Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea with assistance from members of JCP JSR-166
      3  * Expert Group and released to the public domain, as explained at
      4  * http://creativecommons.org/publicdomain/zero/1.0/
      5  */
      6 
      7 package java.util.concurrent;
      8 
      9 import java.io.ObjectStreamField;
     10 import java.io.Serializable;
     11 import java.lang.reflect.ParameterizedType;
     12 import java.lang.reflect.Type;
     13 import java.util.Arrays;
     14 import java.util.Collection;
     15 import java.util.Comparator;
     16 import java.util.ConcurrentModificationException;
     17 import java.util.Enumeration;
     18 import java.util.HashMap;
     19 import java.util.Hashtable;
     20 import java.util.Iterator;
     21 import java.util.Map;
     22 import java.util.NoSuchElementException;
     23 import java.util.Set;
     24 import java.util.concurrent.ConcurrentMap;
     25 import java.util.concurrent.ForkJoinPool;
     26 import java.util.concurrent.atomic.AtomicInteger;
     27 import java.util.concurrent.locks.LockSupport;
     28 import java.util.concurrent.locks.ReentrantLock;
     29 
     30 // BEGIN android-note
     31 // removed link to collections framework docs
     32 // removed links to hidden api
     33 // END android-note
     34 
     35 /**
     36  * A hash table supporting full concurrency of retrievals and
     37  * high expected concurrency for updates. This class obeys the
     38  * same functional specification as {@link java.util.Hashtable}, and
     39  * includes versions of methods corresponding to each method of
     40  * {@code Hashtable}. However, even though all operations are
     41  * thread-safe, retrieval operations do <em>not</em> entail locking,
     42  * and there is <em>not</em> any support for locking the entire table
     43  * in a way that prevents all access.  This class is fully
     44  * interoperable with {@code Hashtable} in programs that rely on its
     45  * thread safety but not on its synchronization details.
     46  *
     47  * <p>Retrieval operations (including {@code get}) generally do not
     48  * block, so may overlap with update operations (including {@code put}
     49  * and {@code remove}). Retrievals reflect the results of the most
     50  * recently <em>completed</em> update operations holding upon their
     51  * onset. (More formally, an update operation for a given key bears a
     52  * <em>happens-before</em> relation with any (non-null) retrieval for
     53  * that key reporting the updated value.)  For aggregate operations
     54  * such as {@code putAll} and {@code clear}, concurrent retrievals may
     55  * reflect insertion or removal of only some entries.  Similarly,
     56  * Iterators and Enumerations return elements reflecting the state of
     57  * the hash table at some point at or since the creation of the
     58  * iterator/enumeration.  They do <em>not</em> throw {@link
     59  * ConcurrentModificationException}.  However, iterators are designed
     60  * to be used by only one thread at a time.  Bear in mind that the
     61  * results of aggregate status methods including {@code size}, {@code
     62  * isEmpty}, and {@code containsValue} are typically useful only when
     63  * a map is not undergoing concurrent updates in other threads.
     64  * Otherwise the results of these methods reflect transient states
     65  * that may be adequate for monitoring or estimation purposes, but not
     66  * for program control.
     67  *
     68  * <p>The table is dynamically expanded when there are too many
     69  * collisions (i.e., keys that have distinct hash codes but fall into
     70  * the same slot modulo the table size), with the expected average
     71  * effect of maintaining roughly two bins per mapping (corresponding
     72  * to a 0.75 load factor threshold for resizing). There may be much
     73  * variance around this average as mappings are added and removed, but
     74  * overall, this maintains a commonly accepted time/space tradeoff for
     75  * hash tables.  However, resizing this or any other kind of hash
     76  * table may be a relatively slow operation. When possible, it is a
     77  * good idea to provide a size estimate as an optional {@code
     78  * initialCapacity} constructor argument. An additional optional
     79  * {@code loadFactor} constructor argument provides a further means of
     80  * customizing initial table capacity by specifying the table density
     81  * to be used in calculating the amount of space to allocate for the
     82  * given number of elements.  Also, for compatibility with previous
     83  * versions of this class, constructors may optionally specify an
     84  * expected {@code concurrencyLevel} as an additional hint for
     85  * internal sizing.  Note that using many keys with exactly the same
     86  * {@code hashCode()} is a sure way to slow down performance of any
     87  * hash table. To ameliorate impact, when keys are {@link Comparable},
     88  * this class may use comparison order among keys to help break ties.
     89  *
     90  * <p>This class and its views and iterators implement all of the
     91  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
     92  * interfaces.
     93  *
     94  * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
     95  * does <em>not</em> allow {@code null} to be used as a key or value.
     96  *
     97  * @since 1.5
     98  * @author Doug Lea
     99  * @param <K> the type of keys maintained by this map
    100  * @param <V> the type of mapped values
    101  */
    102 public class ConcurrentHashMap<K,V> extends java.util.AbstractMap<K,V>
    103         implements ConcurrentMap<K,V>, Serializable {
    104     private static final long serialVersionUID = 7249069246763182397L;
    105 
    106     /*
    107      * Overview:
    108      *
    109      * The primary design goal of this hash table is to maintain
    110      * concurrent readability (typically method get(), but also
    111      * iterators and related methods) while minimizing update
    112      * contention. Secondary goals are to keep space consumption about
    113      * the same or better than java.util.HashMap, and to support high
    114      * initial insertion rates on an empty table by many threads.
    115      *
    116      * This map usually acts as a binned (bucketed) hash table.  Each
    117      * key-value mapping is held in a Node.  Most nodes are instances
    118      * of the basic Node class with hash, key, value, and next
    119      * fields. However, various subclasses exist: TreeNodes are
    120      * arranged in balanced trees, not lists.  TreeBins hold the roots
    121      * of sets of TreeNodes. ForwardingNodes are placed at the heads
    122      * of bins during resizing. ReservationNodes are used as
    123      * placeholders while establishing values in computeIfAbsent and
    124      * related methods.  The types TreeBin, ForwardingNode, and
    125      * ReservationNode do not hold normal user keys, values, or
    126      * hashes, and are readily distinguishable during search etc
    127      * because they have negative hash fields and null key and value
    128      * fields. (These special nodes are either uncommon or transient,
    129      * so the impact of carrying around some unused fields is
    130      * insignificant.)
    131      *
    132      * The table is lazily initialized to a power-of-two size upon the
    133      * first insertion.  Each bin in the table normally contains a
    134      * list of Nodes (most often, the list has only zero or one Node).
    135      * Table accesses require volatile/atomic reads, writes, and
    136      * CASes.  Because there is no other way to arrange this without
    137      * adding further indirections, we use intrinsics
    138      * (sun.misc.Unsafe) operations.
    139      *
    140      * We use the top (sign) bit of Node hash fields for control
    141      * purposes -- it is available anyway because of addressing
    142      * constraints.  Nodes with negative hash fields are specially
    143      * handled or ignored in map methods.
    144      *
    145      * Insertion (via put or its variants) of the first node in an
    146      * empty bin is performed by just CASing it to the bin.  This is
    147      * by far the most common case for put operations under most
    148      * key/hash distributions.  Other update operations (insert,
    149      * delete, and replace) require locks.  We do not want to waste
    150      * the space required to associate a distinct lock object with
    151      * each bin, so instead use the first node of a bin list itself as
    152      * a lock. Locking support for these locks relies on builtin
    153      * "synchronized" monitors.
    154      *
    155      * Using the first node of a list as a lock does not by itself
    156      * suffice though: When a node is locked, any update must first
    157      * validate that it is still the first node after locking it, and
    158      * retry if not. Because new nodes are always appended to lists,
    159      * once a node is first in a bin, it remains first until deleted
    160      * or the bin becomes invalidated (upon resizing).
    161      *
    162      * The main disadvantage of per-bin locks is that other update
    163      * operations on other nodes in a bin list protected by the same
    164      * lock can stall, for example when user equals() or mapping
    165      * functions take a long time.  However, statistically, under
    166      * random hash codes, this is not a common problem.  Ideally, the
    167      * frequency of nodes in bins follows a Poisson distribution
    168      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
    169      * parameter of about 0.5 on average, given the resizing threshold
    170      * of 0.75, although with a large variance because of resizing
    171      * granularity. Ignoring variance, the expected occurrences of
    172      * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
    173      * first values are:
    174      *
    175      * 0:    0.60653066
    176      * 1:    0.30326533
    177      * 2:    0.07581633
    178      * 3:    0.01263606
    179      * 4:    0.00157952
    180      * 5:    0.00015795
    181      * 6:    0.00001316
    182      * 7:    0.00000094
    183      * 8:    0.00000006
    184      * more: less than 1 in ten million
    185      *
    186      * Lock contention probability for two threads accessing distinct
    187      * elements is roughly 1 / (8 * #elements) under random hashes.
    188      *
    189      * Actual hash code distributions encountered in practice
    190      * sometimes deviate significantly from uniform randomness.  This
    191      * includes the case when N > (1<<30), so some keys MUST collide.
    192      * Similarly for dumb or hostile usages in which multiple keys are
    193      * designed to have identical hash codes or ones that differs only
    194      * in masked-out high bits. So we use a secondary strategy that
    195      * applies when the number of nodes in a bin exceeds a
    196      * threshold. These TreeBins use a balanced tree to hold nodes (a
    197      * specialized form of red-black trees), bounding search time to
    198      * O(log N).  Each search step in a TreeBin is at least twice as
    199      * slow as in a regular list, but given that N cannot exceed
    200      * (1<<64) (before running out of addresses) this bounds search
    201      * steps, lock hold times, etc, to reasonable constants (roughly
    202      * 100 nodes inspected per operation worst case) so long as keys
    203      * are Comparable (which is very common -- String, Long, etc).
    204      * TreeBin nodes (TreeNodes) also maintain the same "next"
    205      * traversal pointers as regular nodes, so can be traversed in
    206      * iterators in the same way.
    207      *
    208      * The table is resized when occupancy exceeds a percentage
    209      * threshold (nominally, 0.75, but see below).  Any thread
    210      * noticing an overfull bin may assist in resizing after the
    211      * initiating thread allocates and sets up the replacement
    212      * array. However, rather than stalling, these other threads may
    213      * proceed with insertions etc.  The use of TreeBins shields us
    214      * from the worst case effects of overfilling while resizes are in
    215      * progress.  Resizing proceeds by transferring bins, one by one,
    216      * from the table to the next table. To enable concurrency, the
    217      * next table must be (incrementally) prefilled with place-holders
    218      * serving as reverse forwarders to the old table.  Because we are
    219      * using power-of-two expansion, the elements from each bin must
    220      * either stay at same index, or move with a power of two
    221      * offset. We eliminate unnecessary node creation by catching
    222      * cases where old nodes can be reused because their next fields
    223      * won't change.  On average, only about one-sixth of them need
    224      * cloning when a table doubles. The nodes they replace will be
    225      * garbage collectable as soon as they are no longer referenced by
    226      * any reader thread that may be in the midst of concurrently
    227      * traversing table.  Upon transfer, the old table bin contains
    228      * only a special forwarding node (with hash field "MOVED") that
    229      * contains the next table as its key. On encountering a
    230      * forwarding node, access and update operations restart, using
    231      * the new table.
    232      *
    233      * Each bin transfer requires its bin lock, which can stall
    234      * waiting for locks while resizing. However, because other
    235      * threads can join in and help resize rather than contend for
    236      * locks, average aggregate waits become shorter as resizing
    237      * progresses.  The transfer operation must also ensure that all
    238      * accessible bins in both the old and new table are usable by any
    239      * traversal.  This is arranged by proceeding from the last bin
    240      * (table.length - 1) up towards the first.  Upon seeing a
    241      * forwarding node, traversals (see class Traverser) arrange to
    242      * move to the new table without revisiting nodes.  However, to
    243      * ensure that no intervening nodes are skipped, bin splitting can
    244      * only begin after the associated reverse-forwarders are in
    245      * place.
    246      *
    247      * The traversal scheme also applies to partial traversals of
    248      * ranges of bins (via an alternate Traverser constructor)
    249      * to support partitioned aggregate operations.  Also, read-only
    250      * operations give up if ever forwarded to a null table, which
    251      * provides support for shutdown-style clearing, which is also not
    252      * currently implemented.
    253      *
    254      * Lazy table initialization minimizes footprint until first use,
    255      * and also avoids resizings when the first operation is from a
    256      * putAll, constructor with map argument, or deserialization.
    257      * These cases attempt to override the initial capacity settings,
    258      * but harmlessly fail to take effect in cases of races.
    259      *
    260      * The element count is maintained using a specialization of
    261      * LongAdder. We need to incorporate a specialization rather than
    262      * just use a LongAdder in order to access implicit
    263      * contention-sensing that leads to creation of multiple
    264      * CounterCells.  The counter mechanics avoid contention on
    265      * updates but can encounter cache thrashing if read too
    266      * frequently during concurrent access. To avoid reading so often,
    267      * resizing under contention is attempted only upon adding to a
    268      * bin already holding two or more nodes. Under uniform hash
    269      * distributions, the probability of this occurring at threshold
    270      * is around 13%, meaning that only about 1 in 8 puts check
    271      * threshold (and after resizing, many fewer do so).
    272      *
    273      * TreeBins use a special form of comparison for search and
    274      * related operations (which is the main reason we cannot use
    275      * existing collections such as TreeMaps). TreeBins contain
    276      * Comparable elements, but may contain others, as well as
    277      * elements that are Comparable but not necessarily Comparable
    278      * for the same T, so we cannot invoke compareTo among them. To
    279      * handle this, the tree is ordered primarily by hash value, then
    280      * by Comparable.compareTo order if applicable.  On lookup at a
    281      * node, if elements are not comparable or compare as 0 then both
    282      * left and right children may need to be searched in the case of
    283      * tied hash values. (This corresponds to the full list search
    284      * that would be necessary if all elements were non-Comparable and
    285      * had tied hashes.)  The red-black balancing code is updated from
    286      * pre-jdk-collections
    287      * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
    288      * based in turn on Cormen, Leiserson, and Rivest "Introduction to
    289      * Algorithms" (CLR).
    290      *
    291      * TreeBins also require an additional locking mechanism.  While
    292      * list traversal is always possible by readers even during
    293      * updates, tree traversal is not, mainly because of tree-rotations
    294      * that may change the root node and/or its linkages.  TreeBins
    295      * include a simple read-write lock mechanism parasitic on the
    296      * main bin-synchronization strategy: Structural adjustments
    297      * associated with an insertion or removal are already bin-locked
    298      * (and so cannot conflict with other writers) but must wait for
    299      * ongoing readers to finish. Since there can be only one such
    300      * waiter, we use a simple scheme using a single "waiter" field to
    301      * block writers.  However, readers need never block.  If the root
    302      * lock is held, they proceed along the slow traversal path (via
    303      * next-pointers) until the lock becomes available or the list is
    304      * exhausted, whichever comes first. These cases are not fast, but
    305      * maximize aggregate expected throughput.
    306      *
    307      * Maintaining API and serialization compatibility with previous
    308      * versions of this class introduces several oddities. Mainly: We
    309      * leave untouched but unused constructor arguments refering to
    310      * concurrencyLevel. We accept a loadFactor constructor argument,
    311      * but apply it only to initial table capacity (which is the only
    312      * time that we can guarantee to honor it.) We also declare an
    313      * unused "Segment" class that is instantiated in minimal form
    314      * only when serializing.
    315      *
    316      * This file is organized to make things a little easier to follow
    317      * while reading than they might otherwise: First the main static
    318      * declarations and utilities, then fields, then main public
    319      * methods (with a few factorings of multiple public methods into
    320      * internal ones), then sizing methods, trees, traversers, and
    321      * bulk operations.
    322      */
    323 
    324     /* ---------------- Constants -------------- */
    325 
    326     /**
    327      * The largest possible table capacity.  This value must be
    328      * exactly 1<<30 to stay within Java array allocation and indexing
    329      * bounds for power of two table sizes, and is further required
    330      * because the top two bits of 32bit hash fields are used for
    331      * control purposes.
    332      */
    333     private static final int MAXIMUM_CAPACITY = 1 << 30;
    334 
    335     /**
    336      * The default initial table capacity.  Must be a power of 2
    337      * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
    338      */
    339     private static final int DEFAULT_CAPACITY = 16;
    340 
    341     /**
    342      * The largest possible (non-power of two) array size.
    343      * Needed by toArray and related methods.
    344      */
    345     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    346 
    347     /**
    348      * The default concurrency level for this table. Unused but
    349      * defined for compatibility with previous versions of this class.
    350      */
    351     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    352 
    353     /**
    354      * The load factor for this table. Overrides of this value in
    355      * constructors affect only the initial table capacity.  The
    356      * actual floating point value isn't normally used -- it is
    357      * simpler to use expressions such as {@code n - (n >>> 2)} for
    358      * the associated resizing threshold.
    359      */
    360     private static final float LOAD_FACTOR = 0.75f;
    361 
    362     /**
    363      * The bin count threshold for using a tree rather than list for a
    364      * bin.  Bins are converted to trees when adding an element to a
    365      * bin with at least this many nodes. The value must be greater
    366      * than 2, and should be at least 8 to mesh with assumptions in
    367      * tree removal about conversion back to plain bins upon
    368      * shrinkage.
    369      */
    370     static final int TREEIFY_THRESHOLD = 8;
    371 
    372     /**
    373      * The bin count threshold for untreeifying a (split) bin during a
    374      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
    375      * most 6 to mesh with shrinkage detection under removal.
    376      */
    377     static final int UNTREEIFY_THRESHOLD = 6;
    378 
    379     /**
    380      * The smallest table capacity for which bins may be treeified.
    381      * (Otherwise the table is resized if too many nodes in a bin.)
    382      * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
    383      * conflicts between resizing and treeification thresholds.
    384      */
    385     static final int MIN_TREEIFY_CAPACITY = 64;
    386 
    387     /**
    388      * Minimum number of rebinnings per transfer step. Ranges are
    389      * subdivided to allow multiple resizer threads.  This value
    390      * serves as a lower bound to avoid resizers encountering
    391      * excessive memory contention.  The value should be at least
    392      * DEFAULT_CAPACITY.
    393      */
    394     private static final int MIN_TRANSFER_STRIDE = 16;
    395 
    396     /*
    397      * Encodings for Node hash fields. See above for explanation.
    398      */
    399     static final int MOVED     = 0x8fffffff; // (-1) hash for forwarding nodes
    400     static final int TREEBIN   = 0x80000000; // hash for roots of trees
    401     static final int RESERVED  = 0x80000001; // hash for transient reservations
    402     static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
    403 
    404     /** Number of CPUS, to place bounds on some sizings */
    405     static final int NCPU = Runtime.getRuntime().availableProcessors();
    406 
    407     /** For serialization compatibility. */
    408     private static final ObjectStreamField[] serialPersistentFields = {
    409         new ObjectStreamField("segments", Segment[].class),
    410         new ObjectStreamField("segmentMask", Integer.TYPE),
    411         new ObjectStreamField("segmentShift", Integer.TYPE)
    412     };
    413 
    414     /* ---------------- Nodes -------------- */
    415 
    416     /**
    417      * Key-value entry.  This class is never exported out as a
    418      * user-mutable Map.Entry (i.e., one supporting setValue; see
    419      * MapEntry below), but can be used for read-only traversals used
    420      * in bulk tasks.  Subclasses of Node with a negative hash field
    421      * are special, and contain null keys and values (but are never
    422      * exported).  Otherwise, keys and vals are never null.
    423      */
    424     static class Node<K,V> implements Map.Entry<K,V> {
    425         final int hash;
    426         final K key;
    427         volatile V val;
    428         Node<K,V> next;
    429 
    430         Node(int hash, K key, V val, Node<K,V> next) {
    431             this.hash = hash;
    432             this.key = key;
    433             this.val = val;
    434             this.next = next;
    435         }
    436 
    437         public final K getKey()       { return key; }
    438         public final V getValue()     { return val; }
    439         public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    440         public final String toString(){ return key + "=" + val; }
    441         public final V setValue(V value) {
    442             throw new UnsupportedOperationException();
    443         }
    444 
    445         public final boolean equals(Object o) {
    446             Object k, v, u; Map.Entry<?,?> e;
    447             return ((o instanceof Map.Entry) &&
    448                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
    449                     (v = e.getValue()) != null &&
    450                     (k == key || k.equals(key)) &&
    451                     (v == (u = val) || v.equals(u)));
    452         }
    453 
    454         /**
    455          * Virtualized support for map.get(); overridden in subclasses.
    456          */
    457         Node<K,V> find(int h, Object k) {
    458             Node<K,V> e = this;
    459             if (k != null) {
    460                 do {
    461                     K ek;
    462                     if (e.hash == h &&
    463                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
    464                         return e;
    465                 } while ((e = e.next) != null);
    466             }
    467             return null;
    468         }
    469     }
    470 
    471     /* ---------------- Static utilities -------------- */
    472 
    473     /**
    474      * Spreads (XORs) higher bits of hash to lower and also forces top
    475      * bit to 0. Because the table uses power-of-two masking, sets of
    476      * hashes that vary only in bits above the current mask will
    477      * always collide. (Among known examples are sets of Float keys
    478      * holding consecutive whole numbers in small tables.)  So we
    479      * apply a transform that spreads the impact of higher bits
    480      * downward. There is a tradeoff between speed, utility, and
    481      * quality of bit-spreading. Because many common sets of hashes
    482      * are already reasonably distributed (so don't benefit from
    483      * spreading), and because we use trees to handle large sets of
    484      * collisions in bins, we just XOR some shifted bits in the
    485      * cheapest possible way to reduce systematic lossage, as well as
    486      * to incorporate impact of the highest bits that would otherwise
    487      * never be used in index calculations because of table bounds.
    488      */
    489     static final int spread(int h) {
    490         return (h ^ (h >>> 16)) & HASH_BITS;
    491     }
    492 
    493     /**
    494      * Returns a power of two table size for the given desired capacity.
    495      * See Hackers Delight, sec 3.2
    496      */
    497     private static final int tableSizeFor(int c) {
    498         int n = c - 1;
    499         n |= n >>> 1;
    500         n |= n >>> 2;
    501         n |= n >>> 4;
    502         n |= n >>> 8;
    503         n |= n >>> 16;
    504         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    505     }
    506 
    507 
    508     /**
    509      * Returns x's Class if it is of the form "class C implements
    510      * Comparable<C>", else null.
    511      */
    512     static Class<?> comparableClassFor(Object x) {
    513         if (x instanceof Comparable) {
    514             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
    515             if ((c = x.getClass()) == String.class) // bypass checks
    516                 return c;
    517             if ((ts = c.getGenericInterfaces()) != null) {
    518                 for (int i = 0; i < ts.length; ++i) {
    519                     if (((t = ts[i]) instanceof ParameterizedType) &&
    520                         ((p = (ParameterizedType)t).getRawType() ==
    521                          Comparable.class) &&
    522                         (as = p.getActualTypeArguments()) != null &&
    523                         as.length == 1 && as[0] == c) // type arg is c
    524                         return c;
    525                 }
    526             }
    527         }
    528         return null;
    529     }
    530 
    531     /**
    532      * Returns k.compareTo(x) if x matches kc (k's screened comparable
    533      * class), else 0.
    534      */
    535     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    536     static int compareComparables(Class<?> kc, Object k, Object x) {
    537         return (x == null || x.getClass() != kc ? 0 :
    538                 ((Comparable)k).compareTo(x));
    539     }
    540 
    541     /* ---------------- Table element access -------------- */
    542 
    543     /*
    544      * Volatile access methods are used for table elements as well as
    545      * elements of in-progress next table while resizing.  All uses of
    546      * the tab arguments must be null checked by callers.  All callers
    547      * also paranoically precheck that tab's length is not zero (or an
    548      * equivalent check), thus ensuring that any index argument taking
    549      * the form of a hash value anded with (length - 1) is a valid
    550      * index.  Note that, to be correct wrt arbitrary concurrency
    551      * errors by users, these checks must operate on local variables,
    552      * which accounts for some odd-looking inline assignments below.
    553      * Note that calls to setTabAt always occur within locked regions,
    554      * and so do not need full volatile semantics, but still require
    555      * ordering to maintain concurrent readability.
    556      */
    557 
    558     @SuppressWarnings("unchecked")
    559     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    560         return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    561     }
    562 
    563     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
    564                                         Node<K,V> c, Node<K,V> v) {
    565         return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    566     }
    567 
    568     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
    569         U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
    570     }
    571 
    572     /* ---------------- Fields -------------- */
    573 
    574     /**
    575      * The array of bins. Lazily initialized upon first insertion.
    576      * Size is always a power of two. Accessed directly by iterators.
    577      */
    578     transient volatile Node<K,V>[] table;
    579 
    580     /**
    581      * The next table to use; non-null only while resizing.
    582      */
    583     private transient volatile Node<K,V>[] nextTable;
    584 
    585     /**
    586      * Base counter value, used mainly when there is no contention,
    587      * but also as a fallback during table initialization
    588      * races. Updated via CAS.
    589      */
    590     private transient volatile long baseCount;
    591 
    592     /**
    593      * Table initialization and resizing control.  When negative, the
    594      * table is being initialized or resized: -1 for initialization,
    595      * else -(1 + the number of active resizing threads).  Otherwise,
    596      * when table is null, holds the initial table size to use upon
    597      * creation, or 0 for default. After initialization, holds the
    598      * next element count value upon which to resize the table.
    599      */
    600     private transient volatile int sizeCtl;
    601 
    602     /**
    603      * The next table index (plus one) to split while resizing.
    604      */
    605     private transient volatile int transferIndex;
    606 
    607     /**
    608      * The least available table index to split while resizing.
    609      */
    610     private transient volatile int transferOrigin;
    611 
    612     /**
    613      * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
    614      */
    615     private transient volatile int cellsBusy;
    616 
    617     /**
    618      * Table of counter cells. When non-null, size is a power of 2.
    619      */
    620     private transient volatile CounterCell[] counterCells;
    621 
    622     // views
    623     private transient KeySetView<K,V> keySet;
    624     private transient ValuesView<K,V> values;
    625     private transient EntrySetView<K,V> entrySet;
    626 
    627 
    628     /* ---------------- Public operations -------------- */
    629 
    630     /**
    631      * Creates a new, empty map with the default initial table size (16).
    632      */
    633     public ConcurrentHashMap() {
    634     }
    635 
    636     /**
    637      * Creates a new, empty map with an initial table size
    638      * accommodating the specified number of elements without the need
    639      * to dynamically resize.
    640      *
    641      * @param initialCapacity The implementation performs internal
    642      * sizing to accommodate this many elements.
    643      * @throws IllegalArgumentException if the initial capacity of
    644      * elements is negative
    645      */
    646     public ConcurrentHashMap(int initialCapacity) {
    647         if (initialCapacity < 0)
    648             throw new IllegalArgumentException();
    649         int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
    650                    MAXIMUM_CAPACITY :
    651                    tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    652         this.sizeCtl = cap;
    653     }
    654 
    655     /**
    656      * Creates a new map with the same mappings as the given map.
    657      *
    658      * @param m the map
    659      */
    660     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
    661         this.sizeCtl = DEFAULT_CAPACITY;
    662         putAll(m);
    663     }
    664 
    665     /**
    666      * Creates a new, empty map with an initial table size based on
    667      * the given number of elements ({@code initialCapacity}) and
    668      * initial table density ({@code loadFactor}).
    669      *
    670      * @param initialCapacity the initial capacity. The implementation
    671      * performs internal sizing to accommodate this many elements,
    672      * given the specified load factor.
    673      * @param loadFactor the load factor (table density) for
    674      * establishing the initial table size
    675      * @throws IllegalArgumentException if the initial capacity of
    676      * elements is negative or the load factor is nonpositive
    677      *
    678      * @since 1.6
    679      */
    680     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
    681         this(initialCapacity, loadFactor, 1);
    682     }
    683 
    684     /**
    685      * Creates a new, empty map with an initial table size based on
    686      * the given number of elements ({@code initialCapacity}), table
    687      * density ({@code loadFactor}), and number of concurrently
    688      * updating threads ({@code concurrencyLevel}).
    689      *
    690      * @param initialCapacity the initial capacity. The implementation
    691      * performs internal sizing to accommodate this many elements,
    692      * given the specified load factor.
    693      * @param loadFactor the load factor (table density) for
    694      * establishing the initial table size
    695      * @param concurrencyLevel the estimated number of concurrently
    696      * updating threads. The implementation may use this value as
    697      * a sizing hint.
    698      * @throws IllegalArgumentException if the initial capacity is
    699      * negative or the load factor or concurrencyLevel are
    700      * nonpositive
    701      */
    702     public ConcurrentHashMap(int initialCapacity,
    703                              float loadFactor, int concurrencyLevel) {
    704         if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
    705             throw new IllegalArgumentException();
    706         if (initialCapacity < concurrencyLevel)   // Use at least as many bins
    707             initialCapacity = concurrencyLevel;   // as estimated threads
    708         long size = (long)(1.0 + (long)initialCapacity / loadFactor);
    709         int cap = (size >= (long)MAXIMUM_CAPACITY) ?
    710             MAXIMUM_CAPACITY : tableSizeFor((int)size);
    711         this.sizeCtl = cap;
    712     }
    713 
    714     // Original (since JDK1.2) Map methods
    715 
    716     /**
    717      * {@inheritDoc}
    718      */
    719     public int size() {
    720         long n = sumCount();
    721         return ((n < 0L) ? 0 :
    722                 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
    723                 (int)n);
    724     }
    725 
    726     /**
    727      * {@inheritDoc}
    728      */
    729     public boolean isEmpty() {
    730         return sumCount() <= 0L; // ignore transient negative values
    731     }
    732 
    733     /**
    734      * Returns the value to which the specified key is mapped,
    735      * or {@code null} if this map contains no mapping for the key.
    736      *
    737      * <p>More formally, if this map contains a mapping from a key
    738      * {@code k} to a value {@code v} such that {@code key.equals(k)},
    739      * then this method returns {@code v}; otherwise it returns
    740      * {@code null}.  (There can be at most one such mapping.)
    741      *
    742      * @throws NullPointerException if the specified key is null
    743      */
    744     public V get(Object key) {
    745         Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    746         int h = spread(key.hashCode());
    747         if ((tab = table) != null && (n = tab.length) > 0 &&
    748             (e = tabAt(tab, (n - 1) & h)) != null) {
    749             if ((eh = e.hash) == h) {
    750                 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
    751                     return e.val;
    752             }
    753             else if (eh < 0)
    754                 return (p = e.find(h, key)) != null ? p.val : null;
    755             while ((e = e.next) != null) {
    756                 if (e.hash == h &&
    757                     ((ek = e.key) == key || (ek != null && key.equals(ek))))
    758                     return e.val;
    759             }
    760         }
    761         return null;
    762     }
    763 
    764     /**
    765      * Tests if the specified object is a key in this table.
    766      *
    767      * @param  key possible key
    768      * @return {@code true} if and only if the specified object
    769      *         is a key in this table, as determined by the
    770      *         {@code equals} method; {@code false} otherwise
    771      * @throws NullPointerException if the specified key is null
    772      */
    773     public boolean containsKey(Object key) {
    774         return get(key) != null;
    775     }
    776 
    777     /**
    778      * Returns {@code true} if this map maps one or more keys to the
    779      * specified value. Note: This method may require a full traversal
    780      * of the map, and is much slower than method {@code containsKey}.
    781      *
    782      * @param value value whose presence in this map is to be tested
    783      * @return {@code true} if this map maps one or more keys to the
    784      *         specified value
    785      * @throws NullPointerException if the specified value is null
    786      */
    787     public boolean containsValue(Object value) {
    788         if (value == null)
    789             throw new NullPointerException();
    790         Node<K,V>[] t;
    791         if ((t = table) != null) {
    792             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
    793             for (Node<K,V> p; (p = it.advance()) != null; ) {
    794                 V v;
    795                 if ((v = p.val) == value || (v != null && value.equals(v)))
    796                     return true;
    797             }
    798         }
    799         return false;
    800     }
    801 
    802     /**
    803      * Maps the specified key to the specified value in this table.
    804      * Neither the key nor the value can be null.
    805      *
    806      * <p>The value can be retrieved by calling the {@code get} method
    807      * with a key that is equal to the original key.
    808      *
    809      * @param key key with which the specified value is to be associated
    810      * @param value value to be associated with the specified key
    811      * @return the previous value associated with {@code key}, or
    812      *         {@code null} if there was no mapping for {@code key}
    813      * @throws NullPointerException if the specified key or value is null
    814      */
    815     public V put(K key, V value) {
    816         return putVal(key, value, false);
    817     }
    818 
    819     /** Implementation for put and putIfAbsent */
    820     final V putVal(K key, V value, boolean onlyIfAbsent) {
    821         if (key == null || value == null) throw new NullPointerException();
    822         int hash = spread(key.hashCode());
    823         int binCount = 0;
    824         for (Node<K,V>[] tab = table;;) {
    825             Node<K,V> f; int n, i, fh;
    826             if (tab == null || (n = tab.length) == 0)
    827                 tab = initTable();
    828             else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    829                 if (casTabAt(tab, i, null,
    830                              new Node<K,V>(hash, key, value, null)))
    831                     break;                   // no lock when adding to empty bin
    832             }
    833             else if ((fh = f.hash) == MOVED)
    834                 tab = helpTransfer(tab, f);
    835             else {
    836                 V oldVal = null;
    837                 synchronized (f) {
    838                     if (tabAt(tab, i) == f) {
    839                         if (fh >= 0) {
    840                             binCount = 1;
    841                             for (Node<K,V> e = f;; ++binCount) {
    842                                 K ek;
    843                                 if (e.hash == hash &&
    844                                     ((ek = e.key) == key ||
    845                                      (ek != null && key.equals(ek)))) {
    846                                     oldVal = e.val;
    847                                     if (!onlyIfAbsent)
    848                                         e.val = value;
    849                                     break;
    850                                 }
    851                                 Node<K,V> pred = e;
    852                                 if ((e = e.next) == null) {
    853                                     pred.next = new Node<K,V>(hash, key,
    854                                                               value, null);
    855                                     break;
    856                                 }
    857                             }
    858                         }
    859                         else if (f instanceof TreeBin) {
    860                             Node<K,V> p;
    861                             binCount = 2;
    862                             if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
    863                                                            value)) != null) {
    864                                 oldVal = p.val;
    865                                 if (!onlyIfAbsent)
    866                                     p.val = value;
    867                             }
    868                         }
    869                     }
    870                 }
    871                 if (binCount != 0) {
    872                     if (binCount >= TREEIFY_THRESHOLD)
    873                         treeifyBin(tab, i);
    874                     if (oldVal != null)
    875                         return oldVal;
    876                     break;
    877                 }
    878             }
    879         }
    880         addCount(1L, binCount);
    881         return null;
    882     }
    883 
    884     /**
    885      * Copies all of the mappings from the specified map to this one.
    886      * These mappings replace any mappings that this map had for any of the
    887      * keys currently in the specified map.
    888      *
    889      * @param m mappings to be stored in this map
    890      */
    891     public void putAll(Map<? extends K, ? extends V> m) {
    892         tryPresize(m.size());
    893         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
    894             putVal(e.getKey(), e.getValue(), false);
    895     }
    896 
    897     /**
    898      * Removes the key (and its corresponding value) from this map.
    899      * This method does nothing if the key is not in the map.
    900      *
    901      * @param  key the key that needs to be removed
    902      * @return the previous value associated with {@code key}, or
    903      *         {@code null} if there was no mapping for {@code key}
    904      * @throws NullPointerException if the specified key is null
    905      */
    906     public V remove(Object key) {
    907         return replaceNode(key, null, null);
    908     }
    909 
    910     /**
    911      * Implementation for the four public remove/replace methods:
    912      * Replaces node value with v, conditional upon match of cv if
    913      * non-null.  If resulting value is null, delete.
    914      */
    915     final V replaceNode(Object key, V value, Object cv) {
    916         int hash = spread(key.hashCode());
    917         for (Node<K,V>[] tab = table;;) {
    918             Node<K,V> f; int n, i, fh;
    919             if (tab == null || (n = tab.length) == 0 ||
    920                 (f = tabAt(tab, i = (n - 1) & hash)) == null)
    921                 break;
    922             else if ((fh = f.hash) == MOVED)
    923                 tab = helpTransfer(tab, f);
    924             else {
    925                 V oldVal = null;
    926                 boolean validated = false;
    927                 synchronized (f) {
    928                     if (tabAt(tab, i) == f) {
    929                         if (fh >= 0) {
    930                             validated = true;
    931                             for (Node<K,V> e = f, pred = null;;) {
    932                                 K ek;
    933                                 if (e.hash == hash &&
    934                                     ((ek = e.key) == key ||
    935                                      (ek != null && key.equals(ek)))) {
    936                                     V ev = e.val;
    937                                     if (cv == null || cv == ev ||
    938                                         (ev != null && cv.equals(ev))) {
    939                                         oldVal = ev;
    940                                         if (value != null)
    941                                             e.val = value;
    942                                         else if (pred != null)
    943                                             pred.next = e.next;
    944                                         else
    945                                             setTabAt(tab, i, e.next);
    946                                     }
    947                                     break;
    948                                 }
    949                                 pred = e;
    950                                 if ((e = e.next) == null)
    951                                     break;
    952                             }
    953                         }
    954                         else if (f instanceof TreeBin) {
    955                             validated = true;
    956                             TreeBin<K,V> t = (TreeBin<K,V>)f;
    957                             TreeNode<K,V> r, p;
    958                             if ((r = t.root) != null &&
    959                                 (p = r.findTreeNode(hash, key, null)) != null) {
    960                                 V pv = p.val;
    961                                 if (cv == null || cv == pv ||
    962                                     (pv != null && cv.equals(pv))) {
    963                                     oldVal = pv;
    964                                     if (value != null)
    965                                         p.val = value;
    966                                     else if (t.removeTreeNode(p))
    967                                         setTabAt(tab, i, untreeify(t.first));
    968                                 }
    969                             }
    970                         }
    971                     }
    972                 }
    973                 if (validated) {
    974                     if (oldVal != null) {
    975                         if (value == null)
    976                             addCount(-1L, -1);
    977                         return oldVal;
    978                     }
    979                     break;
    980                 }
    981             }
    982         }
    983         return null;
    984     }
    985 
    986     /**
    987      * Removes all of the mappings from this map.
    988      */
    989     public void clear() {
    990         long delta = 0L; // negative number of deletions
    991         int i = 0;
    992         Node<K,V>[] tab = table;
    993         while (tab != null && i < tab.length) {
    994             int fh;
    995             Node<K,V> f = tabAt(tab, i);
    996             if (f == null)
    997                 ++i;
    998             else if ((fh = f.hash) == MOVED) {
    999                 tab = helpTransfer(tab, f);
   1000                 i = 0; // restart
   1001             }
   1002             else {
   1003                 synchronized (f) {
   1004                     if (tabAt(tab, i) == f) {
   1005                         Node<K,V> p = (fh >= 0 ? f :
   1006                                        (f instanceof TreeBin) ?
   1007                                        ((TreeBin<K,V>)f).first : null);
   1008                         while (p != null) {
   1009                             --delta;
   1010                             p = p.next;
   1011                         }
   1012                         setTabAt(tab, i++, null);
   1013                     }
   1014                 }
   1015             }
   1016         }
   1017         if (delta != 0L)
   1018             addCount(delta, -1);
   1019     }
   1020 
   1021     /**
   1022      * Returns a {@link Set} view of the keys contained in this map.
   1023      * The set is backed by the map, so changes to the map are
   1024      * reflected in the set, and vice-versa. The set supports element
   1025      * removal, which removes the corresponding mapping from this map,
   1026      * via the {@code Iterator.remove}, {@code Set.remove},
   1027      * {@code removeAll}, {@code retainAll}, and {@code clear}
   1028      * operations.  It does not support the {@code add} or
   1029      * {@code addAll} operations.
   1030      *
   1031      * <p>The view's {@code iterator} is a "weakly consistent" iterator
   1032      * that will never throw {@link ConcurrentModificationException},
   1033      * and guarantees to traverse elements as they existed upon
   1034      * construction of the iterator, and may (but is not guaranteed to)
   1035      * reflect any modifications subsequent to construction.
   1036      *
   1037      * @return the set view
   1038      *
   1039      */
   1040     public Set<K> keySet() {
   1041         KeySetView<K,V> ks;
   1042         return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
   1043     }
   1044 
   1045     /**
   1046      * Returns a {@link Collection} view of the values contained in this map.
   1047      * The collection is backed by the map, so changes to the map are
   1048      * reflected in the collection, and vice-versa.  The collection
   1049      * supports element removal, which removes the corresponding
   1050      * mapping from this map, via the {@code Iterator.remove},
   1051      * {@code Collection.remove}, {@code removeAll},
   1052      * {@code retainAll}, and {@code clear} operations.  It does not
   1053      * support the {@code add} or {@code addAll} operations.
   1054      *
   1055      * <p>The view's {@code iterator} is a "weakly consistent" iterator
   1056      * that will never throw {@link ConcurrentModificationException},
   1057      * and guarantees to traverse elements as they existed upon
   1058      * construction of the iterator, and may (but is not guaranteed to)
   1059      * reflect any modifications subsequent to construction.
   1060      *
   1061      * @return the collection view
   1062      */
   1063     public Collection<V> values() {
   1064         ValuesView<K,V> vs;
   1065         return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
   1066     }
   1067 
   1068     /**
   1069      * Returns a {@link Set} view of the mappings contained in this map.
   1070      * The set is backed by the map, so changes to the map are
   1071      * reflected in the set, and vice-versa.  The set supports element
   1072      * removal, which removes the corresponding mapping from the map,
   1073      * via the {@code Iterator.remove}, {@code Set.remove},
   1074      * {@code removeAll}, {@code retainAll}, and {@code clear}
   1075      * operations.
   1076      *
   1077      * <p>The view's {@code iterator} is a "weakly consistent" iterator
   1078      * that will never throw {@link ConcurrentModificationException},
   1079      * and guarantees to traverse elements as they existed upon
   1080      * construction of the iterator, and may (but is not guaranteed to)
   1081      * reflect any modifications subsequent to construction.
   1082      *
   1083      * @return the set view
   1084      */
   1085     public Set<Map.Entry<K,V>> entrySet() {
   1086         EntrySetView<K,V> es;
   1087         return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
   1088     }
   1089 
   1090     /**
   1091      * Returns the hash code value for this {@link Map}, i.e.,
   1092      * the sum of, for each key-value pair in the map,
   1093      * {@code key.hashCode() ^ value.hashCode()}.
   1094      *
   1095      * @return the hash code value for this map
   1096      */
   1097     public int hashCode() {
   1098         int h = 0;
   1099         Node<K,V>[] t;
   1100         if ((t = table) != null) {
   1101             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
   1102             for (Node<K,V> p; (p = it.advance()) != null; )
   1103                 h += p.key.hashCode() ^ p.val.hashCode();
   1104         }
   1105         return h;
   1106     }
   1107 
   1108     /**
   1109      * Returns a string representation of this map.  The string
   1110      * representation consists of a list of key-value mappings (in no
   1111      * particular order) enclosed in braces ("{@code {}}").  Adjacent
   1112      * mappings are separated by the characters {@code ", "} (comma
   1113      * and space).  Each key-value mapping is rendered as the key
   1114      * followed by an equals sign ("{@code =}") followed by the
   1115      * associated value.
   1116      *
   1117      * @return a string representation of this map
   1118      */
   1119     public String toString() {
   1120         Node<K,V>[] t;
   1121         int f = (t = table) == null ? 0 : t.length;
   1122         Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
   1123         StringBuilder sb = new StringBuilder();
   1124         sb.append('{');
   1125         Node<K,V> p;
   1126         if ((p = it.advance()) != null) {
   1127             for (;;) {
   1128                 K k = p.key;
   1129                 V v = p.val;
   1130                 sb.append(k == this ? "(this Map)" : k);
   1131                 sb.append('=');
   1132                 sb.append(v == this ? "(this Map)" : v);
   1133                 if ((p = it.advance()) == null)
   1134                     break;
   1135                 sb.append(',').append(' ');
   1136             }
   1137         }
   1138         return sb.append('}').toString();
   1139     }
   1140 
   1141     /**
   1142      * Compares the specified object with this map for equality.
   1143      * Returns {@code true} if the given object is a map with the same
   1144      * mappings as this map.  This operation may return misleading
   1145      * results if either map is concurrently modified during execution
   1146      * of this method.
   1147      *
   1148      * @param o object to be compared for equality with this map
   1149      * @return {@code true} if the specified object is equal to this map
   1150      */
   1151     public boolean equals(Object o) {
   1152         if (o != this) {
   1153             if (!(o instanceof Map))
   1154                 return false;
   1155             Map<?,?> m = (Map<?,?>) o;
   1156             Node<K,V>[] t;
   1157             int f = (t = table) == null ? 0 : t.length;
   1158             Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
   1159             for (Node<K,V> p; (p = it.advance()) != null; ) {
   1160                 V val = p.val;
   1161                 Object v = m.get(p.key);
   1162                 if (v == null || (v != val && !v.equals(val)))
   1163                     return false;
   1164             }
   1165             for (Map.Entry<?,?> e : m.entrySet()) {
   1166                 Object mk, mv, v;
   1167                 if ((mk = e.getKey()) == null ||
   1168                     (mv = e.getValue()) == null ||
   1169                     (v = get(mk)) == null ||
   1170                     (mv != v && !mv.equals(v)))
   1171                     return false;
   1172             }
   1173         }
   1174         return true;
   1175     }
   1176 
   1177     /**
   1178      * Stripped-down version of helper class used in previous version,
   1179      * declared for the sake of serialization compatibility
   1180      */
   1181     static class Segment<K,V> extends ReentrantLock implements Serializable {
   1182         private static final long serialVersionUID = 2249069246763182397L;
   1183         final float loadFactor;
   1184         Segment(float lf) { this.loadFactor = lf; }
   1185     }
   1186 
   1187     /**
   1188      * Saves the state of the {@code ConcurrentHashMap} instance to a
   1189      * stream (i.e., serializes it).
   1190      * @param s the stream
   1191      * @serialData
   1192      * the key (Object) and value (Object)
   1193      * for each key-value mapping, followed by a null pair.
   1194      * The key-value mappings are emitted in no particular order.
   1195      */
   1196     private void writeObject(java.io.ObjectOutputStream s)
   1197         throws java.io.IOException {
   1198         // For serialization compatibility
   1199         // Emulate segment calculation from previous version of this class
   1200         int sshift = 0;
   1201         int ssize = 1;
   1202         while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
   1203             ++sshift;
   1204             ssize <<= 1;
   1205         }
   1206         int segmentShift = 32 - sshift;
   1207         int segmentMask = ssize - 1;
   1208         @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
   1209             new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
   1210         for (int i = 0; i < segments.length; ++i)
   1211             segments[i] = new Segment<K,V>(LOAD_FACTOR);
   1212         s.putFields().put("segments", segments);
   1213         s.putFields().put("segmentShift", segmentShift);
   1214         s.putFields().put("segmentMask", segmentMask);
   1215         s.writeFields();
   1216 
   1217         Node<K,V>[] t;
   1218         if ((t = table) != null) {
   1219             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
   1220             for (Node<K,V> p; (p = it.advance()) != null; ) {
   1221                 s.writeObject(p.key);
   1222                 s.writeObject(p.val);
   1223             }
   1224         }
   1225         s.writeObject(null);
   1226         s.writeObject(null);
   1227         segments = null; // throw away
   1228     }
   1229 
   1230     /**
   1231      * Reconstitutes the instance from a stream (that is, deserializes it).
   1232      * @param s the stream
   1233      */
   1234     private void readObject(java.io.ObjectInputStream s)
   1235         throws java.io.IOException, ClassNotFoundException {
   1236         /*
   1237          * To improve performance in typical cases, we create nodes
   1238          * while reading, then place in table once size is known.
   1239          * However, we must also validate uniqueness and deal with
   1240          * overpopulated bins while doing so, which requires
   1241          * specialized versions of putVal mechanics.
   1242          */
   1243         sizeCtl = -1; // force exclusion for table construction
   1244         s.defaultReadObject();
   1245         long size = 0L;
   1246         Node<K,V> p = null;
   1247         for (;;) {
   1248             @SuppressWarnings("unchecked") K k = (K) s.readObject();
   1249             @SuppressWarnings("unchecked") V v = (V) s.readObject();
   1250             if (k != null && v != null) {
   1251                 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
   1252                 ++size;
   1253             }
   1254             else
   1255                 break;
   1256         }
   1257         if (size == 0L)
   1258             sizeCtl = 0;
   1259         else {
   1260             int n;
   1261             if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
   1262                 n = MAXIMUM_CAPACITY;
   1263             else {
   1264                 int sz = (int)size;
   1265                 n = tableSizeFor(sz + (sz >>> 1) + 1);
   1266             }
   1267             @SuppressWarnings({"rawtypes","unchecked"})
   1268                 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
   1269             int mask = n - 1;
   1270             long added = 0L;
   1271             while (p != null) {
   1272                 boolean insertAtFront;
   1273                 Node<K,V> next = p.next, first;
   1274                 int h = p.hash, j = h & mask;
   1275                 if ((first = tabAt(tab, j)) == null)
   1276                     insertAtFront = true;
   1277                 else {
   1278                     K k = p.key;
   1279                     if (first.hash < 0) {
   1280                         TreeBin<K,V> t = (TreeBin<K,V>)first;
   1281                         if (t.putTreeVal(h, k, p.val) == null)
   1282                             ++added;
   1283                         insertAtFront = false;
   1284                     }
   1285                     else {
   1286                         int binCount = 0;
   1287                         insertAtFront = true;
   1288                         Node<K,V> q; K qk;
   1289                         for (q = first; q != null; q = q.next) {
   1290                             if (q.hash == h &&
   1291                                 ((qk = q.key) == k ||
   1292                                  (qk != null && k.equals(qk)))) {
   1293                                 insertAtFront = false;
   1294                                 break;
   1295                             }
   1296                             ++binCount;
   1297                         }
   1298                         if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
   1299                             insertAtFront = false;
   1300                             ++added;
   1301                             p.next = first;
   1302                             TreeNode<K,V> hd = null, tl = null;
   1303                             for (q = p; q != null; q = q.next) {
   1304                                 TreeNode<K,V> t = new TreeNode<K,V>
   1305                                     (q.hash, q.key, q.val, null, null);
   1306                                 if ((t.prev = tl) == null)
   1307                                     hd = t;
   1308                                 else
   1309                                     tl.next = t;
   1310                                 tl = t;
   1311                             }
   1312                             setTabAt(tab, j, new TreeBin<K,V>(hd));
   1313                         }
   1314                     }
   1315                 }
   1316                 if (insertAtFront) {
   1317                     ++added;
   1318                     p.next = first;
   1319                     setTabAt(tab, j, p);
   1320                 }
   1321                 p = next;
   1322             }
   1323             table = tab;
   1324             sizeCtl = n - (n >>> 2);
   1325             baseCount = added;
   1326         }
   1327     }
   1328 
   1329     // ConcurrentMap methods
   1330 
   1331     /**
   1332      * {@inheritDoc}
   1333      *
   1334      * @return the previous value associated with the specified key,
   1335      *         or {@code null} if there was no mapping for the key
   1336      * @throws NullPointerException if the specified key or value is null
   1337      */
   1338     public V putIfAbsent(K key, V value) {
   1339         return putVal(key, value, true);
   1340     }
   1341 
   1342     /**
   1343      * {@inheritDoc}
   1344      *
   1345      * @throws NullPointerException if the specified key is null
   1346      */
   1347     public boolean remove(Object key, Object value) {
   1348         if (key == null)
   1349             throw new NullPointerException();
   1350         return value != null && replaceNode(key, null, value) != null;
   1351     }
   1352 
   1353     /**
   1354      * {@inheritDoc}
   1355      *
   1356      * @throws NullPointerException if any of the arguments are null
   1357      */
   1358     public boolean replace(K key, V oldValue, V newValue) {
   1359         if (key == null || oldValue == null || newValue == null)
   1360             throw new NullPointerException();
   1361         return replaceNode(key, newValue, oldValue) != null;
   1362     }
   1363 
   1364     /**
   1365      * {@inheritDoc}
   1366      *
   1367      * @return the previous value associated with the specified key,
   1368      *         or {@code null} if there was no mapping for the key
   1369      * @throws NullPointerException if the specified key or value is null
   1370      */
   1371     public V replace(K key, V value) {
   1372         if (key == null || value == null)
   1373             throw new NullPointerException();
   1374         return replaceNode(key, value, null);
   1375     }
   1376     // Hashtable legacy methods
   1377 
   1378     /**
   1379      * Legacy method testing if some key maps into the specified value
   1380      * in this table.  This method is identical in functionality to
   1381      * {@link #containsValue(Object)}, and exists solely to ensure
   1382      * full compatibility with class {@link java.util.Hashtable}.
   1383      *
   1384      * @param  value a value to search for
   1385      * @return {@code true} if and only if some key maps to the
   1386      *         {@code value} argument in this table as
   1387      *         determined by the {@code equals} method;
   1388      *         {@code false} otherwise
   1389      * @throws NullPointerException if the specified value is null
   1390      */
   1391     public boolean contains(Object value) {
   1392         // BEGIN android-note
   1393         // removed deprecation
   1394         // END android-note
   1395         return containsValue(value);
   1396     }
   1397 
   1398     /**
   1399      * Returns an enumeration of the keys in this table.
   1400      *
   1401      * @return an enumeration of the keys in this table
   1402      * @see #keySet()
   1403      */
   1404     public Enumeration<K> keys() {
   1405         Node<K,V>[] t;
   1406         int f = (t = table) == null ? 0 : t.length;
   1407         return new KeyIterator<K,V>(t, f, 0, f, this);
   1408     }
   1409 
   1410     /**
   1411      * Returns an enumeration of the values in this table.
   1412      *
   1413      * @return an enumeration of the values in this table
   1414      * @see #values()
   1415      */
   1416     public Enumeration<V> elements() {
   1417         Node<K,V>[] t;
   1418         int f = (t = table) == null ? 0 : t.length;
   1419         return new ValueIterator<K,V>(t, f, 0, f, this);
   1420     }
   1421 
   1422     // ConcurrentHashMap-only methods
   1423 
   1424     /**
   1425      * Returns the number of mappings. This method should be used
   1426      * instead of {@link #size} because a ConcurrentHashMap may
   1427      * contain more mappings than can be represented as an int. The
   1428      * value returned is an estimate; the actual count may differ if
   1429      * there are concurrent insertions or removals.
   1430      *
   1431      * @return the number of mappings
   1432      * @since 1.8
   1433      *
   1434      * @hide
   1435      */
   1436     public long mappingCount() {
   1437         long n = sumCount();
   1438         return (n < 0L) ? 0L : n; // ignore transient negative values
   1439     }
   1440 
   1441     /**
   1442      * Creates a new {@link Set} backed by a ConcurrentHashMap
   1443      * from the given type to {@code Boolean.TRUE}.
   1444      *
   1445      * @return the new set
   1446      * @since 1.8
   1447      *
   1448      * @hide
   1449      */
   1450     public static <K> KeySetView<K,Boolean> newKeySet() {
   1451         return new KeySetView<K,Boolean>
   1452             (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
   1453     }
   1454 
   1455     /**
   1456      * Creates a new {@link Set} backed by a ConcurrentHashMap
   1457      * from the given type to {@code Boolean.TRUE}.
   1458      *
   1459      * @param initialCapacity The implementation performs internal
   1460      * sizing to accommodate this many elements.
   1461      * @throws IllegalArgumentException if the initial capacity of
   1462      * elements is negative
   1463      * @return the new set
   1464      * @since 1.8
   1465      *
   1466      * @hide
   1467      */
   1468     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
   1469         return new KeySetView<K,Boolean>
   1470             (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
   1471     }
   1472 
   1473     /**
   1474      * Returns a {@link Set} view of the keys in this map, using the
   1475      * given common mapped value for any additions (i.e., {@link
   1476      * Collection#add} and {@link Collection#addAll(Collection)}).
   1477      * This is of course only appropriate if it is acceptable to use
   1478      * the same value for all additions from this view.
   1479      *
   1480      * @param mappedValue the mapped value to use for any additions
   1481      * @return the set view
   1482      * @throws NullPointerException if the mappedValue is null
   1483      *
   1484      * @hide
   1485      */
   1486     public Set<K> keySet(V mappedValue) {
   1487         if (mappedValue == null)
   1488             throw new NullPointerException();
   1489         return new KeySetView<K,V>(this, mappedValue);
   1490     }
   1491 
   1492     /* ---------------- Special Nodes -------------- */
   1493 
   1494     /**
   1495      * A node inserted at head of bins during transfer operations.
   1496      */
   1497     static final class ForwardingNode<K,V> extends Node<K,V> {
   1498         final Node<K,V>[] nextTable;
   1499         ForwardingNode(Node<K,V>[] tab) {
   1500             super(MOVED, null, null, null);
   1501             this.nextTable = tab;
   1502         }
   1503 
   1504         Node<K,V> find(int h, Object k) {
   1505             Node<K,V> e; int n;
   1506             Node<K,V>[] tab = nextTable;
   1507             if (k != null && tab != null && (n = tab.length) > 0 &&
   1508                 (e = tabAt(tab, (n - 1) & h)) != null) {
   1509                 do {
   1510                     int eh; K ek;
   1511                     if ((eh = e.hash) == h &&
   1512                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
   1513                         return e;
   1514                     if (eh < 0)
   1515                         return e.find(h, k);
   1516                 } while ((e = e.next) != null);
   1517             }
   1518             return null;
   1519         }
   1520     }
   1521 
   1522     /**
   1523      * A place-holder node used in computeIfAbsent and compute
   1524      */
   1525     static final class ReservationNode<K,V> extends Node<K,V> {
   1526         ReservationNode() {
   1527             super(RESERVED, null, null, null);
   1528         }
   1529 
   1530         Node<K,V> find(int h, Object k) {
   1531             return null;
   1532         }
   1533     }
   1534 
   1535     /* ---------------- Table Initialization and Resizing -------------- */
   1536 
   1537     /**
   1538      * Initializes table, using the size recorded in sizeCtl.
   1539      */
   1540     private final Node<K,V>[] initTable() {
   1541         Node<K,V>[] tab; int sc;
   1542         while ((tab = table) == null || tab.length == 0) {
   1543             if ((sc = sizeCtl) < 0)
   1544                 Thread.yield(); // lost initialization race; just spin
   1545             else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
   1546                 try {
   1547                     if ((tab = table) == null || tab.length == 0) {
   1548                         int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
   1549                         @SuppressWarnings({"rawtypes","unchecked"})
   1550                             Node<K,V>[] nt = (Node<K,V>[])new Node[n];
   1551                         table = tab = nt;
   1552                         sc = n - (n >>> 2);
   1553                     }
   1554                 } finally {
   1555                     sizeCtl = sc;
   1556                 }
   1557                 break;
   1558             }
   1559         }
   1560         return tab;
   1561     }
   1562 
   1563     /**
   1564      * Adds to count, and if table is too small and not already
   1565      * resizing, initiates transfer. If already resizing, helps
   1566      * perform transfer if work is available.  Rechecks occupancy
   1567      * after a transfer to see if another resize is already needed
   1568      * because resizings are lagging additions.
   1569      *
   1570      * @param x the count to add
   1571      * @param check if <0, don't check resize, if <= 1 only check if uncontended
   1572      */
   1573     private final void addCount(long x, int check) {
   1574         CounterCell[] as; long b, s;
   1575         if ((as = counterCells) != null ||
   1576             !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
   1577             CounterHashCode hc; CounterCell a; long v; int m;
   1578             boolean uncontended = true;
   1579             if ((hc = threadCounterHashCode.get()) == null ||
   1580                 as == null || (m = as.length - 1) < 0 ||
   1581                 (a = as[m & hc.code]) == null ||
   1582                 !(uncontended =
   1583                   U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
   1584                 fullAddCount(x, hc, uncontended);
   1585                 return;
   1586             }
   1587             if (check <= 1)
   1588                 return;
   1589             s = sumCount();
   1590         }
   1591         if (check >= 0) {
   1592             Node<K,V>[] tab, nt; int sc;
   1593             while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
   1594                    tab.length < MAXIMUM_CAPACITY) {
   1595                 if (sc < 0) {
   1596                     if (sc == -1 || transferIndex <= transferOrigin ||
   1597                         (nt = nextTable) == null)
   1598                         break;
   1599                     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
   1600                         transfer(tab, nt);
   1601                 }
   1602                 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
   1603                     transfer(tab, null);
   1604                 s = sumCount();
   1605             }
   1606         }
   1607     }
   1608 
   1609     /**
   1610      * Helps transfer if a resize is in progress.
   1611      */
   1612     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
   1613         Node<K,V>[] nextTab; int sc;
   1614         if ((f instanceof ForwardingNode) &&
   1615             (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
   1616             if (nextTab == nextTable && tab == table &&
   1617                 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
   1618                 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
   1619                 transfer(tab, nextTab);
   1620             return nextTab;
   1621         }
   1622         return table;
   1623     }
   1624 
   1625     /**
   1626      * Tries to presize table to accommodate the given number of elements.
   1627      *
   1628      * @param size number of elements (doesn't need to be perfectly accurate)
   1629      */
   1630     private final void tryPresize(int size) {
   1631         int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
   1632             tableSizeFor(size + (size >>> 1) + 1);
   1633         int sc;
   1634         while ((sc = sizeCtl) >= 0) {
   1635             Node<K,V>[] tab = table; int n;
   1636             if (tab == null || (n = tab.length) == 0) {
   1637                 n = (sc > c) ? sc : c;
   1638                 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
   1639                     try {
   1640                         if (table == tab) {
   1641                             @SuppressWarnings({"rawtypes","unchecked"})
   1642                                 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
   1643                             table = nt;
   1644                             sc = n - (n >>> 2);
   1645                         }
   1646                     } finally {
   1647                         sizeCtl = sc;
   1648                     }
   1649                 }
   1650             }
   1651             else if (c <= sc || n >= MAXIMUM_CAPACITY)
   1652                 break;
   1653             else if (tab == table &&
   1654                      U.compareAndSwapInt(this, SIZECTL, sc, -2))
   1655                 transfer(tab, null);
   1656         }
   1657     }
   1658 
   1659     /**
   1660      * Moves and/or copies the nodes in each bin to new table. See
   1661      * above for explanation.
   1662      */
   1663     private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
   1664         int n = tab.length, stride;
   1665         if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
   1666             stride = MIN_TRANSFER_STRIDE; // subdivide range
   1667         if (nextTab == null) {            // initiating
   1668             try {
   1669                 @SuppressWarnings({"rawtypes","unchecked"})
   1670                     Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
   1671                 nextTab = nt;
   1672             } catch (Throwable ex) {      // try to cope with OOME
   1673                 sizeCtl = Integer.MAX_VALUE;
   1674                 return;
   1675             }
   1676             nextTable = nextTab;
   1677             transferOrigin = n;
   1678             transferIndex = n;
   1679             ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
   1680             for (int k = n; k > 0;) {    // progressively reveal ready slots
   1681                 int nextk = (k > stride) ? k - stride : 0;
   1682                 for (int m = nextk; m < k; ++m)
   1683                     nextTab[m] = rev;
   1684                 for (int m = n + nextk; m < n + k; ++m)
   1685                     nextTab[m] = rev;
   1686                 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
   1687             }
   1688         }
   1689         int nextn = nextTab.length;
   1690         ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
   1691         boolean advance = true;
   1692         for (int i = 0, bound = 0;;) {
   1693             int nextIndex, nextBound, fh; Node<K,V> f;
   1694             while (advance) {
   1695                 if (--i >= bound)
   1696                     advance = false;
   1697                 else if ((nextIndex = transferIndex) <= transferOrigin) {
   1698                     i = -1;
   1699                     advance = false;
   1700                 }
   1701                 else if (U.compareAndSwapInt
   1702                          (this, TRANSFERINDEX, nextIndex,
   1703                           nextBound = (nextIndex > stride ?
   1704                                        nextIndex - stride : 0))) {
   1705                     bound = nextBound;
   1706                     i = nextIndex - 1;
   1707                     advance = false;
   1708                 }
   1709             }
   1710             if (i < 0 || i >= n || i + n >= nextn) {
   1711                 for (int sc;;) {
   1712                     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
   1713                         if (sc == -1) {
   1714                             nextTable = null;
   1715                             table = nextTab;
   1716                             sizeCtl = (n << 1) - (n >>> 1);
   1717                         }
   1718                         return;
   1719                     }
   1720                 }
   1721             }
   1722             else if ((f = tabAt(tab, i)) == null) {
   1723                 if (casTabAt(tab, i, null, fwd)) {
   1724                     setTabAt(nextTab, i, null);
   1725                     setTabAt(nextTab, i + n, null);
   1726                     advance = true;
   1727                 }
   1728             }
   1729             else if ((fh = f.hash) == MOVED)
   1730                 advance = true; // already processed
   1731             else {
   1732                 synchronized (f) {
   1733                     if (tabAt(tab, i) == f) {
   1734                         Node<K,V> ln, hn;
   1735                         if (fh >= 0) {
   1736                             int runBit = fh & n;
   1737                             Node<K,V> lastRun = f;
   1738                             for (Node<K,V> p = f.next; p != null; p = p.next) {
   1739                                 int b = p.hash & n;
   1740                                 if (b != runBit) {
   1741                                     runBit = b;
   1742                                     lastRun = p;
   1743                                 }
   1744                             }
   1745                             if (runBit == 0) {
   1746                                 ln = lastRun;
   1747                                 hn = null;
   1748                             }
   1749                             else {
   1750                                 hn = lastRun;
   1751                                 ln = null;
   1752                             }
   1753                             for (Node<K,V> p = f; p != lastRun; p = p.next) {
   1754                                 int ph = p.hash; K pk = p.key; V pv = p.val;
   1755                                 if ((ph & n) == 0)
   1756                                     ln = new Node<K,V>(ph, pk, pv, ln);
   1757                                 else
   1758                                     hn = new Node<K,V>(ph, pk, pv, hn);
   1759                             }
   1760                         }
   1761                         else if (f instanceof TreeBin) {
   1762                             TreeBin<K,V> t = (TreeBin<K,V>)f;
   1763                             TreeNode<K,V> lo = null, loTail = null;
   1764                             TreeNode<K,V> hi = null, hiTail = null;
   1765                             int lc = 0, hc = 0;
   1766                             for (Node<K,V> e = t.first; e != null; e = e.next) {
   1767                                 int h = e.hash;
   1768                                 TreeNode<K,V> p = new TreeNode<K,V>
   1769                                     (h, e.key, e.val, null, null);
   1770                                 if ((h & n) == 0) {
   1771                                     if ((p.prev = loTail) == null)
   1772                                         lo = p;
   1773                                     else
   1774                                         loTail.next = p;
   1775                                     loTail = p;
   1776                                     ++lc;
   1777                                 }
   1778                                 else {
   1779                                     if ((p.prev = hiTail) == null)
   1780                                         hi = p;
   1781                                     else
   1782                                         hiTail.next = p;
   1783                                     hiTail = p;
   1784                                     ++hc;
   1785                                 }
   1786                             }
   1787                             ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
   1788                                 (hc != 0) ? new TreeBin<K,V>(lo) : t;
   1789                             hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
   1790                                 (lc != 0) ? new TreeBin<K,V>(hi) : t;
   1791                         }
   1792                         else
   1793                             ln = hn = null;
   1794                         setTabAt(nextTab, i, ln);
   1795                         setTabAt(nextTab, i + n, hn);
   1796                         setTabAt(tab, i, fwd);
   1797                         advance = true;
   1798                     }
   1799                 }
   1800             }
   1801         }
   1802     }
   1803 
   1804     /* ---------------- Conversion from/to TreeBins -------------- */
   1805 
   1806     /**
   1807      * Replaces all linked nodes in bin at given index unless table is
   1808      * too small, in which case resizes instead.
   1809      */
   1810     private final void treeifyBin(Node<K,V>[] tab, int index) {
   1811         Node<K,V> b; int n, sc;
   1812         if (tab != null) {
   1813             if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
   1814                 if (tab == table && (sc = sizeCtl) >= 0 &&
   1815                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
   1816                     transfer(tab, null);
   1817             }
   1818             else if ((b = tabAt(tab, index)) != null) {
   1819                 synchronized (b) {
   1820                     if (tabAt(tab, index) == b) {
   1821                         TreeNode<K,V> hd = null, tl = null;
   1822                         for (Node<K,V> e = b; e != null; e = e.next) {
   1823                             TreeNode<K,V> p =
   1824                                 new TreeNode<K,V>(e.hash, e.key, e.val,
   1825                                                   null, null);
   1826                             if ((p.prev = tl) == null)
   1827                                 hd = p;
   1828                             else
   1829                                 tl.next = p;
   1830                             tl = p;
   1831                         }
   1832                         setTabAt(tab, index, new TreeBin<K,V>(hd));
   1833                     }
   1834                 }
   1835             }
   1836         }
   1837     }
   1838 
   1839     /**
   1840      * Returns a list on non-TreeNodes replacing those in given list.
   1841      */
   1842     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
   1843         Node<K,V> hd = null, tl = null;
   1844         for (Node<K,V> q = b; q != null; q = q.next) {
   1845             Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
   1846             if (tl == null)
   1847                 hd = p;
   1848             else
   1849                 tl.next = p;
   1850             tl = p;
   1851         }
   1852         return hd;
   1853     }
   1854 
   1855     /* ---------------- TreeNodes -------------- */
   1856 
   1857     /**
   1858      * Nodes for use in TreeBins
   1859      */
   1860     static final class TreeNode<K,V> extends Node<K,V> {
   1861         TreeNode<K,V> parent;  // red-black tree links
   1862         TreeNode<K,V> left;
   1863         TreeNode<K,V> right;
   1864         TreeNode<K,V> prev;    // needed to unlink next upon deletion
   1865         boolean red;
   1866 
   1867         TreeNode(int hash, K key, V val, Node<K,V> next,
   1868                  TreeNode<K,V> parent) {
   1869             super(hash, key, val, next);
   1870             this.parent = parent;
   1871         }
   1872 
   1873         Node<K,V> find(int h, Object k) {
   1874             return findTreeNode(h, k, null);
   1875         }
   1876 
   1877         /**
   1878          * Returns the TreeNode (or null if not found) for the given key
   1879          * starting at given root.
   1880          */
   1881         final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
   1882             if (k != null) {
   1883                 TreeNode<K,V> p = this;
   1884                 do  {
   1885                     int ph, dir; K pk; TreeNode<K,V> q;
   1886                     TreeNode<K,V> pl = p.left, pr = p.right;
   1887                     if ((ph = p.hash) > h)
   1888                         p = pl;
   1889                     else if (ph < h)
   1890                         p = pr;
   1891                     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
   1892                         return p;
   1893                     else if (pl == null && pr == null)
   1894                         break;
   1895                     else if ((kc != null ||
   1896                               (kc = comparableClassFor(k)) != null) &&
   1897                              (dir = compareComparables(kc, k, pk)) != 0)
   1898                         p = (dir < 0) ? pl : pr;
   1899                     else if (pl == null)
   1900                         p = pr;
   1901                     else if (pr == null ||
   1902                              (q = pr.findTreeNode(h, k, kc)) == null)
   1903                         p = pl;
   1904                     else
   1905                         return q;
   1906                 } while (p != null);
   1907             }
   1908             return null;
   1909         }
   1910     }
   1911 
   1912     /* ---------------- TreeBins -------------- */
   1913 
   1914     /**
   1915      * TreeNodes used at the heads of bins. TreeBins do not hold user
   1916      * keys or values, but instead point to list of TreeNodes and
   1917      * their root. They also maintain a parasitic read-write lock
   1918      * forcing writers (who hold bin lock) to wait for readers (who do
   1919      * not) to complete before tree restructuring operations.
   1920      */
   1921     static final class TreeBin<K,V> extends Node<K,V> {
   1922         TreeNode<K,V> root;
   1923         volatile TreeNode<K,V> first;
   1924         volatile Thread waiter;
   1925         volatile int lockState;
   1926         // values for lockState
   1927         static final int WRITER = 1; // set while holding write lock
   1928         static final int WAITER = 2; // set when waiting for write lock
   1929         static final int READER = 4; // increment value for setting read lock
   1930 
   1931         /**
   1932          * Creates bin with initial set of nodes headed by b.
   1933          */
   1934         TreeBin(TreeNode<K,V> b) {
   1935             super(TREEBIN, null, null, null);
   1936             this.first = b;
   1937             TreeNode<K,V> r = null;
   1938             for (TreeNode<K,V> x = b, next; x != null; x = next) {
   1939                 next = (TreeNode<K,V>)x.next;
   1940                 x.left = x.right = null;
   1941                 if (r == null) {
   1942                     x.parent = null;
   1943                     x.red = false;
   1944                     r = x;
   1945                 }
   1946                 else {
   1947                     Object key = x.key;
   1948                     int hash = x.hash;
   1949                     Class<?> kc = null;
   1950                     for (TreeNode<K,V> p = r;;) {
   1951                         int dir, ph;
   1952                         if ((ph = p.hash) > hash)
   1953                             dir = -1;
   1954                         else if (ph < hash)
   1955                             dir = 1;
   1956                         else if ((kc != null ||
   1957                                   (kc = comparableClassFor(key)) != null))
   1958                             dir = compareComparables(kc, key, p.key);
   1959                         else
   1960                             dir = 0;
   1961                         TreeNode<K,V> xp = p;
   1962                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
   1963                             x.parent = xp;
   1964                             if (dir <= 0)
   1965                                 xp.left = x;
   1966                             else
   1967                                 xp.right = x;
   1968                             r = balanceInsertion(r, x);
   1969                             break;
   1970                         }
   1971                     }
   1972                 }
   1973             }
   1974             this.root = r;
   1975         }
   1976 
   1977         /**
   1978          * Acquires write lock for tree restructuring.
   1979          */
   1980         private final void lockRoot() {
   1981             if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
   1982                 contendedLock(); // offload to separate method
   1983         }
   1984 
   1985         /**
   1986          * Releases write lock for tree restructuring.
   1987          */
   1988         private final void unlockRoot() {
   1989             lockState = 0;
   1990         }
   1991 
   1992         /**
   1993          * Possibly blocks awaiting root lock.
   1994          */
   1995         private final void contendedLock() {
   1996             boolean waiting = false;
   1997             for (int s;;) {
   1998                 if (((s = lockState) & WRITER) == 0) {
   1999                     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
   2000                         if (waiting)
   2001                             waiter = null;
   2002                         return;
   2003                     }
   2004                 }
   2005                 else if ((s & WAITER) == 0) {
   2006                     if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
   2007                         waiting = true;
   2008                         waiter = Thread.currentThread();
   2009                     }
   2010                 }
   2011                 else if (waiting)
   2012                     LockSupport.park(this);
   2013             }
   2014         }
   2015 
   2016         /**
   2017          * Returns matching node or null if none. Tries to search
   2018          * using tree comparisons from root, but continues linear
   2019          * search when lock not available.
   2020          */
   2021         final Node<K,V> find(int h, Object k) {
   2022             if (k != null) {
   2023                 for (Node<K,V> e = first; e != null; e = e.next) {
   2024                     int s; K ek;
   2025                     if (((s = lockState) & (WAITER|WRITER)) != 0) {
   2026                         if (e.hash == h &&
   2027                             ((ek = e.key) == k || (ek != null && k.equals(ek))))
   2028                             return e;
   2029                     }
   2030                     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
   2031                                                  s + READER)) {
   2032                         TreeNode<K,V> r, p;
   2033                         try {
   2034                             p = ((r = root) == null ? null :
   2035                                  r.findTreeNode(h, k, null));
   2036                         } finally {
   2037 
   2038                             Thread w;
   2039                             int ls;
   2040                             do {} while (!U.compareAndSwapInt
   2041                                          (this, LOCKSTATE,
   2042                                           ls = lockState, ls - READER));
   2043                             if (ls == (READER|WAITER) && (w = waiter) != null)
   2044                                 LockSupport.unpark(w);
   2045                         }
   2046                         return p;
   2047                     }
   2048                 }
   2049             }
   2050             return null;
   2051         }
   2052 
   2053         /**
   2054          * Finds or adds a node.
   2055          * @return null if added
   2056          */
   2057         final TreeNode<K,V> putTreeVal(int h, K k, V v) {
   2058             Class<?> kc = null;
   2059             for (TreeNode<K,V> p = root;;) {
   2060                 int dir, ph; K pk; TreeNode<K,V> q, pr;
   2061                 if (p == null) {
   2062                     first = root = new TreeNode<K,V>(h, k, v, null, null);
   2063                     break;
   2064                 }
   2065                 else if ((ph = p.hash) > h)
   2066                     dir = -1;
   2067                 else if (ph < h)
   2068                     dir = 1;
   2069                 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
   2070                     return p;
   2071                 else if ((kc == null &&
   2072                           (kc = comparableClassFor(k)) == null) ||
   2073                          (dir = compareComparables(kc, k, pk)) == 0) {
   2074                     if (p.left == null)
   2075                         dir = 1;
   2076                     else if ((pr = p.right) == null ||
   2077                              (q = pr.findTreeNode(h, k, kc)) == null)
   2078                         dir = -1;
   2079                     else
   2080                         return q;
   2081                 }
   2082                 TreeNode<K,V> xp = p;
   2083                 if ((p = (dir < 0) ? p.left : p.right) == null) {
   2084                     TreeNode<K,V> x, f = first;
   2085                     first = x = new TreeNode<K,V>(h, k, v, f, xp);
   2086                     if (f != null)
   2087                         f.prev = x;
   2088                     if (dir < 0)
   2089                         xp.left = x;
   2090                     else
   2091                         xp.right = x;
   2092                     if (!xp.red)
   2093                         x.red = true;
   2094                     else {
   2095                         lockRoot();
   2096                         try {
   2097                             root = balanceInsertion(root, x);
   2098                         } finally {
   2099                             unlockRoot();
   2100                         }
   2101                     }
   2102                     break;
   2103                 }
   2104             }
   2105             assert checkInvariants(root);
   2106             return null;
   2107         }
   2108 
   2109         /**
   2110          * Removes the given node, that must be present before this
   2111          * call.  This is messier than typical red-black deletion code
   2112          * because we cannot swap the contents of an interior node
   2113          * with a leaf successor that is pinned by "next" pointers
   2114          * that are accessible independently of lock. So instead we
   2115          * swap the tree linkages.
   2116          *
   2117          * @return true if now too small, so should be untreeified
   2118          */
   2119         final boolean removeTreeNode(TreeNode<K,V> p) {
   2120             TreeNode<K,V> next = (TreeNode<K,V>)p.next;
   2121             TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
   2122             TreeNode<K,V> r, rl;
   2123             if (pred == null)
   2124                 first = next;
   2125             else
   2126                 pred.next = next;
   2127             if (next != null)
   2128                 next.prev = pred;
   2129             if (first == null) {
   2130                 root = null;
   2131                 return true;
   2132             }
   2133             if ((r = root) == null || r.right == null || // too small
   2134                 (rl = r.left) == null || rl.left == null)
   2135                 return true;
   2136             lockRoot();
   2137             try {
   2138                 TreeNode<K,V> replacement;
   2139                 TreeNode<K,V> pl = p.left;
   2140                 TreeNode<K,V> pr = p.right;
   2141                 if (pl != null && pr != null) {
   2142                     TreeNode<K,V> s = pr, sl;
   2143                     while ((sl = s.left) != null) // find successor
   2144                         s = sl;
   2145                     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
   2146                     TreeNode<K,V> sr = s.right;
   2147                     TreeNode<K,V> pp = p.parent;
   2148                     if (s == pr) { // p was s's direct parent
   2149                         p.parent = s;
   2150                         s.right = p;
   2151                     }
   2152                     else {
   2153                         TreeNode<K,V> sp = s.parent;
   2154                         if ((p.parent = sp) != null) {
   2155                             if (s == sp.left)
   2156                                 sp.left = p;
   2157                             else
   2158                                 sp.right = p;
   2159                         }
   2160                         if ((s.right = pr) != null)
   2161                             pr.parent = s;
   2162                     }
   2163                     p.left = null;
   2164                     if ((p.right = sr) != null)
   2165                         sr.parent = p;
   2166                     if ((s.left = pl) != null)
   2167                         pl.parent = s;
   2168                     if ((s.parent = pp) == null)
   2169                         r = s;
   2170                     else if (p == pp.left)
   2171                         pp.left = s;
   2172                     else
   2173                         pp.right = s;
   2174                     if (sr != null)
   2175                         replacement = sr;
   2176                     else
   2177                         replacement = p;
   2178                 }
   2179                 else if (pl != null)
   2180                     replacement = pl;
   2181                 else if (pr != null)
   2182                     replacement = pr;
   2183                 else
   2184                     replacement = p;
   2185                 if (replacement != p) {
   2186                     TreeNode<K,V> pp = replacement.parent = p.parent;
   2187                     if (pp == null)
   2188                         r = replacement;
   2189                     else if (p == pp.left)
   2190                         pp.left = replacement;
   2191                     else
   2192                         pp.right = replacement;
   2193                     p.left = p.right = p.parent = null;
   2194                 }
   2195 
   2196                 root = (p.red) ? r : balanceDeletion(r, replacement);
   2197 
   2198                 if (p == replacement) {  // detach pointers
   2199                     TreeNode<K,V> pp;
   2200                     if ((pp = p.parent) != null) {
   2201                         if (p == pp.left)
   2202                             pp.left = null;
   2203                         else if (p == pp.right)
   2204                             pp.right = null;
   2205                         p.parent = null;
   2206                     }
   2207                 }
   2208             } finally {
   2209                 unlockRoot();
   2210             }
   2211             assert checkInvariants(root);
   2212             return false;
   2213         }
   2214 
   2215         /* ------------------------------------------------------------ */
   2216         // Red-black tree methods, all adapted from CLR
   2217 
   2218         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
   2219                                               TreeNode<K,V> p) {
   2220             TreeNode<K,V> r, pp, rl;
   2221             if (p != null && (r = p.right) != null) {
   2222                 if ((rl = p.right = r.left) != null)
   2223                     rl.parent = p;
   2224                 if ((pp = r.parent = p.parent) == null)
   2225                     (root = r).red = false;
   2226                 else if (pp.left == p)
   2227                     pp.left = r;
   2228                 else
   2229                     pp.right = r;
   2230                 r.left = p;
   2231                 p.parent = r;
   2232             }
   2233             return root;
   2234         }
   2235 
   2236         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
   2237                                                TreeNode<K,V> p) {
   2238             TreeNode<K,V> l, pp, lr;
   2239             if (p != null && (l = p.left) != null) {
   2240                 if ((lr = p.left = l.right) != null)
   2241                     lr.parent = p;
   2242                 if ((pp = l.parent = p.parent) == null)
   2243                     (root = l).red = false;
   2244                 else if (pp.right == p)
   2245                     pp.right = l;
   2246                 else
   2247                     pp.left = l;
   2248                 l.right = p;
   2249                 p.parent = l;
   2250             }
   2251             return root;
   2252         }
   2253 
   2254         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
   2255                                                     TreeNode<K,V> x) {
   2256             x.red = true;
   2257             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
   2258                 if ((xp = x.parent) == null) {
   2259                     x.red = false;
   2260                     return x;
   2261                 }
   2262                 else if (!xp.red || (xpp = xp.parent) == null)
   2263                     return root;
   2264                 if (xp == (xppl = xpp.left)) {
   2265                     if ((xppr = xpp.right) != null && xppr.red) {
   2266                         xppr.red = false;
   2267                         xp.red = false;
   2268                         xpp.red = true;
   2269                         x = xpp;
   2270                     }
   2271                     else {
   2272                         if (x == xp.right) {
   2273                             root = rotateLeft(root, x = xp);
   2274                             xpp = (xp = x.parent) == null ? null : xp.parent;
   2275                         }
   2276                         if (xp != null) {
   2277                             xp.red = false;
   2278                             if (xpp != null) {
   2279                                 xpp.red = true;
   2280                                 root = rotateRight(root, xpp);
   2281                             }
   2282                         }
   2283                     }
   2284                 }
   2285                 else {
   2286                     if (xppl != null && xppl.red) {
   2287                         xppl.red = false;
   2288                         xp.red = false;
   2289                         xpp.red = true;
   2290                         x = xpp;
   2291                     }
   2292                     else {
   2293                         if (x == xp.left) {
   2294                             root = rotateRight(root, x = xp);
   2295                             xpp = (xp = x.parent) == null ? null : xp.parent;
   2296                         }
   2297                         if (xp != null) {
   2298                             xp.red = false;
   2299                             if (xpp != null) {
   2300                                 xpp.red = true;
   2301                                 root = rotateLeft(root, xpp);
   2302                             }
   2303                         }
   2304                     }
   2305                 }
   2306             }
   2307         }
   2308 
   2309         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
   2310                                                    TreeNode<K,V> x) {
   2311             for (TreeNode<K,V> xp, xpl, xpr;;)  {
   2312                 if (x == null || x == root)
   2313                     return root;
   2314                 else if ((xp = x.parent) == null) {
   2315                     x.red = false;
   2316                     return x;
   2317                 }
   2318                 else if (x.red) {
   2319                     x.red = false;
   2320                     return root;
   2321                 }
   2322                 else if ((xpl = xp.left) == x) {
   2323                     if ((xpr = xp.right) != null && xpr.red) {
   2324                         xpr.red = false;
   2325                         xp.red = true;
   2326                         root = rotateLeft(root, xp);
   2327                         xpr = (xp = x.parent) == null ? null : xp.right;
   2328                     }
   2329                     if (xpr == null)
   2330                         x = xp;
   2331                     else {
   2332                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
   2333                         if ((sr == null || !sr.red) &&
   2334                             (sl == null || !sl.red)) {
   2335                             xpr.red = true;
   2336                             x = xp;
   2337                         }
   2338                         else {
   2339                             if (sr == null || !sr.red) {
   2340                                 if (sl != null)
   2341                                     sl.red = false;
   2342                                 xpr.red = true;
   2343                                 root = rotateRight(root, xpr);
   2344                                 xpr = (xp = x.parent) == null ?
   2345                                     null : xp.right;
   2346                             }
   2347                             if (xpr != null) {
   2348                                 xpr.red = (xp == null) ? false : xp.red;
   2349                                 if ((sr = xpr.right) != null)
   2350                                     sr.red = false;
   2351                             }
   2352                             if (xp != null) {
   2353                                 xp.red = false;
   2354                                 root = rotateLeft(root, xp);
   2355                             }
   2356                             x = root;
   2357                         }
   2358                     }
   2359                 }
   2360                 else { // symmetric
   2361                     if (xpl != null && xpl.red) {
   2362                         xpl.red = false;
   2363                         xp.red = true;
   2364                         root = rotateRight(root, xp);
   2365                         xpl = (xp = x.parent) == null ? null : xp.left;
   2366                     }
   2367                     if (xpl == null)
   2368                         x = xp;
   2369                     else {
   2370                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
   2371                         if ((sl == null || !sl.red) &&
   2372                             (sr == null || !sr.red)) {
   2373                             xpl.red = true;
   2374                             x = xp;
   2375                         }
   2376                         else {
   2377                             if (sl == null || !sl.red) {
   2378                                 if (sr != null)
   2379                                     sr.red = false;
   2380                                 xpl.red = true;
   2381                                 root = rotateLeft(root, xpl);
   2382                                 xpl = (xp = x.parent) == null ?
   2383                                     null : xp.left;
   2384                             }
   2385                             if (xpl != null) {
   2386                                 xpl.red = (xp == null) ? false : xp.red;
   2387                                 if ((sl = xpl.left) != null)
   2388                                     sl.red = false;
   2389                             }
   2390                             if (xp != null) {
   2391                                 xp.red = false;
   2392                                 root = rotateRight(root, xp);
   2393                             }
   2394                             x = root;
   2395                         }
   2396                     }
   2397                 }
   2398             }
   2399         }
   2400 
   2401         /**
   2402          * Recursive invariant check
   2403          */
   2404         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
   2405             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
   2406                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
   2407             if (tb != null && tb.next != t)
   2408                 return false;
   2409             if (tn != null && tn.prev != t)
   2410                 return false;
   2411             if (tp != null && t != tp.left && t != tp.right)
   2412                 return false;
   2413             if (tl != null && (tl.parent != t || tl.hash > t.hash))
   2414                 return false;
   2415             if (tr != null && (tr.parent != t || tr.hash < t.hash))
   2416                 return false;
   2417             if (t.red && tl != null && tl.red && tr != null && tr.red)
   2418                 return false;
   2419             if (tl != null && !checkInvariants(tl))
   2420                 return false;
   2421             if (tr != null && !checkInvariants(tr))
   2422                 return false;
   2423             return true;
   2424         }
   2425 
   2426         private static final sun.misc.Unsafe U;
   2427         private static final long LOCKSTATE;
   2428         static {
   2429             try {
   2430                 U = sun.misc.Unsafe.getUnsafe();
   2431                 Class<?> k = TreeBin.class;
   2432                 LOCKSTATE = U.objectFieldOffset
   2433                     (k.getDeclaredField("lockState"));
   2434             } catch (Exception e) {
   2435                 throw new Error(e);
   2436             }
   2437         }
   2438     }
   2439 
   2440     /* ----------------Table Traversal -------------- */
   2441 
   2442     /**
   2443      * Encapsulates traversal for methods such as containsValue; also
   2444      * serves as a base class for other iterators.
   2445      *
   2446      * Method advance visits once each still-valid node that was
   2447      * reachable upon iterator construction. It might miss some that
   2448      * were added to a bin after the bin was visited, which is OK wrt
   2449      * consistency guarantees. Maintaining this property in the face
   2450      * of possible ongoing resizes requires a fair amount of
   2451      * bookkeeping state that is difficult to optimize away amidst
   2452      * volatile accesses.  Even so, traversal maintains reasonable
   2453      * throughput.
   2454      *
   2455      * Normally, iteration proceeds bin-by-bin traversing lists.
   2456      * However, if the table has been resized, then all future steps
   2457      * must traverse both the bin at the current index as well as at
   2458      * (index + baseSize); and so on for further resizings. To
   2459      * paranoically cope with potential sharing by users of iterators
   2460      * across threads, iteration terminates if a bounds checks fails
   2461      * for a table read.
   2462      */
   2463     static class Traverser<K,V> {
   2464         Node<K,V>[] tab;        // current table; updated if resized
   2465         Node<K,V> next;         // the next entry to use
   2466         int index;              // index of bin to use next
   2467         int baseIndex;          // current index of initial table
   2468         int baseLimit;          // index bound for initial table
   2469         final int baseSize;     // initial table size
   2470 
   2471         Traverser(Node<K,V>[] tab, int size, int index, int limit) {
   2472             this.tab = tab;
   2473             this.baseSize = size;
   2474             this.baseIndex = this.index = index;
   2475             this.baseLimit = limit;
   2476             this.next = null;
   2477         }
   2478 
   2479         /**
   2480          * Advances if possible, returning next valid node, or null if none.
   2481          */
   2482         final Node<K,V> advance() {
   2483             Node<K,V> e;
   2484             if ((e = next) != null)
   2485                 e = e.next;
   2486             for (;;) {
   2487                 Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
   2488                 if (e != null)
   2489                     return next = e;
   2490                 if (baseIndex >= baseLimit || (t = tab) == null ||
   2491                     (n = t.length) <= (i = index) || i < 0)
   2492                     return next = null;
   2493                 if ((e = tabAt(t, index)) != null && e.hash < 0) {
   2494                     if (e instanceof ForwardingNode) {
   2495                         tab = ((ForwardingNode<K,V>)e).nextTable;
   2496                         e = null;
   2497                         continue;
   2498                     }
   2499                     else if (e instanceof TreeBin)
   2500                         e = ((TreeBin<K,V>)e).first;
   2501                     else
   2502                         e = null;
   2503                 }
   2504                 if ((index += baseSize) >= n)
   2505                     index = ++baseIndex;    // visit upper slots if present
   2506             }
   2507         }
   2508     }
   2509 
   2510     /**
   2511      * Base of key, value, and entry Iterators. Adds fields to
   2512      * Traverser to support iterator.remove.
   2513      */
   2514     static class BaseIterator<K,V> extends Traverser<K,V> {
   2515         final ConcurrentHashMap<K,V> map;
   2516         Node<K,V> lastReturned;
   2517         BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
   2518                     ConcurrentHashMap<K,V> map) {
   2519             super(tab, size, index, limit);
   2520             this.map = map;
   2521             advance();
   2522         }
   2523 
   2524         public final boolean hasNext() { return next != null; }
   2525         public final boolean hasMoreElements() { return next != null; }
   2526 
   2527         public final void remove() {
   2528             Node<K,V> p;
   2529             if ((p = lastReturned) == null)
   2530                 throw new IllegalStateException();
   2531             lastReturned = null;
   2532             map.replaceNode(p.key, null, null);
   2533         }
   2534     }
   2535 
   2536     static final class KeyIterator<K,V> extends BaseIterator<K,V>
   2537         implements Iterator<K>, Enumeration<K> {
   2538         KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
   2539                     ConcurrentHashMap<K,V> map) {
   2540             super(tab, index, size, limit, map);
   2541         }
   2542 
   2543         public final K next() {
   2544             Node<K,V> p;
   2545             if ((p = next) == null)
   2546                 throw new NoSuchElementException();
   2547             K k = p.key;
   2548             lastReturned = p;
   2549             advance();
   2550             return k;
   2551         }
   2552 
   2553         public final K nextElement() { return next(); }
   2554     }
   2555 
   2556     static final class ValueIterator<K,V> extends BaseIterator<K,V>
   2557         implements Iterator<V>, Enumeration<V> {
   2558         ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
   2559                       ConcurrentHashMap<K,V> map) {
   2560             super(tab, index, size, limit, map);
   2561         }
   2562 
   2563         public final V next() {
   2564             Node<K,V> p;
   2565             if ((p = next) == null)
   2566                 throw new NoSuchElementException();
   2567             V v = p.val;
   2568             lastReturned = p;
   2569             advance();
   2570             return v;
   2571         }
   2572 
   2573         public final V nextElement() { return next(); }
   2574     }
   2575 
   2576     static final class EntryIterator<K,V> extends BaseIterator<K,V>
   2577         implements Iterator<Map.Entry<K,V>> {
   2578         EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
   2579                       ConcurrentHashMap<K,V> map) {
   2580             super(tab, index, size, limit, map);
   2581         }
   2582 
   2583         public final Map.Entry<K,V> next() {
   2584             Node<K,V> p;
   2585             if ((p = next) == null)
   2586                 throw new NoSuchElementException();
   2587             K k = p.key;
   2588             V v = p.val;
   2589             lastReturned = p;
   2590             advance();
   2591             return new MapEntry<K,V>(k, v, map);
   2592         }
   2593     }
   2594 
   2595     /**
   2596      * Exported Entry for EntryIterator
   2597      */
   2598     static final class MapEntry<K,V> implements Map.Entry<K,V> {
   2599         final K key; // non-null
   2600         V val;       // non-null
   2601         final ConcurrentHashMap<K,V> map;
   2602         MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
   2603             this.key = key;
   2604             this.val = val;
   2605             this.map = map;
   2606         }
   2607         public K getKey()        { return key; }
   2608         public V getValue()      { return val; }
   2609         public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
   2610         public String toString() { return key + "=" + val; }
   2611 
   2612         public boolean equals(Object o) {
   2613             Object k, v; Map.Entry<?,?> e;
   2614             return ((o instanceof Map.Entry) &&
   2615                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
   2616                     (v = e.getValue()) != null &&
   2617                     (k == key || k.equals(key)) &&
   2618                     (v == val || v.equals(val)));
   2619         }
   2620 
   2621         /**
   2622          * Sets our entry's value and writes through to the map. The
   2623          * value to return is somewhat arbitrary here. Since we do not
   2624          * necessarily track asynchronous changes, the most recent
   2625          * "previous" value could be different from what we return (or
   2626          * could even have been removed, in which case the put will
   2627          * re-establish). We do not and cannot guarantee more.
   2628          */
   2629         public V setValue(V value) {
   2630             if (value == null) throw new NullPointerException();
   2631             V v = val;
   2632             val = value;
   2633             map.put(key, value);
   2634             return v;
   2635         }
   2636     }
   2637 
   2638     /* ----------------Views -------------- */
   2639 
   2640     /**
   2641      * Base class for views.
   2642      *
   2643      */
   2644     abstract static class CollectionView<K,V,E>
   2645         implements Collection<E>, java.io.Serializable {
   2646         private static final long serialVersionUID = 7249069246763182397L;
   2647         final ConcurrentHashMap<K,V> map;
   2648         CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
   2649 
   2650         /**
   2651          * Returns the map backing this view.
   2652          *
   2653          * @return the map backing this view
   2654          */
   2655         public ConcurrentHashMap<K,V> getMap() { return map; }
   2656 
   2657         /**
   2658          * Removes all of the elements from this view, by removing all
   2659          * the mappings from the map backing this view.
   2660          */
   2661         public final void clear()      { map.clear(); }
   2662         public final int size()        { return map.size(); }
   2663         public final boolean isEmpty() { return map.isEmpty(); }
   2664 
   2665         // implementations below rely on concrete classes supplying these
   2666         // abstract methods
   2667         /**
   2668          * Returns a "weakly consistent" iterator that will never
   2669          * throw {@link ConcurrentModificationException}, and
   2670          * guarantees to traverse elements as they existed upon
   2671          * construction of the iterator, and may (but is not
   2672          * guaranteed to) reflect any modifications subsequent to
   2673          * construction.
   2674          */
   2675         public abstract Iterator<E> iterator();
   2676         public abstract boolean contains(Object o);
   2677         public abstract boolean remove(Object o);
   2678 
   2679         private static final String oomeMsg = "Required array size too large";
   2680 
   2681         public final Object[] toArray() {
   2682             long sz = map.mappingCount();
   2683             if (sz > MAX_ARRAY_SIZE)
   2684                 throw new OutOfMemoryError(oomeMsg);
   2685             int n = (int)sz;
   2686             Object[] r = new Object[n];
   2687             int i = 0;
   2688             for (E e : this) {
   2689                 if (i == n) {
   2690                     if (n >= MAX_ARRAY_SIZE)
   2691                         throw new OutOfMemoryError(oomeMsg);
   2692                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
   2693                         n = MAX_ARRAY_SIZE;
   2694                     else
   2695                         n += (n >>> 1) + 1;
   2696                     r = Arrays.copyOf(r, n);
   2697                 }
   2698                 r[i++] = e;
   2699             }
   2700             return (i == n) ? r : Arrays.copyOf(r, i);
   2701         }
   2702 
   2703         @SuppressWarnings("unchecked")
   2704         public final <T> T[] toArray(T[] a) {
   2705             long sz = map.mappingCount();
   2706             if (sz > MAX_ARRAY_SIZE)
   2707                 throw new OutOfMemoryError(oomeMsg);
   2708             int m = (int)sz;
   2709             T[] r = (a.length >= m) ? a :
   2710                 (T[])java.lang.reflect.Array
   2711                 .newInstance(a.getClass().getComponentType(), m);
   2712             int n = r.length;
   2713             int i = 0;
   2714             for (E e : this) {
   2715                 if (i == n) {
   2716                     if (n >= MAX_ARRAY_SIZE)
   2717                         throw new OutOfMemoryError(oomeMsg);
   2718                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
   2719                         n = MAX_ARRAY_SIZE;
   2720                     else
   2721                         n += (n >>> 1) + 1;
   2722                     r = Arrays.copyOf(r, n);
   2723                 }
   2724                 r[i++] = (T)e;
   2725             }
   2726             if (a == r && i < n) {
   2727                 r[i] = null; // null-terminate
   2728                 return r;
   2729             }
   2730             return (i == n) ? r : Arrays.copyOf(r, i);
   2731         }
   2732 
   2733         /**
   2734          * Returns a string representation of this collection.
   2735          * The string representation consists of the string representations
   2736          * of the collection's elements in the order they are returned by
   2737          * its iterator, enclosed in square brackets ({@code "[]"}).
   2738          * Adjacent elements are separated by the characters {@code ", "}
   2739          * (comma and space).  Elements are converted to strings as by
   2740          * {@link String#valueOf(Object)}.
   2741          *
   2742          * @return a string representation of this collection
   2743          */
   2744         public final String toString() {
   2745             StringBuilder sb = new StringBuilder();
   2746             sb.append('[');
   2747             Iterator<E> it = iterator();
   2748             if (it.hasNext()) {
   2749                 for (;;) {
   2750                     Object e = it.next();
   2751                     sb.append(e == this ? "(this Collection)" : e);
   2752                     if (!it.hasNext())
   2753                         break;
   2754                     sb.append(',').append(' ');
   2755                 }
   2756             }
   2757             return sb.append(']').toString();
   2758         }
   2759 
   2760         public final boolean containsAll(Collection<?> c) {
   2761             if (c != this) {
   2762                 for (Object e : c) {
   2763                     if (e == null || !contains(e))
   2764                         return false;
   2765                 }
   2766             }
   2767             return true;
   2768         }
   2769 
   2770         public final boolean removeAll(Collection<?> c) {
   2771             boolean modified = false;
   2772             for (Iterator<E> it = iterator(); it.hasNext();) {
   2773                 if (c.contains(it.next())) {
   2774                     it.remove();
   2775                     modified = true;
   2776                 }
   2777             }
   2778             return modified;
   2779         }
   2780 
   2781         public final boolean retainAll(Collection<?> c) {
   2782             boolean modified = false;
   2783             for (Iterator<E> it = iterator(); it.hasNext();) {
   2784                 if (!c.contains(it.next())) {
   2785                     it.remove();
   2786                     modified = true;
   2787                 }
   2788             }
   2789             return modified;
   2790         }
   2791 
   2792     }
   2793 
   2794     /**
   2795      * A view of a ConcurrentHashMap as a {@link Set} of keys, in
   2796      * which additions may optionally be enabled by mapping to a
   2797      * common value.  This class cannot be directly instantiated.
   2798      * See {@link #keySet() keySet()},
   2799      * {@link #keySet(Object) keySet(V)},
   2800      * {@link #newKeySet() newKeySet()},
   2801      * {@link #newKeySet(int) newKeySet(int)}.
   2802      *
   2803      * @since 1.8
   2804      *
   2805      * @hide
   2806      */
   2807     public static class KeySetView<K,V> extends CollectionView<K,V,K>
   2808         implements Set<K>, java.io.Serializable {
   2809         private static final long serialVersionUID = 7249069246763182397L;
   2810         private final V value;
   2811         KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
   2812             super(map);
   2813             this.value = value;
   2814         }
   2815 
   2816         /**
   2817          * Returns the default mapped value for additions,
   2818          * or {@code null} if additions are not supported.
   2819          *
   2820          * @return the default mapped value for additions, or {@code null}
   2821          * if not supported
   2822          */
   2823         public V getMappedValue() { return value; }
   2824 
   2825         /**
   2826          * {@inheritDoc}
   2827          * @throws NullPointerException if the specified key is null
   2828          */
   2829         public boolean contains(Object o) { return map.containsKey(o); }
   2830 
   2831         /**
   2832          * Removes the key from this map view, by removing the key (and its
   2833          * corresponding value) from the backing map.  This method does
   2834          * nothing if the key is not in the map.
   2835          *
   2836          * @param  o the key to be removed from the backing map
   2837          * @return {@code true} if the backing map contained the specified key
   2838          * @throws NullPointerException if the specified key is null
   2839          */
   2840         public boolean remove(Object o) { return map.remove(o) != null; }
   2841 
   2842         /**
   2843          * @return an iterator over the keys of the backing map
   2844          */
   2845         public Iterator<K> iterator() {
   2846             Node<K,V>[] t;
   2847             ConcurrentHashMap<K,V> m = map;
   2848             int f = (t = m.table) == null ? 0 : t.length;
   2849             return new KeyIterator<K,V>(t, f, 0, f, m);
   2850         }
   2851 
   2852         /**
   2853          * Adds the specified key to this set view by mapping the key to
   2854          * the default mapped value in the backing map, if defined.
   2855          *
   2856          * @param e key to be added
   2857          * @return {@code true} if this set changed as a result of the call
   2858          * @throws NullPointerException if the specified key is null
   2859          * @throws UnsupportedOperationException if no default mapped value
   2860          * for additions was provided
   2861          */
   2862         public boolean add(K e) {
   2863             V v;
   2864             if ((v = value) == null)
   2865                 throw new UnsupportedOperationException();
   2866             return map.putVal(e, v, true) == null;
   2867         }
   2868 
   2869         /**
   2870          * Adds all of the elements in the specified collection to this set,
   2871          * as if by calling {@link #add} on each one.
   2872          *
   2873          * @param c the elements to be inserted into this set
   2874          * @return {@code true} if this set changed as a result of the call
   2875          * @throws NullPointerException if the collection or any of its
   2876          * elements are {@code null}
   2877          * @throws UnsupportedOperationException if no default mapped value
   2878          * for additions was provided
   2879          */
   2880         public boolean addAll(Collection<? extends K> c) {
   2881             boolean added = false;
   2882             V v;
   2883             if ((v = value) == null)
   2884                 throw new UnsupportedOperationException();
   2885             for (K e : c) {
   2886                 if (map.putVal(e, v, true) == null)
   2887                     added = true;
   2888             }
   2889             return added;
   2890         }
   2891 
   2892         public int hashCode() {
   2893             int h = 0;
   2894             for (K e : this)
   2895                 h += e.hashCode();
   2896             return h;
   2897         }
   2898 
   2899         public boolean equals(Object o) {
   2900             Set<?> c;
   2901             return ((o instanceof Set) &&
   2902                     ((c = (Set<?>)o) == this ||
   2903                      (containsAll(c) && c.containsAll(this))));
   2904         }
   2905 
   2906     }
   2907 
   2908     /**
   2909      * A view of a ConcurrentHashMap as a {@link Collection} of
   2910      * values, in which additions are disabled. This class cannot be
   2911      * directly instantiated. See {@link #values()}.
   2912      */
   2913     static final class ValuesView<K,V> extends CollectionView<K,V,V>
   2914         implements Collection<V>, java.io.Serializable {
   2915         private static final long serialVersionUID = 2249069246763182397L;
   2916         ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
   2917         public final boolean contains(Object o) {
   2918             return map.containsValue(o);
   2919         }
   2920 
   2921         public final boolean remove(Object o) {
   2922             if (o != null) {
   2923                 for (Iterator<V> it = iterator(); it.hasNext();) {
   2924                     if (o.equals(it.next())) {
   2925                         it.remove();
   2926                         return true;
   2927                     }
   2928                 }
   2929             }
   2930             return false;
   2931         }
   2932 
   2933         public final Iterator<V> iterator() {
   2934             ConcurrentHashMap<K,V> m = map;
   2935             Node<K,V>[] t;
   2936             int f = (t = m.table) == null ? 0 : t.length;
   2937             return new ValueIterator<K,V>(t, f, 0, f, m);
   2938         }
   2939 
   2940         public final boolean add(V e) {
   2941             throw new UnsupportedOperationException();
   2942         }
   2943         public final boolean addAll(Collection<? extends V> c) {
   2944             throw new UnsupportedOperationException();
   2945         }
   2946 
   2947     }
   2948 
   2949     /**
   2950      * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
   2951      * entries.  This class cannot be directly instantiated. See
   2952      * {@link #entrySet()}.
   2953      */
   2954     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
   2955         implements Set<Map.Entry<K,V>>, java.io.Serializable {
   2956         private static final long serialVersionUID = 2249069246763182397L;
   2957         EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
   2958 
   2959         public boolean contains(Object o) {
   2960             Object k, v, r; Map.Entry<?,?> e;
   2961             return ((o instanceof Map.Entry) &&
   2962                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
   2963                     (r = map.get(k)) != null &&
   2964                     (v = e.getValue()) != null &&
   2965                     (v == r || v.equals(r)));
   2966         }
   2967 
   2968         public boolean remove(Object o) {
   2969             Object k, v; Map.Entry<?,?> e;
   2970             return ((o instanceof Map.Entry) &&
   2971                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
   2972                     (v = e.getValue()) != null &&
   2973                     map.remove(k, v));
   2974         }
   2975 
   2976         /**
   2977          * @return an iterator over the entries of the backing map
   2978          */
   2979         public Iterator<Map.Entry<K,V>> iterator() {
   2980             ConcurrentHashMap<K,V> m = map;
   2981             Node<K,V>[] t;
   2982             int f = (t = m.table) == null ? 0 : t.length;
   2983             return new EntryIterator<K,V>(t, f, 0, f, m);
   2984         }
   2985 
   2986         public boolean add(Entry<K,V> e) {
   2987             return map.putVal(e.getKey(), e.getValue(), false) == null;
   2988         }
   2989 
   2990         public boolean addAll(Collection<? extends Entry<K,V>> c) {
   2991             boolean added = false;
   2992             for (Entry<K,V> e : c) {
   2993                 if (add(e))
   2994                     added = true;
   2995             }
   2996             return added;
   2997         }
   2998 
   2999         public final int hashCode() {
   3000             int h = 0;
   3001             Node<K,V>[] t;
   3002             if ((t = map.table) != null) {
   3003                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
   3004                 for (Node<K,V> p; (p = it.advance()) != null; ) {
   3005                     h += p.hashCode();
   3006                 }
   3007             }
   3008             return h;
   3009         }
   3010 
   3011         public final boolean equals(Object o) {
   3012             Set<?> c;
   3013             return ((o instanceof Set) &&
   3014                     ((c = (Set<?>)o) == this ||
   3015                      (containsAll(c) && c.containsAll(this))));
   3016         }
   3017 
   3018     }
   3019 
   3020 
   3021     /* ---------------- Counters -------------- */
   3022 
   3023     // Adapted from LongAdder and Striped64.
   3024     // See their internal docs for explanation.
   3025 
   3026     // A padded cell for distributing counts
   3027     static final class CounterCell {
   3028         volatile long p0, p1, p2, p3, p4, p5, p6;
   3029         volatile long value;
   3030         volatile long q0, q1, q2, q3, q4, q5, q6;
   3031         CounterCell(long x) { value = x; }
   3032     }
   3033 
   3034     /**
   3035      * Holder for the thread-local hash code determining which
   3036      * CounterCell to use. The code is initialized via the
   3037      * counterHashCodeGenerator, but may be moved upon collisions.
   3038      */
   3039     static final class CounterHashCode {
   3040         int code;
   3041     }
   3042 
   3043     /**
   3044      * Generates initial value for per-thread CounterHashCodes.
   3045      */
   3046     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
   3047 
   3048     /**
   3049      * Increment for counterHashCodeGenerator. See class ThreadLocal
   3050      * for explanation.
   3051      */
   3052     static final int SEED_INCREMENT = 0x61c88647;
   3053 
   3054     /**
   3055      * Per-thread counter hash codes. Shared across all instances.
   3056      */
   3057     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
   3058         new ThreadLocal<CounterHashCode>();
   3059 
   3060     final long sumCount() {
   3061         CounterCell[] as = counterCells; CounterCell a;
   3062         long sum = baseCount;
   3063         if (as != null) {
   3064             for (int i = 0; i < as.length; ++i) {
   3065                 if ((a = as[i]) != null)
   3066                     sum += a.value;
   3067             }
   3068         }
   3069         return sum;
   3070     }
   3071 
   3072     // See LongAdder version for explanation
   3073     private final void fullAddCount(long x, CounterHashCode hc,
   3074                                     boolean wasUncontended) {
   3075         int h;
   3076         if (hc == null) {
   3077             hc = new CounterHashCode();
   3078             int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
   3079             h = hc.code = (s == 0) ? 1 : s; // Avoid zero
   3080             threadCounterHashCode.set(hc);
   3081         }
   3082         else
   3083             h = hc.code;
   3084         boolean collide = false;                // True if last slot nonempty
   3085         for (;;) {
   3086             CounterCell[] as; CounterCell a; int n; long v;
   3087             if ((as = counterCells) != null && (n = as.length) > 0) {
   3088                 if ((a = as[(n - 1) & h]) == null) {
   3089                     if (cellsBusy == 0) {            // Try to attach new Cell
   3090                         CounterCell r = new CounterCell(x); // Optimistic create
   3091                         if (cellsBusy == 0 &&
   3092                             U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
   3093                             boolean created = false;
   3094                             try {               // Recheck under lock
   3095                                 CounterCell[] rs; int m, j;
   3096                                 if ((rs = counterCells) != null &&
   3097                                     (m = rs.length) > 0 &&
   3098                                     rs[j = (m - 1) & h] == null) {
   3099                                     rs[j] = r;
   3100                                     created = true;
   3101                                 }
   3102                             } finally {
   3103                                 cellsBusy = 0;
   3104                             }
   3105                             if (created)
   3106                                 break;
   3107                             continue;           // Slot is now non-empty
   3108                         }
   3109                     }
   3110                     collide = false;
   3111                 }
   3112                 else if (!wasUncontended)       // CAS already known to fail
   3113                     wasUncontended = true;      // Continue after rehash
   3114                 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
   3115                     break;
   3116                 else if (counterCells != as || n >= NCPU)
   3117                     collide = false;            // At max size or stale
   3118                 else if (!collide)
   3119                     collide = true;
   3120                 else if (cellsBusy == 0 &&
   3121                          U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
   3122                     try {
   3123                         if (counterCells == as) {// Expand table unless stale
   3124                             CounterCell[] rs = new CounterCell[n << 1];
   3125                             for (int i = 0; i < n; ++i)
   3126                                 rs[i] = as[i];
   3127                             counterCells = rs;
   3128                         }
   3129                     } finally {
   3130                         cellsBusy = 0;
   3131                     }
   3132                     collide = false;
   3133                     continue;                   // Retry with expanded table
   3134                 }
   3135                 h ^= h << 13;                   // Rehash
   3136                 h ^= h >>> 17;
   3137                 h ^= h << 5;
   3138             }
   3139             else if (cellsBusy == 0 && counterCells == as &&
   3140                      U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
   3141                 boolean init = false;
   3142                 try {                           // Initialize table
   3143                     if (counterCells == as) {
   3144                         CounterCell[] rs = new CounterCell[2];
   3145                         rs[h & 1] = new CounterCell(x);
   3146                         counterCells = rs;
   3147                         init = true;
   3148                     }
   3149                 } finally {
   3150                     cellsBusy = 0;
   3151                 }
   3152                 if (init)
   3153                     break;
   3154             }
   3155             else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
   3156                 break;                          // Fall back on using base
   3157         }
   3158         hc.code = h;                            // Record index for next time
   3159     }
   3160 
   3161     // Unsafe mechanics
   3162     private static final sun.misc.Unsafe U;
   3163     private static final long SIZECTL;
   3164     private static final long TRANSFERINDEX;
   3165     private static final long TRANSFERORIGIN;
   3166     private static final long BASECOUNT;
   3167     private static final long CELLSBUSY;
   3168     private static final long CELLVALUE;
   3169     private static final long ABASE;
   3170     private static final int ASHIFT;
   3171 
   3172     static {
   3173         try {
   3174             U = sun.misc.Unsafe.getUnsafe();
   3175             Class<?> k = ConcurrentHashMap.class;
   3176             SIZECTL = U.objectFieldOffset
   3177                 (k.getDeclaredField("sizeCtl"));
   3178             TRANSFERINDEX = U.objectFieldOffset
   3179                 (k.getDeclaredField("transferIndex"));
   3180             TRANSFERORIGIN = U.objectFieldOffset
   3181                 (k.getDeclaredField("transferOrigin"));
   3182             BASECOUNT = U.objectFieldOffset
   3183                 (k.getDeclaredField("baseCount"));
   3184             CELLSBUSY = U.objectFieldOffset
   3185                 (k.getDeclaredField("cellsBusy"));
   3186             Class<?> ck = CounterCell.class;
   3187             CELLVALUE = U.objectFieldOffset
   3188                 (ck.getDeclaredField("value"));
   3189             Class<?> ak = Node[].class;
   3190             ABASE = U.arrayBaseOffset(ak);
   3191             int scale = U.arrayIndexScale(ak);
   3192             if ((scale & (scale - 1)) != 0)
   3193                 throw new Error("data type scale not a power of two");
   3194             ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
   3195         } catch (Exception e) {
   3196             throw new Error(e);
   3197         }
   3198     }
   3199 
   3200 }
   3201