Home | History | Annotate | Download | only in hash
      1 /*
      2  * sha1.c
      3  *
      4  * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
      5  * specified in FIPS 180-1
      6  *
      7  * David A. McGrew
      8  * Cisco Systems, Inc.
      9  */
     10 
     11 /*
     12  *
     13  * Copyright (c) 2001-2006, Cisco Systems, Inc.
     14  * All rights reserved.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  *
     20  *   Redistributions of source code must retain the above copyright
     21  *   notice, this list of conditions and the following disclaimer.
     22  *
     23  *   Redistributions in binary form must reproduce the above
     24  *   copyright notice, this list of conditions and the following
     25  *   disclaimer in the documentation and/or other materials provided
     26  *   with the distribution.
     27  *
     28  *   Neither the name of the Cisco Systems, Inc. nor the names of its
     29  *   contributors may be used to endorse or promote products derived
     30  *   from this software without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     33  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     34  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     35  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     36  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     37  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     38  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     39  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     41  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     42  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     43  * OF THE POSSIBILITY OF SUCH DAMAGE.
     44  *
     45  */
     46 
     47 
     48 #include "sha1.h"
     49 
     50 debug_module_t mod_sha1 = {
     51   0,                 /* debugging is off by default */
     52   "sha-1"            /* printable module name       */
     53 };
     54 
     55 /* SN == Rotate left N bits */
     56 #define S1(X)  ((X << 1)  | (X >> 31))
     57 #define S5(X)  ((X << 5)  | (X >> 27))
     58 #define S30(X) ((X << 30) | (X >> 2))
     59 
     60 #define f0(B,C,D) ((B & C) | (~B & D))
     61 #define f1(B,C,D) (B ^ C ^ D)
     62 #define f2(B,C,D) ((B & C) | (B & D) | (C & D))
     63 #define f3(B,C,D) (B ^ C ^ D)
     64 
     65 /*
     66  * nota bene: the variable K0 appears in the curses library, so we
     67  * give longer names to these variables to avoid spurious warnings
     68  * on systems that uses curses
     69  */
     70 
     71 uint32_t SHA_K0 = 0x5A827999;   /* Kt for 0  <= t <= 19 */
     72 uint32_t SHA_K1 = 0x6ED9EBA1;   /* Kt for 20 <= t <= 39 */
     73 uint32_t SHA_K2 = 0x8F1BBCDC;   /* Kt for 40 <= t <= 59 */
     74 uint32_t SHA_K3 = 0xCA62C1D6;   /* Kt for 60 <= t <= 79 */
     75 
     76 void
     77 sha1(const uint8_t *msg,  int octets_in_msg, uint32_t hash_value[5]) {
     78   sha1_ctx_t ctx;
     79 
     80   sha1_init(&ctx);
     81   sha1_update(&ctx, msg, octets_in_msg);
     82   sha1_final(&ctx, hash_value);
     83 
     84 }
     85 
     86 /*
     87  *  sha1_core(M, H) computes the core compression function, where M is
     88  *  the next part of the message (in network byte order) and H is the
     89  *  intermediate state { H0, H1, ...} (in host byte order)
     90  *
     91  *  this function does not do any of the padding required in the
     92  *  complete SHA1 function
     93  *
     94  *  this function is used in the SEAL 3.0 key setup routines
     95  *  (crypto/cipher/seal.c)
     96  */
     97 
     98 void
     99 sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
    100   uint32_t H0;
    101   uint32_t H1;
    102   uint32_t H2;
    103   uint32_t H3;
    104   uint32_t H4;
    105   uint32_t W[80];
    106   uint32_t A, B, C, D, E, TEMP;
    107   int t;
    108 
    109   /* copy hash_value into H0, H1, H2, H3, H4 */
    110   H0 = hash_value[0];
    111   H1 = hash_value[1];
    112   H2 = hash_value[2];
    113   H3 = hash_value[3];
    114   H4 = hash_value[4];
    115 
    116   /* copy/xor message into array */
    117 
    118   W[0]  = be32_to_cpu(M[0]);
    119   W[1]  = be32_to_cpu(M[1]);
    120   W[2]  = be32_to_cpu(M[2]);
    121   W[3]  = be32_to_cpu(M[3]);
    122   W[4]  = be32_to_cpu(M[4]);
    123   W[5]  = be32_to_cpu(M[5]);
    124   W[6]  = be32_to_cpu(M[6]);
    125   W[7]  = be32_to_cpu(M[7]);
    126   W[8]  = be32_to_cpu(M[8]);
    127   W[9]  = be32_to_cpu(M[9]);
    128   W[10] = be32_to_cpu(M[10]);
    129   W[11] = be32_to_cpu(M[11]);
    130   W[12] = be32_to_cpu(M[12]);
    131   W[13] = be32_to_cpu(M[13]);
    132   W[14] = be32_to_cpu(M[14]);
    133   W[15] = be32_to_cpu(M[15]);
    134   TEMP = W[13] ^ W[8]  ^ W[2]  ^ W[0];  W[16] = S1(TEMP);
    135   TEMP = W[14] ^ W[9]  ^ W[3]  ^ W[1];  W[17] = S1(TEMP);
    136   TEMP = W[15] ^ W[10] ^ W[4]  ^ W[2];  W[18] = S1(TEMP);
    137   TEMP = W[16] ^ W[11] ^ W[5]  ^ W[3];  W[19] = S1(TEMP);
    138   TEMP = W[17] ^ W[12] ^ W[6]  ^ W[4];  W[20] = S1(TEMP);
    139   TEMP = W[18] ^ W[13] ^ W[7]  ^ W[5];  W[21] = S1(TEMP);
    140   TEMP = W[19] ^ W[14] ^ W[8]  ^ W[6];  W[22] = S1(TEMP);
    141   TEMP = W[20] ^ W[15] ^ W[9]  ^ W[7];  W[23] = S1(TEMP);
    142   TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];  W[24] = S1(TEMP);
    143   TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];  W[25] = S1(TEMP);
    144   TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
    145   TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
    146   TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
    147   TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
    148   TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
    149   TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
    150 
    151   /* process the remainder of the array */
    152   for (t=32; t < 80; t++) {
    153     TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
    154     W[t] = S1(TEMP);
    155   }
    156 
    157   A = H0; B = H1; C = H2; D = H3; E = H4;
    158 
    159   for (t=0; t < 20; t++) {
    160     TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
    161     E = D; D = C; C = S30(B); B = A; A = TEMP;
    162   }
    163   for (   ; t < 40; t++) {
    164     TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
    165     E = D; D = C; C = S30(B); B = A; A = TEMP;
    166   }
    167   for (   ; t < 60; t++) {
    168     TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
    169     E = D; D = C; C = S30(B); B = A; A = TEMP;
    170   }
    171   for (   ; t < 80; t++) {
    172     TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
    173     E = D; D = C; C = S30(B); B = A; A = TEMP;
    174   }
    175 
    176   hash_value[0] = H0 + A;
    177   hash_value[1] = H1 + B;
    178   hash_value[2] = H2 + C;
    179   hash_value[3] = H3 + D;
    180   hash_value[4] = H4 + E;
    181 
    182   return;
    183 }
    184 
    185 void
    186 sha1_init(sha1_ctx_t *ctx) {
    187 
    188   /* initialize state vector */
    189   ctx->H[0] = 0x67452301;
    190   ctx->H[1] = 0xefcdab89;
    191   ctx->H[2] = 0x98badcfe;
    192   ctx->H[3] = 0x10325476;
    193   ctx->H[4] = 0xc3d2e1f0;
    194 
    195   /* indicate that message buffer is empty */
    196   ctx->octets_in_buffer = 0;
    197 
    198   /* reset message bit-count to zero */
    199   ctx->num_bits_in_msg = 0;
    200 
    201 }
    202 
    203 void
    204 sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
    205   int i;
    206   uint8_t *buf = (uint8_t *)ctx->M;
    207 
    208   /* update message bit-count */
    209   ctx->num_bits_in_msg += octets_in_msg * 8;
    210 
    211   /* loop over 16-word blocks of M */
    212   while (octets_in_msg > 0) {
    213 
    214     if (octets_in_msg + ctx->octets_in_buffer >= 64) {
    215 
    216       /*
    217        * copy words of M into msg buffer until that buffer is full,
    218        * converting them into host byte order as needed
    219        */
    220       octets_in_msg -= (64 - ctx->octets_in_buffer);
    221       for (i=ctx->octets_in_buffer; i < 64; i++)
    222 	buf[i] = *msg++;
    223       ctx->octets_in_buffer = 0;
    224 
    225       /* process a whole block */
    226 
    227       debug_print(mod_sha1, "(update) running sha1_core()", NULL);
    228 
    229       sha1_core(ctx->M, ctx->H);
    230 
    231     } else {
    232 
    233       debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
    234 
    235       for (i=ctx->octets_in_buffer;
    236 	   i < (ctx->octets_in_buffer + octets_in_msg); i++)
    237 	buf[i] = *msg++;
    238       ctx->octets_in_buffer += octets_in_msg;
    239       octets_in_msg = 0;
    240     }
    241 
    242   }
    243 
    244 }
    245 
    246 /*
    247  * sha1_final(ctx, output) computes the result for ctx and copies it
    248  * into the twenty octets located at *output
    249  */
    250 
    251 void
    252 sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
    253   uint32_t A, B, C, D, E, TEMP;
    254   uint32_t W[80];
    255   int i, t;
    256 
    257   /*
    258    * process the remaining octets_in_buffer, padding and terminating as
    259    * necessary
    260    */
    261   {
    262     int tail = ctx->octets_in_buffer % 4;
    263 
    264     /* copy/xor message into array */
    265     for (i=0; i < (ctx->octets_in_buffer+3)/4; i++)
    266       W[i]  = be32_to_cpu(ctx->M[i]);
    267 
    268     /* set the high bit of the octet immediately following the message */
    269     switch (tail) {
    270     case (3):
    271       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
    272       W[i] = 0x0;
    273       break;
    274     case (2):
    275       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
    276       W[i] = 0x0;
    277       break;
    278     case (1):
    279       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
    280       W[i] = 0x0;
    281       break;
    282     case (0):
    283       W[i] = 0x80000000;
    284       break;
    285     }
    286 
    287     /* zeroize remaining words */
    288     for (i++   ; i < 15; i++)
    289       W[i] = 0x0;
    290 
    291     /*
    292      * if there is room at the end of the word array, then set the
    293      * last word to the bit-length of the message; otherwise, set that
    294      * word to zero and then we need to do one more run of the
    295      * compression algo.
    296      */
    297     if (ctx->octets_in_buffer < 56)
    298       W[15] = ctx->num_bits_in_msg;
    299     else if (ctx->octets_in_buffer < 60)
    300       W[15] = 0x0;
    301 
    302     /* process the word array */
    303     for (t=16; t < 80; t++) {
    304       TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
    305       W[t] = S1(TEMP);
    306     }
    307 
    308     A = ctx->H[0];
    309     B = ctx->H[1];
    310     C = ctx->H[2];
    311     D = ctx->H[3];
    312     E = ctx->H[4];
    313 
    314     for (t=0; t < 20; t++) {
    315       TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
    316       E = D; D = C; C = S30(B); B = A; A = TEMP;
    317     }
    318     for (   ; t < 40; t++) {
    319       TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
    320       E = D; D = C; C = S30(B); B = A; A = TEMP;
    321     }
    322     for (   ; t < 60; t++) {
    323       TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
    324       E = D; D = C; C = S30(B); B = A; A = TEMP;
    325     }
    326     for (   ; t < 80; t++) {
    327       TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
    328       E = D; D = C; C = S30(B); B = A; A = TEMP;
    329     }
    330 
    331     ctx->H[0] += A;
    332     ctx->H[1] += B;
    333     ctx->H[2] += C;
    334     ctx->H[3] += D;
    335     ctx->H[4] += E;
    336 
    337   }
    338 
    339   debug_print(mod_sha1, "(final) running sha1_core()", NULL);
    340 
    341   if (ctx->octets_in_buffer >= 56) {
    342 
    343     debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
    344 
    345     /* we need to do one final run of the compression algo */
    346 
    347     /*
    348      * set initial part of word array to zeros, and set the
    349      * final part to the number of bits in the message
    350      */
    351     for (i=0; i < 15; i++)
    352       W[i] = 0x0;
    353     W[15] = ctx->num_bits_in_msg;
    354 
    355     /* process the word array */
    356     for (t=16; t < 80; t++) {
    357       TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
    358       W[t] = S1(TEMP);
    359     }
    360 
    361     A = ctx->H[0];
    362     B = ctx->H[1];
    363     C = ctx->H[2];
    364     D = ctx->H[3];
    365     E = ctx->H[4];
    366 
    367     for (t=0; t < 20; t++) {
    368       TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
    369       E = D; D = C; C = S30(B); B = A; A = TEMP;
    370     }
    371     for (   ; t < 40; t++) {
    372       TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
    373       E = D; D = C; C = S30(B); B = A; A = TEMP;
    374     }
    375     for (   ; t < 60; t++) {
    376       TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
    377       E = D; D = C; C = S30(B); B = A; A = TEMP;
    378     }
    379     for (   ; t < 80; t++) {
    380       TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
    381       E = D; D = C; C = S30(B); B = A; A = TEMP;
    382     }
    383 
    384     ctx->H[0] += A;
    385     ctx->H[1] += B;
    386     ctx->H[2] += C;
    387     ctx->H[3] += D;
    388     ctx->H[4] += E;
    389   }
    390 
    391   /* copy result into output buffer */
    392   output[0] = be32_to_cpu(ctx->H[0]);
    393   output[1] = be32_to_cpu(ctx->H[1]);
    394   output[2] = be32_to_cpu(ctx->H[2]);
    395   output[3] = be32_to_cpu(ctx->H[3]);
    396   output[4] = be32_to_cpu(ctx->H[4]);
    397 
    398   /* indicate that message buffer in context is empty */
    399   ctx->octets_in_buffer = 0;
    400 
    401   return;
    402 }
    403 
    404 
    405 
    406