Home | History | Annotate | Download | only in util
      1 /*
      2  * Win32 implementation for mutex/cond/thread functions
      3  *
      4  * Copyright Red Hat, Inc. 2010
      5  *
      6  * Author:
      7  *  Paolo Bonzini <pbonzini (at) redhat.com>
      8  *
      9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     10  * See the COPYING file in the top-level directory.
     11  *
     12  */
     13 #include "qemu-common.h"
     14 #include "qemu/thread.h"
     15 #include <process.h>
     16 #include <assert.h>
     17 #include <limits.h>
     18 
     19 static void error_exit(int err, const char *msg)
     20 {
     21     char *pstr;
     22 
     23     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
     24                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
     25     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
     26     LocalFree(pstr);
     27     abort();
     28 }
     29 
     30 void qemu_mutex_init(QemuMutex *mutex)
     31 {
     32     mutex->owner = 0;
     33     InitializeCriticalSection(&mutex->lock);
     34 }
     35 
     36 void qemu_mutex_destroy(QemuMutex *mutex)
     37 {
     38     assert(mutex->owner == 0);
     39     DeleteCriticalSection(&mutex->lock);
     40 }
     41 
     42 void qemu_mutex_lock(QemuMutex *mutex)
     43 {
     44     EnterCriticalSection(&mutex->lock);
     45 
     46     /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
     47      * using them as such.
     48      */
     49     assert(mutex->owner == 0);
     50     mutex->owner = GetCurrentThreadId();
     51 }
     52 
     53 int qemu_mutex_trylock(QemuMutex *mutex)
     54 {
     55     int owned;
     56 
     57     owned = TryEnterCriticalSection(&mutex->lock);
     58     if (owned) {
     59         assert(mutex->owner == 0);
     60         mutex->owner = GetCurrentThreadId();
     61     }
     62     return !owned;
     63 }
     64 
     65 void qemu_mutex_unlock(QemuMutex *mutex)
     66 {
     67     assert(mutex->owner == GetCurrentThreadId());
     68     mutex->owner = 0;
     69     LeaveCriticalSection(&mutex->lock);
     70 }
     71 
     72 void qemu_cond_init(QemuCond *cond)
     73 {
     74     memset(cond, 0, sizeof(*cond));
     75 
     76     cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
     77     if (!cond->sema) {
     78         error_exit(GetLastError(), __func__);
     79     }
     80     cond->continue_event = CreateEvent(NULL,    /* security */
     81                                        FALSE,   /* auto-reset */
     82                                        FALSE,   /* not signaled */
     83                                        NULL);   /* name */
     84     if (!cond->continue_event) {
     85         error_exit(GetLastError(), __func__);
     86     }
     87 }
     88 
     89 void qemu_cond_destroy(QemuCond *cond)
     90 {
     91     BOOL result;
     92     result = CloseHandle(cond->continue_event);
     93     if (!result) {
     94         error_exit(GetLastError(), __func__);
     95     }
     96     cond->continue_event = 0;
     97     result = CloseHandle(cond->sema);
     98     if (!result) {
     99         error_exit(GetLastError(), __func__);
    100     }
    101     cond->sema = 0;
    102 }
    103 
    104 void qemu_cond_signal(QemuCond *cond)
    105 {
    106     DWORD result;
    107 
    108     /*
    109      * Signal only when there are waiters.  cond->waiters is
    110      * incremented by pthread_cond_wait under the external lock,
    111      * so we are safe about that.
    112      */
    113     if (cond->waiters == 0) {
    114         return;
    115     }
    116 
    117     /*
    118      * Waiting threads decrement it outside the external lock, but
    119      * only if another thread is executing pthread_cond_broadcast and
    120      * has the mutex.  So, it also cannot be decremented concurrently
    121      * with this particular access.
    122      */
    123     cond->target = cond->waiters - 1;
    124     result = SignalObjectAndWait(cond->sema, cond->continue_event,
    125                                  INFINITE, FALSE);
    126     if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
    127         error_exit(GetLastError(), __func__);
    128     }
    129 }
    130 
    131 void qemu_cond_broadcast(QemuCond *cond)
    132 {
    133     BOOLEAN result;
    134     /*
    135      * As in pthread_cond_signal, access to cond->waiters and
    136      * cond->target is locked via the external mutex.
    137      */
    138     if (cond->waiters == 0) {
    139         return;
    140     }
    141 
    142     cond->target = 0;
    143     result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
    144     if (!result) {
    145         error_exit(GetLastError(), __func__);
    146     }
    147 
    148     /*
    149      * At this point all waiters continue. Each one takes its
    150      * slice of the semaphore. Now it's our turn to wait: Since
    151      * the external mutex is held, no thread can leave cond_wait,
    152      * yet. For this reason, we can be sure that no thread gets
    153      * a chance to eat *more* than one slice. OTOH, it means
    154      * that the last waiter must send us a wake-up.
    155      */
    156     WaitForSingleObject(cond->continue_event, INFINITE);
    157 }
    158 
    159 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
    160 {
    161     /*
    162      * This access is protected under the mutex.
    163      */
    164     cond->waiters++;
    165 
    166     /*
    167      * Unlock external mutex and wait for signal.
    168      * NOTE: we've held mutex locked long enough to increment
    169      * waiters count above, so there's no problem with
    170      * leaving mutex unlocked before we wait on semaphore.
    171      */
    172     qemu_mutex_unlock(mutex);
    173     WaitForSingleObject(cond->sema, INFINITE);
    174 
    175     /* Now waiters must rendez-vous with the signaling thread and
    176      * let it continue.  For cond_broadcast this has heavy contention
    177      * and triggers thundering herd.  So goes life.
    178      *
    179      * Decrease waiters count.  The mutex is not taken, so we have
    180      * to do this atomically.
    181      *
    182      * All waiters contend for the mutex at the end of this function
    183      * until the signaling thread relinquishes it.  To ensure
    184      * each waiter consumes exactly one slice of the semaphore,
    185      * the signaling thread stops until it is told by the last
    186      * waiter that it can go on.
    187      */
    188     if (InterlockedDecrement(&cond->waiters) == cond->target) {
    189         SetEvent(cond->continue_event);
    190     }
    191 
    192     qemu_mutex_lock(mutex);
    193 }
    194 
    195 void qemu_sem_init(QemuSemaphore *sem, int init)
    196 {
    197     /* Manual reset.  */
    198     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
    199 }
    200 
    201 void qemu_sem_destroy(QemuSemaphore *sem)
    202 {
    203     CloseHandle(sem->sema);
    204 }
    205 
    206 void qemu_sem_post(QemuSemaphore *sem)
    207 {
    208     ReleaseSemaphore(sem->sema, 1, NULL);
    209 }
    210 
    211 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
    212 {
    213     int rc = WaitForSingleObject(sem->sema, ms);
    214     if (rc == WAIT_OBJECT_0) {
    215         return 0;
    216     }
    217     if (rc != WAIT_TIMEOUT) {
    218         error_exit(GetLastError(), __func__);
    219     }
    220     return -1;
    221 }
    222 
    223 void qemu_sem_wait(QemuSemaphore *sem)
    224 {
    225     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
    226         error_exit(GetLastError(), __func__);
    227     }
    228 }
    229 
    230 void qemu_event_init(QemuEvent *ev, bool init)
    231 {
    232     /* Manual reset.  */
    233     ev->event = CreateEvent(NULL, TRUE, init, NULL);
    234 }
    235 
    236 void qemu_event_destroy(QemuEvent *ev)
    237 {
    238     CloseHandle(ev->event);
    239 }
    240 
    241 void qemu_event_set(QemuEvent *ev)
    242 {
    243     SetEvent(ev->event);
    244 }
    245 
    246 void qemu_event_reset(QemuEvent *ev)
    247 {
    248     ResetEvent(ev->event);
    249 }
    250 
    251 void qemu_event_wait(QemuEvent *ev)
    252 {
    253     WaitForSingleObject(ev->event, INFINITE);
    254 }
    255 
    256 struct QemuThreadData {
    257     /* Passed to win32_start_routine.  */
    258     void             *(*start_routine)(void *);
    259     void             *arg;
    260     short             mode;
    261 
    262     /* Only used for joinable threads. */
    263     bool              exited;
    264     void             *ret;
    265     CRITICAL_SECTION  cs;
    266 };
    267 
    268 static __thread QemuThreadData *qemu_thread_data;
    269 
    270 static unsigned __stdcall win32_start_routine(void *arg)
    271 {
    272     QemuThreadData *data = (QemuThreadData *) arg;
    273     void *(*start_routine)(void *) = data->start_routine;
    274     void *thread_arg = data->arg;
    275 
    276     if (data->mode == QEMU_THREAD_DETACHED) {
    277         g_free(data);
    278         data = NULL;
    279     }
    280     qemu_thread_data = data;
    281     qemu_thread_exit(start_routine(thread_arg));
    282     abort();
    283 }
    284 
    285 void qemu_thread_exit(void *arg)
    286 {
    287     QemuThreadData *data = qemu_thread_data;
    288 
    289     if (data) {
    290         assert(data->mode != QEMU_THREAD_DETACHED);
    291         data->ret = arg;
    292         EnterCriticalSection(&data->cs);
    293         data->exited = true;
    294         LeaveCriticalSection(&data->cs);
    295     }
    296     _endthreadex(0);
    297 }
    298 
    299 void *qemu_thread_join(QemuThread *thread)
    300 {
    301     QemuThreadData *data;
    302     void *ret;
    303     HANDLE handle;
    304 
    305     data = thread->data;
    306     if (!data) {
    307         return NULL;
    308     }
    309     /*
    310      * Because multiple copies of the QemuThread can exist via
    311      * qemu_thread_get_self, we need to store a value that cannot
    312      * leak there.  The simplest, non racy way is to store the TID,
    313      * discard the handle that _beginthreadex gives back, and
    314      * get another copy of the handle here.
    315      */
    316     handle = qemu_thread_get_handle(thread);
    317     if (handle) {
    318         WaitForSingleObject(handle, INFINITE);
    319         CloseHandle(handle);
    320     }
    321     ret = data->ret;
    322     assert(data->mode != QEMU_THREAD_DETACHED);
    323     DeleteCriticalSection(&data->cs);
    324     g_free(data);
    325     return ret;
    326 }
    327 
    328 void qemu_thread_create(QemuThread *thread,
    329                        void *(*start_routine)(void *),
    330                        void *arg, int mode)
    331 {
    332     HANDLE hThread;
    333     struct QemuThreadData *data;
    334 
    335     data = g_malloc(sizeof *data);
    336     data->start_routine = start_routine;
    337     data->arg = arg;
    338     data->mode = mode;
    339     data->exited = false;
    340 
    341     if (data->mode != QEMU_THREAD_DETACHED) {
    342         InitializeCriticalSection(&data->cs);
    343     }
    344 
    345     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
    346                                       data, 0, &thread->tid);
    347     if (!hThread) {
    348         error_exit(GetLastError(), __func__);
    349     }
    350     CloseHandle(hThread);
    351     thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
    352 }
    353 
    354 void qemu_thread_get_self(QemuThread *thread)
    355 {
    356     thread->data = qemu_thread_data;
    357     thread->tid = GetCurrentThreadId();
    358 }
    359 
    360 HANDLE qemu_thread_get_handle(QemuThread *thread)
    361 {
    362     QemuThreadData *data;
    363     HANDLE handle;
    364 
    365     data = thread->data;
    366     if (!data) {
    367         return NULL;
    368     }
    369 
    370     assert(data->mode != QEMU_THREAD_DETACHED);
    371     EnterCriticalSection(&data->cs);
    372     if (!data->exited) {
    373         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
    374                             thread->tid);
    375     } else {
    376         handle = NULL;
    377     }
    378     LeaveCriticalSection(&data->cs);
    379     return handle;
    380 }
    381 
    382 bool qemu_thread_is_self(QemuThread *thread)
    383 {
    384     return GetCurrentThreadId() == thread->tid;
    385 }
    386