Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jcsample.c
      4  *
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains downsampling routines.
     10  *
     11  * Downsampling input data is counted in "row groups".  A row group
     12  * is defined to be max_v_samp_factor pixel rows of each component,
     13  * from which the downsampler produces v_samp_factor sample rows.
     14  * A single row group is processed in each call to the downsampler module.
     15  *
     16  * The downsampler is responsible for edge-expansion of its output data
     17  * to fill an integral number of DCT blocks horizontally.  The source buffer
     18  * may be modified if it is helpful for this purpose (the source buffer is
     19  * allocated wide enough to correspond to the desired output width).
     20  * The caller (the prep controller) is responsible for vertical padding.
     21  *
     22  * The downsampler may request "context rows" by setting need_context_rows
     23  * during startup.  In this case, the input arrays will contain at least
     24  * one row group's worth of pixels above and below the passed-in data;
     25  * the caller will create dummy rows at image top and bottom by replicating
     26  * the first or last real pixel row.
     27  *
     28  * An excellent reference for image resampling is
     29  *   Digital Image Warping, George Wolberg, 1990.
     30  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
     31  *
     32  * The downsampling algorithm used here is a simple average of the source
     33  * pixels covered by the output pixel.  The hi-falutin sampling literature
     34  * refers to this as a "box filter".  In general the characteristics of a box
     35  * filter are not very good, but for the specific cases we normally use (1:1
     36  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
     37  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
     38  * advised to improve this code.
     39  *
     40  * A simple input-smoothing capability is provided.  This is mainly intended
     41  * for cleaning up color-dithered GIF input files (if you find it inadequate,
     42  * we suggest using an external filtering program such as pnmconvol).  When
     43  * enabled, each input pixel P is replaced by a weighted sum of itself and its
     44  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
     45  * where SF = (smoothing_factor / 1024).
     46  * Currently, smoothing is only supported for 2h2v sampling factors.
     47  */
     48 
     49 #define JPEG_INTERNALS
     50 #include "jinclude.h"
     51 #include "jpeglib.h"
     52 
     53 
     54 /* Pointer to routine to downsample a single component */
     55 typedef JMETHOD(void, downsample1_ptr,
     56 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
     57 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
     58 
     59 /* Private subobject */
     60 
     61 typedef struct {
     62   struct jpeg_downsampler pub;	/* public fields */
     63 
     64   /* Downsampling method pointers, one per component */
     65   downsample1_ptr methods[MAX_COMPONENTS];
     66 } my_downsampler;
     67 
     68 typedef my_downsampler * my_downsample_ptr;
     69 
     70 
     71 /*
     72  * Initialize for a downsampling pass.
     73  */
     74 
     75 METHODDEF(void)
     76 start_pass_downsample (j_compress_ptr cinfo)
     77 {
     78   /* no work for now */
     79 }
     80 
     81 
     82 /*
     83  * Expand a component horizontally from width input_cols to width output_cols,
     84  * by duplicating the rightmost samples.
     85  */
     86 
     87 LOCAL(void)
     88 expand_right_edge (JSAMPARRAY image_data, int num_rows,
     89 		   JDIMENSION input_cols, JDIMENSION output_cols)
     90 {
     91   register JSAMPROW ptr;
     92   register JSAMPLE pixval;
     93   register int count;
     94   int row;
     95   int numcols = (int) (output_cols - input_cols);
     96 
     97   if (numcols > 0) {
     98     for (row = 0; row < num_rows; row++) {
     99       ptr = image_data[row] + input_cols;
    100       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
    101       for (count = numcols; count > 0; count--)
    102 	*ptr++ = pixval;
    103     }
    104   }
    105 }
    106 
    107 
    108 /*
    109  * Do downsampling for a whole row group (all components).
    110  *
    111  * In this version we simply downsample each component independently.
    112  */
    113 
    114 METHODDEF(void)
    115 sep_downsample (j_compress_ptr cinfo,
    116 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
    117 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
    118 {
    119   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    120   int ci;
    121   jpeg_component_info * compptr;
    122   JSAMPARRAY in_ptr, out_ptr;
    123 
    124   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    125        ci++, compptr++) {
    126     in_ptr = input_buf[ci] + in_row_index;
    127     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
    128     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
    129   }
    130 }
    131 
    132 
    133 /*
    134  * Downsample pixel values of a single component.
    135  * One row group is processed per call.
    136  * This version handles arbitrary integral sampling ratios, without smoothing.
    137  * Note that this version is not actually used for customary sampling ratios.
    138  */
    139 
    140 METHODDEF(void)
    141 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    142 		JSAMPARRAY input_data, JSAMPARRAY output_data)
    143 {
    144   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
    145   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
    146   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    147   JSAMPROW inptr, outptr;
    148   INT32 outvalue;
    149 
    150   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
    151   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
    152   numpix = h_expand * v_expand;
    153   numpix2 = numpix/2;
    154 
    155   /* Expand input data enough to let all the output samples be generated
    156    * by the standard loop.  Special-casing padded output would be more
    157    * efficient.
    158    */
    159   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    160 		    cinfo->image_width, output_cols * h_expand);
    161 
    162   inrow = 0;
    163   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    164     outptr = output_data[outrow];
    165     for (outcol = 0, outcol_h = 0; outcol < output_cols;
    166 	 outcol++, outcol_h += h_expand) {
    167       outvalue = 0;
    168       for (v = 0; v < v_expand; v++) {
    169 	inptr = input_data[inrow+v] + outcol_h;
    170 	for (h = 0; h < h_expand; h++) {
    171 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
    172 	}
    173       }
    174       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    175     }
    176     inrow += v_expand;
    177   }
    178 }
    179 
    180 
    181 /*
    182  * Downsample pixel values of a single component.
    183  * This version handles the special case of a full-size component,
    184  * without smoothing.
    185  */
    186 
    187 METHODDEF(void)
    188 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    189 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
    190 {
    191   /* Copy the data */
    192   jcopy_sample_rows(input_data, 0, output_data, 0,
    193 		    cinfo->max_v_samp_factor, cinfo->image_width);
    194   /* Edge-expand */
    195   expand_right_edge(output_data, cinfo->max_v_samp_factor,
    196 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
    197 }
    198 
    199 
    200 /*
    201  * Downsample pixel values of a single component.
    202  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
    203  * without smoothing.
    204  *
    205  * A note about the "bias" calculations: when rounding fractional values to
    206  * integer, we do not want to always round 0.5 up to the next integer.
    207  * If we did that, we'd introduce a noticeable bias towards larger values.
    208  * Instead, this code is arranged so that 0.5 will be rounded up or down at
    209  * alternate pixel locations (a simple ordered dither pattern).
    210  */
    211 
    212 METHODDEF(void)
    213 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    214 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    215 {
    216   int outrow;
    217   JDIMENSION outcol;
    218   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    219   register JSAMPROW inptr, outptr;
    220   register int bias;
    221 
    222   /* Expand input data enough to let all the output samples be generated
    223    * by the standard loop.  Special-casing padded output would be more
    224    * efficient.
    225    */
    226   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    227 		    cinfo->image_width, output_cols * 2);
    228 
    229   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    230     outptr = output_data[outrow];
    231     inptr = input_data[outrow];
    232     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
    233     for (outcol = 0; outcol < output_cols; outcol++) {
    234       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
    235 			      + bias) >> 1);
    236       bias ^= 1;		/* 0=>1, 1=>0 */
    237       inptr += 2;
    238     }
    239   }
    240 }
    241 
    242 
    243 /*
    244  * Downsample pixel values of a single component.
    245  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    246  * without smoothing.
    247  */
    248 
    249 METHODDEF(void)
    250 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    251 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    252 {
    253   int inrow, outrow;
    254   JDIMENSION outcol;
    255   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    256   register JSAMPROW inptr0, inptr1, outptr;
    257   register int bias;
    258 
    259   /* Expand input data enough to let all the output samples be generated
    260    * by the standard loop.  Special-casing padded output would be more
    261    * efficient.
    262    */
    263   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    264 		    cinfo->image_width, output_cols * 2);
    265 
    266   inrow = 0;
    267   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    268     outptr = output_data[outrow];
    269     inptr0 = input_data[inrow];
    270     inptr1 = input_data[inrow+1];
    271     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
    272     for (outcol = 0; outcol < output_cols; outcol++) {
    273       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    274 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
    275 			      + bias) >> 2);
    276       bias ^= 3;		/* 1=>2, 2=>1 */
    277       inptr0 += 2; inptr1 += 2;
    278     }
    279     inrow += 2;
    280   }
    281 }
    282 
    283 
    284 #ifdef INPUT_SMOOTHING_SUPPORTED
    285 
    286 /*
    287  * Downsample pixel values of a single component.
    288  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    289  * with smoothing.  One row of context is required.
    290  */
    291 
    292 METHODDEF(void)
    293 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    294 			JSAMPARRAY input_data, JSAMPARRAY output_data)
    295 {
    296   int inrow, outrow;
    297   JDIMENSION colctr;
    298   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    299   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
    300   INT32 membersum, neighsum, memberscale, neighscale;
    301 
    302   /* Expand input data enough to let all the output samples be generated
    303    * by the standard loop.  Special-casing padded output would be more
    304    * efficient.
    305    */
    306   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    307 		    cinfo->image_width, output_cols * 2);
    308 
    309   /* We don't bother to form the individual "smoothed" input pixel values;
    310    * we can directly compute the output which is the average of the four
    311    * smoothed values.  Each of the four member pixels contributes a fraction
    312    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
    313    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
    314    * output.  The four corner-adjacent neighbor pixels contribute a fraction
    315    * SF to just one smoothed pixel, or SF/4 to the final output; while the
    316    * eight edge-adjacent neighbors contribute SF to each of two smoothed
    317    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
    318    * factors are scaled by 2^16 = 65536.
    319    * Also recall that SF = smoothing_factor / 1024.
    320    */
    321 
    322   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
    323   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
    324 
    325   inrow = 0;
    326   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    327     outptr = output_data[outrow];
    328     inptr0 = input_data[inrow];
    329     inptr1 = input_data[inrow+1];
    330     above_ptr = input_data[inrow-1];
    331     below_ptr = input_data[inrow+2];
    332 
    333     /* Special case for first column: pretend column -1 is same as column 0 */
    334     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    335 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    336     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    337 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    338 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
    339 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    340     neighsum += neighsum;
    341     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
    342 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    343     membersum = membersum * memberscale + neighsum * neighscale;
    344     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    345     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    346 
    347     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    348       /* sum of pixels directly mapped to this output element */
    349       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    350 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    351       /* sum of edge-neighbor pixels */
    352       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    353 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    354 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
    355 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
    356       /* The edge-neighbors count twice as much as corner-neighbors */
    357       neighsum += neighsum;
    358       /* Add in the corner-neighbors */
    359       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
    360 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
    361       /* form final output scaled up by 2^16 */
    362       membersum = membersum * memberscale + neighsum * neighscale;
    363       /* round, descale and output it */
    364       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    365       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    366     }
    367 
    368     /* Special case for last column */
    369     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    370 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    371     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    372 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    373 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
    374 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    375     neighsum += neighsum;
    376     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
    377 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    378     membersum = membersum * memberscale + neighsum * neighscale;
    379     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    380 
    381     inrow += 2;
    382   }
    383 }
    384 
    385 
    386 /*
    387  * Downsample pixel values of a single component.
    388  * This version handles the special case of a full-size component,
    389  * with smoothing.  One row of context is required.
    390  */
    391 
    392 METHODDEF(void)
    393 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    394 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
    395 {
    396   int outrow;
    397   JDIMENSION colctr;
    398   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    399   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
    400   INT32 membersum, neighsum, memberscale, neighscale;
    401   int colsum, lastcolsum, nextcolsum;
    402 
    403   /* Expand input data enough to let all the output samples be generated
    404    * by the standard loop.  Special-casing padded output would be more
    405    * efficient.
    406    */
    407   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    408 		    cinfo->image_width, output_cols);
    409 
    410   /* Each of the eight neighbor pixels contributes a fraction SF to the
    411    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
    412    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
    413    * Also recall that SF = smoothing_factor / 1024.
    414    */
    415 
    416   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
    417   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
    418 
    419   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    420     outptr = output_data[outrow];
    421     inptr = input_data[outrow];
    422     above_ptr = input_data[outrow-1];
    423     below_ptr = input_data[outrow+1];
    424 
    425     /* Special case for first column */
    426     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
    427 	     GETJSAMPLE(*inptr);
    428     membersum = GETJSAMPLE(*inptr++);
    429     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    430 		 GETJSAMPLE(*inptr);
    431     neighsum = colsum + (colsum - membersum) + nextcolsum;
    432     membersum = membersum * memberscale + neighsum * neighscale;
    433     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    434     lastcolsum = colsum; colsum = nextcolsum;
    435 
    436     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    437       membersum = GETJSAMPLE(*inptr++);
    438       above_ptr++; below_ptr++;
    439       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    440 		   GETJSAMPLE(*inptr);
    441       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
    442       membersum = membersum * memberscale + neighsum * neighscale;
    443       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    444       lastcolsum = colsum; colsum = nextcolsum;
    445     }
    446 
    447     /* Special case for last column */
    448     membersum = GETJSAMPLE(*inptr);
    449     neighsum = lastcolsum + (colsum - membersum) + colsum;
    450     membersum = membersum * memberscale + neighsum * neighscale;
    451     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    452 
    453   }
    454 }
    455 
    456 #endif /* INPUT_SMOOTHING_SUPPORTED */
    457 
    458 
    459 /*
    460  * Module initialization routine for downsampling.
    461  * Note that we must select a routine for each component.
    462  */
    463 
    464 GLOBAL(void)
    465 jinit_downsampler (j_compress_ptr cinfo)
    466 {
    467   my_downsample_ptr downsample;
    468   int ci;
    469   jpeg_component_info * compptr;
    470   boolean smoothok = TRUE;
    471 
    472   downsample = (my_downsample_ptr)
    473     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    474 				SIZEOF(my_downsampler));
    475   cinfo->downsample = (struct jpeg_downsampler *) downsample;
    476   downsample->pub.start_pass = start_pass_downsample;
    477   downsample->pub.downsample = sep_downsample;
    478   downsample->pub.need_context_rows = FALSE;
    479 
    480   if (cinfo->CCIR601_sampling)
    481     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
    482 
    483   /* Verify we can handle the sampling factors, and set up method pointers */
    484   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    485        ci++, compptr++) {
    486     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
    487 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    488 #ifdef INPUT_SMOOTHING_SUPPORTED
    489       if (cinfo->smoothing_factor) {
    490 	downsample->methods[ci] = fullsize_smooth_downsample;
    491 	downsample->pub.need_context_rows = TRUE;
    492       } else
    493 #endif
    494 	downsample->methods[ci] = fullsize_downsample;
    495     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    496 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    497       smoothok = FALSE;
    498       downsample->methods[ci] = h2v1_downsample;
    499     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    500 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
    501 #ifdef INPUT_SMOOTHING_SUPPORTED
    502       if (cinfo->smoothing_factor) {
    503 	downsample->methods[ci] = h2v2_smooth_downsample;
    504 	downsample->pub.need_context_rows = TRUE;
    505       } else
    506 #endif
    507 	downsample->methods[ci] = h2v2_downsample;
    508     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
    509 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
    510       smoothok = FALSE;
    511       downsample->methods[ci] = int_downsample;
    512     } else
    513       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    514   }
    515 
    516 #ifdef INPUT_SMOOTHING_SUPPORTED
    517   if (cinfo->smoothing_factor && !smoothok)
    518     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
    519 #endif
    520 }
    521 
    522 #endif //_FX_JPEG_TURBO_
    523