Home | History | Annotate | Download | only in exec
      1 /*
      2  * defines common to all virtual CPUs
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 #ifndef CPU_ALL_H
     20 #define CPU_ALL_H
     21 
     22 #include "qemu-common.h"
     23 #include "qemu/queue.h"
     24 #include "qemu/thread.h"
     25 #include "qemu/tls.h"
     26 #include "exec/cpu-common.h"
     27 
     28 /* some important defines:
     29  *
     30  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
     31  * memory accesses.
     32  *
     33  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
     34  * otherwise little endian.
     35  *
     36  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
     37  *
     38  * TARGET_WORDS_BIGENDIAN : same for target cpu
     39  */
     40 
     41 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
     42 #define BSWAP_NEEDED
     43 #endif
     44 
     45 #ifdef BSWAP_NEEDED
     46 
     47 static inline uint16_t tswap16(uint16_t s)
     48 {
     49     return bswap16(s);
     50 }
     51 
     52 static inline uint32_t tswap32(uint32_t s)
     53 {
     54     return bswap32(s);
     55 }
     56 
     57 static inline uint64_t tswap64(uint64_t s)
     58 {
     59     return bswap64(s);
     60 }
     61 
     62 static inline void tswap16s(uint16_t *s)
     63 {
     64     *s = bswap16(*s);
     65 }
     66 
     67 static inline void tswap32s(uint32_t *s)
     68 {
     69     *s = bswap32(*s);
     70 }
     71 
     72 static inline void tswap64s(uint64_t *s)
     73 {
     74     *s = bswap64(*s);
     75 }
     76 
     77 #else
     78 
     79 static inline uint16_t tswap16(uint16_t s)
     80 {
     81     return s;
     82 }
     83 
     84 static inline uint32_t tswap32(uint32_t s)
     85 {
     86     return s;
     87 }
     88 
     89 static inline uint64_t tswap64(uint64_t s)
     90 {
     91     return s;
     92 }
     93 
     94 static inline void tswap16s(uint16_t *s)
     95 {
     96 }
     97 
     98 static inline void tswap32s(uint32_t *s)
     99 {
    100 }
    101 
    102 static inline void tswap64s(uint64_t *s)
    103 {
    104 }
    105 
    106 #endif
    107 
    108 #if TARGET_LONG_SIZE == 4
    109 #define tswapl(s) tswap32(s)
    110 #define tswapls(s) tswap32s((uint32_t *)(s))
    111 #define bswaptls(s) bswap32s(s)
    112 #else
    113 #define tswapl(s) tswap64(s)
    114 #define tswapls(s) tswap64s((uint64_t *)(s))
    115 #define bswaptls(s) bswap64s(s)
    116 #endif
    117 
    118 /* CPU memory access without any memory or io remapping */
    119 
    120 /*
    121  * the generic syntax for the memory accesses is:
    122  *
    123  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
    124  *
    125  * store: st{type}{size}{endian}_{access_type}(ptr, val)
    126  *
    127  * type is:
    128  * (empty): integer access
    129  *   f    : float access
    130  *
    131  * sign is:
    132  * (empty): for floats or 32 bit size
    133  *   u    : unsigned
    134  *   s    : signed
    135  *
    136  * size is:
    137  *   b: 8 bits
    138  *   w: 16 bits
    139  *   l: 32 bits
    140  *   q: 64 bits
    141  *
    142  * endian is:
    143  * (empty): target cpu endianness or 8 bit access
    144  *   r    : reversed target cpu endianness (not implemented yet)
    145  *   be   : big endian (not implemented yet)
    146  *   le   : little endian (not implemented yet)
    147  *
    148  * access_type is:
    149  *   raw    : host memory access
    150  *   user   : user mode access using soft MMU
    151  *   kernel : kernel mode access using soft MMU
    152  */
    153 
    154 /* target-endianness CPU memory access functions */
    155 #if defined(TARGET_WORDS_BIGENDIAN)
    156 #define lduw_p(p) lduw_be_p(p)
    157 #define ldsw_p(p) ldsw_be_p(p)
    158 #define ldl_p(p) ldl_be_p(p)
    159 #define ldq_p(p) ldq_be_p(p)
    160 #define ldfl_p(p) ldfl_be_p(p)
    161 #define ldfq_p(p) ldfq_be_p(p)
    162 #define stw_p(p, v) stw_be_p(p, v)
    163 #define stl_p(p, v) stl_be_p(p, v)
    164 #define stq_p(p, v) stq_be_p(p, v)
    165 #define stfl_p(p, v) stfl_be_p(p, v)
    166 #define stfq_p(p, v) stfq_be_p(p, v)
    167 #else
    168 #define lduw_p(p) lduw_le_p(p)
    169 #define ldsw_p(p) ldsw_le_p(p)
    170 #define ldl_p(p) ldl_le_p(p)
    171 #define ldq_p(p) ldq_le_p(p)
    172 #define ldfl_p(p) ldfl_le_p(p)
    173 #define ldfq_p(p) ldfq_le_p(p)
    174 #define stw_p(p, v) stw_le_p(p, v)
    175 #define stl_p(p, v) stl_le_p(p, v)
    176 #define stq_p(p, v) stq_le_p(p, v)
    177 #define stfl_p(p, v) stfl_le_p(p, v)
    178 #define stfq_p(p, v) stfq_le_p(p, v)
    179 #endif
    180 
    181 /* MMU memory access macros */
    182 
    183 #if defined(CONFIG_USER_ONLY)
    184 #include <assert.h>
    185 #include "exec/user/abitypes.h"
    186 
    187 /* On some host systems the guest address space is reserved on the host.
    188  * This allows the guest address space to be offset to a convenient location.
    189  */
    190 #if defined(CONFIG_USE_GUEST_BASE)
    191 extern unsigned long guest_base;
    192 extern int have_guest_base;
    193 extern unsigned long reserved_va;
    194 #define GUEST_BASE guest_base
    195 #define RESERVED_VA reserved_va
    196 #else
    197 #define GUEST_BASE 0ul
    198 #define RESERVED_VA 0ul
    199 #endif
    200 
    201 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
    202 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
    203 
    204 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
    205 #define h2g_valid(x) 1
    206 #else
    207 #define h2g_valid(x) ({ \
    208     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
    209     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
    210     (!RESERVED_VA || (__guest < RESERVED_VA)); \
    211 })
    212 #endif
    213 
    214 #define h2g_nocheck(x) ({ \
    215     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
    216     (abi_ulong)__ret; \
    217 })
    218 
    219 #define h2g(x) ({ \
    220     /* Check if given address fits target address space */ \
    221     assert(h2g_valid(x)); \
    222     h2g_nocheck(x); \
    223 })
    224 
    225 #define saddr(x) g2h(x)
    226 #define laddr(x) g2h(x)
    227 
    228 #else /* !CONFIG_USER_ONLY */
    229 /* NOTE: we use double casts if pointers and target_ulong have
    230    different sizes */
    231 #define saddr(x) (uint8_t *)(intptr_t)(x)
    232 #define laddr(x) (uint8_t *)(intptr_t)(x)
    233 #endif
    234 
    235 #define ldub_raw(p) ldub_p(laddr((p)))
    236 #define ldsb_raw(p) ldsb_p(laddr((p)))
    237 #define lduw_raw(p) lduw_p(laddr((p)))
    238 #define ldsw_raw(p) ldsw_p(laddr((p)))
    239 #define ldl_raw(p) ldl_p(laddr((p)))
    240 #define ldq_raw(p) ldq_p(laddr((p)))
    241 #define ldfl_raw(p) ldfl_p(laddr((p)))
    242 #define ldfq_raw(p) ldfq_p(laddr((p)))
    243 #define stb_raw(p, v) stb_p(saddr((p)), v)
    244 #define stw_raw(p, v) stw_p(saddr((p)), v)
    245 #define stl_raw(p, v) stl_p(saddr((p)), v)
    246 #define stq_raw(p, v) stq_p(saddr((p)), v)
    247 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
    248 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
    249 
    250 
    251 #if defined(CONFIG_USER_ONLY)
    252 
    253 /* if user mode, no other memory access functions */
    254 #define ldub(p) ldub_raw(p)
    255 #define ldsb(p) ldsb_raw(p)
    256 #define lduw(p) lduw_raw(p)
    257 #define ldsw(p) ldsw_raw(p)
    258 #define ldl(p) ldl_raw(p)
    259 #define ldq(p) ldq_raw(p)
    260 #define ldfl(p) ldfl_raw(p)
    261 #define ldfq(p) ldfq_raw(p)
    262 #define stb(p, v) stb_raw(p, v)
    263 #define stw(p, v) stw_raw(p, v)
    264 #define stl(p, v) stl_raw(p, v)
    265 #define stq(p, v) stq_raw(p, v)
    266 #define stfl(p, v) stfl_raw(p, v)
    267 #define stfq(p, v) stfq_raw(p, v)
    268 
    269 #define cpu_ldub_code(env1, p) ldub_raw(p)
    270 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
    271 #define cpu_lduw_code(env1, p) lduw_raw(p)
    272 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
    273 #define cpu_ldl_code(env1, p) ldl_raw(p)
    274 #define cpu_ldq_code(env1, p) ldq_raw(p)
    275 
    276 #define cpu_ldub_data(env, addr) ldub_raw(addr)
    277 #define cpu_lduw_data(env, addr) lduw_raw(addr)
    278 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
    279 #define cpu_ldl_data(env, addr) ldl_raw(addr)
    280 #define cpu_ldq_data(env, addr) ldq_raw(addr)
    281 
    282 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
    283 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
    284 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
    285 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
    286 
    287 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
    288 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
    289 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
    290 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
    291 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
    292 
    293 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
    294 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
    295 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
    296 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
    297 
    298 #define ldub_kernel(p) ldub_raw(p)
    299 #define ldsb_kernel(p) ldsb_raw(p)
    300 #define lduw_kernel(p) lduw_raw(p)
    301 #define ldsw_kernel(p) ldsw_raw(p)
    302 #define ldl_kernel(p) ldl_raw(p)
    303 #define ldq_kernel(p) ldq_raw(p)
    304 #define ldfl_kernel(p) ldfl_raw(p)
    305 #define ldfq_kernel(p) ldfq_raw(p)
    306 #define stb_kernel(p, v) stb_raw(p, v)
    307 #define stw_kernel(p, v) stw_raw(p, v)
    308 #define stl_kernel(p, v) stl_raw(p, v)
    309 #define stq_kernel(p, v) stq_raw(p, v)
    310 #define stfl_kernel(p, v) stfl_raw(p, v)
    311 #define stfq_kernel(p, vt) stfq_raw(p, v)
    312 
    313 #define cpu_ldub_data(env, addr) ldub_raw(addr)
    314 #define cpu_lduw_data(env, addr) lduw_raw(addr)
    315 #define cpu_ldl_data(env, addr) ldl_raw(addr)
    316 
    317 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
    318 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
    319 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
    320 #endif /* defined(CONFIG_USER_ONLY) */
    321 
    322 /* page related stuff */
    323 
    324 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
    325 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
    326 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
    327 #ifdef TARGET_X86_64
    328 #define TARGET_PTE_MASK 0x7fffffffffffULL
    329 #endif
    330 
    331 /* ??? These should be the larger of uintptr_t and target_ulong.  */
    332 extern uintptr_t qemu_real_host_page_size;
    333 extern uintptr_t qemu_host_page_size;
    334 extern uintptr_t qemu_host_page_mask;
    335 
    336 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
    337 
    338 /* same as PROT_xxx */
    339 #define PAGE_READ      0x0001
    340 #define PAGE_WRITE     0x0002
    341 #define PAGE_EXEC      0x0004
    342 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
    343 #define PAGE_VALID     0x0008
    344 /* original state of the write flag (used when tracking self-modifying
    345    code */
    346 #define PAGE_WRITE_ORG 0x0010
    347 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
    348 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
    349 #define PAGE_RESERVED  0x0020
    350 #endif
    351 
    352 #if defined(CONFIG_USER_ONLY)
    353 void page_dump(FILE *f);
    354 
    355 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
    356                                       abi_ulong, unsigned long);
    357 int walk_memory_regions(void *, walk_memory_regions_fn);
    358 
    359 int page_get_flags(target_ulong address);
    360 void page_set_flags(target_ulong start, target_ulong end, int flags);
    361 int page_check_range(target_ulong start, target_ulong len, int flags);
    362 #endif
    363 
    364 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
    365     GCC_FMT_ATTR(2, 3);
    366 
    367 /* Flags for use in ENV->INTERRUPT_PENDING.
    368 
    369    The numbers assigned here are non-sequential in order to preserve
    370    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
    371    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
    372    the vmstate dump.  */
    373 
    374 /* External hardware interrupt pending.  This is typically used for
    375    interrupts from devices.  */
    376 #define CPU_INTERRUPT_HARD        0x0002
    377 
    378 /* Exit the current TB.  This is typically used when some system-level device
    379    makes some change to the memory mapping.  E.g. the a20 line change.  */
    380 #define CPU_INTERRUPT_EXITTB      0x0004
    381 
    382 /* Halt the CPU.  */
    383 #define CPU_INTERRUPT_HALT        0x0020
    384 
    385 /* Debug event pending.  */
    386 #define CPU_INTERRUPT_DEBUG       0x0080
    387 
    388 /* Several target-specific external hardware interrupts.  Each target/cpu.h
    389    should define proper names based on these defines.  */
    390 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
    391 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
    392 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
    393 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
    394 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
    395 
    396 /* Several target-specific internal interrupts.  These differ from the
    397    preceding target-specific interrupts in that they are intended to
    398    originate from within the cpu itself, typically in response to some
    399    instruction being executed.  These, therefore, are not masked while
    400    single-stepping within the debugger.  */
    401 #define CPU_INTERRUPT_TGT_INT_0   0x0100
    402 #define CPU_INTERRUPT_TGT_INT_1   0x0400
    403 #define CPU_INTERRUPT_TGT_INT_2   0x0800
    404 #define CPU_INTERRUPT_TGT_INT_3   0x2000
    405 
    406 /* First unused bit: 0x4000.  */
    407 
    408 /* The set of all bits that should be masked when single-stepping.  */
    409 #define CPU_INTERRUPT_SSTEP_MASK \
    410     (CPU_INTERRUPT_HARD          \
    411      | CPU_INTERRUPT_TGT_EXT_0   \
    412      | CPU_INTERRUPT_TGT_EXT_1   \
    413      | CPU_INTERRUPT_TGT_EXT_2   \
    414      | CPU_INTERRUPT_TGT_EXT_3   \
    415      | CPU_INTERRUPT_TGT_EXT_4)
    416 
    417 /* Breakpoint/watchpoint flags */
    418 #define BP_MEM_READ           0x01
    419 #define BP_MEM_WRITE          0x02
    420 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
    421 #define BP_STOP_BEFORE_ACCESS 0x04
    422 #define BP_WATCHPOINT_HIT     0x08
    423 #define BP_GDB                0x10
    424 #define BP_CPU                0x20
    425 
    426 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
    427                           CPUBreakpoint **breakpoint);
    428 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
    429 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
    430 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
    431 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
    432                           int flags, CPUWatchpoint **watchpoint);
    433 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
    434                           target_ulong len, int flags);
    435 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
    436 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
    437 
    438 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
    439 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
    440 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
    441 
    442 void cpu_single_step(CPUState *cpu, int enabled);
    443 
    444 /* IO ports API */
    445 #include "exec/ioport.h"
    446 
    447 /* Return the physical page corresponding to a virtual one. Use it
    448    only for debugging because no protection checks are done. Return -1
    449    if no page found. */
    450 hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
    451 
    452 /* memory API */
    453 
    454 extern int phys_ram_fd;
    455 extern ram_addr_t ram_size;
    456 
    457 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
    458 #define RAM_PREALLOC_MASK   (1 << 0)
    459 
    460 typedef struct RAMBlock {
    461     uint8_t *host;
    462     ram_addr_t offset;
    463     ram_addr_t length;
    464     uint32_t flags;
    465     char idstr[256];
    466     /* Reads can take either the iothread or the ramlist lock.
    467      * Writes must take both locks.
    468      */
    469     QTAILQ_ENTRY(RAMBlock) next;
    470     int fd;
    471 } RAMBlock;
    472 
    473 typedef struct RAMList {
    474     QemuMutex mutex;
    475     uint8_t *phys_dirty;
    476     RAMBlock *mru_block;
    477     QTAILQ_HEAD(ram, RAMBlock) blocks;
    478     uint32_t version;
    479 } RAMList;
    480 extern RAMList ram_list;
    481 
    482 extern const char *mem_path;
    483 extern int mem_prealloc;
    484 
    485 /* physical memory access */
    486 
    487 /* Flags stored in the low bits of the TLB virtual address.  These are
    488    defined so that fast path ram access is all zeros.  */
    489 /* Zero if TLB entry is valid.  */
    490 #define TLB_INVALID_MASK   (1 << 3)
    491 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
    492    contain the page physical address.  */
    493 #define TLB_NOTDIRTY    (1 << 4)
    494 /* Set if TLB entry is an IO callback.  */
    495 #define TLB_MMIO        (1 << 5)
    496 
    497 #define VGA_DIRTY_FLAG       0x01
    498 #define CODE_DIRTY_FLAG      0x02
    499 #define MIGRATION_DIRTY_FLAG 0x08
    500 
    501 /* read dirty bit (return 0 or 1) */
    502 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
    503 {
    504     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
    505 }
    506 
    507 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
    508 {
    509     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
    510 }
    511 
    512 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
    513                                                 int dirty_flags)
    514 {
    515     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
    516 }
    517 
    518 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
    519 {
    520     ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
    521 }
    522 
    523 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
    524                                                       int dirty_flags)
    525 {
    526     return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
    527 }
    528 
    529 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
    530                                                         int length,
    531                                                         int dirty_flags)
    532 {
    533     int i, mask, len;
    534     uint8_t *p;
    535 
    536     len = length >> TARGET_PAGE_BITS;
    537     mask = ~dirty_flags;
    538     p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
    539     for (i = 0; i < len; i++) {
    540         p[i] &= mask;
    541     }
    542 }
    543 
    544 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
    545                                      int dirty_flags);
    546 void cpu_tlb_update_dirty(CPUArchState *env);
    547 
    548 int cpu_physical_memory_set_dirty_tracking(int enable);
    549 
    550 int cpu_physical_memory_get_dirty_tracking(void);
    551 
    552 int cpu_physical_sync_dirty_bitmap(hwaddr start_addr,
    553                                    hwaddr end_addr);
    554 
    555 void dump_exec_info(FILE *f,
    556                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
    557 
    558 /* Coalesced MMIO regions are areas where write operations can be reordered.
    559  * This usually implies that write operations are side-effect free.  This allows
    560  * batching which can make a major impact on performance when using
    561  * virtualization.
    562  */
    563 void qemu_register_coalesced_mmio(hwaddr addr, ram_addr_t size);
    564 
    565 void qemu_unregister_coalesced_mmio(hwaddr addr, ram_addr_t size);
    566 
    567 void qemu_flush_coalesced_mmio_buffer(void);
    568 
    569 
    570 /* profiling */
    571 #ifdef CONFIG_PROFILER
    572 static inline int64_t profile_getclock(void)
    573 {
    574     return cpu_get_real_ticks();
    575 }
    576 
    577 extern int64_t qemu_time, qemu_time_start;
    578 extern int64_t tlb_flush_time;
    579 extern int64_t dev_time;
    580 #endif
    581 
    582 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
    583                         void *buf, int len, int is_write);
    584 
    585 void cpu_inject_x86_mce(CPUArchState *cenv, int bank, uint64_t status,
    586                         uint64_t mcg_status, uint64_t addr, uint64_t misc);
    587 
    588 #endif /* CPU_ALL_H */
    589