Home | History | Annotate | Download | only in effects
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkBlurMask.h"
     11 #include "SkMath.h"
     12 #include "SkTemplates.h"
     13 #include "SkEndian.h"
     14 
     15 
     16 // This constant approximates the scaling done in the software path's
     17 // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
     18 // IMHO, it actually should be 1:  we blur "less" than we should do
     19 // according to the CSS and canvas specs, simply because Safari does the same.
     20 // Firefox used to do the same too, until 4.0 where they fixed it.  So at some
     21 // point we should probably get rid of these scaling constants and rebaseline
     22 // all the blur tests.
     23 static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f;
     24 
     25 SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) {
     26     return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
     27 }
     28 
     29 SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) {
     30     return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f;
     31 }
     32 
     33 #define UNROLL_SEPARABLE_LOOPS
     34 
     35 /**
     36  * This function performs a box blur in X, of the given radius.  If the
     37  * "transpose" parameter is true, it will transpose the pixels on write,
     38  * such that X and Y are swapped. Reads are always performed from contiguous
     39  * memory in X, for speed. The destination buffer (dst) must be at least
     40  * (width + leftRadius + rightRadius) * height bytes in size.
     41  *
     42  * This is what the inner loop looks like before unrolling, and with the two
     43  * cases broken out separately (width < diameter, width >= diameter):
     44  *
     45  *      if (width < diameter) {
     46  *          for (int x = 0; x < width; ++x) {
     47  *              sum += *right++;
     48  *              *dptr = (sum * scale + half) >> 24;
     49  *              dptr += dst_x_stride;
     50  *          }
     51  *          for (int x = width; x < diameter; ++x) {
     52  *              *dptr = (sum * scale + half) >> 24;
     53  *              dptr += dst_x_stride;
     54  *          }
     55  *          for (int x = 0; x < width; ++x) {
     56  *              *dptr = (sum * scale + half) >> 24;
     57  *              sum -= *left++;
     58  *              dptr += dst_x_stride;
     59  *          }
     60  *      } else {
     61  *          for (int x = 0; x < diameter; ++x) {
     62  *              sum += *right++;
     63  *              *dptr = (sum * scale + half) >> 24;
     64  *              dptr += dst_x_stride;
     65  *          }
     66  *          for (int x = diameter; x < width; ++x) {
     67  *              sum += *right++;
     68  *              *dptr = (sum * scale + half) >> 24;
     69  *              sum -= *left++;
     70  *              dptr += dst_x_stride;
     71  *          }
     72  *          for (int x = 0; x < diameter; ++x) {
     73  *              *dptr = (sum * scale + half) >> 24;
     74  *              sum -= *left++;
     75  *              dptr += dst_x_stride;
     76  *          }
     77  *      }
     78  */
     79 static int boxBlur(const uint8_t* src, int src_y_stride, uint8_t* dst,
     80                    int leftRadius, int rightRadius, int width, int height,
     81                    bool transpose)
     82 {
     83     int diameter = leftRadius + rightRadius;
     84     int kernelSize = diameter + 1;
     85     int border = SkMin32(width, diameter);
     86     uint32_t scale = (1 << 24) / kernelSize;
     87     int new_width = width + SkMax32(leftRadius, rightRadius) * 2;
     88     int dst_x_stride = transpose ? height : 1;
     89     int dst_y_stride = transpose ? 1 : new_width;
     90     uint32_t half = 1 << 23;
     91     for (int y = 0; y < height; ++y) {
     92         uint32_t sum = 0;
     93         uint8_t* dptr = dst + y * dst_y_stride;
     94         const uint8_t* right = src + y * src_y_stride;
     95         const uint8_t* left = right;
     96         for (int x = 0; x < rightRadius - leftRadius; x++) {
     97             *dptr = 0;
     98             dptr += dst_x_stride;
     99         }
    100 #define LEFT_BORDER_ITER \
    101             sum += *right++; \
    102             *dptr = (sum * scale + half) >> 24; \
    103             dptr += dst_x_stride;
    104 
    105         int x = 0;
    106 #ifdef UNROLL_SEPARABLE_LOOPS
    107         for (; x < border - 16; x += 16) {
    108             LEFT_BORDER_ITER
    109             LEFT_BORDER_ITER
    110             LEFT_BORDER_ITER
    111             LEFT_BORDER_ITER
    112             LEFT_BORDER_ITER
    113             LEFT_BORDER_ITER
    114             LEFT_BORDER_ITER
    115             LEFT_BORDER_ITER
    116             LEFT_BORDER_ITER
    117             LEFT_BORDER_ITER
    118             LEFT_BORDER_ITER
    119             LEFT_BORDER_ITER
    120             LEFT_BORDER_ITER
    121             LEFT_BORDER_ITER
    122             LEFT_BORDER_ITER
    123             LEFT_BORDER_ITER
    124         }
    125 #endif
    126         for (; x < border; ++x) {
    127             LEFT_BORDER_ITER
    128         }
    129 #undef LEFT_BORDER_ITER
    130 #define TRIVIAL_ITER \
    131             *dptr = (sum * scale + half) >> 24; \
    132             dptr += dst_x_stride;
    133         x = width;
    134 #ifdef UNROLL_SEPARABLE_LOOPS
    135         for (; x < diameter - 16; x += 16) {
    136             TRIVIAL_ITER
    137             TRIVIAL_ITER
    138             TRIVIAL_ITER
    139             TRIVIAL_ITER
    140             TRIVIAL_ITER
    141             TRIVIAL_ITER
    142             TRIVIAL_ITER
    143             TRIVIAL_ITER
    144             TRIVIAL_ITER
    145             TRIVIAL_ITER
    146             TRIVIAL_ITER
    147             TRIVIAL_ITER
    148             TRIVIAL_ITER
    149             TRIVIAL_ITER
    150             TRIVIAL_ITER
    151             TRIVIAL_ITER
    152         }
    153 #endif
    154         for (; x < diameter; ++x) {
    155             TRIVIAL_ITER
    156         }
    157 #undef TRIVIAL_ITER
    158 #define CENTER_ITER \
    159             sum += *right++; \
    160             *dptr = (sum * scale + half) >> 24; \
    161             sum -= *left++; \
    162             dptr += dst_x_stride;
    163 
    164         x = diameter;
    165 #ifdef UNROLL_SEPARABLE_LOOPS
    166         for (; x < width - 16; x += 16) {
    167             CENTER_ITER
    168             CENTER_ITER
    169             CENTER_ITER
    170             CENTER_ITER
    171             CENTER_ITER
    172             CENTER_ITER
    173             CENTER_ITER
    174             CENTER_ITER
    175             CENTER_ITER
    176             CENTER_ITER
    177             CENTER_ITER
    178             CENTER_ITER
    179             CENTER_ITER
    180             CENTER_ITER
    181             CENTER_ITER
    182             CENTER_ITER
    183         }
    184 #endif
    185         for (; x < width; ++x) {
    186             CENTER_ITER
    187         }
    188 #undef CENTER_ITER
    189 #define RIGHT_BORDER_ITER \
    190             *dptr = (sum * scale + half) >> 24; \
    191             sum -= *left++; \
    192             dptr += dst_x_stride;
    193 
    194         x = 0;
    195 #ifdef UNROLL_SEPARABLE_LOOPS
    196         for (; x < border - 16; x += 16) {
    197             RIGHT_BORDER_ITER
    198             RIGHT_BORDER_ITER
    199             RIGHT_BORDER_ITER
    200             RIGHT_BORDER_ITER
    201             RIGHT_BORDER_ITER
    202             RIGHT_BORDER_ITER
    203             RIGHT_BORDER_ITER
    204             RIGHT_BORDER_ITER
    205             RIGHT_BORDER_ITER
    206             RIGHT_BORDER_ITER
    207             RIGHT_BORDER_ITER
    208             RIGHT_BORDER_ITER
    209             RIGHT_BORDER_ITER
    210             RIGHT_BORDER_ITER
    211             RIGHT_BORDER_ITER
    212             RIGHT_BORDER_ITER
    213         }
    214 #endif
    215         for (; x < border; ++x) {
    216             RIGHT_BORDER_ITER
    217         }
    218 #undef RIGHT_BORDER_ITER
    219         for (int x = 0; x < leftRadius - rightRadius; ++x) {
    220             *dptr = 0;
    221             dptr += dst_x_stride;
    222         }
    223         SkASSERT(sum == 0);
    224     }
    225     return new_width;
    226 }
    227 
    228 /**
    229  * This variant of the box blur handles blurring of non-integer radii.  It
    230  * keeps two running sums: an outer sum for the rounded-up kernel radius, and
    231  * an inner sum for the rounded-down kernel radius.  For each pixel, it linearly
    232  * interpolates between them.  In float this would be:
    233  *  outer_weight * outer_sum / kernelSize +
    234  *  (1.0 - outer_weight) * innerSum / (kernelSize - 2)
    235  *
    236  * This is what the inner loop looks like before unrolling, and with the two
    237  * cases broken out separately (width < diameter, width >= diameter):
    238  *
    239  *      if (width < diameter) {
    240  *          for (int x = 0; x < width; x++) {
    241  *              inner_sum = outer_sum;
    242  *              outer_sum += *right++;
    243  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    244  *              dptr += dst_x_stride;
    245  *          }
    246  *          for (int x = width; x < diameter; ++x) {
    247  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    248  *              dptr += dst_x_stride;
    249  *          }
    250  *          for (int x = 0; x < width; x++) {
    251  *              inner_sum = outer_sum - *left++;
    252  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    253  *              dptr += dst_x_stride;
    254  *              outer_sum = inner_sum;
    255  *          }
    256  *      } else {
    257  *          for (int x = 0; x < diameter; x++) {
    258  *              inner_sum = outer_sum;
    259  *              outer_sum += *right++;
    260  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    261  *              dptr += dst_x_stride;
    262  *          }
    263  *          for (int x = diameter; x < width; ++x) {
    264  *              inner_sum = outer_sum - *left;
    265  *              outer_sum += *right++;
    266  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    267  *              dptr += dst_x_stride;
    268  *              outer_sum -= *left++;
    269  *          }
    270  *          for (int x = 0; x < diameter; x++) {
    271  *              inner_sum = outer_sum - *left++;
    272  *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    273  *              dptr += dst_x_stride;
    274  *              outer_sum = inner_sum;
    275  *          }
    276  *      }
    277  *  }
    278  *  return new_width;
    279  */
    280 
    281 static int boxBlurInterp(const uint8_t* src, int src_y_stride, uint8_t* dst,
    282                          int radius, int width, int height,
    283                          bool transpose, uint8_t outer_weight)
    284 {
    285     int diameter = radius * 2;
    286     int kernelSize = diameter + 1;
    287     int border = SkMin32(width, diameter);
    288     int inner_weight = 255 - outer_weight;
    289     outer_weight += outer_weight >> 7;
    290     inner_weight += inner_weight >> 7;
    291     uint32_t outer_scale = (outer_weight << 16) / kernelSize;
    292     uint32_t inner_scale = (inner_weight << 16) / (kernelSize - 2);
    293     uint32_t half = 1 << 23;
    294     int new_width = width + diameter;
    295     int dst_x_stride = transpose ? height : 1;
    296     int dst_y_stride = transpose ? 1 : new_width;
    297     for (int y = 0; y < height; ++y) {
    298         uint32_t outer_sum = 0, inner_sum = 0;
    299         uint8_t* dptr = dst + y * dst_y_stride;
    300         const uint8_t* right = src + y * src_y_stride;
    301         const uint8_t* left = right;
    302         int x = 0;
    303 
    304 #define LEFT_BORDER_ITER \
    305             inner_sum = outer_sum; \
    306             outer_sum += *right++; \
    307             *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
    308             dptr += dst_x_stride;
    309 
    310 #ifdef UNROLL_SEPARABLE_LOOPS
    311         for (;x < border - 16; x += 16) {
    312             LEFT_BORDER_ITER
    313             LEFT_BORDER_ITER
    314             LEFT_BORDER_ITER
    315             LEFT_BORDER_ITER
    316             LEFT_BORDER_ITER
    317             LEFT_BORDER_ITER
    318             LEFT_BORDER_ITER
    319             LEFT_BORDER_ITER
    320             LEFT_BORDER_ITER
    321             LEFT_BORDER_ITER
    322             LEFT_BORDER_ITER
    323             LEFT_BORDER_ITER
    324             LEFT_BORDER_ITER
    325             LEFT_BORDER_ITER
    326             LEFT_BORDER_ITER
    327             LEFT_BORDER_ITER
    328         }
    329 #endif
    330 
    331         for (;x < border; ++x) {
    332             LEFT_BORDER_ITER
    333         }
    334 #undef LEFT_BORDER_ITER
    335         for (int x = width; x < diameter; ++x) {
    336             *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
    337             dptr += dst_x_stride;
    338         }
    339         x = diameter;
    340 
    341 #define CENTER_ITER \
    342             inner_sum = outer_sum - *left; \
    343             outer_sum += *right++; \
    344             *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
    345             dptr += dst_x_stride; \
    346             outer_sum -= *left++;
    347 
    348 #ifdef UNROLL_SEPARABLE_LOOPS
    349         for (; x < width - 16; x += 16) {
    350             CENTER_ITER
    351             CENTER_ITER
    352             CENTER_ITER
    353             CENTER_ITER
    354             CENTER_ITER
    355             CENTER_ITER
    356             CENTER_ITER
    357             CENTER_ITER
    358             CENTER_ITER
    359             CENTER_ITER
    360             CENTER_ITER
    361             CENTER_ITER
    362             CENTER_ITER
    363             CENTER_ITER
    364             CENTER_ITER
    365             CENTER_ITER
    366         }
    367 #endif
    368         for (; x < width; ++x) {
    369             CENTER_ITER
    370         }
    371 #undef CENTER_ITER
    372 
    373         #define RIGHT_BORDER_ITER \
    374             inner_sum = outer_sum - *left++; \
    375             *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
    376             dptr += dst_x_stride; \
    377             outer_sum = inner_sum;
    378 
    379         x = 0;
    380 #ifdef UNROLL_SEPARABLE_LOOPS
    381         for (; x < border - 16; x += 16) {
    382             RIGHT_BORDER_ITER
    383             RIGHT_BORDER_ITER
    384             RIGHT_BORDER_ITER
    385             RIGHT_BORDER_ITER
    386             RIGHT_BORDER_ITER
    387             RIGHT_BORDER_ITER
    388             RIGHT_BORDER_ITER
    389             RIGHT_BORDER_ITER
    390             RIGHT_BORDER_ITER
    391             RIGHT_BORDER_ITER
    392             RIGHT_BORDER_ITER
    393             RIGHT_BORDER_ITER
    394             RIGHT_BORDER_ITER
    395             RIGHT_BORDER_ITER
    396             RIGHT_BORDER_ITER
    397             RIGHT_BORDER_ITER
    398         }
    399 #endif
    400         for (; x < border; ++x) {
    401             RIGHT_BORDER_ITER
    402         }
    403 #undef RIGHT_BORDER_ITER
    404         SkASSERT(outer_sum == 0 && inner_sum == 0);
    405     }
    406     return new_width;
    407 }
    408 
    409 static void get_adjusted_radii(SkScalar passRadius, int *loRadius, int *hiRadius)
    410 {
    411     *loRadius = *hiRadius = SkScalarCeilToInt(passRadius);
    412     if (SkIntToScalar(*hiRadius) - passRadius > 0.5f) {
    413         *loRadius = *hiRadius - 1;
    414     }
    415 }
    416 
    417 #include "SkColorPriv.h"
    418 
    419 static void merge_src_with_blur(uint8_t dst[], int dstRB,
    420                                 const uint8_t src[], int srcRB,
    421                                 const uint8_t blur[], int blurRB,
    422                                 int sw, int sh) {
    423     dstRB -= sw;
    424     srcRB -= sw;
    425     blurRB -= sw;
    426     while (--sh >= 0) {
    427         for (int x = sw - 1; x >= 0; --x) {
    428             *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*src)));
    429             dst += 1;
    430             src += 1;
    431             blur += 1;
    432         }
    433         dst += dstRB;
    434         src += srcRB;
    435         blur += blurRB;
    436     }
    437 }
    438 
    439 static void clamp_with_orig(uint8_t dst[], int dstRowBytes,
    440                             const uint8_t src[], int srcRowBytes,
    441                             int sw, int sh,
    442                             SkBlurStyle style) {
    443     int x;
    444     while (--sh >= 0) {
    445         switch (style) {
    446         case kSolid_SkBlurStyle:
    447             for (x = sw - 1; x >= 0; --x) {
    448                 int s = *src;
    449                 int d = *dst;
    450                 *dst = SkToU8(s + d - SkMulDiv255Round(s, d));
    451                 dst += 1;
    452                 src += 1;
    453             }
    454             break;
    455         case kOuter_SkBlurStyle:
    456             for (x = sw - 1; x >= 0; --x) {
    457                 if (*src) {
    458                     *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - *src)));
    459                 }
    460                 dst += 1;
    461                 src += 1;
    462             }
    463             break;
    464         default:
    465             SkDEBUGFAIL("Unexpected blur style here");
    466             break;
    467         }
    468         dst += dstRowBytes - sw;
    469         src += srcRowBytes - sw;
    470     }
    471 }
    472 
    473 ///////////////////////////////////////////////////////////////////////////////
    474 
    475 // we use a local function to wrap the class static method to work around
    476 // a bug in gcc98
    477 void SkMask_FreeImage(uint8_t* image);
    478 void SkMask_FreeImage(uint8_t* image) {
    479     SkMask::FreeImage(image);
    480 }
    481 
    482 bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src,
    483                          SkScalar sigma, SkBlurStyle style, SkBlurQuality quality,
    484                          SkIPoint* margin, bool force_quality) {
    485 
    486     if (src.fFormat != SkMask::kA8_Format) {
    487         return false;
    488     }
    489 
    490     // Force high quality off for small radii (performance)
    491     if (!force_quality && sigma <= SkIntToScalar(2)) {
    492         quality = kLow_SkBlurQuality;
    493     }
    494 
    495     SkScalar passRadius;
    496     if (kHigh_SkBlurQuality == quality) {
    497         // For the high quality path the 3 pass box blur kernel width is
    498         // 6*rad+1 while the full Gaussian width is 6*sigma.
    499         passRadius = sigma - (1/6.0f);
    500     } else {
    501         // For the low quality path we only attempt to cover 3*sigma of the
    502         // Gaussian blur area (1.5*sigma on each side). The single pass box
    503         // blur's kernel size is 2*rad+1.
    504         passRadius = 1.5f*sigma - 0.5f;
    505     }
    506 
    507     // highQuality: use three box blur passes as a cheap way
    508     // to approximate a Gaussian blur
    509     int passCount = (kHigh_SkBlurQuality == quality) ? 3 : 1;
    510 
    511     int rx = SkScalarCeilToInt(passRadius);
    512     int outerWeight = 255 - SkScalarRoundToInt((SkIntToScalar(rx) - passRadius) * 255);
    513 
    514     SkASSERT(rx >= 0);
    515     SkASSERT((unsigned)outerWeight <= 255);
    516     if (rx <= 0) {
    517         return false;
    518     }
    519 
    520     int ry = rx;    // only do square blur for now
    521 
    522     int padx = passCount * rx;
    523     int pady = passCount * ry;
    524 
    525     if (margin) {
    526         margin->set(padx, pady);
    527     }
    528     dst->fBounds.set(src.fBounds.fLeft - padx, src.fBounds.fTop - pady,
    529                      src.fBounds.fRight + padx, src.fBounds.fBottom + pady);
    530 
    531     dst->fRowBytes = dst->fBounds.width();
    532     dst->fFormat = SkMask::kA8_Format;
    533     dst->fImage = NULL;
    534 
    535     if (src.fImage) {
    536         size_t dstSize = dst->computeImageSize();
    537         if (0 == dstSize) {
    538             return false;   // too big to allocate, abort
    539         }
    540 
    541         int             sw = src.fBounds.width();
    542         int             sh = src.fBounds.height();
    543         const uint8_t*  sp = src.fImage;
    544         uint8_t*        dp = SkMask::AllocImage(dstSize);
    545         SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dp);
    546 
    547         // build the blurry destination
    548         SkAutoTMalloc<uint8_t>  tmpBuffer(dstSize);
    549         uint8_t*                tp = tmpBuffer.get();
    550         int w = sw, h = sh;
    551 
    552         if (outerWeight == 255) {
    553             int loRadius, hiRadius;
    554             get_adjusted_radii(passRadius, &loRadius, &hiRadius);
    555             if (kHigh_SkBlurQuality == quality) {
    556                 // Do three X blurs, with a transpose on the final one.
    557                 w = boxBlur(sp, src.fRowBytes, tp, loRadius, hiRadius, w, h, false);
    558                 w = boxBlur(tp, w,             dp, hiRadius, loRadius, w, h, false);
    559                 w = boxBlur(dp, w,             tp, hiRadius, hiRadius, w, h, true);
    560                 // Do three Y blurs, with a transpose on the final one.
    561                 h = boxBlur(tp, h,             dp, loRadius, hiRadius, h, w, false);
    562                 h = boxBlur(dp, h,             tp, hiRadius, loRadius, h, w, false);
    563                 h = boxBlur(tp, h,             dp, hiRadius, hiRadius, h, w, true);
    564             } else {
    565                 w = boxBlur(sp, src.fRowBytes, tp, rx, rx, w, h, true);
    566                 h = boxBlur(tp, h,             dp, ry, ry, h, w, true);
    567             }
    568         } else {
    569             if (kHigh_SkBlurQuality == quality) {
    570                 // Do three X blurs, with a transpose on the final one.
    571                 w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, false, outerWeight);
    572                 w = boxBlurInterp(tp, w,             dp, rx, w, h, false, outerWeight);
    573                 w = boxBlurInterp(dp, w,             tp, rx, w, h, true, outerWeight);
    574                 // Do three Y blurs, with a transpose on the final one.
    575                 h = boxBlurInterp(tp, h,             dp, ry, h, w, false, outerWeight);
    576                 h = boxBlurInterp(dp, h,             tp, ry, h, w, false, outerWeight);
    577                 h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
    578             } else {
    579                 w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, true, outerWeight);
    580                 h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
    581             }
    582         }
    583 
    584         dst->fImage = dp;
    585         // if need be, alloc the "real" dst (same size as src) and copy/merge
    586         // the blur into it (applying the src)
    587         if (style == kInner_SkBlurStyle) {
    588             // now we allocate the "real" dst, mirror the size of src
    589             size_t srcSize = src.computeImageSize();
    590             if (0 == srcSize) {
    591                 return false;   // too big to allocate, abort
    592             }
    593             dst->fImage = SkMask::AllocImage(srcSize);
    594             merge_src_with_blur(dst->fImage, src.fRowBytes,
    595                                 sp, src.fRowBytes,
    596                                 dp + passCount * (rx + ry * dst->fRowBytes),
    597                                 dst->fRowBytes, sw, sh);
    598             SkMask::FreeImage(dp);
    599         } else if (style != kNormal_SkBlurStyle) {
    600             clamp_with_orig(dp + passCount * (rx + ry * dst->fRowBytes),
    601                             dst->fRowBytes, sp, src.fRowBytes, sw, sh, style);
    602         }
    603         (void)autoCall.detach();
    604     }
    605 
    606     if (style == kInner_SkBlurStyle) {
    607         dst->fBounds = src.fBounds; // restore trimmed bounds
    608         dst->fRowBytes = src.fRowBytes;
    609     }
    610 
    611     return true;
    612 }
    613 
    614 /* Convolving a box with itself three times results in a piecewise
    615    quadratic function:
    616 
    617    0                              x <= -1.5
    618    9/8 + 3/2 x + 1/2 x^2   -1.5 < x <= -.5
    619    3/4 - x^2                -.5 < x <= .5
    620    9/8 - 3/2 x + 1/2 x^2    0.5 < x <= 1.5
    621    0                        1.5 < x
    622 
    623    Mathematica:
    624 
    625    g[x_] := Piecewise [ {
    626      {9/8 + 3/2 x + 1/2 x^2 ,  -1.5 < x <= -.5},
    627      {3/4 - x^2             ,   -.5 < x <= .5},
    628      {9/8 - 3/2 x + 1/2 x^2 ,   0.5 < x <= 1.5}
    629    }, 0]
    630 
    631    To get the profile curve of the blurred step function at the rectangle
    632    edge, we evaluate the indefinite integral, which is piecewise cubic:
    633 
    634    0                                        x <= -1.5
    635    9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3   -1.5 < x <= -0.5
    636    1/2 + 3/4 x - 1/3 x^3              -.5 < x <= .5
    637    7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3     .5 < x <= 1.5
    638    1                                  1.5 < x
    639 
    640    in Mathematica code:
    641 
    642    gi[x_] := Piecewise[ {
    643      { 0 , x <= -1.5 },
    644      { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 },
    645      { 1/2 + 3/4 x - 1/3 x^3          ,  -.5 < x <= .5},
    646      { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3,   .5 < x <= 1.5}
    647    },1]
    648 */
    649 
    650 static float gaussianIntegral(float x) {
    651     if (x > 1.5f) {
    652         return 0.0f;
    653     }
    654     if (x < -1.5f) {
    655         return 1.0f;
    656     }
    657 
    658     float x2 = x*x;
    659     float x3 = x2*x;
    660 
    661     if ( x > 0.5f ) {
    662         return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x);
    663     }
    664     if ( x > -0.5f ) {
    665         return 0.5f - (0.75f * x - x3 / 3.0f);
    666     }
    667     return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x);
    668 }
    669 
    670 /*  ComputeBlurProfile allocates and fills in an array of floating
    671     point values between 0 and 255 for the profile signature of
    672     a blurred half-plane with the given blur radius.  Since we're
    673     going to be doing screened multiplications (i.e., 1 - (1-x)(1-y))
    674     all the time, we actually fill in the profile pre-inverted
    675     (already done 255-x).
    676 
    677     It's the responsibility of the caller to delete the
    678     memory returned in profile_out.
    679 */
    680 
    681 void SkBlurMask::ComputeBlurProfile(SkScalar sigma, uint8_t **profile_out) {
    682     int size = SkScalarCeilToInt(6*sigma);
    683 
    684     int center = size >> 1;
    685     uint8_t *profile = SkNEW_ARRAY(uint8_t, size);
    686 
    687     float invr = 1.f/(2*sigma);
    688 
    689     profile[0] = 255;
    690     for (int x = 1 ; x < size ; ++x) {
    691         float scaled_x = (center - x - .5f) * invr;
    692         float gi = gaussianIntegral(scaled_x);
    693         profile[x] = 255 - (uint8_t) (255.f * gi);
    694     }
    695 
    696     *profile_out = profile;
    697 }
    698 
    699 // TODO MAYBE: Maintain a profile cache to avoid recomputing this for
    700 // commonly used radii.  Consider baking some of the most common blur radii
    701 // directly in as static data?
    702 
    703 // Implementation adapted from Michael Herf's approach:
    704 // http://stereopsis.com/shadowrect/
    705 
    706 uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, int blurred_width, int sharp_width) {
    707     int dx = SkAbs32(((loc << 1) + 1) - blurred_width) - sharp_width; // how far are we from the original edge?
    708     int ox = dx >> 1;
    709     if (ox < 0) {
    710         ox = 0;
    711     }
    712 
    713     return profile[ox];
    714 }
    715 
    716 void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile,
    717                                         unsigned int width, SkScalar sigma) {
    718 
    719     unsigned int profile_size = SkScalarCeilToInt(6*sigma);
    720     SkAutoTMalloc<uint8_t> horizontalScanline(width);
    721 
    722     unsigned int sw = width - profile_size;
    723     // nearest odd number less than the profile size represents the center
    724     // of the (2x scaled) profile
    725     int center = ( profile_size & ~1 ) - 1;
    726 
    727     int w = sw - center;
    728 
    729     for (unsigned int x = 0 ; x < width ; ++x) {
    730        if (profile_size <= sw) {
    731            pixels[x] = ProfileLookup(profile, x, width, w);
    732        } else {
    733            float span = float(sw)/(2*sigma);
    734            float giX = 1.5f - (x+.5f)/(2*sigma);
    735            pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span)));
    736        }
    737     }
    738 }
    739 
    740 bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst,
    741                           const SkRect &src, SkBlurStyle style,
    742                           SkIPoint *margin, SkMask::CreateMode createMode) {
    743     int profile_size = SkScalarCeilToInt(6*sigma);
    744 
    745     int pad = profile_size/2;
    746     if (margin) {
    747         margin->set( pad, pad );
    748     }
    749 
    750     dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad),
    751                      SkScalarRoundToInt(src.fTop - pad),
    752                      SkScalarRoundToInt(src.fRight + pad),
    753                      SkScalarRoundToInt(src.fBottom + pad));
    754 
    755     dst->fRowBytes = dst->fBounds.width();
    756     dst->fFormat = SkMask::kA8_Format;
    757     dst->fImage = NULL;
    758 
    759     int             sw = SkScalarFloorToInt(src.width());
    760     int             sh = SkScalarFloorToInt(src.height());
    761 
    762     if (createMode == SkMask::kJustComputeBounds_CreateMode) {
    763         if (style == kInner_SkBlurStyle) {
    764             dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
    765                              SkScalarRoundToInt(src.fTop),
    766                              SkScalarRoundToInt(src.fRight),
    767                              SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
    768             dst->fRowBytes = sw;
    769         }
    770         return true;
    771     }
    772     uint8_t *profile = NULL;
    773 
    774     ComputeBlurProfile(sigma, &profile);
    775     SkAutoTDeleteArray<uint8_t> ada(profile);
    776 
    777     size_t dstSize = dst->computeImageSize();
    778     if (0 == dstSize) {
    779         return false;   // too big to allocate, abort
    780     }
    781 
    782     uint8_t*        dp = SkMask::AllocImage(dstSize);
    783 
    784     dst->fImage = dp;
    785 
    786     int dstHeight = dst->fBounds.height();
    787     int dstWidth = dst->fBounds.width();
    788 
    789     uint8_t *outptr = dp;
    790 
    791     SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth);
    792     SkAutoTMalloc<uint8_t> verticalScanline(dstHeight);
    793 
    794     ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma);
    795     ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma);
    796 
    797     for (int y = 0 ; y < dstHeight ; ++y) {
    798         for (int x = 0 ; x < dstWidth ; x++) {
    799             unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]);
    800             *(outptr++) = maskval;
    801         }
    802     }
    803 
    804     if (style == kInner_SkBlurStyle) {
    805         // now we allocate the "real" dst, mirror the size of src
    806         size_t srcSize = (size_t)(src.width() * src.height());
    807         if (0 == srcSize) {
    808             return false;   // too big to allocate, abort
    809         }
    810         dst->fImage = SkMask::AllocImage(srcSize);
    811         for (int y = 0 ; y < sh ; y++) {
    812             uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad;
    813             uint8_t *inner_scanline = dst->fImage + y*sw;
    814             memcpy(inner_scanline, blur_scanline, sw);
    815         }
    816         SkMask::FreeImage(dp);
    817 
    818         dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
    819                          SkScalarRoundToInt(src.fTop),
    820                          SkScalarRoundToInt(src.fRight),
    821                          SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
    822         dst->fRowBytes = sw;
    823 
    824     } else if (style == kOuter_SkBlurStyle) {
    825         for (int y = pad ; y < dstHeight-pad ; y++) {
    826             uint8_t *dst_scanline = dp + y*dstWidth + pad;
    827             memset(dst_scanline, 0, sw);
    828         }
    829     } else if (style == kSolid_SkBlurStyle) {
    830         for (int y = pad ; y < dstHeight-pad ; y++) {
    831             uint8_t *dst_scanline = dp + y*dstWidth + pad;
    832             memset(dst_scanline, 0xff, sw);
    833         }
    834     }
    835     // normal and solid styles are the same for analytic rect blurs, so don't
    836     // need to handle solid specially.
    837 
    838     return true;
    839 }
    840 
    841 bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst,
    842                            const SkRRect &src, SkBlurStyle style,
    843                            SkIPoint *margin, SkMask::CreateMode createMode) {
    844     // Temporary for now -- always fail, should cause caller to fall back
    845     // to old path.  Plumbing just to land API and parallelize effort.
    846 
    847     return false;
    848 }
    849 
    850 // The "simple" blur is a direct implementation of separable convolution with a discrete
    851 // gaussian kernel.  It's "ground truth" in a sense; too slow to be used, but very
    852 // useful for correctness comparisons.
    853 
    854 bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src,
    855                                  SkBlurStyle style, SkIPoint* margin) {
    856 
    857     if (src.fFormat != SkMask::kA8_Format) {
    858         return false;
    859     }
    860 
    861     float variance = sigma * sigma;
    862 
    863     int windowSize = SkScalarCeilToInt(sigma*6);
    864     // round window size up to nearest odd number
    865     windowSize |= 1;
    866 
    867     SkAutoTMalloc<float> gaussWindow(windowSize);
    868 
    869     int halfWindow = windowSize >> 1;
    870 
    871     gaussWindow[halfWindow] = 1;
    872 
    873     float windowSum = 1;
    874     for (int x = 1 ; x <= halfWindow ; ++x) {
    875         float gaussian = expf(-x*x / (2*variance));
    876         gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian;
    877         windowSum += 2*gaussian;
    878     }
    879 
    880     // leave the filter un-normalized for now; we will divide by the normalization
    881     // sum later;
    882 
    883     int pad = halfWindow;
    884     if (margin) {
    885         margin->set( pad, pad );
    886     }
    887 
    888     dst->fBounds = src.fBounds;
    889     dst->fBounds.outset(pad, pad);
    890 
    891     dst->fRowBytes = dst->fBounds.width();
    892     dst->fFormat = SkMask::kA8_Format;
    893     dst->fImage = NULL;
    894 
    895     if (src.fImage) {
    896 
    897         size_t dstSize = dst->computeImageSize();
    898         if (0 == dstSize) {
    899             return false;   // too big to allocate, abort
    900         }
    901 
    902         int             srcWidth = src.fBounds.width();
    903         int             srcHeight = src.fBounds.height();
    904         int             dstWidth = dst->fBounds.width();
    905 
    906         const uint8_t*  srcPixels = src.fImage;
    907         uint8_t*        dstPixels = SkMask::AllocImage(dstSize);
    908         SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dstPixels);
    909 
    910         // do the actual blur.  First, make a padded copy of the source.
    911         // use double pad so we never have to check if we're outside anything
    912 
    913         int padWidth = srcWidth + 4*pad;
    914         int padHeight = srcHeight;
    915         int padSize = padWidth * padHeight;
    916 
    917         SkAutoTMalloc<uint8_t> padPixels(padSize);
    918         memset(padPixels, 0, padSize);
    919 
    920         for (int y = 0 ; y < srcHeight; ++y) {
    921             uint8_t* padptr = padPixels + y * padWidth + 2*pad;
    922             const uint8_t* srcptr = srcPixels + y * srcWidth;
    923             memcpy(padptr, srcptr, srcWidth);
    924         }
    925 
    926         // blur in X, transposing the result into a temporary floating point buffer.
    927         // also double-pad the intermediate result so that the second blur doesn't
    928         // have to do extra conditionals.
    929 
    930         int tmpWidth = padHeight + 4*pad;
    931         int tmpHeight = padWidth - 2*pad;
    932         int tmpSize = tmpWidth * tmpHeight;
    933 
    934         SkAutoTMalloc<float> tmpImage(tmpSize);
    935         memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0]));
    936 
    937         for (int y = 0 ; y < padHeight ; ++y) {
    938             uint8_t *srcScanline = padPixels + y*padWidth;
    939             for (int x = pad ; x < padWidth - pad ; ++x) {
    940                 float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output
    941                 uint8_t *windowCenter = srcScanline + x;
    942                 for (int i = -pad ; i <= pad ; ++i) {
    943                     *outPixel += gaussWindow[pad+i]*windowCenter[i];
    944                 }
    945                 *outPixel /= windowSum;
    946             }
    947         }
    948 
    949         // blur in Y; now filling in the actual desired destination.  We have to do
    950         // the transpose again; these transposes guarantee that we read memory in
    951         // linear order.
    952 
    953         for (int y = 0 ; y < tmpHeight ; ++y) {
    954             float *srcScanline = tmpImage + y*tmpWidth;
    955             for (int x = pad ; x < tmpWidth - pad ; ++x) {
    956                 float *windowCenter = srcScanline + x;
    957                 float finalValue = 0;
    958                 for (int i = -pad ; i <= pad ; ++i) {
    959                     finalValue += gaussWindow[pad+i]*windowCenter[i];
    960                 }
    961                 finalValue /= windowSum;
    962                 uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output
    963                 int integerPixel = int(finalValue + 0.5f);
    964                 *outPixel = SkClampMax( SkClampPos(integerPixel), 255 );
    965             }
    966         }
    967 
    968         dst->fImage = dstPixels;
    969         // if need be, alloc the "real" dst (same size as src) and copy/merge
    970         // the blur into it (applying the src)
    971         if (style == kInner_SkBlurStyle) {
    972             // now we allocate the "real" dst, mirror the size of src
    973             size_t srcSize = src.computeImageSize();
    974             if (0 == srcSize) {
    975                 return false;   // too big to allocate, abort
    976             }
    977             dst->fImage = SkMask::AllocImage(srcSize);
    978             merge_src_with_blur(dst->fImage, src.fRowBytes,
    979                 srcPixels, src.fRowBytes,
    980                 dstPixels + pad*dst->fRowBytes + pad,
    981                 dst->fRowBytes, srcWidth, srcHeight);
    982             SkMask::FreeImage(dstPixels);
    983         } else if (style != kNormal_SkBlurStyle) {
    984             clamp_with_orig(dstPixels + pad*dst->fRowBytes + pad,
    985                 dst->fRowBytes, srcPixels, src.fRowBytes, srcWidth, srcHeight, style);
    986         }
    987         (void)autoCall.detach();
    988     }
    989 
    990     if (style == kInner_SkBlurStyle) {
    991         dst->fBounds = src.fBounds; // restore trimmed bounds
    992         dst->fRowBytes = src.fRowBytes;
    993     }
    994 
    995     return true;
    996 }
    997