Home | History | Annotate | Download | only in src
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <sys/stat.h>
     18 #include <string.h>
     19 #include <stdio.h>
     20 
     21 #ifdef HAVE_ANDROID_OS
     22 #include <linux/capability.h>
     23 #else
     24 #include <private/android_filesystem_capability.h>
     25 #endif
     26 
     27 #define XATTR_SELINUX_SUFFIX "selinux"
     28 #define XATTR_CAPS_SUFFIX "capability"
     29 
     30 #include "ext4_utils.h"
     31 #include "make_ext4fs.h"
     32 #include "allocate.h"
     33 #include "contents.h"
     34 #include "extent.h"
     35 #include "indirect.h"
     36 
     37 #ifdef USE_MINGW
     38 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
     39 #endif
     40 
     41 static u32 dentry_size(u32 entries, struct dentry *dentries)
     42 {
     43 	u32 len = 24;
     44 	unsigned int i;
     45 	unsigned int dentry_len;
     46 
     47 	for (i = 0; i < entries; i++) {
     48 		dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
     49 		if (len % info.block_size + dentry_len > info.block_size)
     50 			len += info.block_size - (len % info.block_size);
     51 		len += dentry_len;
     52 	}
     53 
     54 	return len;
     55 }
     56 
     57 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
     58 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
     59 		u8 file_type)
     60 {
     61 	u8 name_len = strlen(name);
     62 	u16 rec_len = 8 + ALIGN(name_len, 4);
     63 	struct ext4_dir_entry_2 *dentry;
     64 
     65 	u32 start_block = *offset / info.block_size;
     66 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
     67 	if (start_block != end_block) {
     68 		/* Adding this dentry will cross a block boundary, so pad the previous
     69 		   dentry to the block boundary */
     70 		if (!prev)
     71 			critical_error("no prev");
     72 		prev->rec_len += end_block * info.block_size - *offset;
     73 		*offset = end_block * info.block_size;
     74 	}
     75 
     76 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
     77 	dentry->inode = inode;
     78 	dentry->rec_len = rec_len;
     79 	dentry->name_len = name_len;
     80 	dentry->file_type = file_type;
     81 	memcpy(dentry->name, name, name_len);
     82 
     83 	*offset += rec_len;
     84 	return dentry;
     85 }
     86 
     87 /* Creates a directory structure for an array of directory entries, dentries,
     88    and stores the location of the structure in an inode.  The new inode's
     89    .. link is set to dir_inode_num.  Stores the location of the inode number
     90    of each directory entry into dentries[i].inode, to be filled in later
     91    when the inode for the entry is allocated.  Returns the inode number of the
     92    new directory */
     93 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
     94 	u32 dirs)
     95 {
     96 	struct ext4_inode *inode;
     97 	u32 blocks;
     98 	u32 len;
     99 	u32 offset = 0;
    100 	u32 inode_num;
    101 	u8 *data;
    102 	unsigned int i;
    103 	struct ext4_dir_entry_2 *dentry;
    104 
    105 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
    106 	len = blocks * info.block_size;
    107 
    108 	if (dir_inode_num) {
    109 		inode_num = allocate_inode(info);
    110 	} else {
    111 		dir_inode_num = EXT4_ROOT_INO;
    112 		inode_num = EXT4_ROOT_INO;
    113 	}
    114 
    115 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    116 		error("failed to allocate inode\n");
    117 		return EXT4_ALLOCATE_FAILED;
    118 	}
    119 
    120 	add_directory(inode_num);
    121 
    122 	inode = get_inode(inode_num);
    123 	if (inode == NULL) {
    124 		error("failed to get inode %u", inode_num);
    125 		return EXT4_ALLOCATE_FAILED;
    126 	}
    127 
    128 	data = inode_allocate_data_extents(inode, len, len);
    129 	if (data == NULL) {
    130 		error("failed to allocate %u extents", len);
    131 		return EXT4_ALLOCATE_FAILED;
    132 	}
    133 
    134 	inode->i_mode = S_IFDIR;
    135 	inode->i_links_count = dirs + 2;
    136 	inode->i_flags |= aux_info.default_i_flags;
    137 
    138 	dentry = NULL;
    139 
    140 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
    141 	if (!dentry) {
    142 		error("failed to add . directory");
    143 		return EXT4_ALLOCATE_FAILED;
    144 	}
    145 
    146 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
    147 	if (!dentry) {
    148 		error("failed to add .. directory");
    149 		return EXT4_ALLOCATE_FAILED;
    150 	}
    151 
    152 	for (i = 0; i < entries; i++) {
    153 		dentry = add_dentry(data, &offset, dentry, 0,
    154 				dentries[i].filename, dentries[i].file_type);
    155 		if (offset > len || (offset == len && i != entries - 1))
    156 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
    157 				dentries[i].filename, offset, len);
    158 		dentries[i].inode = &dentry->inode;
    159 		if (!dentry) {
    160 			error("failed to add directory");
    161 			return EXT4_ALLOCATE_FAILED;
    162 		}
    163 	}
    164 
    165 	/* pad the last dentry out to the end of the block */
    166 	dentry->rec_len += len - offset;
    167 
    168 	return inode_num;
    169 }
    170 
    171 /* Creates a file on disk.  Returns the inode number of the new file */
    172 u32 make_file(const char *filename, u64 len)
    173 {
    174 	struct ext4_inode *inode;
    175 	u32 inode_num;
    176 
    177 	inode_num = allocate_inode(info);
    178 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    179 		error("failed to allocate inode\n");
    180 		return EXT4_ALLOCATE_FAILED;
    181 	}
    182 
    183 	inode = get_inode(inode_num);
    184 	if (inode == NULL) {
    185 		error("failed to get inode %u", inode_num);
    186 		return EXT4_ALLOCATE_FAILED;
    187 	}
    188 
    189 	if (len > 0)
    190 		inode_allocate_file_extents(inode, len, filename);
    191 
    192 	inode->i_mode = S_IFREG;
    193 	inode->i_links_count = 1;
    194 	inode->i_flags |= aux_info.default_i_flags;
    195 
    196 	return inode_num;
    197 }
    198 
    199 /* Creates a file on disk.  Returns the inode number of the new file */
    200 u32 make_link(const char *link)
    201 {
    202 	struct ext4_inode *inode;
    203 	u32 inode_num;
    204 	u32 len = strlen(link);
    205 
    206 	inode_num = allocate_inode(info);
    207 	if (inode_num == EXT4_ALLOCATE_FAILED) {
    208 		error("failed to allocate inode\n");
    209 		return EXT4_ALLOCATE_FAILED;
    210 	}
    211 
    212 	inode = get_inode(inode_num);
    213 	if (inode == NULL) {
    214 		error("failed to get inode %u", inode_num);
    215 		return EXT4_ALLOCATE_FAILED;
    216 	}
    217 
    218 	inode->i_mode = S_IFLNK;
    219 	inode->i_links_count = 1;
    220 	inode->i_flags |= aux_info.default_i_flags;
    221 	inode->i_size_lo = len;
    222 
    223 	if (len + 1 <= sizeof(inode->i_block)) {
    224 		/* Fast symlink */
    225 		memcpy((char*)inode->i_block, link, len);
    226 	} else {
    227 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
    228 		memcpy(data, link, len);
    229 		inode->i_blocks_lo = info.block_size / 512;
    230 	}
    231 
    232 	return inode_num;
    233 }
    234 
    235 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
    236 {
    237 	struct ext4_inode *inode = get_inode(inode_num);
    238 
    239 	if (!inode)
    240 		return -1;
    241 
    242 	inode->i_mode |= mode;
    243 	inode->i_uid = uid;
    244 	inode->i_gid = gid;
    245 	inode->i_mtime = mtime;
    246 	inode->i_atime = mtime;
    247 	inode->i_ctime = mtime;
    248 
    249 	return 0;
    250 }
    251 
    252 /*
    253  * Returns the amount of free space available in the specified
    254  * xattr region
    255  */
    256 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
    257 {
    258 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
    259 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
    260 		entry  = EXT4_XATTR_NEXT(entry);
    261 	}
    262 
    263 	if (((char *) entry) > end) {
    264 		error("unexpected read beyond end of xattr space");
    265 		return 0;
    266 	}
    267 
    268 	return end - ((char *) entry);
    269 }
    270 
    271 /*
    272  * Returns a pointer to the free space immediately after the
    273  * last xattr element
    274  */
    275 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
    276 {
    277 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    278 		// skip entry
    279 	}
    280 	return entry;
    281 }
    282 
    283 /*
    284  * assert that the elements in the ext4 xattr section are in sorted order
    285  *
    286  * The ext4 filesystem requires extended attributes to be sorted when
    287  * they're not stored in the inode. The kernel ext4 code uses the following
    288  * sorting algorithm:
    289  *
    290  * 1) First sort extended attributes by their name_index. For example,
    291  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
    292  * 2) If the name_indexes are equal, then sorting is based on the length
    293  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
    294  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
    295  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
    296  *    which name comes first. For example, "selinux" would come before "yelinux".
    297  *
    298  * This method is intended to implement the sorting function defined in
    299  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
    300  */
    301 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
    302 {
    303 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
    304 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
    305 		if (IS_LAST_ENTRY(next)) {
    306 			return;
    307 		}
    308 
    309 		int cmp = next->e_name_index - entry->e_name_index;
    310 		if (cmp == 0)
    311 			cmp = next->e_name_len - entry->e_name_len;
    312 		if (cmp == 0)
    313 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
    314 		if (cmp < 0) {
    315 			error("BUG: extended attributes are not sorted\n");
    316 			return;
    317 		}
    318 		if (cmp == 0) {
    319 			error("BUG: duplicate extended attributes detected\n");
    320 			return;
    321 		}
    322 	}
    323 }
    324 
    325 #define NAME_HASH_SHIFT 5
    326 #define VALUE_HASH_SHIFT 16
    327 
    328 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
    329 		struct ext4_xattr_entry *entry)
    330 {
    331 	u32 hash = 0;
    332 	char *name = entry->e_name;
    333 	int n;
    334 
    335 	for (n = 0; n < entry->e_name_len; n++) {
    336 		hash = (hash << NAME_HASH_SHIFT) ^
    337 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
    338 			*name++;
    339 	}
    340 
    341 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
    342 		u32 *value = (u32 *)((char *)header +
    343 			le16_to_cpu(entry->e_value_offs));
    344 		for (n = (le32_to_cpu(entry->e_value_size) +
    345 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
    346 			hash = (hash << VALUE_HASH_SHIFT) ^
    347 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
    348 				le32_to_cpu(*value++);
    349 		}
    350 	}
    351 	entry->e_hash = cpu_to_le32(hash);
    352 }
    353 
    354 #undef NAME_HASH_SHIFT
    355 #undef VALUE_HASH_SHIFT
    356 
    357 static struct ext4_xattr_entry* xattr_addto_range(
    358 		void *block_start,
    359 		void *block_end,
    360 		struct ext4_xattr_entry *first,
    361 		int name_index,
    362 		const char *name,
    363 		const void *value,
    364 		size_t value_len)
    365 {
    366 	size_t name_len = strlen(name);
    367 	if (name_len > 255)
    368 		return NULL;
    369 
    370 	size_t available_size = xattr_free_space(first, block_end);
    371 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
    372 
    373 	if (needed_size > available_size)
    374 		return NULL;
    375 
    376 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
    377 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
    378 
    379 	new_entry->e_name_len = name_len;
    380 	new_entry->e_name_index = name_index;
    381 	memcpy(new_entry->e_name, name, name_len);
    382 	new_entry->e_value_block = 0;
    383 	new_entry->e_value_size = cpu_to_le32(value_len);
    384 
    385 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
    386 	size_t e_value_offs = val - (char *) block_start;
    387 
    388 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
    389 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
    390 	memcpy(val, value, value_len);
    391 
    392 	xattr_assert_sane(first);
    393 	return new_entry;
    394 }
    395 
    396 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
    397 		const char *name, const void *value, size_t value_len)
    398 {
    399 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
    400 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
    401 	char *block_end = ((char *) inode) + info.inode_size;
    402 
    403 	struct ext4_xattr_entry *result =
    404 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
    405 
    406 	if (result == NULL)
    407 		return -1;
    408 
    409 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
    410 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
    411 
    412 	return 0;
    413 }
    414 
    415 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
    416 		const char *name, const void *value, size_t value_len)
    417 {
    418 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
    419 	if (!header)
    420 		return -1;
    421 
    422 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
    423 	char *block_end = ((char *) header) + info.block_size;
    424 
    425 	struct ext4_xattr_entry *result =
    426 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
    427 
    428 	if (result == NULL)
    429 		return -1;
    430 
    431 	ext4_xattr_hash_entry(header, result);
    432 	return 0;
    433 }
    434 
    435 
    436 static int xattr_add(u32 inode_num, int name_index, const char *name,
    437 		const void *value, size_t value_len)
    438 {
    439 	if (!value)
    440 		return 0;
    441 
    442 	struct ext4_inode *inode = get_inode(inode_num);
    443 
    444 	if (!inode)
    445 		return -1;
    446 
    447 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
    448 	if (result != 0) {
    449 		result = xattr_addto_block(inode, name_index, name, value, value_len);
    450 	}
    451 	return result;
    452 }
    453 
    454 int inode_set_selinux(u32 inode_num, const char *secon)
    455 {
    456 	if (!secon)
    457 		return 0;
    458 
    459 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    460 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
    461 }
    462 
    463 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
    464 	if (capabilities == 0)
    465 		return 0;
    466 
    467 	struct vfs_cap_data cap_data;
    468 	memset(&cap_data, 0, sizeof(cap_data));
    469 
    470 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
    471 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
    472 	cap_data.data[0].inheritable = 0;
    473 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
    474 	cap_data.data[1].inheritable = 0;
    475 
    476 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
    477 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
    478 }
    479 
    480