Home | History | Annotate | Download | only in ragel
      1 /*
      2  * Copyright 2012, Google Inc.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are
      7  * met:
      8  *
      9  *     * Redistributions of source code must retain the above copyright
     10  * notice, this list of conditions and the following disclaimer.
     11  *     * Redistributions in binary form must reproduce the above
     12  * copyright notice, this list of conditions and the following disclaimer
     13  * in the documentation and/or other materials provided with the
     14  * distribution.
     15  *     * Neither the name of Google Inc. nor the names of its
     16  * contributors may be used to endorse or promote products derived from
     17  * this software without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 package org.jf.dexlib2.util;
     33 
     34 import org.jf.dexlib2.iface.instruction.Instruction;
     35 import org.jf.dexlib2.iface.instruction.OneRegisterInstruction;
     36 import org.jf.dexlib2.iface.instruction.WideLiteralInstruction;
     37 
     38 import java.util.List;
     39 
     40 public class SyntheticAccessorFSM {
     41     %% machine SyntheticAccessorFSM;
     42     %% write data;
     43 
     44     // math type constants
     45     public static final int ADD = SyntheticAccessorResolver.ADD_ASSIGNMENT;
     46     public static final int SUB = SyntheticAccessorResolver.SUB_ASSIGNMENT;
     47     public static final int MUL = SyntheticAccessorResolver.MUL_ASSIGNMENT;
     48     public static final int DIV = SyntheticAccessorResolver.DIV_ASSIGNMENT;
     49     public static final int REM = SyntheticAccessorResolver.REM_ASSIGNMENT;
     50     public static final int AND = SyntheticAccessorResolver.AND_ASSIGNMENT;
     51     public static final int OR = SyntheticAccessorResolver.OR_ASSIGNMENT;
     52     public static final int XOR = SyntheticAccessorResolver.XOR_ASSIGNMENT;
     53     public static final int SHL = SyntheticAccessorResolver.SHL_ASSIGNMENT;
     54     public static final int SHR = SyntheticAccessorResolver.SHR_ASSIGNMENT;
     55     public static final int USHR = SyntheticAccessorResolver.USHR_ASSIGNMENT;
     56 
     57     public static final int INT = 0;
     58     public static final int LONG = 1;
     59     public static final int FLOAT = 2;
     60     public static final int DOUBLE = 3;
     61 
     62     public static final int POSITIVE_ONE = 1;
     63     public static final int NEGATIVE_ONE = -1;
     64     public static final int OTHER = 0;
     65 
     66     public static int test(List<? extends Instruction> instructions) {
     67         int accessorType = -1;
     68         int cs, p = 0;
     69         int pe = instructions.size();
     70 
     71         // one of the math type constants representing the type of math operation being performed
     72         int mathOp = -1;
     73 
     74         // for increments an decrements, the type of value the math operation is on
     75         int mathType = -1;
     76 
     77         // for increments and decrements, the value of the constant that is used
     78         long constantValue = 0;
     79 
     80         // The source register for the put instruction
     81         int putRegister = -1;
     82         // The return register;
     83         int returnRegister = -1;
     84 
     85         %%{
     86             import "Opcodes.rl";
     87             alphtype short;
     88             getkey instructions.get(p).getOpcode().value;
     89 
     90             get = (0x52 .. 0x58) | (0x60 .. 0x66); # all igets/sgets
     91 
     92             # all iputs/sputs
     93             put = ((0x59 .. 0x5f) | (0x67 .. 0x6d)) @ {
     94                 putRegister = ((OneRegisterInstruction)instructions.get(p)).getRegisterA();
     95             };
     96 
     97             invoke = (0x6e .. 0x72) | (0x74 .. 0x78); # all invokes
     98 
     99             # all numeric const instructions
    100             const_literal = (0x12 .. 0x19) @ {
    101                 constantValue = ((WideLiteralInstruction)instructions.get(p)).getWideLiteral();
    102             };
    103 
    104             add_const = (add_int_lit8 | add_int_lit16) @ {
    105                 mathType = INT;
    106                 mathOp = ADD;
    107                 constantValue = ((WideLiteralInstruction)instructions.get(p)).getWideLiteral();
    108             };
    109 
    110             arbitrary_add = (((add_int | add_int_2addr) @ { mathType = INT; }) |
    111                              ((add_long | add_long_2addr) @ { mathType = LONG; }) |
    112                              ((add_float | add_float_2addr) @ { mathType = FLOAT; }) |
    113                              ((add_double | add_double_2addr) @ {mathType = DOUBLE; })) @ {
    114                 mathOp = ADD;
    115             };
    116             arbitrary_sub = (((sub_int | sub_int_2addr) @ { mathType = INT; }) |
    117                              ((sub_long | sub_long_2addr) @ { mathType = LONG; }) |
    118                              ((sub_float | sub_float_2addr) @ { mathType = FLOAT; }) |
    119                              ((sub_double | sub_double_2addr) @ {mathType = DOUBLE; })) @ {
    120                 mathOp = SUB;
    121             };
    122             arbitrary_mul = (mul_int | mul_int_2addr | mul_long | mul_long_2addr |
    123                             mul_float | mul_float_2addr | mul_double | mul_double_2addr) @ {
    124                 mathOp = MUL;
    125             };
    126             arbitrary_div = (div_int | div_int_2addr | div_long | div_long_2addr |
    127                             div_float | div_float_2addr | div_double | div_double_2addr) @ {
    128                 mathOp = DIV;
    129             };
    130             arbitrary_rem = (rem_int | rem_int_2addr | rem_long | rem_long_2addr |
    131                             rem_float | rem_float_2addr | rem_double | rem_double_2addr) @ {
    132                 mathOp = REM;
    133             };
    134             arbitrary_and = (and_int | and_int_2addr | and_long | and_long_2addr) @ {
    135                 mathOp = AND;
    136             };
    137             arbitrary_or = (or_int | or_int_2addr | or_long | or_long_2addr) @ {
    138                 mathOp = OR;
    139             };
    140             arbitrary_xor = (xor_int | xor_int_2addr | xor_long | xor_long_2addr) @ {
    141                 mathOp = XOR;
    142             };
    143             arbitrary_shl = (shl_int | shl_int_2addr | shl_long | shl_long_2addr) @ {
    144                 mathOp = SHL;
    145             };
    146             arbitrary_shr = (shr_int | shr_int_2addr | shr_long | shr_long_2addr) @ {
    147                 mathOp = SHR;
    148             };
    149             arbitrary_ushr = (ushr_int | ushr_int_2addr | ushr_long | ushr_long_2addr) @ {
    150                 mathOp = USHR;
    151             };
    152 
    153             type_conversion = 0x81 .. 0x8f; # all type-conversion opcodes
    154 
    155             return_something = (return | return_wide | return_object) @ {
    156                 returnRegister = ((OneRegisterInstruction)instructions.get(p)).getRegisterA();
    157             };
    158 
    159             any_move_result = move_result | move_result_wide | move_result_object;
    160 
    161             get_accessor = get return_something @ {
    162                 accessorType = SyntheticAccessorResolver.GETTER; fbreak;
    163             };
    164 
    165             put_accessor = put return_something @ {
    166                 accessorType = SyntheticAccessorResolver.SETTER; fbreak;
    167             };
    168 
    169             invoke_accessor = invoke (return_void | (any_move_result return_something)) @ {
    170                 accessorType = SyntheticAccessorResolver.METHOD; fbreak;
    171             };
    172 
    173             increment_accessor = get add_const type_conversion? put return_something @ {
    174                 accessorType = getIncrementType(mathOp, mathType, constantValue, putRegister, returnRegister);
    175             };
    176 
    177             alt_increment_accessor = get const_literal (arbitrary_add | arbitrary_sub) put return_something @ {
    178                 accessorType = getIncrementType(mathOp, mathType, constantValue, putRegister, returnRegister);
    179             };
    180 
    181             math_assignment_accessor = get type_conversion?
    182                                        (arbitrary_add | arbitrary_sub | arbitrary_mul | arbitrary_div | arbitrary_rem |
    183                                         arbitrary_and | arbitrary_or | arbitrary_xor | arbitrary_shl | arbitrary_shr |
    184                                         arbitrary_ushr)
    185                                         type_conversion{0,2} put return_something @ {
    186                 accessorType = mathOp; fbreak;
    187             };
    188 
    189             main := get_accessor |
    190                     put_accessor |
    191                     invoke_accessor |
    192                     increment_accessor |
    193                     alt_increment_accessor |
    194                     math_assignment_accessor;
    195 
    196             write init;
    197             write exec;
    198         }%%
    199 
    200         return accessorType;
    201     }
    202 
    203     private static int getIncrementType(int mathOp, int mathType, long constantValue, int putRegister,
    204             int returnRegister) {
    205         boolean isPrefix = putRegister == returnRegister;
    206 
    207         boolean negativeConstant = false;
    208 
    209         switch (mathType) {
    210             case INT:
    211             case LONG: {
    212                 if (constantValue == 1) {
    213                     negativeConstant = false;
    214                 } else if (constantValue == -1) {
    215                     negativeConstant = true;
    216                 } else {
    217                     return -1;
    218                 }
    219                 break;
    220             }
    221             case FLOAT: {
    222                 float val = Float.intBitsToFloat((int)constantValue);
    223                 if (val == 1) {
    224                     negativeConstant = false;
    225                 } else if (val == -1) {
    226                     negativeConstant = true;
    227                 } else {
    228                     return -1;
    229                 }
    230                 break;
    231             }
    232             case DOUBLE: {
    233                 double val = Double.longBitsToDouble(constantValue);
    234                 if (val == 1) {
    235                     negativeConstant = false;
    236                 } else if (val == -1) {
    237                     negativeConstant = true;
    238                 } else {
    239                     return -1;
    240                 }
    241                 break;
    242             }
    243         }
    244 
    245         boolean isAdd = ((mathOp == ADD) && !negativeConstant) ||
    246                         ((mathOp == SUB) && negativeConstant);
    247 
    248         if (isPrefix) {
    249             if (isAdd) {
    250                 return SyntheticAccessorResolver.PREFIX_INCREMENT;
    251             } else {
    252                 return SyntheticAccessorResolver.PREFIX_DECREMENT;
    253             }
    254         } else {
    255             if (isAdd) {
    256                 return SyntheticAccessorResolver.POSTFIX_INCREMENT;
    257             } else {
    258                 return SyntheticAccessorResolver.POSTFIX_DECREMENT;
    259             }
    260         }
    261     }
    262 }