x80) {
    984 				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
    985 				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
    986 
    987 				if (tmp >= 0xC0) {
    988 					/*
    989 					 * When there are new properties,
    990 					 * state reset is done at
    991 					 * SEQ_PROPERTIES.
    992 					 */
    993 					s->lzma2.need_props = false;
    994 					s->lzma2.next_sequence
    995 							= SEQ_PROPERTIES;
    996 
    997 				} else if (s->lzma2.need_props) {
    998 					return XZ_DATA_ERROR;
    999 
   1000 				} else {
   1001 					s->lzma2.next_sequence
   1002 							= SEQ_LZMA_PREPARE;
   1003 					if (tmp >= 0xA0)
   1004 						lzma_reset(s);
   1005 				}
   1006 			} else {
   1007 				if (tmp > 0x02)
   1008 					return XZ_DATA_ERROR;
   1009 
   1010 				s->lzma2.sequence = SEQ_COMPRESSED_0;
   1011 				s->lzma2.next_sequence = SEQ_COPY;
   1012 			}
   1013 
   1014 			break;
   1015 
   1016 		case SEQ_UNCOMPRESSED_1:
   1017 			s->lzma2.uncompressed
   1018 					+= (uint32_t)b->in[b->in_pos++] << 8;
   1019 			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
   1020 			break;
   1021 
   1022 		case SEQ_UNCOMPRESSED_2:
   1023 			s->lzma2.uncompressed
   1024 					+= (uint32_t)b->in[b->in_pos++] + 1;
   1025 			s->lzma2.sequence = SEQ_COMPRESSED_0;
   1026 			break;
   1027 
   1028 		case SEQ_COMPRESSED_0:
   1029 			s->lzma2.compressed
   1030 					= (uint32_t)b->in[b->in_pos++] << 8;
   1031 			s->lzma2.sequence = SEQ_COMPRESSED_1;
   1032 			break;
   1033 
   1034 		case SEQ_COMPRESSED_1:
   1035 			s->lzma2.compressed
   1036 					+= (uint32_t)b->in[b->in_pos++] + 1;
   1037 			s->lzma2.sequence = s->lzma2.next_sequence;
   1038 			break;
   1039 
   1040 		case SEQ_PROPERTIES:
   1041 			if (!lzma_props(s, b->in[b->in_pos++]))
   1042 				return XZ_DATA_ERROR;
   1043 
   1044 			s->lzma2.sequence = SEQ_LZMA_PREPARE;
   1045 
   1046 		case SEQ_LZMA_PREPARE:
   1047 			if (s->lzma2.compressed < RC_INIT_BYTES)
   1048 				return XZ_DATA_ERROR;
   1049 
   1050 			if (!rc_read_init(&s->rc, b))
   1051 				return XZ_OK;
   1052 
   1053 			s->lzma2.compressed -= RC_INIT_BYTES;
   1054 			s->lzma2.sequence = SEQ_LZMA_RUN;
   1055 
   1056 		case SEQ_LZMA_RUN:
   1057 			/*
   1058 			 * Set dictionary limit to indicate how much we want
   1059 			 * to be encoded at maximum. Decode new data into the
   1060 			 * dictionary. Flush the new data from dictionary to
   1061 			 * b->out. Check if we finished decoding this chunk.
   1062 			 * In case the dictionary got full but we didn't fill
   1063 			 * the output buffer yet, we may run this loop
   1064 			 * multiple times without changing s->lzma2.sequence.
   1065 			 */
   1066 			dict_limit(&s->dict, min_t(size_t,
   1067 					b->out_size - b->out_pos,
   1068 					s->lzma2.uncompressed));
   1069 			if (!lzma2_lzma(s, b))
   1070 				return XZ_DATA_ERROR;
   1071 
   1072 			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
   1073 
   1074 			if (s->lzma2.uncompressed == 0) {
   1075 				if (s->lzma2.compressed > 0 || s->lzma.len > 0
   1076 						|| !rc_is_finished(&s->rc))
   1077 					return XZ_DATA_ERROR;
   1078 
   1079 				rc_reset(&s->rc);
   1080 				s->lzma2.sequence = SEQ_CONTROL;
   1081 
   1082 			} else if (b->out_pos == b->out_size
   1083 					|| (b->in_pos == b->in_size
   1084 						&& s->temp.size
   1085 						< s->lzma2.compressed)) {
   1086 				return XZ_OK;
   1087 			}
   1088 
   1089 			break;
   1090 
   1091 		case SEQ_COPY:
   1092 			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
   1093 			if (s->lzma2.compressed > 0)
   1094 				return XZ_OK;
   1095 
   1096 			s->lzma2.sequence = SEQ_CONTROL;
   1097 			break;
   1098 		}
   1099 	}
   1100 
   1101 	return XZ_OK;
   1102 }
   1103 
   1104 XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
   1105 						   uint32_t dict_max)
   1106 {
   1107 	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
   1108 	if (s == NULL)
   1109 		return NULL;
   1110 
   1111 	s->dict.mode = mode;
   1112 	s->dict.size_max = dict_max;
   1113 
   1114 	if (DEC_IS_PREALLOC(mode)) {
   1115 		s->dict.buf = vmalloc(dict_max);
   1116 		if (s->dict.buf == NULL) {
   1117 			kfree(s);
   1118 			return NULL;
   1119 		}
   1120 	} else if (DEC_IS_DYNALLOC(mode)) {
   1121 		s->dict.buf = NULL;
   1122 		s->dict.allocated = 0;
   1123 	}
   1124 
   1125 	return s;
   1126 }
   1127 
   1128 XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
   1129 {
   1130 	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
   1131 	if (props > 39)
   1132 		return XZ_OPTIONS_ERROR;
   1133 
   1134 	s->dict.size = 2 + (props & 1);
   1135 	s->dict.size <<= (props >> 1) + 11;
   1136 
   1137 	if (DEC_IS_MULTI(s->dict.mode)) {
   1138 		if (s->dict.size > s->dict.size_max)
   1139 			return XZ_MEMLIMIT_ERROR;
   1140 
   1141 		s->dict.end = s->dict.size;
   1142 
   1143 		if (DEC_IS_DYNALLOC(s->dict.mode)) {
   1144 			if (s->dict.allocated < s->dict.size) {
   1145 				vfree(s->dict.buf);
   1146 				s->dict.buf = vmalloc(s->dict.size);
   1147 				if (s->dict.buf == NULL) {
   1148 					s->dict.allocated = 0;
   1149 					return XZ_MEM_ERROR;
   1150 				}
   1151 			}
   1152 		}
   1153 	}
   1154 
   1155 	s->lzma.len = 0;
   1156 
   1157 	s->lzma2.sequence = SEQ_CONTROL;
   1158 	s->lzma2.need_dict_reset = true;
   1159 
   1160 	s->temp.size = 0;
   1161 
   1162 	return XZ_OK;
   1163 }
   1164 
   1165 XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
   1166 {
   1167 	if (DEC_IS_MULTI(s->dict.mode))
   1168 		vfree(s->dict.buf);
   1169 
   1170 	kfree(s);
   1171 }
   1172