Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <math.h>
     12 #include <limits.h>
     13 
     14 #include "vp9/common/vp9_alloccommon.h"
     15 #include "vp9/common/vp9_onyxc_int.h"
     16 #include "vp9/common/vp9_quant_common.h"
     17 #include "vp9/common/vp9_reconinter.h"
     18 #include "vp9/common/vp9_systemdependent.h"
     19 #include "vp9/encoder/vp9_extend.h"
     20 #include "vp9/encoder/vp9_firstpass.h"
     21 #include "vp9/encoder/vp9_mcomp.h"
     22 #include "vp9/encoder/vp9_onyx_int.h"
     23 #include "vp9/encoder/vp9_quantize.h"
     24 #include "vp9/encoder/vp9_ratectrl.h"
     25 #include "vp9/encoder/vp9_segmentation.h"
     26 #include "vpx_mem/vpx_mem.h"
     27 #include "vpx_ports/vpx_timer.h"
     28 #include "vpx_scale/vpx_scale.h"
     29 
     30 #define ALT_REF_MC_ENABLED 1    // dis/enable MC in AltRef filtering
     31 
     32 static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
     33                                             uint8_t *y_mb_ptr,
     34                                             uint8_t *u_mb_ptr,
     35                                             uint8_t *v_mb_ptr,
     36                                             int stride,
     37                                             int uv_block_size,
     38                                             int mv_row,
     39                                             int mv_col,
     40                                             uint8_t *pred,
     41                                             struct scale_factors *scale,
     42                                             int x, int y) {
     43   const int which_mv = 0;
     44   const MV mv = { mv_row, mv_col };
     45   const InterpKernel *const kernel =
     46     vp9_get_interp_kernel(xd->mi[0]->mbmi.interp_filter);
     47 
     48   enum mv_precision mv_precision_uv;
     49   int uv_stride;
     50   if (uv_block_size == 8) {
     51     uv_stride = (stride + 1) >> 1;
     52     mv_precision_uv = MV_PRECISION_Q4;
     53   } else {
     54     uv_stride = stride;
     55     mv_precision_uv = MV_PRECISION_Q3;
     56   }
     57 
     58   vp9_build_inter_predictor(y_mb_ptr, stride,
     59                             &pred[0], 16,
     60                             &mv,
     61                             scale,
     62                             16, 16,
     63                             which_mv,
     64                             kernel, MV_PRECISION_Q3, x, y);
     65 
     66   vp9_build_inter_predictor(u_mb_ptr, uv_stride,
     67                             &pred[256], uv_block_size,
     68                             &mv,
     69                             scale,
     70                             uv_block_size, uv_block_size,
     71                             which_mv,
     72                             kernel, mv_precision_uv, x, y);
     73 
     74   vp9_build_inter_predictor(v_mb_ptr, uv_stride,
     75                             &pred[512], uv_block_size,
     76                             &mv,
     77                             scale,
     78                             uv_block_size, uv_block_size,
     79                             which_mv,
     80                             kernel, mv_precision_uv, x, y);
     81 }
     82 
     83 void vp9_temporal_filter_apply_c(uint8_t *frame1,
     84                                  unsigned int stride,
     85                                  uint8_t *frame2,
     86                                  unsigned int block_size,
     87                                  int strength,
     88                                  int filter_weight,
     89                                  unsigned int *accumulator,
     90                                  uint16_t *count) {
     91   unsigned int i, j, k;
     92   int modifier;
     93   int byte = 0;
     94 
     95   for (i = 0, k = 0; i < block_size; i++) {
     96     for (j = 0; j < block_size; j++, k++) {
     97       int src_byte = frame1[byte];
     98       int pixel_value = *frame2++;
     99 
    100       modifier   = src_byte - pixel_value;
    101       // This is an integer approximation of:
    102       // float coeff = (3.0 * modifer * modifier) / pow(2, strength);
    103       // modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
    104       modifier  *= modifier;
    105       modifier  *= 3;
    106       modifier  += 1 << (strength - 1);
    107       modifier >>= strength;
    108 
    109       if (modifier > 16)
    110         modifier = 16;
    111 
    112       modifier = 16 - modifier;
    113       modifier *= filter_weight;
    114 
    115       count[k] += modifier;
    116       accumulator[k] += modifier * pixel_value;
    117 
    118       byte++;
    119     }
    120 
    121     byte += stride - block_size;
    122   }
    123 }
    124 
    125 #if ALT_REF_MC_ENABLED
    126 
    127 static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
    128                                               uint8_t *arf_frame_buf,
    129                                               uint8_t *frame_ptr_buf,
    130                                               int stride) {
    131   MACROBLOCK *x = &cpi->mb;
    132   MACROBLOCKD* const xd = &x->e_mbd;
    133   int step_param;
    134   int sadpb = x->sadperbit16;
    135   int bestsme = INT_MAX;
    136 
    137   MV best_ref_mv1 = {0, 0};
    138   MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
    139   MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
    140 
    141   // Save input state
    142   struct buf_2d src = x->plane[0].src;
    143   struct buf_2d pre = xd->plane[0].pre[0];
    144 
    145   best_ref_mv1_full.col = best_ref_mv1.col >> 3;
    146   best_ref_mv1_full.row = best_ref_mv1.row >> 3;
    147 
    148   // Setup frame pointers
    149   x->plane[0].src.buf = arf_frame_buf;
    150   x->plane[0].src.stride = stride;
    151   xd->plane[0].pre[0].buf = frame_ptr_buf;
    152   xd->plane[0].pre[0].stride = stride;
    153 
    154   // Further step/diamond searches as necessary
    155   if (cpi->speed < 8)
    156     step_param = cpi->sf.reduce_first_step_size + ((cpi->speed > 5) ? 1 : 0);
    157   else
    158     step_param = cpi->sf.reduce_first_step_size + 2;
    159   step_param = MIN(step_param, (cpi->sf.max_step_search_steps - 2));
    160 
    161   /*cpi->sf.search_method == HEX*/
    162   // Ignore mv costing by sending NULL pointer instead of cost arrays
    163   vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
    164                  &cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv);
    165 
    166   // Try sub-pixel MC?
    167   // if (bestsme > error_thresh && bestsme < INT_MAX)
    168   {
    169     int distortion;
    170     unsigned int sse;
    171     // Ignore mv costing by sending NULL pointer instead of cost array
    172     bestsme = cpi->find_fractional_mv_step(x, ref_mv,
    173                                            &best_ref_mv1,
    174                                            cpi->common.allow_high_precision_mv,
    175                                            x->errorperbit,
    176                                            &cpi->fn_ptr[BLOCK_16X16],
    177                                            0, cpi->sf.subpel_iters_per_step,
    178                                            NULL, NULL,
    179                                            &distortion, &sse);
    180   }
    181 
    182   // Restore input state
    183   x->plane[0].src = src;
    184   xd->plane[0].pre[0] = pre;
    185 
    186   return bestsme;
    187 }
    188 #endif
    189 
    190 static void temporal_filter_iterate_c(VP9_COMP *cpi,
    191                                       int frame_count,
    192                                       int alt_ref_index,
    193                                       int strength,
    194                                       struct scale_factors *scale) {
    195   int byte;
    196   int frame;
    197   int mb_col, mb_row;
    198   unsigned int filter_weight;
    199   int mb_cols = cpi->common.mb_cols;
    200   int mb_rows = cpi->common.mb_rows;
    201   int mb_y_offset = 0;
    202   int mb_uv_offset = 0;
    203   DECLARE_ALIGNED_ARRAY(16, unsigned int, accumulator, 16 * 16 * 3);
    204   DECLARE_ALIGNED_ARRAY(16, uint16_t, count, 16 * 16 * 3);
    205   MACROBLOCKD *mbd = &cpi->mb.e_mbd;
    206   YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
    207   uint8_t *dst1, *dst2;
    208   DECLARE_ALIGNED_ARRAY(16, uint8_t,  predictor, 16 * 16 * 3);
    209   const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
    210 
    211   // Save input state
    212   uint8_t* input_buffer[MAX_MB_PLANE];
    213   int i;
    214 
    215   // TODO(aconverse): Add 4:2:2 support
    216   assert(mbd->plane[1].subsampling_x == mbd->plane[1].subsampling_y);
    217 
    218   for (i = 0; i < MAX_MB_PLANE; i++)
    219     input_buffer[i] = mbd->plane[i].pre[0].buf;
    220 
    221   for (mb_row = 0; mb_row < mb_rows; mb_row++) {
    222 #if ALT_REF_MC_ENABLED
    223     // Source frames are extended to 16 pixels.  This is different than
    224     //  L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
    225     // A 6/8 tap filter is used for motion search.  This requires 2 pixels
    226     //  before and 3 pixels after.  So the largest Y mv on a border would
    227     //  then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
    228     //  Y and therefore only extended by 8.  The largest mv that a UV block
    229     //  can support is 8 - VP9_INTERP_EXTEND.  A UV mv is half of a Y mv.
    230     //  (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
    231     //  8 - VP9_INTERP_EXTEND.
    232     // To keep the mv in play for both Y and UV planes the max that it
    233     //  can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
    234     cpi->mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
    235     cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16)
    236                          + (17 - 2 * VP9_INTERP_EXTEND);
    237 #endif
    238 
    239     for (mb_col = 0; mb_col < mb_cols; mb_col++) {
    240       int i, j, k;
    241       int stride;
    242 
    243       vpx_memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
    244       vpx_memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
    245 
    246 #if ALT_REF_MC_ENABLED
    247       cpi->mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
    248       cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16)
    249                            + (17 - 2 * VP9_INTERP_EXTEND);
    250 #endif
    251 
    252       for (frame = 0; frame < frame_count; frame++) {
    253         if (cpi->frames[frame] == NULL)
    254           continue;
    255 
    256         mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
    257         mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
    258 
    259         if (frame == alt_ref_index) {
    260           filter_weight = 2;
    261         } else {
    262           int err = 0;
    263 #if ALT_REF_MC_ENABLED
    264 #define THRESH_LOW   10000
    265 #define THRESH_HIGH  20000
    266 
    267           // Find best match in this frame by MC
    268           err = temporal_filter_find_matching_mb_c
    269                 (cpi,
    270                  cpi->frames[alt_ref_index]->y_buffer + mb_y_offset,
    271                  cpi->frames[frame]->y_buffer + mb_y_offset,
    272                  cpi->frames[frame]->y_stride);
    273 #endif
    274           // Assign higher weight to matching MB if it's error
    275           // score is lower. If not applying MC default behavior
    276           // is to weight all MBs equal.
    277           filter_weight = err < THRESH_LOW
    278                           ? 2 : err < THRESH_HIGH ? 1 : 0;
    279         }
    280 
    281         if (filter_weight != 0) {
    282           // Construct the predictors
    283           temporal_filter_predictors_mb_c
    284           (mbd,
    285            cpi->frames[frame]->y_buffer + mb_y_offset,
    286            cpi->frames[frame]->u_buffer + mb_uv_offset,
    287            cpi->frames[frame]->v_buffer + mb_uv_offset,
    288            cpi->frames[frame]->y_stride,
    289            mb_uv_height,
    290            mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
    291            mbd->mi[0]->bmi[0].as_mv[0].as_mv.col,
    292            predictor, scale,
    293            mb_col * 16, mb_row * 16);
    294 
    295           // Apply the filter (YUV)
    296           vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
    297                                     predictor, 16, strength, filter_weight,
    298                                     accumulator, count);
    299 
    300           vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
    301                                     predictor + 256, mb_uv_height, strength,
    302                                     filter_weight, accumulator + 256,
    303                                     count + 256);
    304 
    305           vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
    306                                     predictor + 512, mb_uv_height, strength,
    307                                     filter_weight, accumulator + 512,
    308                                     count + 512);
    309         }
    310       }
    311 
    312       // Normalize filter output to produce AltRef frame
    313       dst1 = cpi->alt_ref_buffer.y_buffer;
    314       stride = cpi->alt_ref_buffer.y_stride;
    315       byte = mb_y_offset;
    316       for (i = 0, k = 0; i < 16; i++) {
    317         for (j = 0; j < 16; j++, k++) {
    318           unsigned int pval = accumulator[k] + (count[k] >> 1);
    319           pval *= cpi->fixed_divide[count[k]];
    320           pval >>= 19;
    321 
    322           dst1[byte] = (uint8_t)pval;
    323 
    324           // move to next pixel
    325           byte++;
    326         }
    327 
    328         byte += stride - 16;
    329       }
    330 
    331       dst1 = cpi->alt_ref_buffer.u_buffer;
    332       dst2 = cpi->alt_ref_buffer.v_buffer;
    333       stride = cpi->alt_ref_buffer.uv_stride;
    334       byte = mb_uv_offset;
    335       for (i = 0, k = 256; i < mb_uv_height; i++) {
    336         for (j = 0; j < mb_uv_height; j++, k++) {
    337           int m = k + 256;
    338 
    339           // U
    340           unsigned int pval = accumulator[k] + (count[k] >> 1);
    341           pval *= cpi->fixed_divide[count[k]];
    342           pval >>= 19;
    343           dst1[byte] = (uint8_t)pval;
    344 
    345           // V
    346           pval = accumulator[m] + (count[m] >> 1);
    347           pval *= cpi->fixed_divide[count[m]];
    348           pval >>= 19;
    349           dst2[byte] = (uint8_t)pval;
    350 
    351           // move to next pixel
    352           byte++;
    353         }
    354 
    355         byte += stride - mb_uv_height;
    356       }
    357 
    358       mb_y_offset += 16;
    359       mb_uv_offset += mb_uv_height;
    360     }
    361 
    362     mb_y_offset += 16 * (f->y_stride - mb_cols);
    363     mb_uv_offset += mb_uv_height * (f->uv_stride - mb_cols);
    364   }
    365 
    366   // Restore input state
    367   for (i = 0; i < MAX_MB_PLANE; i++)
    368     mbd->plane[i].pre[0].buf = input_buffer[i];
    369 }
    370 
    371 void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
    372   VP9_COMMON *const cm = &cpi->common;
    373 
    374   int frame = 0;
    375 
    376   int frames_to_blur_backward = 0;
    377   int frames_to_blur_forward = 0;
    378   int frames_to_blur = 0;
    379   int start_frame = 0;
    380 
    381   int strength = cpi->active_arnr_strength;
    382   int blur_type = cpi->oxcf.arnr_type;
    383   int max_frames = cpi->active_arnr_frames;
    384 
    385   const int num_frames_backward = distance;
    386   const int num_frames_forward = vp9_lookahead_depth(cpi->lookahead)
    387                                - (num_frames_backward + 1);
    388   struct scale_factors sf;
    389 
    390   switch (blur_type) {
    391     case 1:
    392       // Backward Blur
    393       frames_to_blur_backward = num_frames_backward;
    394 
    395       if (frames_to_blur_backward >= max_frames)
    396         frames_to_blur_backward = max_frames - 1;
    397 
    398       frames_to_blur = frames_to_blur_backward + 1;
    399       break;
    400 
    401     case 2:
    402       // Forward Blur
    403       frames_to_blur_forward = num_frames_forward;
    404 
    405       if (frames_to_blur_forward >= max_frames)
    406         frames_to_blur_forward = max_frames - 1;
    407 
    408       frames_to_blur = frames_to_blur_forward + 1;
    409       break;
    410 
    411     case 3:
    412     default:
    413       // Center Blur
    414       frames_to_blur_forward = num_frames_forward;
    415       frames_to_blur_backward = num_frames_backward;
    416 
    417       if (frames_to_blur_forward > frames_to_blur_backward)
    418         frames_to_blur_forward = frames_to_blur_backward;
    419 
    420       if (frames_to_blur_backward > frames_to_blur_forward)
    421         frames_to_blur_backward = frames_to_blur_forward;
    422 
    423       // When max_frames is even we have 1 more frame backward than forward
    424       if (frames_to_blur_forward > (max_frames - 1) / 2)
    425         frames_to_blur_forward = ((max_frames - 1) / 2);
    426 
    427       if (frames_to_blur_backward > (max_frames / 2))
    428         frames_to_blur_backward = (max_frames / 2);
    429 
    430       frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1;
    431       break;
    432   }
    433 
    434   start_frame = distance + frames_to_blur_forward;
    435 
    436 #ifdef DEBUGFWG
    437   // DEBUG FWG
    438   printf(
    439       "max:%d FBCK:%d FFWD:%d ftb:%d ftbbck:%d ftbfwd:%d sei:%d lasei:%d "
    440       "start:%d",
    441       max_frames, num_frames_backward, num_frames_forward, frames_to_blur,
    442       frames_to_blur_backward, frames_to_blur_forward, cpi->source_encode_index,
    443       cpi->last_alt_ref_sei, start_frame);
    444 #endif
    445 
    446   // Setup scaling factors. Scaling on each of the arnr frames is not supported
    447   vp9_setup_scale_factors_for_frame(&sf,
    448       get_frame_new_buffer(cm)->y_crop_width,
    449       get_frame_new_buffer(cm)->y_crop_height,
    450       cm->width, cm->height);
    451 
    452   // Setup frame pointers, NULL indicates frame not included in filter
    453   vp9_zero(cpi->frames);
    454   for (frame = 0; frame < frames_to_blur; frame++) {
    455     int which_buffer = start_frame - frame;
    456     struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead,
    457                                                      which_buffer);
    458     cpi->frames[frames_to_blur - 1 - frame] = &buf->img;
    459   }
    460 
    461   temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
    462                             strength, &sf);
    463 }
    464 
    465 void vp9_configure_arnr_filter(VP9_COMP *cpi,
    466                                const unsigned int frames_to_arnr,
    467                                const int group_boost) {
    468   int half_gf_int;
    469   int frames_after_arf;
    470   int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
    471   int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
    472   int q;
    473 
    474   // Define the arnr filter width for this group of frames. We only
    475   // filter frames that lie within a distance of half the GF interval
    476   // from the ARF frame. We also have to trap cases where the filter
    477   // extends beyond the end of the lookahead buffer.
    478   // Note: frames_to_arnr parameter is the offset of the arnr
    479   // frame from the current frame.
    480   half_gf_int = cpi->rc.baseline_gf_interval >> 1;
    481   frames_after_arf = vp9_lookahead_depth(cpi->lookahead)
    482       - frames_to_arnr - 1;
    483 
    484   switch (cpi->oxcf.arnr_type) {
    485     case 1:  // Backward filter
    486       frames_fwd = 0;
    487       if (frames_bwd > half_gf_int)
    488         frames_bwd = half_gf_int;
    489       break;
    490 
    491     case 2:  // Forward filter
    492       if (frames_fwd > half_gf_int)
    493         frames_fwd = half_gf_int;
    494       if (frames_fwd > frames_after_arf)
    495         frames_fwd = frames_after_arf;
    496       frames_bwd = 0;
    497       break;
    498 
    499     case 3:  // Centered filter
    500     default:
    501       frames_fwd >>= 1;
    502       if (frames_fwd > frames_after_arf)
    503         frames_fwd = frames_after_arf;
    504       if (frames_fwd > half_gf_int)
    505         frames_fwd = half_gf_int;
    506 
    507       frames_bwd = frames_fwd;
    508 
    509       // For even length filter there is one more frame backward
    510       // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
    511       if (frames_bwd < half_gf_int)
    512         frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
    513       break;
    514   }
    515 
    516   cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
    517 
    518   // Adjust the strength based on active max q
    519   if (cpi->common.current_video_frame > 1)
    520     q = ((int)vp9_convert_qindex_to_q(
    521         cpi->rc.avg_frame_qindex[INTER_FRAME]));
    522   else
    523     q = ((int)vp9_convert_qindex_to_q(
    524         cpi->rc.avg_frame_qindex[KEY_FRAME]));
    525   if (q > 16) {
    526     cpi->active_arnr_strength = cpi->oxcf.arnr_strength;
    527   } else {
    528     cpi->active_arnr_strength = cpi->oxcf.arnr_strength - ((16 - q) / 2);
    529     if (cpi->active_arnr_strength < 0)
    530       cpi->active_arnr_strength = 0;
    531   }
    532 
    533   // Adjust number of frames in filter and strength based on gf boost level.
    534   if (cpi->active_arnr_frames > (group_boost / 150)) {
    535     cpi->active_arnr_frames = (group_boost / 150);
    536     cpi->active_arnr_frames += !(cpi->active_arnr_frames & 1);
    537   }
    538   if (cpi->active_arnr_strength > (group_boost / 300)) {
    539     cpi->active_arnr_strength = (group_boost / 300);
    540   }
    541 }
    542