Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/RecursiveASTVisitor.h"
     28 #include "clang/AST/TypeLoc.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/LiteralSupport.h"
     33 #include "clang/Lex/Preprocessor.h"
     34 #include "clang/Sema/AnalysisBasedWarnings.h"
     35 #include "clang/Sema/DeclSpec.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Sema/Designator.h"
     38 #include "clang/Sema/Initialization.h"
     39 #include "clang/Sema/Lookup.h"
     40 #include "clang/Sema/ParsedTemplate.h"
     41 #include "clang/Sema/Scope.h"
     42 #include "clang/Sema/ScopeInfo.h"
     43 #include "clang/Sema/SemaFixItUtils.h"
     44 #include "clang/Sema/Template.h"
     45 using namespace clang;
     46 using namespace sema;
     47 
     48 /// \brief Determine whether the use of this declaration is valid, without
     49 /// emitting diagnostics.
     50 bool Sema::CanUseDecl(NamedDecl *D) {
     51   // See if this is an auto-typed variable whose initializer we are parsing.
     52   if (ParsingInitForAutoVars.count(D))
     53     return false;
     54 
     55   // See if this is a deleted function.
     56   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     57     if (FD->isDeleted())
     58       return false;
     59 
     60     // If the function has a deduced return type, and we can't deduce it,
     61     // then we can't use it either.
     62     if (getLangOpts().CPlusPlus1y && FD->getReturnType()->isUndeducedType() &&
     63         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     64       return false;
     65   }
     66 
     67   // See if this function is unavailable.
     68   if (D->getAvailability() == AR_Unavailable &&
     69       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     70     return false;
     71 
     72   return true;
     73 }
     74 
     75 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     76   // Warn if this is used but marked unused.
     77   if (D->hasAttr<UnusedAttr>()) {
     78     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
     79     if (!DC->hasAttr<UnusedAttr>())
     80       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     81   }
     82 }
     83 
     84 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
     85                               NamedDecl *D, SourceLocation Loc,
     86                               const ObjCInterfaceDecl *UnknownObjCClass,
     87                               bool ObjCPropertyAccess) {
     88   // See if this declaration is unavailable or deprecated.
     89   std::string Message;
     90 
     91   // Forward class declarations get their attributes from their definition.
     92   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
     93     if (IDecl->getDefinition())
     94       D = IDecl->getDefinition();
     95   }
     96   AvailabilityResult Result = D->getAvailability(&Message);
     97   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
     98     if (Result == AR_Available) {
     99       const DeclContext *DC = ECD->getDeclContext();
    100       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    101         Result = TheEnumDecl->getAvailability(&Message);
    102     }
    103 
    104   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    105   if (Result == AR_Deprecated || Result == AR_Unavailable) {
    106     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    107       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    108         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    109         if (PDeclResult == Result)
    110           ObjCPDecl = PD;
    111       }
    112     }
    113   }
    114 
    115   switch (Result) {
    116     case AR_Available:
    117     case AR_NotYetIntroduced:
    118       break;
    119 
    120     case AR_Deprecated:
    121       if (S.getCurContextAvailability() != AR_Deprecated)
    122         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    123                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    124                                   ObjCPropertyAccess);
    125       break;
    126 
    127     case AR_Unavailable:
    128       if (S.getCurContextAvailability() != AR_Unavailable)
    129         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    130                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    131                                   ObjCPropertyAccess);
    132       break;
    133 
    134     }
    135     return Result;
    136 }
    137 
    138 /// \brief Emit a note explaining that this function is deleted.
    139 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    140   assert(Decl->isDeleted());
    141 
    142   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    143 
    144   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    145     // If the method was explicitly defaulted, point at that declaration.
    146     if (!Method->isImplicit())
    147       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    148 
    149     // Try to diagnose why this special member function was implicitly
    150     // deleted. This might fail, if that reason no longer applies.
    151     CXXSpecialMember CSM = getSpecialMember(Method);
    152     if (CSM != CXXInvalid)
    153       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    154 
    155     return;
    156   }
    157 
    158   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    159     if (CXXConstructorDecl *BaseCD =
    160             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    161       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    162       if (BaseCD->isDeleted()) {
    163         NoteDeletedFunction(BaseCD);
    164       } else {
    165         // FIXME: An explanation of why exactly it can't be inherited
    166         // would be nice.
    167         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    168       }
    169       return;
    170     }
    171   }
    172 
    173   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    174     << Decl << true;
    175 }
    176 
    177 /// \brief Determine whether a FunctionDecl was ever declared with an
    178 /// explicit storage class.
    179 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    180   for (auto I : D->redecls()) {
    181     if (I->getStorageClass() != SC_None)
    182       return true;
    183   }
    184   return false;
    185 }
    186 
    187 /// \brief Check whether we're in an extern inline function and referring to a
    188 /// variable or function with internal linkage (C11 6.7.4p3).
    189 ///
    190 /// This is only a warning because we used to silently accept this code, but
    191 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    192 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    193 /// and so while there may still be user mistakes, most of the time we can't
    194 /// prove that there are errors.
    195 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    196                                                       const NamedDecl *D,
    197                                                       SourceLocation Loc) {
    198   // This is disabled under C++; there are too many ways for this to fire in
    199   // contexts where the warning is a false positive, or where it is technically
    200   // correct but benign.
    201   if (S.getLangOpts().CPlusPlus)
    202     return;
    203 
    204   // Check if this is an inlined function or method.
    205   FunctionDecl *Current = S.getCurFunctionDecl();
    206   if (!Current)
    207     return;
    208   if (!Current->isInlined())
    209     return;
    210   if (!Current->isExternallyVisible())
    211     return;
    212 
    213   // Check if the decl has internal linkage.
    214   if (D->getFormalLinkage() != InternalLinkage)
    215     return;
    216 
    217   // Downgrade from ExtWarn to Extension if
    218   //  (1) the supposedly external inline function is in the main file,
    219   //      and probably won't be included anywhere else.
    220   //  (2) the thing we're referencing is a pure function.
    221   //  (3) the thing we're referencing is another inline function.
    222   // This last can give us false negatives, but it's better than warning on
    223   // wrappers for simple C library functions.
    224   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    225   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    226   if (!DowngradeWarning && UsedFn)
    227     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    228 
    229   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
    230                                : diag::warn_internal_in_extern_inline)
    231     << /*IsVar=*/!UsedFn << D;
    232 
    233   S.MaybeSuggestAddingStaticToDecl(Current);
    234 
    235   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    236       << D;
    237 }
    238 
    239 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    240   const FunctionDecl *First = Cur->getFirstDecl();
    241 
    242   // Suggest "static" on the function, if possible.
    243   if (!hasAnyExplicitStorageClass(First)) {
    244     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    245     Diag(DeclBegin, diag::note_convert_inline_to_static)
    246       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    247   }
    248 }
    249 
    250 /// \brief Determine whether the use of this declaration is valid, and
    251 /// emit any corresponding diagnostics.
    252 ///
    253 /// This routine diagnoses various problems with referencing
    254 /// declarations that can occur when using a declaration. For example,
    255 /// it might warn if a deprecated or unavailable declaration is being
    256 /// used, or produce an error (and return true) if a C++0x deleted
    257 /// function is being used.
    258 ///
    259 /// \returns true if there was an error (this declaration cannot be
    260 /// referenced), false otherwise.
    261 ///
    262 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    263                              const ObjCInterfaceDecl *UnknownObjCClass,
    264                              bool ObjCPropertyAccess) {
    265   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    266     // If there were any diagnostics suppressed by template argument deduction,
    267     // emit them now.
    268     SuppressedDiagnosticsMap::iterator
    269       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    270     if (Pos != SuppressedDiagnostics.end()) {
    271       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
    272       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
    273         Diag(Suppressed[I].first, Suppressed[I].second);
    274 
    275       // Clear out the list of suppressed diagnostics, so that we don't emit
    276       // them again for this specialization. However, we don't obsolete this
    277       // entry from the table, because we want to avoid ever emitting these
    278       // diagnostics again.
    279       Suppressed.clear();
    280     }
    281 
    282     // C++ [basic.start.main]p3:
    283     //   The function 'main' shall not be used within a program.
    284     if (cast<FunctionDecl>(D)->isMain())
    285       Diag(Loc, diag::ext_main_used);
    286   }
    287 
    288   // See if this is an auto-typed variable whose initializer we are parsing.
    289   if (ParsingInitForAutoVars.count(D)) {
    290     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    291       << D->getDeclName();
    292     return true;
    293   }
    294 
    295   // See if this is a deleted function.
    296   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    297     if (FD->isDeleted()) {
    298       Diag(Loc, diag::err_deleted_function_use);
    299       NoteDeletedFunction(FD);
    300       return true;
    301     }
    302 
    303     // If the function has a deduced return type, and we can't deduce it,
    304     // then we can't use it either.
    305     if (getLangOpts().CPlusPlus1y && FD->getReturnType()->isUndeducedType() &&
    306         DeduceReturnType(FD, Loc))
    307       return true;
    308   }
    309   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass, ObjCPropertyAccess);
    310 
    311   DiagnoseUnusedOfDecl(*this, D, Loc);
    312 
    313   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    314 
    315   return false;
    316 }
    317 
    318 /// \brief Retrieve the message suffix that should be added to a
    319 /// diagnostic complaining about the given function being deleted or
    320 /// unavailable.
    321 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    322   std::string Message;
    323   if (FD->getAvailability(&Message))
    324     return ": " + Message;
    325 
    326   return std::string();
    327 }
    328 
    329 /// DiagnoseSentinelCalls - This routine checks whether a call or
    330 /// message-send is to a declaration with the sentinel attribute, and
    331 /// if so, it checks that the requirements of the sentinel are
    332 /// satisfied.
    333 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    334                                  ArrayRef<Expr *> Args) {
    335   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    336   if (!attr)
    337     return;
    338 
    339   // The number of formal parameters of the declaration.
    340   unsigned numFormalParams;
    341 
    342   // The kind of declaration.  This is also an index into a %select in
    343   // the diagnostic.
    344   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    345 
    346   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    347     numFormalParams = MD->param_size();
    348     calleeType = CT_Method;
    349   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    350     numFormalParams = FD->param_size();
    351     calleeType = CT_Function;
    352   } else if (isa<VarDecl>(D)) {
    353     QualType type = cast<ValueDecl>(D)->getType();
    354     const FunctionType *fn = nullptr;
    355     if (const PointerType *ptr = type->getAs<PointerType>()) {
    356       fn = ptr->getPointeeType()->getAs<FunctionType>();
    357       if (!fn) return;
    358       calleeType = CT_Function;
    359     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    360       fn = ptr->getPointeeType()->castAs<FunctionType>();
    361       calleeType = CT_Block;
    362     } else {
    363       return;
    364     }
    365 
    366     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    367       numFormalParams = proto->getNumParams();
    368     } else {
    369       numFormalParams = 0;
    370     }
    371   } else {
    372     return;
    373   }
    374 
    375   // "nullPos" is the number of formal parameters at the end which
    376   // effectively count as part of the variadic arguments.  This is
    377   // useful if you would prefer to not have *any* formal parameters,
    378   // but the language forces you to have at least one.
    379   unsigned nullPos = attr->getNullPos();
    380   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    381   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    382 
    383   // The number of arguments which should follow the sentinel.
    384   unsigned numArgsAfterSentinel = attr->getSentinel();
    385 
    386   // If there aren't enough arguments for all the formal parameters,
    387   // the sentinel, and the args after the sentinel, complain.
    388   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    389     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    390     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    391     return;
    392   }
    393 
    394   // Otherwise, find the sentinel expression.
    395   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    396   if (!sentinelExpr) return;
    397   if (sentinelExpr->isValueDependent()) return;
    398   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    399 
    400   // Pick a reasonable string to insert.  Optimistically use 'nil' or
    401   // 'NULL' if those are actually defined in the context.  Only use
    402   // 'nil' for ObjC methods, where it's much more likely that the
    403   // variadic arguments form a list of object pointers.
    404   SourceLocation MissingNilLoc
    405     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
    406   std::string NullValue;
    407   if (calleeType == CT_Method &&
    408       PP.getIdentifierInfo("nil")->hasMacroDefinition())
    409     NullValue = "nil";
    410   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
    411     NullValue = "NULL";
    412   else
    413     NullValue = "(void*) 0";
    414 
    415   if (MissingNilLoc.isInvalid())
    416     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    417   else
    418     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    419       << int(calleeType)
    420       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    421   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    422 }
    423 
    424 SourceRange Sema::getExprRange(Expr *E) const {
    425   return E ? E->getSourceRange() : SourceRange();
    426 }
    427 
    428 //===----------------------------------------------------------------------===//
    429 //  Standard Promotions and Conversions
    430 //===----------------------------------------------------------------------===//
    431 
    432 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    433 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    434   // Handle any placeholder expressions which made it here.
    435   if (E->getType()->isPlaceholderType()) {
    436     ExprResult result = CheckPlaceholderExpr(E);
    437     if (result.isInvalid()) return ExprError();
    438     E = result.get();
    439   }
    440 
    441   QualType Ty = E->getType();
    442   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    443 
    444   if (Ty->isFunctionType()) {
    445     // If we are here, we are not calling a function but taking
    446     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    447     if (getLangOpts().OpenCL) {
    448       Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    449       return ExprError();
    450     }
    451     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    452                           CK_FunctionToPointerDecay).get();
    453   } else if (Ty->isArrayType()) {
    454     // In C90 mode, arrays only promote to pointers if the array expression is
    455     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    456     // type 'array of type' is converted to an expression that has type 'pointer
    457     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    458     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    459     // (C90) to "an expression" (C99).
    460     //
    461     // C++ 4.2p1:
    462     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    463     // T" can be converted to an rvalue of type "pointer to T".
    464     //
    465     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    466       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    467                             CK_ArrayToPointerDecay).get();
    468   }
    469   return E;
    470 }
    471 
    472 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    473   // Check to see if we are dereferencing a null pointer.  If so,
    474   // and if not volatile-qualified, this is undefined behavior that the
    475   // optimizer will delete, so warn about it.  People sometimes try to use this
    476   // to get a deterministic trap and are surprised by clang's behavior.  This
    477   // only handles the pattern "*null", which is a very syntactic check.
    478   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    479     if (UO->getOpcode() == UO_Deref &&
    480         UO->getSubExpr()->IgnoreParenCasts()->
    481           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    482         !UO->getType().isVolatileQualified()) {
    483     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    484                           S.PDiag(diag::warn_indirection_through_null)
    485                             << UO->getSubExpr()->getSourceRange());
    486     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    487                         S.PDiag(diag::note_indirection_through_null));
    488   }
    489 }
    490 
    491 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    492                                     SourceLocation AssignLoc,
    493                                     const Expr* RHS) {
    494   const ObjCIvarDecl *IV = OIRE->getDecl();
    495   if (!IV)
    496     return;
    497 
    498   DeclarationName MemberName = IV->getDeclName();
    499   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    500   if (!Member || !Member->isStr("isa"))
    501     return;
    502 
    503   const Expr *Base = OIRE->getBase();
    504   QualType BaseType = Base->getType();
    505   if (OIRE->isArrow())
    506     BaseType = BaseType->getPointeeType();
    507   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    508     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    509       ObjCInterfaceDecl *ClassDeclared = nullptr;
    510       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    511       if (!ClassDeclared->getSuperClass()
    512           && (*ClassDeclared->ivar_begin()) == IV) {
    513         if (RHS) {
    514           NamedDecl *ObjectSetClass =
    515             S.LookupSingleName(S.TUScope,
    516                                &S.Context.Idents.get("object_setClass"),
    517                                SourceLocation(), S.LookupOrdinaryName);
    518           if (ObjectSetClass) {
    519             SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
    520             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    521             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    522             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    523                                                      AssignLoc), ",") <<
    524             FixItHint::CreateInsertion(RHSLocEnd, ")");
    525           }
    526           else
    527             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    528         } else {
    529           NamedDecl *ObjectGetClass =
    530             S.LookupSingleName(S.TUScope,
    531                                &S.Context.Idents.get("object_getClass"),
    532                                SourceLocation(), S.LookupOrdinaryName);
    533           if (ObjectGetClass)
    534             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    535             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    536             FixItHint::CreateReplacement(
    537                                          SourceRange(OIRE->getOpLoc(),
    538                                                      OIRE->getLocEnd()), ")");
    539           else
    540             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    541         }
    542         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    543       }
    544     }
    545 }
    546 
    547 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    548   // Handle any placeholder expressions which made it here.
    549   if (E->getType()->isPlaceholderType()) {
    550     ExprResult result = CheckPlaceholderExpr(E);
    551     if (result.isInvalid()) return ExprError();
    552     E = result.get();
    553   }
    554 
    555   // C++ [conv.lval]p1:
    556   //   A glvalue of a non-function, non-array type T can be
    557   //   converted to a prvalue.
    558   if (!E->isGLValue()) return E;
    559 
    560   QualType T = E->getType();
    561   assert(!T.isNull() && "r-value conversion on typeless expression?");
    562 
    563   // We don't want to throw lvalue-to-rvalue casts on top of
    564   // expressions of certain types in C++.
    565   if (getLangOpts().CPlusPlus &&
    566       (E->getType() == Context.OverloadTy ||
    567        T->isDependentType() ||
    568        T->isRecordType()))
    569     return E;
    570 
    571   // The C standard is actually really unclear on this point, and
    572   // DR106 tells us what the result should be but not why.  It's
    573   // generally best to say that void types just doesn't undergo
    574   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    575   // 'void' type are never l-values, but qualified void can be.
    576   if (T->isVoidType())
    577     return E;
    578 
    579   // OpenCL usually rejects direct accesses to values of 'half' type.
    580   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    581       T->isHalfType()) {
    582     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    583       << 0 << T;
    584     return ExprError();
    585   }
    586 
    587   CheckForNullPointerDereference(*this, E);
    588   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    589     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    590                                      &Context.Idents.get("object_getClass"),
    591                                      SourceLocation(), LookupOrdinaryName);
    592     if (ObjectGetClass)
    593       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    594         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    595         FixItHint::CreateReplacement(
    596                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    597     else
    598       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    599   }
    600   else if (const ObjCIvarRefExpr *OIRE =
    601             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    602     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    603 
    604   // C++ [conv.lval]p1:
    605   //   [...] If T is a non-class type, the type of the prvalue is the
    606   //   cv-unqualified version of T. Otherwise, the type of the
    607   //   rvalue is T.
    608   //
    609   // C99 6.3.2.1p2:
    610   //   If the lvalue has qualified type, the value has the unqualified
    611   //   version of the type of the lvalue; otherwise, the value has the
    612   //   type of the lvalue.
    613   if (T.hasQualifiers())
    614     T = T.getUnqualifiedType();
    615 
    616   UpdateMarkingForLValueToRValue(E);
    617 
    618   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    619   // balance that.
    620   if (getLangOpts().ObjCAutoRefCount &&
    621       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    622     ExprNeedsCleanups = true;
    623 
    624   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    625                                             nullptr, VK_RValue);
    626 
    627   // C11 6.3.2.1p2:
    628   //   ... if the lvalue has atomic type, the value has the non-atomic version
    629   //   of the type of the lvalue ...
    630   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    631     T = Atomic->getValueType().getUnqualifiedType();
    632     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    633                                    nullptr, VK_RValue);
    634   }
    635 
    636   return Res;
    637 }
    638 
    639 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    640   ExprResult Res = DefaultFunctionArrayConversion(E);
    641   if (Res.isInvalid())
    642     return ExprError();
    643   Res = DefaultLvalueConversion(Res.get());
    644   if (Res.isInvalid())
    645     return ExprError();
    646   return Res;
    647 }
    648 
    649 /// CallExprUnaryConversions - a special case of an unary conversion
    650 /// performed on a function designator of a call expression.
    651 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    652   QualType Ty = E->getType();
    653   ExprResult Res = E;
    654   // Only do implicit cast for a function type, but not for a pointer
    655   // to function type.
    656   if (Ty->isFunctionType()) {
    657     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    658                             CK_FunctionToPointerDecay).get();
    659     if (Res.isInvalid())
    660       return ExprError();
    661   }
    662   Res = DefaultLvalueConversion(Res.get());
    663   if (Res.isInvalid())
    664     return ExprError();
    665   return Res.get();
    666 }
    667 
    668 /// UsualUnaryConversions - Performs various conversions that are common to most
    669 /// operators (C99 6.3). The conversions of array and function types are
    670 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    671 /// apply if the array is an argument to the sizeof or address (&) operators.
    672 /// In these instances, this routine should *not* be called.
    673 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    674   // First, convert to an r-value.
    675   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    676   if (Res.isInvalid())
    677     return ExprError();
    678   E = Res.get();
    679 
    680   QualType Ty = E->getType();
    681   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    682 
    683   // Half FP have to be promoted to float unless it is natively supported
    684   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    685     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    686 
    687   // Try to perform integral promotions if the object has a theoretically
    688   // promotable type.
    689   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    690     // C99 6.3.1.1p2:
    691     //
    692     //   The following may be used in an expression wherever an int or
    693     //   unsigned int may be used:
    694     //     - an object or expression with an integer type whose integer
    695     //       conversion rank is less than or equal to the rank of int
    696     //       and unsigned int.
    697     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    698     //
    699     //   If an int can represent all values of the original type, the
    700     //   value is converted to an int; otherwise, it is converted to an
    701     //   unsigned int. These are called the integer promotions. All
    702     //   other types are unchanged by the integer promotions.
    703 
    704     QualType PTy = Context.isPromotableBitField(E);
    705     if (!PTy.isNull()) {
    706       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    707       return E;
    708     }
    709     if (Ty->isPromotableIntegerType()) {
    710       QualType PT = Context.getPromotedIntegerType(Ty);
    711       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    712       return E;
    713     }
    714   }
    715   return E;
    716 }
    717 
    718 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    719 /// do not have a prototype. Arguments that have type float or __fp16
    720 /// are promoted to double. All other argument types are converted by
    721 /// UsualUnaryConversions().
    722 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    723   QualType Ty = E->getType();
    724   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    725 
    726   ExprResult Res = UsualUnaryConversions(E);
    727   if (Res.isInvalid())
    728     return ExprError();
    729   E = Res.get();
    730 
    731   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    732   // double.
    733   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    734   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    735               BTy->getKind() == BuiltinType::Float))
    736     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    737 
    738   // C++ performs lvalue-to-rvalue conversion as a default argument
    739   // promotion, even on class types, but note:
    740   //   C++11 [conv.lval]p2:
    741   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    742   //     operand or a subexpression thereof the value contained in the
    743   //     referenced object is not accessed. Otherwise, if the glvalue
    744   //     has a class type, the conversion copy-initializes a temporary
    745   //     of type T from the glvalue and the result of the conversion
    746   //     is a prvalue for the temporary.
    747   // FIXME: add some way to gate this entire thing for correctness in
    748   // potentially potentially evaluated contexts.
    749   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    750     ExprResult Temp = PerformCopyInitialization(
    751                        InitializedEntity::InitializeTemporary(E->getType()),
    752                                                 E->getExprLoc(), E);
    753     if (Temp.isInvalid())
    754       return ExprError();
    755     E = Temp.get();
    756   }
    757 
    758   return E;
    759 }
    760 
    761 /// Determine the degree of POD-ness for an expression.
    762 /// Incomplete types are considered POD, since this check can be performed
    763 /// when we're in an unevaluated context.
    764 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    765   if (Ty->isIncompleteType()) {
    766     // C++11 [expr.call]p7:
    767     //   After these conversions, if the argument does not have arithmetic,
    768     //   enumeration, pointer, pointer to member, or class type, the program
    769     //   is ill-formed.
    770     //
    771     // Since we've already performed array-to-pointer and function-to-pointer
    772     // decay, the only such type in C++ is cv void. This also handles
    773     // initializer lists as variadic arguments.
    774     if (Ty->isVoidType())
    775       return VAK_Invalid;
    776 
    777     if (Ty->isObjCObjectType())
    778       return VAK_Invalid;
    779     return VAK_Valid;
    780   }
    781 
    782   if (Ty.isCXX98PODType(Context))
    783     return VAK_Valid;
    784 
    785   // C++11 [expr.call]p7:
    786   //   Passing a potentially-evaluated argument of class type (Clause 9)
    787   //   having a non-trivial copy constructor, a non-trivial move constructor,
    788   //   or a non-trivial destructor, with no corresponding parameter,
    789   //   is conditionally-supported with implementation-defined semantics.
    790   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    791     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    792       if (!Record->hasNonTrivialCopyConstructor() &&
    793           !Record->hasNonTrivialMoveConstructor() &&
    794           !Record->hasNonTrivialDestructor())
    795         return VAK_ValidInCXX11;
    796 
    797   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    798     return VAK_Valid;
    799 
    800   if (Ty->isObjCObjectType())
    801     return VAK_Invalid;
    802 
    803   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    804   // permitted to reject them. We should consider doing so.
    805   return VAK_Undefined;
    806 }
    807 
    808 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    809   // Don't allow one to pass an Objective-C interface to a vararg.
    810   const QualType &Ty = E->getType();
    811   VarArgKind VAK = isValidVarArgType(Ty);
    812 
    813   // Complain about passing non-POD types through varargs.
    814   switch (VAK) {
    815   case VAK_ValidInCXX11:
    816     DiagRuntimeBehavior(
    817         E->getLocStart(), nullptr,
    818         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    819           << Ty << CT);
    820     // Fall through.
    821   case VAK_Valid:
    822     if (Ty->isRecordType()) {
    823       // This is unlikely to be what the user intended. If the class has a
    824       // 'c_str' member function, the user probably meant to call that.
    825       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    826                           PDiag(diag::warn_pass_class_arg_to_vararg)
    827                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    828     }
    829     break;
    830 
    831   case VAK_Undefined:
    832     DiagRuntimeBehavior(
    833         E->getLocStart(), nullptr,
    834         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    835           << getLangOpts().CPlusPlus11 << Ty << CT);
    836     break;
    837 
    838   case VAK_Invalid:
    839     if (Ty->isObjCObjectType())
    840       DiagRuntimeBehavior(
    841           E->getLocStart(), nullptr,
    842           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    843             << Ty << CT);
    844     else
    845       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    846         << isa<InitListExpr>(E) << Ty << CT;
    847     break;
    848   }
    849 }
    850 
    851 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    852 /// will create a trap if the resulting type is not a POD type.
    853 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    854                                                   FunctionDecl *FDecl) {
    855   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    856     // Strip the unbridged-cast placeholder expression off, if applicable.
    857     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    858         (CT == VariadicMethod ||
    859          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    860       E = stripARCUnbridgedCast(E);
    861 
    862     // Otherwise, do normal placeholder checking.
    863     } else {
    864       ExprResult ExprRes = CheckPlaceholderExpr(E);
    865       if (ExprRes.isInvalid())
    866         return ExprError();
    867       E = ExprRes.get();
    868     }
    869   }
    870 
    871   ExprResult ExprRes = DefaultArgumentPromotion(E);
    872   if (ExprRes.isInvalid())
    873     return ExprError();
    874   E = ExprRes.get();
    875 
    876   // Diagnostics regarding non-POD argument types are
    877   // emitted along with format string checking in Sema::CheckFunctionCall().
    878   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    879     // Turn this into a trap.
    880     CXXScopeSpec SS;
    881     SourceLocation TemplateKWLoc;
    882     UnqualifiedId Name;
    883     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    884                        E->getLocStart());
    885     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    886                                           Name, true, false);
    887     if (TrapFn.isInvalid())
    888       return ExprError();
    889 
    890     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    891                                     E->getLocStart(), None,
    892                                     E->getLocEnd());
    893     if (Call.isInvalid())
    894       return ExprError();
    895 
    896     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    897                                   Call.get(), E);
    898     if (Comma.isInvalid())
    899       return ExprError();
    900     return Comma.get();
    901   }
    902 
    903   if (!getLangOpts().CPlusPlus &&
    904       RequireCompleteType(E->getExprLoc(), E->getType(),
    905                           diag::err_call_incomplete_argument))
    906     return ExprError();
    907 
    908   return E;
    909 }
    910 
    911 /// \brief Converts an integer to complex float type.  Helper function of
    912 /// UsualArithmeticConversions()
    913 ///
    914 /// \return false if the integer expression is an integer type and is
    915 /// successfully converted to the complex type.
    916 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    917                                                   ExprResult &ComplexExpr,
    918                                                   QualType IntTy,
    919                                                   QualType ComplexTy,
    920                                                   bool SkipCast) {
    921   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
    922   if (SkipCast) return false;
    923   if (IntTy->isIntegerType()) {
    924     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    925     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
    926     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    927                                   CK_FloatingRealToComplex);
    928   } else {
    929     assert(IntTy->isComplexIntegerType());
    930     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
    931                                   CK_IntegralComplexToFloatingComplex);
    932   }
    933   return false;
    934 }
    935 
    936 /// \brief Takes two complex float types and converts them to the same type.
    937 /// Helper function of UsualArithmeticConversions()
    938 static QualType
    939 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
    940                                             ExprResult &RHS, QualType LHSType,
    941                                             QualType RHSType,
    942                                             bool IsCompAssign) {
    943   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    944 
    945   if (order < 0) {
    946     // _Complex float -> _Complex double
    947     if (!IsCompAssign)
    948       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingComplexCast);
    949     return RHSType;
    950   }
    951   if (order > 0)
    952     // _Complex float -> _Complex double
    953     RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingComplexCast);
    954   return LHSType;
    955 }
    956 
    957 /// \brief Converts otherExpr to complex float and promotes complexExpr if
    958 /// necessary.  Helper function of UsualArithmeticConversions()
    959 static QualType handleOtherComplexFloatConversion(Sema &S,
    960                                                   ExprResult &ComplexExpr,
    961                                                   ExprResult &OtherExpr,
    962                                                   QualType ComplexTy,
    963                                                   QualType OtherTy,
    964                                                   bool ConvertComplexExpr,
    965                                                   bool ConvertOtherExpr) {
    966   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
    967 
    968   // If just the complexExpr is complex, the otherExpr needs to be converted,
    969   // and the complexExpr might need to be promoted.
    970   if (order > 0) { // complexExpr is wider
    971     // float -> _Complex double
    972     if (ConvertOtherExpr) {
    973       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
    974       OtherExpr = S.ImpCastExprToType(OtherExpr.get(), fp, CK_FloatingCast);
    975       OtherExpr = S.ImpCastExprToType(OtherExpr.get(), ComplexTy,
    976                                       CK_FloatingRealToComplex);
    977     }
    978     return ComplexTy;
    979   }
    980 
    981   // otherTy is at least as wide.  Find its corresponding complex type.
    982   QualType result = (order == 0 ? ComplexTy :
    983                                   S.Context.getComplexType(OtherTy));
    984 
    985   // double -> _Complex double
    986   if (ConvertOtherExpr)
    987     OtherExpr = S.ImpCastExprToType(OtherExpr.get(), result,
    988                                     CK_FloatingRealToComplex);
    989 
    990   // _Complex float -> _Complex double
    991   if (ConvertComplexExpr && order < 0)
    992     ComplexExpr = S.ImpCastExprToType(ComplexExpr.get(), result,
    993                                       CK_FloatingComplexCast);
    994 
    995   return result;
    996 }
    997 
    998 /// \brief Handle arithmetic conversion with complex types.  Helper function of
    999 /// UsualArithmeticConversions()
   1000 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1001                                              ExprResult &RHS, QualType LHSType,
   1002                                              QualType RHSType,
   1003                                              bool IsCompAssign) {
   1004   // if we have an integer operand, the result is the complex type.
   1005   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1006                                              /*skipCast*/false))
   1007     return LHSType;
   1008   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1009                                              /*skipCast*/IsCompAssign))
   1010     return RHSType;
   1011 
   1012   // This handles complex/complex, complex/float, or float/complex.
   1013   // When both operands are complex, the shorter operand is converted to the
   1014   // type of the longer, and that is the type of the result. This corresponds
   1015   // to what is done when combining two real floating-point operands.
   1016   // The fun begins when size promotion occur across type domains.
   1017   // From H&S 6.3.4: When one operand is complex and the other is a real
   1018   // floating-point type, the less precise type is converted, within it's
   1019   // real or complex domain, to the precision of the other type. For example,
   1020   // when combining a "long double" with a "double _Complex", the
   1021   // "double _Complex" is promoted to "long double _Complex".
   1022 
   1023   bool LHSComplexFloat = LHSType->isComplexType();
   1024   bool RHSComplexFloat = RHSType->isComplexType();
   1025 
   1026   // If both are complex, just cast to the more precise type.
   1027   if (LHSComplexFloat && RHSComplexFloat)
   1028     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
   1029                                                        LHSType, RHSType,
   1030                                                        IsCompAssign);
   1031 
   1032   // If only one operand is complex, promote it if necessary and convert the
   1033   // other operand to complex.
   1034   if (LHSComplexFloat)
   1035     return handleOtherComplexFloatConversion(
   1036         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
   1037         /*convertOtherExpr*/ true);
   1038 
   1039   assert(RHSComplexFloat);
   1040   return handleOtherComplexFloatConversion(
   1041       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
   1042       /*convertOtherExpr*/ !IsCompAssign);
   1043 }
   1044 
   1045 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1046 /// of UsualArithmeticConversions()
   1047 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1048                                            ExprResult &IntExpr,
   1049                                            QualType FloatTy, QualType IntTy,
   1050                                            bool ConvertFloat, bool ConvertInt) {
   1051   if (IntTy->isIntegerType()) {
   1052     if (ConvertInt)
   1053       // Convert intExpr to the lhs floating point type.
   1054       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1055                                     CK_IntegralToFloating);
   1056     return FloatTy;
   1057   }
   1058 
   1059   // Convert both sides to the appropriate complex float.
   1060   assert(IntTy->isComplexIntegerType());
   1061   QualType result = S.Context.getComplexType(FloatTy);
   1062 
   1063   // _Complex int -> _Complex float
   1064   if (ConvertInt)
   1065     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1066                                   CK_IntegralComplexToFloatingComplex);
   1067 
   1068   // float -> _Complex float
   1069   if (ConvertFloat)
   1070     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1071                                     CK_FloatingRealToComplex);
   1072 
   1073   return result;
   1074 }
   1075 
   1076 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1077 /// function of UsualArithmeticConversions()
   1078 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1079                                       ExprResult &RHS, QualType LHSType,
   1080                                       QualType RHSType, bool IsCompAssign) {
   1081   bool LHSFloat = LHSType->isRealFloatingType();
   1082   bool RHSFloat = RHSType->isRealFloatingType();
   1083 
   1084   // If we have two real floating types, convert the smaller operand
   1085   // to the bigger result.
   1086   if (LHSFloat && RHSFloat) {
   1087     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1088     if (order > 0) {
   1089       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1090       return LHSType;
   1091     }
   1092 
   1093     assert(order < 0 && "illegal float comparison");
   1094     if (!IsCompAssign)
   1095       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1096     return RHSType;
   1097   }
   1098 
   1099   if (LHSFloat)
   1100     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1101                                       /*convertFloat=*/!IsCompAssign,
   1102                                       /*convertInt=*/ true);
   1103   assert(RHSFloat);
   1104   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1105                                     /*convertInt=*/ true,
   1106                                     /*convertFloat=*/!IsCompAssign);
   1107 }
   1108 
   1109 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1110 
   1111 namespace {
   1112 /// These helper callbacks are placed in an anonymous namespace to
   1113 /// permit their use as function template parameters.
   1114 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1115   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1116 }
   1117 
   1118 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1119   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1120                              CK_IntegralComplexCast);
   1121 }
   1122 }
   1123 
   1124 /// \brief Handle integer arithmetic conversions.  Helper function of
   1125 /// UsualArithmeticConversions()
   1126 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1127 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1128                                         ExprResult &RHS, QualType LHSType,
   1129                                         QualType RHSType, bool IsCompAssign) {
   1130   // The rules for this case are in C99 6.3.1.8
   1131   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1132   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1133   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1134   if (LHSSigned == RHSSigned) {
   1135     // Same signedness; use the higher-ranked type
   1136     if (order >= 0) {
   1137       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1138       return LHSType;
   1139     } else if (!IsCompAssign)
   1140       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1141     return RHSType;
   1142   } else if (order != (LHSSigned ? 1 : -1)) {
   1143     // The unsigned type has greater than or equal rank to the
   1144     // signed type, so use the unsigned type
   1145     if (RHSSigned) {
   1146       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1147       return LHSType;
   1148     } else if (!IsCompAssign)
   1149       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1150     return RHSType;
   1151   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1152     // The two types are different widths; if we are here, that
   1153     // means the signed type is larger than the unsigned type, so
   1154     // use the signed type.
   1155     if (LHSSigned) {
   1156       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1157       return LHSType;
   1158     } else if (!IsCompAssign)
   1159       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1160     return RHSType;
   1161   } else {
   1162     // The signed type is higher-ranked than the unsigned type,
   1163     // but isn't actually any bigger (like unsigned int and long
   1164     // on most 32-bit systems).  Use the unsigned type corresponding
   1165     // to the signed type.
   1166     QualType result =
   1167       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1168     RHS = (*doRHSCast)(S, RHS.get(), result);
   1169     if (!IsCompAssign)
   1170       LHS = (*doLHSCast)(S, LHS.get(), result);
   1171     return result;
   1172   }
   1173 }
   1174 
   1175 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1176 /// of UsualArithmeticConversions()
   1177 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1178                                            ExprResult &RHS, QualType LHSType,
   1179                                            QualType RHSType,
   1180                                            bool IsCompAssign) {
   1181   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1182   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1183 
   1184   if (LHSComplexInt && RHSComplexInt) {
   1185     QualType LHSEltType = LHSComplexInt->getElementType();
   1186     QualType RHSEltType = RHSComplexInt->getElementType();
   1187     QualType ScalarType =
   1188       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1189         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1190 
   1191     return S.Context.getComplexType(ScalarType);
   1192   }
   1193 
   1194   if (LHSComplexInt) {
   1195     QualType LHSEltType = LHSComplexInt->getElementType();
   1196     QualType ScalarType =
   1197       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1198         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1199     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1200     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1201                               CK_IntegralRealToComplex);
   1202 
   1203     return ComplexType;
   1204   }
   1205 
   1206   assert(RHSComplexInt);
   1207 
   1208   QualType RHSEltType = RHSComplexInt->getElementType();
   1209   QualType ScalarType =
   1210     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1211       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1212   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1213 
   1214   if (!IsCompAssign)
   1215     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1216                               CK_IntegralRealToComplex);
   1217   return ComplexType;
   1218 }
   1219 
   1220 /// UsualArithmeticConversions - Performs various conversions that are common to
   1221 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1222 /// routine returns the first non-arithmetic type found. The client is
   1223 /// responsible for emitting appropriate error diagnostics.
   1224 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1225                                           bool IsCompAssign) {
   1226   if (!IsCompAssign) {
   1227     LHS = UsualUnaryConversions(LHS.get());
   1228     if (LHS.isInvalid())
   1229       return QualType();
   1230   }
   1231 
   1232   RHS = UsualUnaryConversions(RHS.get());
   1233   if (RHS.isInvalid())
   1234     return QualType();
   1235 
   1236   // For conversion purposes, we ignore any qualifiers.
   1237   // For example, "const float" and "float" are equivalent.
   1238   QualType LHSType =
   1239     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1240   QualType RHSType =
   1241     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1242 
   1243   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1244   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1245     LHSType = AtomicLHS->getValueType();
   1246 
   1247   // If both types are identical, no conversion is needed.
   1248   if (LHSType == RHSType)
   1249     return LHSType;
   1250 
   1251   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1252   // The caller can deal with this (e.g. pointer + int).
   1253   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1254     return QualType();
   1255 
   1256   // Apply unary and bitfield promotions to the LHS's type.
   1257   QualType LHSUnpromotedType = LHSType;
   1258   if (LHSType->isPromotableIntegerType())
   1259     LHSType = Context.getPromotedIntegerType(LHSType);
   1260   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1261   if (!LHSBitfieldPromoteTy.isNull())
   1262     LHSType = LHSBitfieldPromoteTy;
   1263   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1264     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1265 
   1266   // If both types are identical, no conversion is needed.
   1267   if (LHSType == RHSType)
   1268     return LHSType;
   1269 
   1270   // At this point, we have two different arithmetic types.
   1271 
   1272   // Handle complex types first (C99 6.3.1.8p1).
   1273   if (LHSType->isComplexType() || RHSType->isComplexType())
   1274     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1275                                         IsCompAssign);
   1276 
   1277   // Now handle "real" floating types (i.e. float, double, long double).
   1278   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1279     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1280                                  IsCompAssign);
   1281 
   1282   // Handle GCC complex int extension.
   1283   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1284     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1285                                       IsCompAssign);
   1286 
   1287   // Finally, we have two differing integer types.
   1288   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1289            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1290 }
   1291 
   1292 
   1293 //===----------------------------------------------------------------------===//
   1294 //  Semantic Analysis for various Expression Types
   1295 //===----------------------------------------------------------------------===//
   1296 
   1297 
   1298 ExprResult
   1299 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1300                                 SourceLocation DefaultLoc,
   1301                                 SourceLocation RParenLoc,
   1302                                 Expr *ControllingExpr,
   1303                                 ArrayRef<ParsedType> ArgTypes,
   1304                                 ArrayRef<Expr *> ArgExprs) {
   1305   unsigned NumAssocs = ArgTypes.size();
   1306   assert(NumAssocs == ArgExprs.size());
   1307 
   1308   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1309   for (unsigned i = 0; i < NumAssocs; ++i) {
   1310     if (ArgTypes[i])
   1311       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1312     else
   1313       Types[i] = nullptr;
   1314   }
   1315 
   1316   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1317                                              ControllingExpr,
   1318                                              llvm::makeArrayRef(Types, NumAssocs),
   1319                                              ArgExprs);
   1320   delete [] Types;
   1321   return ER;
   1322 }
   1323 
   1324 ExprResult
   1325 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1326                                  SourceLocation DefaultLoc,
   1327                                  SourceLocation RParenLoc,
   1328                                  Expr *ControllingExpr,
   1329                                  ArrayRef<TypeSourceInfo *> Types,
   1330                                  ArrayRef<Expr *> Exprs) {
   1331   unsigned NumAssocs = Types.size();
   1332   assert(NumAssocs == Exprs.size());
   1333   if (ControllingExpr->getType()->isPlaceholderType()) {
   1334     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
   1335     if (result.isInvalid()) return ExprError();
   1336     ControllingExpr = result.get();
   1337   }
   1338 
   1339   bool TypeErrorFound = false,
   1340        IsResultDependent = ControllingExpr->isTypeDependent(),
   1341        ContainsUnexpandedParameterPack
   1342          = ControllingExpr->containsUnexpandedParameterPack();
   1343 
   1344   for (unsigned i = 0; i < NumAssocs; ++i) {
   1345     if (Exprs[i]->containsUnexpandedParameterPack())
   1346       ContainsUnexpandedParameterPack = true;
   1347 
   1348     if (Types[i]) {
   1349       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1350         ContainsUnexpandedParameterPack = true;
   1351 
   1352       if (Types[i]->getType()->isDependentType()) {
   1353         IsResultDependent = true;
   1354       } else {
   1355         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1356         // complete object type other than a variably modified type."
   1357         unsigned D = 0;
   1358         if (Types[i]->getType()->isIncompleteType())
   1359           D = diag::err_assoc_type_incomplete;
   1360         else if (!Types[i]->getType()->isObjectType())
   1361           D = diag::err_assoc_type_nonobject;
   1362         else if (Types[i]->getType()->isVariablyModifiedType())
   1363           D = diag::err_assoc_type_variably_modified;
   1364 
   1365         if (D != 0) {
   1366           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1367             << Types[i]->getTypeLoc().getSourceRange()
   1368             << Types[i]->getType();
   1369           TypeErrorFound = true;
   1370         }
   1371 
   1372         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1373         // selection shall specify compatible types."
   1374         for (unsigned j = i+1; j < NumAssocs; ++j)
   1375           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1376               Context.typesAreCompatible(Types[i]->getType(),
   1377                                          Types[j]->getType())) {
   1378             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1379                  diag::err_assoc_compatible_types)
   1380               << Types[j]->getTypeLoc().getSourceRange()
   1381               << Types[j]->getType()
   1382               << Types[i]->getType();
   1383             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1384                  diag::note_compat_assoc)
   1385               << Types[i]->getTypeLoc().getSourceRange()
   1386               << Types[i]->getType();
   1387             TypeErrorFound = true;
   1388           }
   1389       }
   1390     }
   1391   }
   1392   if (TypeErrorFound)
   1393     return ExprError();
   1394 
   1395   // If we determined that the generic selection is result-dependent, don't
   1396   // try to compute the result expression.
   1397   if (IsResultDependent)
   1398     return new (Context) GenericSelectionExpr(
   1399         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1400         ContainsUnexpandedParameterPack);
   1401 
   1402   SmallVector<unsigned, 1> CompatIndices;
   1403   unsigned DefaultIndex = -1U;
   1404   for (unsigned i = 0; i < NumAssocs; ++i) {
   1405     if (!Types[i])
   1406       DefaultIndex = i;
   1407     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1408                                         Types[i]->getType()))
   1409       CompatIndices.push_back(i);
   1410   }
   1411 
   1412   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1413   // type compatible with at most one of the types named in its generic
   1414   // association list."
   1415   if (CompatIndices.size() > 1) {
   1416     // We strip parens here because the controlling expression is typically
   1417     // parenthesized in macro definitions.
   1418     ControllingExpr = ControllingExpr->IgnoreParens();
   1419     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1420       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1421       << (unsigned) CompatIndices.size();
   1422     for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
   1423          E = CompatIndices.end(); I != E; ++I) {
   1424       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
   1425            diag::note_compat_assoc)
   1426         << Types[*I]->getTypeLoc().getSourceRange()
   1427         << Types[*I]->getType();
   1428     }
   1429     return ExprError();
   1430   }
   1431 
   1432   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1433   // its controlling expression shall have type compatible with exactly one of
   1434   // the types named in its generic association list."
   1435   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1436     // We strip parens here because the controlling expression is typically
   1437     // parenthesized in macro definitions.
   1438     ControllingExpr = ControllingExpr->IgnoreParens();
   1439     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1440       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1441     return ExprError();
   1442   }
   1443 
   1444   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1445   // type name that is compatible with the type of the controlling expression,
   1446   // then the result expression of the generic selection is the expression
   1447   // in that generic association. Otherwise, the result expression of the
   1448   // generic selection is the expression in the default generic association."
   1449   unsigned ResultIndex =
   1450     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1451 
   1452   return new (Context) GenericSelectionExpr(
   1453       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1454       ContainsUnexpandedParameterPack, ResultIndex);
   1455 }
   1456 
   1457 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1458 /// location of the token and the offset of the ud-suffix within it.
   1459 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1460                                      unsigned Offset) {
   1461   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1462                                         S.getLangOpts());
   1463 }
   1464 
   1465 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1466 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1467 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1468                                                  IdentifierInfo *UDSuffix,
   1469                                                  SourceLocation UDSuffixLoc,
   1470                                                  ArrayRef<Expr*> Args,
   1471                                                  SourceLocation LitEndLoc) {
   1472   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1473 
   1474   QualType ArgTy[2];
   1475   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1476     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1477     if (ArgTy[ArgIdx]->isArrayType())
   1478       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1479   }
   1480 
   1481   DeclarationName OpName =
   1482     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1483   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1484   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1485 
   1486   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1487   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1488                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1489                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1490     return ExprError();
   1491 
   1492   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1493 }
   1494 
   1495 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1496 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1497 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1498 /// multiple tokens.  However, the common case is that StringToks points to one
   1499 /// string.
   1500 ///
   1501 ExprResult
   1502 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1503   assert(!StringToks.empty() && "Must have at least one string!");
   1504 
   1505   StringLiteralParser Literal(StringToks, PP);
   1506   if (Literal.hadError)
   1507     return ExprError();
   1508 
   1509   SmallVector<SourceLocation, 4> StringTokLocs;
   1510   for (unsigned i = 0; i != StringToks.size(); ++i)
   1511     StringTokLocs.push_back(StringToks[i].getLocation());
   1512 
   1513   QualType CharTy = Context.CharTy;
   1514   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1515   if (Literal.isWide()) {
   1516     CharTy = Context.getWideCharType();
   1517     Kind = StringLiteral::Wide;
   1518   } else if (Literal.isUTF8()) {
   1519     Kind = StringLiteral::UTF8;
   1520   } else if (Literal.isUTF16()) {
   1521     CharTy = Context.Char16Ty;
   1522     Kind = StringLiteral::UTF16;
   1523   } else if (Literal.isUTF32()) {
   1524     CharTy = Context.Char32Ty;
   1525     Kind = StringLiteral::UTF32;
   1526   } else if (Literal.isPascal()) {
   1527     CharTy = Context.UnsignedCharTy;
   1528   }
   1529 
   1530   QualType CharTyConst = CharTy;
   1531   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1532   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1533     CharTyConst.addConst();
   1534 
   1535   // Get an array type for the string, according to C99 6.4.5.  This includes
   1536   // the nul terminator character as well as the string length for pascal
   1537   // strings.
   1538   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1539                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1540                                  ArrayType::Normal, 0);
   1541 
   1542   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1543   if (getLangOpts().OpenCL) {
   1544     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1545   }
   1546 
   1547   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1548   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1549                                              Kind, Literal.Pascal, StrTy,
   1550                                              &StringTokLocs[0],
   1551                                              StringTokLocs.size());
   1552   if (Literal.getUDSuffix().empty())
   1553     return Lit;
   1554 
   1555   // We're building a user-defined literal.
   1556   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1557   SourceLocation UDSuffixLoc =
   1558     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1559                    Literal.getUDSuffixOffset());
   1560 
   1561   // Make sure we're allowed user-defined literals here.
   1562   if (!UDLScope)
   1563     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1564 
   1565   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1566   //   operator "" X (str, len)
   1567   QualType SizeType = Context.getSizeType();
   1568 
   1569   DeclarationName OpName =
   1570     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1571   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1572   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1573 
   1574   QualType ArgTy[] = {
   1575     Context.getArrayDecayedType(StrTy), SizeType
   1576   };
   1577 
   1578   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1579   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1580                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1581                                 /*AllowStringTemplate*/true)) {
   1582 
   1583   case LOLR_Cooked: {
   1584     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1585     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1586                                                     StringTokLocs[0]);
   1587     Expr *Args[] = { Lit, LenArg };
   1588 
   1589     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1590   }
   1591 
   1592   case LOLR_StringTemplate: {
   1593     TemplateArgumentListInfo ExplicitArgs;
   1594 
   1595     unsigned CharBits = Context.getIntWidth(CharTy);
   1596     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1597     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1598 
   1599     TemplateArgument TypeArg(CharTy);
   1600     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1601     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1602 
   1603     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1604       Value = Lit->getCodeUnit(I);
   1605       TemplateArgument Arg(Context, Value, CharTy);
   1606       TemplateArgumentLocInfo ArgInfo;
   1607       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1608     }
   1609     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1610                                     &ExplicitArgs);
   1611   }
   1612   case LOLR_Raw:
   1613   case LOLR_Template:
   1614     llvm_unreachable("unexpected literal operator lookup result");
   1615   case LOLR_Error:
   1616     return ExprError();
   1617   }
   1618   llvm_unreachable("unexpected literal operator lookup result");
   1619 }
   1620 
   1621 ExprResult
   1622 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1623                        SourceLocation Loc,
   1624                        const CXXScopeSpec *SS) {
   1625   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1626   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1627 }
   1628 
   1629 /// BuildDeclRefExpr - Build an expression that references a
   1630 /// declaration that does not require a closure capture.
   1631 ExprResult
   1632 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1633                        const DeclarationNameInfo &NameInfo,
   1634                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1635                        const TemplateArgumentListInfo *TemplateArgs) {
   1636   if (getLangOpts().CUDA)
   1637     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1638       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1639         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
   1640                            CalleeTarget = IdentifyCUDATarget(Callee);
   1641         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
   1642           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1643             << CalleeTarget << D->getIdentifier() << CallerTarget;
   1644           Diag(D->getLocation(), diag::note_previous_decl)
   1645             << D->getIdentifier();
   1646           return ExprError();
   1647         }
   1648       }
   1649 
   1650   bool refersToEnclosingScope =
   1651     (CurContext != D->getDeclContext() &&
   1652      D->getDeclContext()->isFunctionOrMethod()) ||
   1653     (isa<VarDecl>(D) &&
   1654      cast<VarDecl>(D)->isInitCapture());
   1655 
   1656   DeclRefExpr *E;
   1657   if (isa<VarTemplateSpecializationDecl>(D)) {
   1658     VarTemplateSpecializationDecl *VarSpec =
   1659         cast<VarTemplateSpecializationDecl>(D);
   1660 
   1661     E = DeclRefExpr::Create(
   1662         Context,
   1663         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1664         VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
   1665         NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
   1666   } else {
   1667     assert(!TemplateArgs && "No template arguments for non-variable"
   1668                             " template specialization references");
   1669     E = DeclRefExpr::Create(
   1670         Context,
   1671         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1672         SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
   1673   }
   1674 
   1675   MarkDeclRefReferenced(E);
   1676 
   1677   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
   1678       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1679       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1680       recordUseOfEvaluatedWeak(E);
   1681 
   1682   // Just in case we're building an illegal pointer-to-member.
   1683   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1684   if (FD && FD->isBitField())
   1685     E->setObjectKind(OK_BitField);
   1686 
   1687   return E;
   1688 }
   1689 
   1690 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1691 /// possibly a list of template arguments.
   1692 ///
   1693 /// If this produces template arguments, it is permitted to call
   1694 /// DecomposeTemplateName.
   1695 ///
   1696 /// This actually loses a lot of source location information for
   1697 /// non-standard name kinds; we should consider preserving that in
   1698 /// some way.
   1699 void
   1700 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1701                              TemplateArgumentListInfo &Buffer,
   1702                              DeclarationNameInfo &NameInfo,
   1703                              const TemplateArgumentListInfo *&TemplateArgs) {
   1704   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1705     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1706     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1707 
   1708     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1709                                        Id.TemplateId->NumArgs);
   1710     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1711 
   1712     TemplateName TName = Id.TemplateId->Template.get();
   1713     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1714     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1715     TemplateArgs = &Buffer;
   1716   } else {
   1717     NameInfo = GetNameFromUnqualifiedId(Id);
   1718     TemplateArgs = nullptr;
   1719   }
   1720 }
   1721 
   1722 /// Diagnose an empty lookup.
   1723 ///
   1724 /// \return false if new lookup candidates were found
   1725 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1726                                CorrectionCandidateCallback &CCC,
   1727                                TemplateArgumentListInfo *ExplicitTemplateArgs,
   1728                                ArrayRef<Expr *> Args) {
   1729   DeclarationName Name = R.getLookupName();
   1730 
   1731   unsigned diagnostic = diag::err_undeclared_var_use;
   1732   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1733   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1734       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1735       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1736     diagnostic = diag::err_undeclared_use;
   1737     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1738   }
   1739 
   1740   // If the original lookup was an unqualified lookup, fake an
   1741   // unqualified lookup.  This is useful when (for example) the
   1742   // original lookup would not have found something because it was a
   1743   // dependent name.
   1744   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
   1745     ? CurContext : nullptr;
   1746   while (DC) {
   1747     if (isa<CXXRecordDecl>(DC)) {
   1748       LookupQualifiedName(R, DC);
   1749 
   1750       if (!R.empty()) {
   1751         // Don't give errors about ambiguities in this lookup.
   1752         R.suppressDiagnostics();
   1753 
   1754         // During a default argument instantiation the CurContext points
   1755         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1756         // function parameter list, hence add an explicit check.
   1757         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1758                               ActiveTemplateInstantiations.back().Kind ==
   1759             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1760         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1761         bool isInstance = CurMethod &&
   1762                           CurMethod->isInstance() &&
   1763                           DC == CurMethod->getParent() && !isDefaultArgument;
   1764 
   1765 
   1766         // Give a code modification hint to insert 'this->'.
   1767         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1768         // Actually quite difficult!
   1769         if (getLangOpts().MSVCCompat)
   1770           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1771         if (isInstance) {
   1772           Diag(R.getNameLoc(), diagnostic) << Name
   1773             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1774           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1775               CallsUndergoingInstantiation.back()->getCallee());
   1776 
   1777           CXXMethodDecl *DepMethod;
   1778           if (CurMethod->isDependentContext())
   1779             DepMethod = CurMethod;
   1780           else if (CurMethod->getTemplatedKind() ==
   1781               FunctionDecl::TK_FunctionTemplateSpecialization)
   1782             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
   1783                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
   1784           else
   1785             DepMethod = cast<CXXMethodDecl>(
   1786                 CurMethod->getInstantiatedFromMemberFunction());
   1787           assert(DepMethod && "No template pattern found");
   1788 
   1789           QualType DepThisType = DepMethod->getThisType(Context);
   1790           CheckCXXThisCapture(R.getNameLoc());
   1791           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1792                                      R.getNameLoc(), DepThisType, false);
   1793           TemplateArgumentListInfo TList;
   1794           if (ULE->hasExplicitTemplateArgs())
   1795             ULE->copyTemplateArgumentsInto(TList);
   1796 
   1797           CXXScopeSpec SS;
   1798           SS.Adopt(ULE->getQualifierLoc());
   1799           CXXDependentScopeMemberExpr *DepExpr =
   1800               CXXDependentScopeMemberExpr::Create(
   1801                   Context, DepThis, DepThisType, true, SourceLocation(),
   1802                   SS.getWithLocInContext(Context),
   1803                   ULE->getTemplateKeywordLoc(), nullptr,
   1804                   R.getLookupNameInfo(),
   1805                   ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
   1806           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1807         } else {
   1808           Diag(R.getNameLoc(), diagnostic) << Name;
   1809         }
   1810 
   1811         // Do we really want to note all of these?
   1812         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1813           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1814 
   1815         // Return true if we are inside a default argument instantiation
   1816         // and the found name refers to an instance member function, otherwise
   1817         // the function calling DiagnoseEmptyLookup will try to create an
   1818         // implicit member call and this is wrong for default argument.
   1819         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1820           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1821           return true;
   1822         }
   1823 
   1824         // Tell the callee to try to recover.
   1825         return false;
   1826       }
   1827 
   1828       R.clear();
   1829     }
   1830 
   1831     // In Microsoft mode, if we are performing lookup from within a friend
   1832     // function definition declared at class scope then we must set
   1833     // DC to the lexical parent to be able to search into the parent
   1834     // class.
   1835     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1836         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1837         DC->getLexicalParent()->isRecord())
   1838       DC = DC->getLexicalParent();
   1839     else
   1840       DC = DC->getParent();
   1841   }
   1842 
   1843   // We didn't find anything, so try to correct for a typo.
   1844   TypoCorrection Corrected;
   1845   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
   1846                                     S, &SS, CCC, CTK_ErrorRecovery))) {
   1847     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1848     bool DroppedSpecifier =
   1849         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1850     R.setLookupName(Corrected.getCorrection());
   1851 
   1852     bool AcceptableWithRecovery = false;
   1853     bool AcceptableWithoutRecovery = false;
   1854     NamedDecl *ND = Corrected.getCorrectionDecl();
   1855     if (ND) {
   1856       if (Corrected.isOverloaded()) {
   1857         OverloadCandidateSet OCS(R.getNameLoc(),
   1858                                  OverloadCandidateSet::CSK_Normal);
   1859         OverloadCandidateSet::iterator Best;
   1860         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   1861                                         CDEnd = Corrected.end();
   1862              CD != CDEnd; ++CD) {
   1863           if (FunctionTemplateDecl *FTD =
   1864                    dyn_cast<FunctionTemplateDecl>(*CD))
   1865             AddTemplateOverloadCandidate(
   1866                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1867                 Args, OCS);
   1868           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   1869             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1870               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1871                                    Args, OCS);
   1872         }
   1873         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1874         case OR_Success:
   1875           ND = Best->Function;
   1876           Corrected.setCorrectionDecl(ND);
   1877           break;
   1878         default:
   1879           // FIXME: Arbitrarily pick the first declaration for the note.
   1880           Corrected.setCorrectionDecl(ND);
   1881           break;
   1882         }
   1883       }
   1884       R.addDecl(ND);
   1885       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1886         CXXRecordDecl *Record = nullptr;
   1887         if (Corrected.getCorrectionSpecifier()) {
   1888           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   1889           Record = Ty->getAsCXXRecordDecl();
   1890         }
   1891         if (!Record)
   1892           Record = cast<CXXRecordDecl>(
   1893               ND->getDeclContext()->getRedeclContext());
   1894         R.setNamingClass(Record);
   1895       }
   1896 
   1897       AcceptableWithRecovery =
   1898           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
   1899       // FIXME: If we ended up with a typo for a type name or
   1900       // Objective-C class name, we're in trouble because the parser
   1901       // is in the wrong place to recover. Suggest the typo
   1902       // correction, but don't make it a fix-it since we're not going
   1903       // to recover well anyway.
   1904       AcceptableWithoutRecovery =
   1905           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
   1906     } else {
   1907       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1908       // because we aren't able to recover.
   1909       AcceptableWithoutRecovery = true;
   1910     }
   1911 
   1912     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   1913       unsigned NoteID = (Corrected.getCorrectionDecl() &&
   1914                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
   1915                             ? diag::note_implicit_param_decl
   1916                             : diag::note_previous_decl;
   1917       if (SS.isEmpty())
   1918         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   1919                      PDiag(NoteID), AcceptableWithRecovery);
   1920       else
   1921         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   1922                                   << Name << computeDeclContext(SS, false)
   1923                                   << DroppedSpecifier << SS.getRange(),
   1924                      PDiag(NoteID), AcceptableWithRecovery);
   1925 
   1926       // Tell the callee whether to try to recover.
   1927       return !AcceptableWithRecovery;
   1928     }
   1929   }
   1930   R.clear();
   1931 
   1932   // Emit a special diagnostic for failed member lookups.
   1933   // FIXME: computing the declaration context might fail here (?)
   1934   if (!SS.isEmpty()) {
   1935     Diag(R.getNameLoc(), diag::err_no_member)
   1936       << Name << computeDeclContext(SS, false)
   1937       << SS.getRange();
   1938     return true;
   1939   }
   1940 
   1941   // Give up, we can't recover.
   1942   Diag(R.getNameLoc(), diagnostic) << Name;
   1943   return true;
   1944 }
   1945 
   1946 /// In Microsoft mode, if we are inside a template class whose parent class has
   1947 /// dependent base classes, and we can't resolve an unqualified identifier, then
   1948 /// assume the identifier is a member of a dependent base class.  We can only
   1949 /// recover successfully in static methods, instance methods, and other contexts
   1950 /// where 'this' is available.  This doesn't precisely match MSVC's
   1951 /// instantiation model, but it's close enough.
   1952 static Expr *
   1953 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   1954                                DeclarationNameInfo &NameInfo,
   1955                                SourceLocation TemplateKWLoc,
   1956                                const TemplateArgumentListInfo *TemplateArgs) {
   1957   // Only try to recover from lookup into dependent bases in static methods or
   1958   // contexts where 'this' is available.
   1959   QualType ThisType = S.getCurrentThisType();
   1960   const CXXRecordDecl *RD = nullptr;
   1961   if (!ThisType.isNull())
   1962     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   1963   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   1964     RD = MD->getParent();
   1965   if (!RD || !RD->hasAnyDependentBases())
   1966     return nullptr;
   1967 
   1968   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   1969   // is available, suggest inserting 'this->' as a fixit.
   1970   SourceLocation Loc = NameInfo.getLoc();
   1971   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   1972   DB << NameInfo.getName() << RD;
   1973 
   1974   if (!ThisType.isNull()) {
   1975     DB << FixItHint::CreateInsertion(Loc, "this->");
   1976     return CXXDependentScopeMemberExpr::Create(
   1977         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   1978         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   1979         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   1980   }
   1981 
   1982   // Synthesize a fake NNS that points to the derived class.  This will
   1983   // perform name lookup during template instantiation.
   1984   CXXScopeSpec SS;
   1985   auto *NNS =
   1986       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   1987   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   1988   return DependentScopeDeclRefExpr::Create(
   1989       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   1990       TemplateArgs);
   1991 }
   1992 
   1993 ExprResult Sema::ActOnIdExpression(Scope *S,
   1994                                    CXXScopeSpec &SS,
   1995                                    SourceLocation TemplateKWLoc,
   1996                                    UnqualifiedId &Id,
   1997                                    bool HasTrailingLParen,
   1998                                    bool IsAddressOfOperand,
   1999                                    CorrectionCandidateCallback *CCC,
   2000                                    bool IsInlineAsmIdentifier) {
   2001   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2002          "cannot be direct & operand and have a trailing lparen");
   2003   if (SS.isInvalid())
   2004     return ExprError();
   2005 
   2006   TemplateArgumentListInfo TemplateArgsBuffer;
   2007 
   2008   // Decompose the UnqualifiedId into the following data.
   2009   DeclarationNameInfo NameInfo;
   2010   const TemplateArgumentListInfo *TemplateArgs;
   2011   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2012 
   2013   DeclarationName Name = NameInfo.getName();
   2014   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2015   SourceLocation NameLoc = NameInfo.getLoc();
   2016 
   2017   // C++ [temp.dep.expr]p3:
   2018   //   An id-expression is type-dependent if it contains:
   2019   //     -- an identifier that was declared with a dependent type,
   2020   //        (note: handled after lookup)
   2021   //     -- a template-id that is dependent,
   2022   //        (note: handled in BuildTemplateIdExpr)
   2023   //     -- a conversion-function-id that specifies a dependent type,
   2024   //     -- a nested-name-specifier that contains a class-name that
   2025   //        names a dependent type.
   2026   // Determine whether this is a member of an unknown specialization;
   2027   // we need to handle these differently.
   2028   bool DependentID = false;
   2029   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2030       Name.getCXXNameType()->isDependentType()) {
   2031     DependentID = true;
   2032   } else if (SS.isSet()) {
   2033     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2034       if (RequireCompleteDeclContext(SS, DC))
   2035         return ExprError();
   2036     } else {
   2037       DependentID = true;
   2038     }
   2039   }
   2040 
   2041   if (DependentID)
   2042     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2043                                       IsAddressOfOperand, TemplateArgs);
   2044 
   2045   // Perform the required lookup.
   2046   LookupResult R(*this, NameInfo,
   2047                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2048                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2049   if (TemplateArgs) {
   2050     // Lookup the template name again to correctly establish the context in
   2051     // which it was found. This is really unfortunate as we already did the
   2052     // lookup to determine that it was a template name in the first place. If
   2053     // this becomes a performance hit, we can work harder to preserve those
   2054     // results until we get here but it's likely not worth it.
   2055     bool MemberOfUnknownSpecialization;
   2056     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2057                        MemberOfUnknownSpecialization);
   2058 
   2059     if (MemberOfUnknownSpecialization ||
   2060         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2061       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2062                                         IsAddressOfOperand, TemplateArgs);
   2063   } else {
   2064     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2065     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2066 
   2067     // If the result might be in a dependent base class, this is a dependent
   2068     // id-expression.
   2069     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2070       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2071                                         IsAddressOfOperand, TemplateArgs);
   2072 
   2073     // If this reference is in an Objective-C method, then we need to do
   2074     // some special Objective-C lookup, too.
   2075     if (IvarLookupFollowUp) {
   2076       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2077       if (E.isInvalid())
   2078         return ExprError();
   2079 
   2080       if (Expr *Ex = E.getAs<Expr>())
   2081         return Ex;
   2082     }
   2083   }
   2084 
   2085   if (R.isAmbiguous())
   2086     return ExprError();
   2087 
   2088   // This could be an implicitly declared function reference (legal in C90,
   2089   // extension in C99, forbidden in C++).
   2090   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2091     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2092     if (D) R.addDecl(D);
   2093   }
   2094 
   2095   // Determine whether this name might be a candidate for
   2096   // argument-dependent lookup.
   2097   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2098 
   2099   if (R.empty() && !ADL) {
   2100     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2101       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2102                                                    TemplateKWLoc, TemplateArgs))
   2103         return E;
   2104     }
   2105 
   2106     // Don't diagnose an empty lookup for inline assembly.
   2107     if (IsInlineAsmIdentifier)
   2108       return ExprError();
   2109 
   2110     // If this name wasn't predeclared and if this is not a function
   2111     // call, diagnose the problem.
   2112     CorrectionCandidateCallback DefaultValidator;
   2113     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
   2114     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2115            "Typo correction callback misconfigured");
   2116     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
   2117       return ExprError();
   2118 
   2119     assert(!R.empty() &&
   2120            "DiagnoseEmptyLookup returned false but added no results");
   2121 
   2122     // If we found an Objective-C instance variable, let
   2123     // LookupInObjCMethod build the appropriate expression to
   2124     // reference the ivar.
   2125     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2126       R.clear();
   2127       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2128       // In a hopelessly buggy code, Objective-C instance variable
   2129       // lookup fails and no expression will be built to reference it.
   2130       if (!E.isInvalid() && !E.get())
   2131         return ExprError();
   2132       return E;
   2133     }
   2134   }
   2135 
   2136   // This is guaranteed from this point on.
   2137   assert(!R.empty() || ADL);
   2138 
   2139   // Check whether this might be a C++ implicit instance member access.
   2140   // C++ [class.mfct.non-static]p3:
   2141   //   When an id-expression that is not part of a class member access
   2142   //   syntax and not used to form a pointer to member is used in the
   2143   //   body of a non-static member function of class X, if name lookup
   2144   //   resolves the name in the id-expression to a non-static non-type
   2145   //   member of some class C, the id-expression is transformed into a
   2146   //   class member access expression using (*this) as the
   2147   //   postfix-expression to the left of the . operator.
   2148   //
   2149   // But we don't actually need to do this for '&' operands if R
   2150   // resolved to a function or overloaded function set, because the
   2151   // expression is ill-formed if it actually works out to be a
   2152   // non-static member function:
   2153   //
   2154   // C++ [expr.ref]p4:
   2155   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2156   //   [t]he expression can be used only as the left-hand operand of a
   2157   //   member function call.
   2158   //
   2159   // There are other safeguards against such uses, but it's important
   2160   // to get this right here so that we don't end up making a
   2161   // spuriously dependent expression if we're inside a dependent
   2162   // instance method.
   2163   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2164     bool MightBeImplicitMember;
   2165     if (!IsAddressOfOperand)
   2166       MightBeImplicitMember = true;
   2167     else if (!SS.isEmpty())
   2168       MightBeImplicitMember = false;
   2169     else if (R.isOverloadedResult())
   2170       MightBeImplicitMember = false;
   2171     else if (R.isUnresolvableResult())
   2172       MightBeImplicitMember = true;
   2173     else
   2174       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2175                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2176                               isa<MSPropertyDecl>(R.getFoundDecl());
   2177 
   2178     if (MightBeImplicitMember)
   2179       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2180                                              R, TemplateArgs);
   2181   }
   2182 
   2183   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2184 
   2185     // In C++1y, if this is a variable template id, then check it
   2186     // in BuildTemplateIdExpr().
   2187     // The single lookup result must be a variable template declaration.
   2188     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2189         Id.TemplateId->Kind == TNK_Var_template) {
   2190       assert(R.getAsSingle<VarTemplateDecl>() &&
   2191              "There should only be one declaration found.");
   2192     }
   2193 
   2194     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2195   }
   2196 
   2197   return BuildDeclarationNameExpr(SS, R, ADL);
   2198 }
   2199 
   2200 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2201 /// declaration name, generally during template instantiation.
   2202 /// There's a large number of things which don't need to be done along
   2203 /// this path.
   2204 ExprResult
   2205 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   2206                                         const DeclarationNameInfo &NameInfo,
   2207                                         bool IsAddressOfOperand,
   2208                                         TypeSourceInfo **RecoveryTSI) {
   2209   DeclContext *DC = computeDeclContext(SS, false);
   2210   if (!DC)
   2211     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2212                                      NameInfo, /*TemplateArgs=*/nullptr);
   2213 
   2214   if (RequireCompleteDeclContext(SS, DC))
   2215     return ExprError();
   2216 
   2217   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2218   LookupQualifiedName(R, DC);
   2219 
   2220   if (R.isAmbiguous())
   2221     return ExprError();
   2222 
   2223   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2224     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2225                                      NameInfo, /*TemplateArgs=*/nullptr);
   2226 
   2227   if (R.empty()) {
   2228     Diag(NameInfo.getLoc(), diag::err_no_member)
   2229       << NameInfo.getName() << DC << SS.getRange();
   2230     return ExprError();
   2231   }
   2232 
   2233   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2234     // Diagnose a missing typename if this resolved unambiguously to a type in
   2235     // a dependent context.  If we can recover with a type, downgrade this to
   2236     // a warning in Microsoft compatibility mode.
   2237     unsigned DiagID = diag::err_typename_missing;
   2238     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2239       DiagID = diag::ext_typename_missing;
   2240     SourceLocation Loc = SS.getBeginLoc();
   2241     auto D = Diag(Loc, DiagID);
   2242     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2243       << SourceRange(Loc, NameInfo.getEndLoc());
   2244 
   2245     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2246     // context.
   2247     if (!RecoveryTSI)
   2248       return ExprError();
   2249 
   2250     // Only issue the fixit if we're prepared to recover.
   2251     D << FixItHint::CreateInsertion(Loc, "typename ");
   2252 
   2253     // Recover by pretending this was an elaborated type.
   2254     QualType Ty = Context.getTypeDeclType(TD);
   2255     TypeLocBuilder TLB;
   2256     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2257 
   2258     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2259     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2260     QTL.setElaboratedKeywordLoc(SourceLocation());
   2261     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2262 
   2263     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2264 
   2265     return ExprEmpty();
   2266   }
   2267 
   2268   // Defend against this resolving to an implicit member access. We usually
   2269   // won't get here if this might be a legitimate a class member (we end up in
   2270   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2271   // a pointer-to-member or in an unevaluated context in C++11.
   2272   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2273     return BuildPossibleImplicitMemberExpr(SS,
   2274                                            /*TemplateKWLoc=*/SourceLocation(),
   2275                                            R, /*TemplateArgs=*/nullptr);
   2276 
   2277   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2278 }
   2279 
   2280 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2281 /// detected that we're currently inside an ObjC method.  Perform some
   2282 /// additional lookup.
   2283 ///
   2284 /// Ideally, most of this would be done by lookup, but there's
   2285 /// actually quite a lot of extra work involved.
   2286 ///
   2287 /// Returns a null sentinel to indicate trivial success.
   2288 ExprResult
   2289 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2290                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2291   SourceLocation Loc = Lookup.getNameLoc();
   2292   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2293 
   2294   // Check for error condition which is already reported.
   2295   if (!CurMethod)
   2296     return ExprError();
   2297 
   2298   // There are two cases to handle here.  1) scoped lookup could have failed,
   2299   // in which case we should look for an ivar.  2) scoped lookup could have
   2300   // found a decl, but that decl is outside the current instance method (i.e.
   2301   // a global variable).  In these two cases, we do a lookup for an ivar with
   2302   // this name, if the lookup sucedes, we replace it our current decl.
   2303 
   2304   // If we're in a class method, we don't normally want to look for
   2305   // ivars.  But if we don't find anything else, and there's an
   2306   // ivar, that's an error.
   2307   bool IsClassMethod = CurMethod->isClassMethod();
   2308 
   2309   bool LookForIvars;
   2310   if (Lookup.empty())
   2311     LookForIvars = true;
   2312   else if (IsClassMethod)
   2313     LookForIvars = false;
   2314   else
   2315     LookForIvars = (Lookup.isSingleResult() &&
   2316                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2317   ObjCInterfaceDecl *IFace = nullptr;
   2318   if (LookForIvars) {
   2319     IFace = CurMethod->getClassInterface();
   2320     ObjCInterfaceDecl *ClassDeclared;
   2321     ObjCIvarDecl *IV = nullptr;
   2322     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2323       // Diagnose using an ivar in a class method.
   2324       if (IsClassMethod)
   2325         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2326                          << IV->getDeclName());
   2327 
   2328       // If we're referencing an invalid decl, just return this as a silent
   2329       // error node.  The error diagnostic was already emitted on the decl.
   2330       if (IV->isInvalidDecl())
   2331         return ExprError();
   2332 
   2333       // Check if referencing a field with __attribute__((deprecated)).
   2334       if (DiagnoseUseOfDecl(IV, Loc))
   2335         return ExprError();
   2336 
   2337       // Diagnose the use of an ivar outside of the declaring class.
   2338       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2339           !declaresSameEntity(ClassDeclared, IFace) &&
   2340           !getLangOpts().DebuggerSupport)
   2341         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2342 
   2343       // FIXME: This should use a new expr for a direct reference, don't
   2344       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2345       IdentifierInfo &II = Context.Idents.get("self");
   2346       UnqualifiedId SelfName;
   2347       SelfName.setIdentifier(&II, SourceLocation());
   2348       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2349       CXXScopeSpec SelfScopeSpec;
   2350       SourceLocation TemplateKWLoc;
   2351       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2352                                               SelfName, false, false);
   2353       if (SelfExpr.isInvalid())
   2354         return ExprError();
   2355 
   2356       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2357       if (SelfExpr.isInvalid())
   2358         return ExprError();
   2359 
   2360       MarkAnyDeclReferenced(Loc, IV, true);
   2361 
   2362       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2363       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2364           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2365         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2366 
   2367       ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   2368                                                               Loc, IV->getLocation(),
   2369                                                               SelfExpr.get(),
   2370                                                               true, true);
   2371 
   2372       if (getLangOpts().ObjCAutoRefCount) {
   2373         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2374           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2375             recordUseOfEvaluatedWeak(Result);
   2376         }
   2377         if (CurContext->isClosure())
   2378           Diag(Loc, diag::warn_implicitly_retains_self)
   2379             << FixItHint::CreateInsertion(Loc, "self->");
   2380       }
   2381 
   2382       return Result;
   2383     }
   2384   } else if (CurMethod->isInstanceMethod()) {
   2385     // We should warn if a local variable hides an ivar.
   2386     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2387       ObjCInterfaceDecl *ClassDeclared;
   2388       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2389         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2390             declaresSameEntity(IFace, ClassDeclared))
   2391           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2392       }
   2393     }
   2394   } else if (Lookup.isSingleResult() &&
   2395              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2396     // If accessing a stand-alone ivar in a class method, this is an error.
   2397     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2398       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2399                        << IV->getDeclName());
   2400   }
   2401 
   2402   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2403     // FIXME. Consolidate this with similar code in LookupName.
   2404     if (unsigned BuiltinID = II->getBuiltinID()) {
   2405       if (!(getLangOpts().CPlusPlus &&
   2406             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2407         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2408                                            S, Lookup.isForRedeclaration(),
   2409                                            Lookup.getNameLoc());
   2410         if (D) Lookup.addDecl(D);
   2411       }
   2412     }
   2413   }
   2414   // Sentinel value saying that we didn't do anything special.
   2415   return ExprResult((Expr *)nullptr);
   2416 }
   2417 
   2418 /// \brief Cast a base object to a member's actual type.
   2419 ///
   2420 /// Logically this happens in three phases:
   2421 ///
   2422 /// * First we cast from the base type to the naming class.
   2423 ///   The naming class is the class into which we were looking
   2424 ///   when we found the member;  it's the qualifier type if a
   2425 ///   qualifier was provided, and otherwise it's the base type.
   2426 ///
   2427 /// * Next we cast from the naming class to the declaring class.
   2428 ///   If the member we found was brought into a class's scope by
   2429 ///   a using declaration, this is that class;  otherwise it's
   2430 ///   the class declaring the member.
   2431 ///
   2432 /// * Finally we cast from the declaring class to the "true"
   2433 ///   declaring class of the member.  This conversion does not
   2434 ///   obey access control.
   2435 ExprResult
   2436 Sema::PerformObjectMemberConversion(Expr *From,
   2437                                     NestedNameSpecifier *Qualifier,
   2438                                     NamedDecl *FoundDecl,
   2439                                     NamedDecl *Member) {
   2440   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2441   if (!RD)
   2442     return From;
   2443 
   2444   QualType DestRecordType;
   2445   QualType DestType;
   2446   QualType FromRecordType;
   2447   QualType FromType = From->getType();
   2448   bool PointerConversions = false;
   2449   if (isa<FieldDecl>(Member)) {
   2450     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2451 
   2452     if (FromType->getAs<PointerType>()) {
   2453       DestType = Context.getPointerType(DestRecordType);
   2454       FromRecordType = FromType->getPointeeType();
   2455       PointerConversions = true;
   2456     } else {
   2457       DestType = DestRecordType;
   2458       FromRecordType = FromType;
   2459     }
   2460   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2461     if (Method->isStatic())
   2462       return From;
   2463 
   2464     DestType = Method->getThisType(Context);
   2465     DestRecordType = DestType->getPointeeType();
   2466 
   2467     if (FromType->getAs<PointerType>()) {
   2468       FromRecordType = FromType->getPointeeType();
   2469       PointerConversions = true;
   2470     } else {
   2471       FromRecordType = FromType;
   2472       DestType = DestRecordType;
   2473     }
   2474   } else {
   2475     // No conversion necessary.
   2476     return From;
   2477   }
   2478 
   2479   if (DestType->isDependentType() || FromType->isDependentType())
   2480     return From;
   2481 
   2482   // If the unqualified types are the same, no conversion is necessary.
   2483   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2484     return From;
   2485 
   2486   SourceRange FromRange = From->getSourceRange();
   2487   SourceLocation FromLoc = FromRange.getBegin();
   2488 
   2489   ExprValueKind VK = From->getValueKind();
   2490 
   2491   // C++ [class.member.lookup]p8:
   2492   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2493   //   class name.
   2494   //
   2495   // If the member was a qualified name and the qualified referred to a
   2496   // specific base subobject type, we'll cast to that intermediate type
   2497   // first and then to the object in which the member is declared. That allows
   2498   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2499   //
   2500   //   class Base { public: int x; };
   2501   //   class Derived1 : public Base { };
   2502   //   class Derived2 : public Base { };
   2503   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2504   //
   2505   //   void VeryDerived::f() {
   2506   //     x = 17; // error: ambiguous base subobjects
   2507   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2508   //   }
   2509   if (Qualifier && Qualifier->getAsType()) {
   2510     QualType QType = QualType(Qualifier->getAsType(), 0);
   2511     assert(QType->isRecordType() && "lookup done with non-record type");
   2512 
   2513     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2514 
   2515     // In C++98, the qualifier type doesn't actually have to be a base
   2516     // type of the object type, in which case we just ignore it.
   2517     // Otherwise build the appropriate casts.
   2518     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   2519       CXXCastPath BasePath;
   2520       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2521                                        FromLoc, FromRange, &BasePath))
   2522         return ExprError();
   2523 
   2524       if (PointerConversions)
   2525         QType = Context.getPointerType(QType);
   2526       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2527                                VK, &BasePath).get();
   2528 
   2529       FromType = QType;
   2530       FromRecordType = QRecordType;
   2531 
   2532       // If the qualifier type was the same as the destination type,
   2533       // we're done.
   2534       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2535         return From;
   2536     }
   2537   }
   2538 
   2539   bool IgnoreAccess = false;
   2540 
   2541   // If we actually found the member through a using declaration, cast
   2542   // down to the using declaration's type.
   2543   //
   2544   // Pointer equality is fine here because only one declaration of a
   2545   // class ever has member declarations.
   2546   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2547     assert(isa<UsingShadowDecl>(FoundDecl));
   2548     QualType URecordType = Context.getTypeDeclType(
   2549                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2550 
   2551     // We only need to do this if the naming-class to declaring-class
   2552     // conversion is non-trivial.
   2553     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2554       assert(IsDerivedFrom(FromRecordType, URecordType));
   2555       CXXCastPath BasePath;
   2556       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2557                                        FromLoc, FromRange, &BasePath))
   2558         return ExprError();
   2559 
   2560       QualType UType = URecordType;
   2561       if (PointerConversions)
   2562         UType = Context.getPointerType(UType);
   2563       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2564                                VK, &BasePath).get();
   2565       FromType = UType;
   2566       FromRecordType = URecordType;
   2567     }
   2568 
   2569     // We don't do access control for the conversion from the
   2570     // declaring class to the true declaring class.
   2571     IgnoreAccess = true;
   2572   }
   2573 
   2574   CXXCastPath BasePath;
   2575   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2576                                    FromLoc, FromRange, &BasePath,
   2577                                    IgnoreAccess))
   2578     return ExprError();
   2579 
   2580   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2581                            VK, &BasePath);
   2582 }
   2583 
   2584 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2585                                       const LookupResult &R,
   2586                                       bool HasTrailingLParen) {
   2587   // Only when used directly as the postfix-expression of a call.
   2588   if (!HasTrailingLParen)
   2589     return false;
   2590 
   2591   // Never if a scope specifier was provided.
   2592   if (SS.isSet())
   2593     return false;
   2594 
   2595   // Only in C++ or ObjC++.
   2596   if (!getLangOpts().CPlusPlus)
   2597     return false;
   2598 
   2599   // Turn off ADL when we find certain kinds of declarations during
   2600   // normal lookup:
   2601   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2602     NamedDecl *D = *I;
   2603 
   2604     // C++0x [basic.lookup.argdep]p3:
   2605     //     -- a declaration of a class member
   2606     // Since using decls preserve this property, we check this on the
   2607     // original decl.
   2608     if (D->isCXXClassMember())
   2609       return false;
   2610 
   2611     // C++0x [basic.lookup.argdep]p3:
   2612     //     -- a block-scope function declaration that is not a
   2613     //        using-declaration
   2614     // NOTE: we also trigger this for function templates (in fact, we
   2615     // don't check the decl type at all, since all other decl types
   2616     // turn off ADL anyway).
   2617     if (isa<UsingShadowDecl>(D))
   2618       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2619     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2620       return false;
   2621 
   2622     // C++0x [basic.lookup.argdep]p3:
   2623     //     -- a declaration that is neither a function or a function
   2624     //        template
   2625     // And also for builtin functions.
   2626     if (isa<FunctionDecl>(D)) {
   2627       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2628 
   2629       // But also builtin functions.
   2630       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2631         return false;
   2632     } else if (!isa<FunctionTemplateDecl>(D))
   2633       return false;
   2634   }
   2635 
   2636   return true;
   2637 }
   2638 
   2639 
   2640 /// Diagnoses obvious problems with the use of the given declaration
   2641 /// as an expression.  This is only actually called for lookups that
   2642 /// were not overloaded, and it doesn't promise that the declaration
   2643 /// will in fact be used.
   2644 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2645   if (isa<TypedefNameDecl>(D)) {
   2646     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2647     return true;
   2648   }
   2649 
   2650   if (isa<ObjCInterfaceDecl>(D)) {
   2651     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2652     return true;
   2653   }
   2654 
   2655   if (isa<NamespaceDecl>(D)) {
   2656     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2657     return true;
   2658   }
   2659 
   2660   return false;
   2661 }
   2662 
   2663 ExprResult
   2664 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2665                                LookupResult &R,
   2666                                bool NeedsADL) {
   2667   // If this is a single, fully-resolved result and we don't need ADL,
   2668   // just build an ordinary singleton decl ref.
   2669   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2670     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2671                                     R.getRepresentativeDecl());
   2672 
   2673   // We only need to check the declaration if there's exactly one
   2674   // result, because in the overloaded case the results can only be
   2675   // functions and function templates.
   2676   if (R.isSingleResult() &&
   2677       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2678     return ExprError();
   2679 
   2680   // Otherwise, just build an unresolved lookup expression.  Suppress
   2681   // any lookup-related diagnostics; we'll hash these out later, when
   2682   // we've picked a target.
   2683   R.suppressDiagnostics();
   2684 
   2685   UnresolvedLookupExpr *ULE
   2686     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2687                                    SS.getWithLocInContext(Context),
   2688                                    R.getLookupNameInfo(),
   2689                                    NeedsADL, R.isOverloadedResult(),
   2690                                    R.begin(), R.end());
   2691 
   2692   return ULE;
   2693 }
   2694 
   2695 /// \brief Complete semantic analysis for a reference to the given declaration.
   2696 ExprResult Sema::BuildDeclarationNameExpr(
   2697     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2698     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
   2699   assert(D && "Cannot refer to a NULL declaration");
   2700   assert(!isa<FunctionTemplateDecl>(D) &&
   2701          "Cannot refer unambiguously to a function template");
   2702 
   2703   SourceLocation Loc = NameInfo.getLoc();
   2704   if (CheckDeclInExpr(*this, Loc, D))
   2705     return ExprError();
   2706 
   2707   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2708     // Specifically diagnose references to class templates that are missing
   2709     // a template argument list.
   2710     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2711                                            << Template << SS.getRange();
   2712     Diag(Template->getLocation(), diag::note_template_decl_here);
   2713     return ExprError();
   2714   }
   2715 
   2716   // Make sure that we're referring to a value.
   2717   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2718   if (!VD) {
   2719     Diag(Loc, diag::err_ref_non_value)
   2720       << D << SS.getRange();
   2721     Diag(D->getLocation(), diag::note_declared_at);
   2722     return ExprError();
   2723   }
   2724 
   2725   // Check whether this declaration can be used. Note that we suppress
   2726   // this check when we're going to perform argument-dependent lookup
   2727   // on this function name, because this might not be the function
   2728   // that overload resolution actually selects.
   2729   if (DiagnoseUseOfDecl(VD, Loc))
   2730     return ExprError();
   2731 
   2732   // Only create DeclRefExpr's for valid Decl's.
   2733   if (VD->isInvalidDecl())
   2734     return ExprError();
   2735 
   2736   // Handle members of anonymous structs and unions.  If we got here,
   2737   // and the reference is to a class member indirect field, then this
   2738   // must be the subject of a pointer-to-member expression.
   2739   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2740     if (!indirectField->isCXXClassMember())
   2741       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2742                                                       indirectField);
   2743 
   2744   {
   2745     QualType type = VD->getType();
   2746     ExprValueKind valueKind = VK_RValue;
   2747 
   2748     switch (D->getKind()) {
   2749     // Ignore all the non-ValueDecl kinds.
   2750 #define ABSTRACT_DECL(kind)
   2751 #define VALUE(type, base)
   2752 #define DECL(type, base) \
   2753     case Decl::type:
   2754 #include "clang/AST/DeclNodes.inc"
   2755       llvm_unreachable("invalid value decl kind");
   2756 
   2757     // These shouldn't make it here.
   2758     case Decl::ObjCAtDefsField:
   2759     case Decl::ObjCIvar:
   2760       llvm_unreachable("forming non-member reference to ivar?");
   2761 
   2762     // Enum constants are always r-values and never references.
   2763     // Unresolved using declarations are dependent.
   2764     case Decl::EnumConstant:
   2765     case Decl::UnresolvedUsingValue:
   2766       valueKind = VK_RValue;
   2767       break;
   2768 
   2769     // Fields and indirect fields that got here must be for
   2770     // pointer-to-member expressions; we just call them l-values for
   2771     // internal consistency, because this subexpression doesn't really
   2772     // exist in the high-level semantics.
   2773     case Decl::Field:
   2774     case Decl::IndirectField:
   2775       assert(getLangOpts().CPlusPlus &&
   2776              "building reference to field in C?");
   2777 
   2778       // These can't have reference type in well-formed programs, but
   2779       // for internal consistency we do this anyway.
   2780       type = type.getNonReferenceType();
   2781       valueKind = VK_LValue;
   2782       break;
   2783 
   2784     // Non-type template parameters are either l-values or r-values
   2785     // depending on the type.
   2786     case Decl::NonTypeTemplateParm: {
   2787       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2788         type = reftype->getPointeeType();
   2789         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2790         break;
   2791       }
   2792 
   2793       // For non-references, we need to strip qualifiers just in case
   2794       // the template parameter was declared as 'const int' or whatever.
   2795       valueKind = VK_RValue;
   2796       type = type.getUnqualifiedType();
   2797       break;
   2798     }
   2799 
   2800     case Decl::Var:
   2801     case Decl::VarTemplateSpecialization:
   2802     case Decl::VarTemplatePartialSpecialization:
   2803       // In C, "extern void blah;" is valid and is an r-value.
   2804       if (!getLangOpts().CPlusPlus &&
   2805           !type.hasQualifiers() &&
   2806           type->isVoidType()) {
   2807         valueKind = VK_RValue;
   2808         break;
   2809       }
   2810       // fallthrough
   2811 
   2812     case Decl::ImplicitParam:
   2813     case Decl::ParmVar: {
   2814       // These are always l-values.
   2815       valueKind = VK_LValue;
   2816       type = type.getNonReferenceType();
   2817 
   2818       // FIXME: Does the addition of const really only apply in
   2819       // potentially-evaluated contexts? Since the variable isn't actually
   2820       // captured in an unevaluated context, it seems that the answer is no.
   2821       if (!isUnevaluatedContext()) {
   2822         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2823         if (!CapturedType.isNull())
   2824           type = CapturedType;
   2825       }
   2826 
   2827       break;
   2828     }
   2829 
   2830     case Decl::Function: {
   2831       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2832         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2833           type = Context.BuiltinFnTy;
   2834           valueKind = VK_RValue;
   2835           break;
   2836         }
   2837       }
   2838 
   2839       const FunctionType *fty = type->castAs<FunctionType>();
   2840 
   2841       // If we're referring to a function with an __unknown_anytype
   2842       // result type, make the entire expression __unknown_anytype.
   2843       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2844         type = Context.UnknownAnyTy;
   2845         valueKind = VK_RValue;
   2846         break;
   2847       }
   2848 
   2849       // Functions are l-values in C++.
   2850       if (getLangOpts().CPlusPlus) {
   2851         valueKind = VK_LValue;
   2852         break;
   2853       }
   2854 
   2855       // C99 DR 316 says that, if a function type comes from a
   2856       // function definition (without a prototype), that type is only
   2857       // used for checking compatibility. Therefore, when referencing
   2858       // the function, we pretend that we don't have the full function
   2859       // type.
   2860       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2861           isa<FunctionProtoType>(fty))
   2862         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   2863                                               fty->getExtInfo());
   2864 
   2865       // Functions are r-values in C.
   2866       valueKind = VK_RValue;
   2867       break;
   2868     }
   2869 
   2870     case Decl::MSProperty:
   2871       valueKind = VK_LValue;
   2872       break;
   2873 
   2874     case Decl::CXXMethod:
   2875       // If we're referring to a method with an __unknown_anytype
   2876       // result type, make the entire expression __unknown_anytype.
   2877       // This should only be possible with a type written directly.
   2878       if (const FunctionProtoType *proto
   2879             = dyn_cast<FunctionProtoType>(VD->getType()))
   2880         if (proto->getReturnType() == Context.UnknownAnyTy) {
   2881           type = Context.UnknownAnyTy;
   2882           valueKind = VK_RValue;
   2883           break;
   2884         }
   2885 
   2886       // C++ methods are l-values if static, r-values if non-static.
   2887       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2888         valueKind = VK_LValue;
   2889         break;
   2890       }
   2891       // fallthrough
   2892 
   2893     case Decl::CXXConversion:
   2894     case Decl::CXXDestructor:
   2895     case Decl::CXXConstructor:
   2896       valueKind = VK_RValue;
   2897       break;
   2898     }
   2899 
   2900     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2901                             TemplateArgs);
   2902   }
   2903 }
   2904 
   2905 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   2906                                      PredefinedExpr::IdentType IT) {
   2907   // Pick the current block, lambda, captured statement or function.
   2908   Decl *currentDecl = nullptr;
   2909   if (const BlockScopeInfo *BSI = getCurBlock())
   2910     currentDecl = BSI->TheDecl;
   2911   else if (const LambdaScopeInfo *LSI = getCurLambda())
   2912     currentDecl = LSI->CallOperator;
   2913   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   2914     currentDecl = CSI->TheCapturedDecl;
   2915   else
   2916     currentDecl = getCurFunctionOrMethodDecl();
   2917 
   2918   if (!currentDecl) {
   2919     Diag(Loc, diag::ext_predef_outside_function);
   2920     currentDecl = Context.getTranslationUnitDecl();
   2921   }
   2922 
   2923   QualType ResTy;
   2924   if (cast<DeclContext>(currentDecl)->isDependentContext())
   2925     ResTy = Context.DependentTy;
   2926   else {
   2927     // Pre-defined identifiers are of type char[x], where x is the length of
   2928     // the string.
   2929     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
   2930 
   2931     llvm::APInt LengthI(32, Length + 1);
   2932     if (IT == PredefinedExpr::LFunction)
   2933       ResTy = Context.WideCharTy.withConst();
   2934     else
   2935       ResTy = Context.CharTy.withConst();
   2936     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
   2937   }
   2938 
   2939   return new (Context) PredefinedExpr(Loc, ResTy, IT);
   2940 }
   2941 
   2942 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   2943   PredefinedExpr::IdentType IT;
   2944 
   2945   switch (Kind) {
   2946   default: llvm_unreachable("Unknown simple primary expr!");
   2947   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   2948   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   2949   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   2950   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   2951   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   2952   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   2953   }
   2954 
   2955   return BuildPredefinedExpr(Loc, IT);
   2956 }
   2957 
   2958 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   2959   SmallString<16> CharBuffer;
   2960   bool Invalid = false;
   2961   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   2962   if (Invalid)
   2963     return ExprError();
   2964 
   2965   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   2966                             PP, Tok.getKind());
   2967   if (Literal.hadError())
   2968     return ExprError();
   2969 
   2970   QualType Ty;
   2971   if (Literal.isWide())
   2972     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   2973   else if (Literal.isUTF16())
   2974     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   2975   else if (Literal.isUTF32())
   2976     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   2977   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   2978     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   2979   else
   2980     Ty = Context.CharTy;  // 'x' -> char in C++
   2981 
   2982   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   2983   if (Literal.isWide())
   2984     Kind = CharacterLiteral::Wide;
   2985   else if (Literal.isUTF16())
   2986     Kind = CharacterLiteral::UTF16;
   2987   else if (Literal.isUTF32())
   2988     Kind = CharacterLiteral::UTF32;
   2989 
   2990   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   2991                                              Tok.getLocation());
   2992 
   2993   if (Literal.getUDSuffix().empty())
   2994     return Lit;
   2995 
   2996   // We're building a user-defined literal.
   2997   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2998   SourceLocation UDSuffixLoc =
   2999     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3000 
   3001   // Make sure we're allowed user-defined literals here.
   3002   if (!UDLScope)
   3003     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3004 
   3005   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3006   //   operator "" X (ch)
   3007   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3008                                         Lit, Tok.getLocation());
   3009 }
   3010 
   3011 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3012   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3013   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3014                                 Context.IntTy, Loc);
   3015 }
   3016 
   3017 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3018                                   QualType Ty, SourceLocation Loc) {
   3019   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3020 
   3021   using llvm::APFloat;
   3022   APFloat Val(Format);
   3023 
   3024   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3025 
   3026   // Overflow is always an error, but underflow is only an error if
   3027   // we underflowed to zero (APFloat reports denormals as underflow).
   3028   if ((result & APFloat::opOverflow) ||
   3029       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3030     unsigned diagnostic;
   3031     SmallString<20> buffer;
   3032     if (result & APFloat::opOverflow) {
   3033       diagnostic = diag::warn_float_overflow;
   3034       APFloat::getLargest(Format).toString(buffer);
   3035     } else {
   3036       diagnostic = diag::warn_float_underflow;
   3037       APFloat::getSmallest(Format).toString(buffer);
   3038     }
   3039 
   3040     S.Diag(Loc, diagnostic)
   3041       << Ty
   3042       << StringRef(buffer.data(), buffer.size());
   3043   }
   3044 
   3045   bool isExact = (result == APFloat::opOK);
   3046   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3047 }
   3048 
   3049 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3050   // Fast path for a single digit (which is quite common).  A single digit
   3051   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3052   if (Tok.getLength() == 1) {
   3053     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3054     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3055   }
   3056 
   3057   SmallString<128> SpellingBuffer;
   3058   // NumericLiteralParser wants to overread by one character.  Add padding to
   3059   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3060   // returns a StringRef to the memory buffer, it should have a null char at
   3061   // the EOF, so it is also safe.
   3062   SpellingBuffer.resize(Tok.getLength() + 1);
   3063 
   3064   // Get the spelling of the token, which eliminates trigraphs, etc.
   3065   bool Invalid = false;
   3066   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3067   if (Invalid)
   3068     return ExprError();
   3069 
   3070   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3071   if (Literal.hadError)
   3072     return ExprError();
   3073 
   3074   if (Literal.hasUDSuffix()) {
   3075     // We're building a user-defined literal.
   3076     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3077     SourceLocation UDSuffixLoc =
   3078       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3079 
   3080     // Make sure we're allowed user-defined literals here.
   3081     if (!UDLScope)
   3082       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3083 
   3084     QualType CookedTy;
   3085     if (Literal.isFloatingLiteral()) {
   3086       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3087       // long double, the literal is treated as a call of the form
   3088       //   operator "" X (f L)
   3089       CookedTy = Context.LongDoubleTy;
   3090     } else {
   3091       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3092       // unsigned long long, the literal is treated as a call of the form
   3093       //   operator "" X (n ULL)
   3094       CookedTy = Context.UnsignedLongLongTy;
   3095     }
   3096 
   3097     DeclarationName OpName =
   3098       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3099     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3100     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3101 
   3102     SourceLocation TokLoc = Tok.getLocation();
   3103 
   3104     // Perform literal operator lookup to determine if we're building a raw
   3105     // literal or a cooked one.
   3106     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3107     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3108                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3109                                   /*AllowStringTemplate*/false)) {
   3110     case LOLR_Error:
   3111       return ExprError();
   3112 
   3113     case LOLR_Cooked: {
   3114       Expr *Lit;
   3115       if (Literal.isFloatingLiteral()) {
   3116         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3117       } else {
   3118         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3119         if (Literal.GetIntegerValue(ResultVal))
   3120           Diag(Tok.getLocation(), diag::err_integer_too_large);
   3121         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3122                                      Tok.getLocation());
   3123       }
   3124       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3125     }
   3126 
   3127     case LOLR_Raw: {
   3128       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3129       // literal is treated as a call of the form
   3130       //   operator "" X ("n")
   3131       unsigned Length = Literal.getUDSuffixOffset();
   3132       QualType StrTy = Context.getConstantArrayType(
   3133           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3134           ArrayType::Normal, 0);
   3135       Expr *Lit = StringLiteral::Create(
   3136           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3137           /*Pascal*/false, StrTy, &TokLoc, 1);
   3138       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3139     }
   3140 
   3141     case LOLR_Template: {
   3142       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3143       // template), L is treated as a call fo the form
   3144       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3145       // where n is the source character sequence c1 c2 ... ck.
   3146       TemplateArgumentListInfo ExplicitArgs;
   3147       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3148       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3149       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3150       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3151         Value = TokSpelling[I];
   3152         TemplateArgument Arg(Context, Value, Context.CharTy);
   3153         TemplateArgumentLocInfo ArgInfo;
   3154         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3155       }
   3156       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3157                                       &ExplicitArgs);
   3158     }
   3159     case LOLR_StringTemplate:
   3160       llvm_unreachable("unexpected literal operator lookup result");
   3161     }
   3162   }
   3163 
   3164   Expr *Res;
   3165 
   3166   if (Literal.isFloatingLiteral()) {
   3167     QualType Ty;
   3168     if (Literal.isFloat)
   3169       Ty = Context.FloatTy;
   3170     else if (!Literal.isLong)
   3171       Ty = Context.DoubleTy;
   3172     else
   3173       Ty = Context.LongDoubleTy;
   3174 
   3175     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3176 
   3177     if (Ty == Context.DoubleTy) {
   3178       if (getLangOpts().SinglePrecisionConstants) {
   3179         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3180       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
   3181         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3182         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3183       }
   3184     }
   3185   } else if (!Literal.isIntegerLiteral()) {
   3186     return ExprError();
   3187   } else {
   3188     QualType Ty;
   3189 
   3190     // 'long long' is a C99 or C++11 feature.
   3191     if (!getLangOpts().C99 && Literal.isLongLong) {
   3192       if (getLangOpts().CPlusPlus)
   3193         Diag(Tok.getLocation(),
   3194              getLangOpts().CPlusPlus11 ?
   3195              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3196       else
   3197         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3198     }
   3199 
   3200     // Get the value in the widest-possible width.
   3201     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3202     // The microsoft literal suffix extensions support 128-bit literals, which
   3203     // may be wider than [u]intmax_t.
   3204     // FIXME: Actually, they don't. We seem to have accidentally invented the
   3205     //        i128 suffix.
   3206     if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
   3207         Context.getTargetInfo().hasInt128Type())
   3208       MaxWidth = 128;
   3209     llvm::APInt ResultVal(MaxWidth, 0);
   3210 
   3211     if (Literal.GetIntegerValue(ResultVal)) {
   3212       // If this value didn't fit into uintmax_t, error and force to ull.
   3213       Diag(Tok.getLocation(), diag::err_integer_too_large);
   3214       Ty = Context.UnsignedLongLongTy;
   3215       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3216              "long long is not intmax_t?");
   3217     } else {
   3218       // If this value fits into a ULL, try to figure out what else it fits into
   3219       // according to the rules of C99 6.4.4.1p5.
   3220 
   3221       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3222       // be an unsigned int.
   3223       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3224 
   3225       // Check from smallest to largest, picking the smallest type we can.
   3226       unsigned Width = 0;
   3227 
   3228       // Microsoft specific integer suffixes are explicitly sized.
   3229       if (Literal.MicrosoftInteger) {
   3230         if (Literal.MicrosoftInteger > MaxWidth) {
   3231           // If this target doesn't support __int128, error and force to ull.
   3232           Diag(Tok.getLocation(), diag::err_int128_unsupported);
   3233           Width = MaxWidth;
   3234           Ty = Context.getIntMaxType();
   3235         } else {
   3236           Width = Literal.MicrosoftInteger;
   3237           Ty = Context.getIntTypeForBitwidth(Width,
   3238                                              /*Signed=*/!Literal.isUnsigned);
   3239         }
   3240       }
   3241 
   3242       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3243         // Are int/unsigned possibilities?
   3244         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3245 
   3246         // Does it fit in a unsigned int?
   3247         if (ResultVal.isIntN(IntSize)) {
   3248           // Does it fit in a signed int?
   3249           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3250             Ty = Context.IntTy;
   3251           else if (AllowUnsigned)
   3252             Ty = Context.UnsignedIntTy;
   3253           Width = IntSize;
   3254         }
   3255       }
   3256 
   3257       // Are long/unsigned long possibilities?
   3258       if (Ty.isNull() && !Literal.isLongLong) {
   3259         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3260 
   3261         // Does it fit in a unsigned long?
   3262         if (ResultVal.isIntN(LongSize)) {
   3263           // Does it fit in a signed long?
   3264           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3265             Ty = Context.LongTy;
   3266           else if (AllowUnsigned)
   3267             Ty = Context.UnsignedLongTy;
   3268           Width = LongSize;
   3269         }
   3270       }
   3271 
   3272       // Check long long if needed.
   3273       if (Ty.isNull()) {
   3274         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3275 
   3276         // Does it fit in a unsigned long long?
   3277         if (ResultVal.isIntN(LongLongSize)) {
   3278           // Does it fit in a signed long long?
   3279           // To be compatible with MSVC, hex integer literals ending with the
   3280           // LL or i64 suffix are always signed in Microsoft mode.
   3281           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3282               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3283             Ty = Context.LongLongTy;
   3284           else if (AllowUnsigned)
   3285             Ty = Context.UnsignedLongLongTy;
   3286           Width = LongLongSize;
   3287         }
   3288       }
   3289 
   3290       // If we still couldn't decide a type, we probably have something that
   3291       // does not fit in a signed long long, but has no U suffix.
   3292       if (Ty.isNull()) {
   3293         Diag(Tok.getLocation(), diag::ext_integer_too_large_for_signed);
   3294         Ty = Context.UnsignedLongLongTy;
   3295         Width = Context.getTargetInfo().getLongLongWidth();
   3296       }
   3297 
   3298       if (ResultVal.getBitWidth() != Width)
   3299         ResultVal = ResultVal.trunc(Width);
   3300     }
   3301     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3302   }
   3303 
   3304   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3305   if (Literal.isImaginary)
   3306     Res = new (Context) ImaginaryLiteral(Res,
   3307                                         Context.getComplexType(Res->getType()));
   3308 
   3309   return Res;
   3310 }
   3311 
   3312 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3313   assert(E && "ActOnParenExpr() missing expr");
   3314   return new (Context) ParenExpr(L, R, E);
   3315 }
   3316 
   3317 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3318                                          SourceLocation Loc,
   3319                                          SourceRange ArgRange) {
   3320   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3321   // scalar or vector data type argument..."
   3322   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3323   // type (C99 6.2.5p18) or void.
   3324   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3325     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3326       << T << ArgRange;
   3327     return true;
   3328   }
   3329 
   3330   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3331          "Scalar types should always be complete");
   3332   return false;
   3333 }
   3334 
   3335 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3336                                            SourceLocation Loc,
   3337                                            SourceRange ArgRange,
   3338                                            UnaryExprOrTypeTrait TraitKind) {
   3339   // Invalid types must be hard errors for SFINAE in C++.
   3340   if (S.LangOpts.CPlusPlus)
   3341     return true;
   3342 
   3343   // C99 6.5.3.4p1:
   3344   if (T->isFunctionType() &&
   3345       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3346     // sizeof(function)/alignof(function) is allowed as an extension.
   3347     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3348       << TraitKind << ArgRange;
   3349     return false;
   3350   }
   3351 
   3352   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3353   // this is an error (OpenCL v1.1 s6.3.k)
   3354   if (T->isVoidType()) {
   3355     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3356                                         : diag::ext_sizeof_alignof_void_type;
   3357     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3358     return false;
   3359   }
   3360 
   3361   return true;
   3362 }
   3363 
   3364 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3365                                              SourceLocation Loc,
   3366                                              SourceRange ArgRange,
   3367                                              UnaryExprOrTypeTrait TraitKind) {
   3368   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3369   // runtime doesn't allow it.
   3370   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3371     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3372       << T << (TraitKind == UETT_SizeOf)
   3373       << ArgRange;
   3374     return true;
   3375   }
   3376 
   3377   return false;
   3378 }
   3379 
   3380 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3381 /// pointer type is equal to T) and emit a warning if it is.
   3382 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3383                                      Expr *E) {
   3384   // Don't warn if the operation changed the type.
   3385   if (T != E->getType())
   3386     return;
   3387 
   3388   // Now look for array decays.
   3389   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3390   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3391     return;
   3392 
   3393   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3394                                              << ICE->getType()
   3395                                              << ICE->getSubExpr()->getType();
   3396 }
   3397 
   3398 /// \brief Check the constraints on expression operands to unary type expression
   3399 /// and type traits.
   3400 ///
   3401 /// Completes any types necessary and validates the constraints on the operand
   3402 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3403 /// the expression as it completes the type for that expression through template
   3404 /// instantiation, etc.
   3405 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3406                                             UnaryExprOrTypeTrait ExprKind) {
   3407   QualType ExprTy = E->getType();
   3408   assert(!ExprTy->isReferenceType());
   3409 
   3410   if (ExprKind == UETT_VecStep)
   3411     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3412                                         E->getSourceRange());
   3413 
   3414   // Whitelist some types as extensions
   3415   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3416                                       E->getSourceRange(), ExprKind))
   3417     return false;
   3418 
   3419   // 'alignof' applied to an expression only requires the base element type of
   3420   // the expression to be complete. 'sizeof' requires the expression's type to
   3421   // be complete (and will attempt to complete it if it's an array of unknown
   3422   // bound).
   3423   if (ExprKind == UETT_AlignOf) {
   3424     if (RequireCompleteType(E->getExprLoc(),
   3425                             Context.getBaseElementType(E->getType()),
   3426                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3427                             E->getSourceRange()))
   3428       return true;
   3429   } else {
   3430     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3431                                 ExprKind, E->getSourceRange()))
   3432       return true;
   3433   }
   3434 
   3435   // Completing the expression's type may have changed it.
   3436   ExprTy = E->getType();
   3437   assert(!ExprTy->isReferenceType());
   3438 
   3439   if (ExprTy->isFunctionType()) {
   3440     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3441       << ExprKind << E->getSourceRange();
   3442     return true;
   3443   }
   3444 
   3445   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3446                                        E->getSourceRange(), ExprKind))
   3447     return true;
   3448 
   3449   if (ExprKind == UETT_SizeOf) {
   3450     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3451       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3452         QualType OType = PVD->getOriginalType();
   3453         QualType Type = PVD->getType();
   3454         if (Type->isPointerType() && OType->isArrayType()) {
   3455           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3456             << Type << OType;
   3457           Diag(PVD->getLocation(), diag::note_declared_at);
   3458         }
   3459       }
   3460     }
   3461 
   3462     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3463     // decays into a pointer and returns an unintended result. This is most
   3464     // likely a typo for "sizeof(array) op x".
   3465     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3466       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3467                                BO->getLHS());
   3468       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3469                                BO->getRHS());
   3470     }
   3471   }
   3472 
   3473   return false;
   3474 }
   3475 
   3476 /// \brief Check the constraints on operands to unary expression and type
   3477 /// traits.
   3478 ///
   3479 /// This will complete any types necessary, and validate the various constraints
   3480 /// on those operands.
   3481 ///
   3482 /// The UsualUnaryConversions() function is *not* called by this routine.
   3483 /// C99 6.3.2.1p[2-4] all state:
   3484 ///   Except when it is the operand of the sizeof operator ...
   3485 ///
   3486 /// C++ [expr.sizeof]p4
   3487 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3488 ///   standard conversions are not applied to the operand of sizeof.
   3489 ///
   3490 /// This policy is followed for all of the unary trait expressions.
   3491 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3492                                             SourceLocation OpLoc,
   3493                                             SourceRange ExprRange,
   3494                                             UnaryExprOrTypeTrait ExprKind) {
   3495   if (ExprType->isDependentType())
   3496     return false;
   3497 
   3498   // C++ [expr.sizeof]p2:
   3499   //     When applied to a reference or a reference type, the result
   3500   //     is the size of the referenced type.
   3501   // C++11 [expr.alignof]p3:
   3502   //     When alignof is applied to a reference type, the result
   3503   //     shall be the alignment of the referenced type.
   3504   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3505     ExprType = Ref->getPointeeType();
   3506 
   3507   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3508   //   When alignof or _Alignof is applied to an array type, the result
   3509   //   is the alignment of the element type.
   3510   if (ExprKind == UETT_AlignOf)
   3511     ExprType = Context.getBaseElementType(ExprType);
   3512 
   3513   if (ExprKind == UETT_VecStep)
   3514     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3515 
   3516   // Whitelist some types as extensions
   3517   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3518                                       ExprKind))
   3519     return false;
   3520 
   3521   if (RequireCompleteType(OpLoc, ExprType,
   3522                           diag::err_sizeof_alignof_incomplete_type,
   3523                           ExprKind, ExprRange))
   3524     return true;
   3525 
   3526   if (ExprType->isFunctionType()) {
   3527     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3528       << ExprKind << ExprRange;
   3529     return true;
   3530   }
   3531 
   3532   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3533                                        ExprKind))
   3534     return true;
   3535 
   3536   return false;
   3537 }
   3538 
   3539 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3540   E = E->IgnoreParens();
   3541 
   3542   // Cannot know anything else if the expression is dependent.
   3543   if (E->isTypeDependent())
   3544     return false;
   3545 
   3546   if (E->getObjectKind() == OK_BitField) {
   3547     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   3548        << 1 << E->getSourceRange();
   3549     return true;
   3550   }
   3551 
   3552   ValueDecl *D = nullptr;
   3553   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3554     D = DRE->getDecl();
   3555   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3556     D = ME->getMemberDecl();
   3557   }
   3558 
   3559   // If it's a field, require the containing struct to have a
   3560   // complete definition so that we can compute the layout.
   3561   //
   3562   // This can happen in C++11 onwards, either by naming the member
   3563   // in a way that is not transformed into a member access expression
   3564   // (in an unevaluated operand, for instance), or by naming the member
   3565   // in a trailing-return-type.
   3566   //
   3567   // For the record, since __alignof__ on expressions is a GCC
   3568   // extension, GCC seems to permit this but always gives the
   3569   // nonsensical answer 0.
   3570   //
   3571   // We don't really need the layout here --- we could instead just
   3572   // directly check for all the appropriate alignment-lowing
   3573   // attributes --- but that would require duplicating a lot of
   3574   // logic that just isn't worth duplicating for such a marginal
   3575   // use-case.
   3576   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3577     // Fast path this check, since we at least know the record has a
   3578     // definition if we can find a member of it.
   3579     if (!FD->getParent()->isCompleteDefinition()) {
   3580       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3581         << E->getSourceRange();
   3582       return true;
   3583     }
   3584 
   3585     // Otherwise, if it's a field, and the field doesn't have
   3586     // reference type, then it must have a complete type (or be a
   3587     // flexible array member, which we explicitly want to
   3588     // white-list anyway), which makes the following checks trivial.
   3589     if (!FD->getType()->isReferenceType())
   3590       return false;
   3591   }
   3592 
   3593   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3594 }
   3595 
   3596 bool Sema::CheckVecStepExpr(Expr *E) {
   3597   E = E->IgnoreParens();
   3598 
   3599   // Cannot know anything else if the expression is dependent.
   3600   if (E->isTypeDependent())
   3601     return false;
   3602 
   3603   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3604 }
   3605 
   3606 /// \brief Build a sizeof or alignof expression given a type operand.
   3607 ExprResult
   3608 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3609                                      SourceLocation OpLoc,
   3610                                      UnaryExprOrTypeTrait ExprKind,
   3611                                      SourceRange R) {
   3612   if (!TInfo)
   3613     return ExprError();
   3614 
   3615   QualType T = TInfo->getType();
   3616 
   3617   if (!T->isDependentType() &&
   3618       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3619     return ExprError();
   3620 
   3621   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3622   return new (Context) UnaryExprOrTypeTraitExpr(
   3623       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3624 }
   3625 
   3626 /// \brief Build a sizeof or alignof expression given an expression
   3627 /// operand.
   3628 ExprResult
   3629 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3630                                      UnaryExprOrTypeTrait ExprKind) {
   3631   ExprResult PE = CheckPlaceholderExpr(E);
   3632   if (PE.isInvalid())
   3633     return ExprError();
   3634 
   3635   E = PE.get();
   3636 
   3637   // Verify that the operand is valid.
   3638   bool isInvalid = false;
   3639   if (E->isTypeDependent()) {
   3640     // Delay type-checking for type-dependent expressions.
   3641   } else if (ExprKind == UETT_AlignOf) {
   3642     isInvalid = CheckAlignOfExpr(*this, E);
   3643   } else if (ExprKind == UETT_VecStep) {
   3644     isInvalid = CheckVecStepExpr(E);
   3645   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3646     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   3647     isInvalid = true;
   3648   } else {
   3649     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3650   }
   3651 
   3652   if (isInvalid)
   3653     return ExprError();
   3654 
   3655   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3656     PE = TransformToPotentiallyEvaluated(E);
   3657     if (PE.isInvalid()) return ExprError();
   3658     E = PE.get();
   3659   }
   3660 
   3661   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3662   return new (Context) UnaryExprOrTypeTraitExpr(
   3663       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   3664 }
   3665 
   3666 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3667 /// expr and the same for @c alignof and @c __alignof
   3668 /// Note that the ArgRange is invalid if isType is false.
   3669 ExprResult
   3670 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3671                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3672                                     void *TyOrEx, const SourceRange &ArgRange) {
   3673   // If error parsing type, ignore.
   3674   if (!TyOrEx) return ExprError();
   3675 
   3676   if (IsType) {
   3677     TypeSourceInfo *TInfo;
   3678     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3679     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3680   }
   3681 
   3682   Expr *ArgEx = (Expr *)TyOrEx;
   3683   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3684   return Result;
   3685 }
   3686 
   3687 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3688                                      bool IsReal) {
   3689   if (V.get()->isTypeDependent())
   3690     return S.Context.DependentTy;
   3691 
   3692   // _Real and _Imag are only l-values for normal l-values.
   3693   if (V.get()->getObjectKind() != OK_Ordinary) {
   3694     V = S.DefaultLvalueConversion(V.get());
   3695     if (V.isInvalid())
   3696       return QualType();
   3697   }
   3698 
   3699   // These operators return the element type of a complex type.
   3700   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3701     return CT->getElementType();
   3702 
   3703   // Otherwise they pass through real integer and floating point types here.
   3704   if (V.get()->getType()->isArithmeticType())
   3705     return V.get()->getType();
   3706 
   3707   // Test for placeholders.
   3708   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3709   if (PR.isInvalid()) return QualType();
   3710   if (PR.get() != V.get()) {
   3711     V = PR;
   3712     return CheckRealImagOperand(S, V, Loc, IsReal);
   3713   }
   3714 
   3715   // Reject anything else.
   3716   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3717     << (IsReal ? "__real" : "__imag");
   3718   return QualType();
   3719 }
   3720 
   3721 
   3722 
   3723 ExprResult
   3724 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3725                           tok::TokenKind Kind, Expr *Input) {
   3726   UnaryOperatorKind Opc;
   3727   switch (Kind) {
   3728   default: llvm_unreachable("Unknown unary op!");
   3729   case tok::plusplus:   Opc = UO_PostInc; break;
   3730   case tok::minusminus: Opc = UO_PostDec; break;
   3731   }
   3732 
   3733   // Since this might is a postfix expression, get rid of ParenListExprs.
   3734   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3735   if (Result.isInvalid()) return ExprError();
   3736   Input = Result.get();
   3737 
   3738   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3739 }
   3740 
   3741 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3742 ///
   3743 /// \return true on error
   3744 static bool checkArithmeticOnObjCPointer(Sema &S,
   3745                                          SourceLocation opLoc,
   3746                                          Expr *op) {
   3747   assert(op->getType()->isObjCObjectPointerType());
   3748   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   3749       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   3750     return false;
   3751 
   3752   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3753     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3754     << op->getSourceRange();
   3755   return true;
   3756 }
   3757 
   3758 ExprResult
   3759 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3760                               Expr *idx, SourceLocation rbLoc) {
   3761   // Since this might be a postfix expression, get rid of ParenListExprs.
   3762   if (isa<ParenListExpr>(base)) {
   3763     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3764     if (result.isInvalid()) return ExprError();
   3765     base = result.get();
   3766   }
   3767 
   3768   // Handle any non-overload placeholder types in the base and index
   3769   // expressions.  We can't handle overloads here because the other
   3770   // operand might be an overloadable type, in which case the overload
   3771   // resolution for the operator overload should get the first crack
   3772   // at the overload.
   3773   if (base->getType()->isNonOverloadPlaceholderType()) {
   3774     ExprResult result = CheckPlaceholderExpr(base);
   3775     if (result.isInvalid()) return ExprError();
   3776     base = result.get();
   3777   }
   3778   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3779     ExprResult result = CheckPlaceholderExpr(idx);
   3780     if (result.isInvalid()) return ExprError();
   3781     idx = result.get();
   3782   }
   3783 
   3784   // Build an unanalyzed expression if either operand is type-dependent.
   3785   if (getLangOpts().CPlusPlus &&
   3786       (base->isTypeDependent() || idx->isTypeDependent())) {
   3787     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   3788                                             VK_LValue, OK_Ordinary, rbLoc);
   3789   }
   3790 
   3791   // Use C++ overloaded-operator rules if either operand has record
   3792   // type.  The spec says to do this if either type is *overloadable*,
   3793   // but enum types can't declare subscript operators or conversion
   3794   // operators, so there's nothing interesting for overload resolution
   3795   // to do if there aren't any record types involved.
   3796   //
   3797   // ObjC pointers have their own subscripting logic that is not tied
   3798   // to overload resolution and so should not take this path.
   3799   if (getLangOpts().CPlusPlus &&
   3800       (base->getType()->isRecordType() ||
   3801        (!base->getType()->isObjCObjectPointerType() &&
   3802         idx->getType()->isRecordType()))) {
   3803     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3804   }
   3805 
   3806   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3807 }
   3808 
   3809 ExprResult
   3810 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   3811                                       Expr *Idx, SourceLocation RLoc) {
   3812   Expr *LHSExp = Base;
   3813   Expr *RHSExp = Idx;
   3814 
   3815   // Perform default conversions.
   3816   if (!LHSExp->getType()->getAs<VectorType>()) {
   3817     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   3818     if (Result.isInvalid())
   3819       return ExprError();
   3820     LHSExp = Result.get();
   3821   }
   3822   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   3823   if (Result.isInvalid())
   3824     return ExprError();
   3825   RHSExp = Result.get();
   3826 
   3827   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   3828   ExprValueKind VK = VK_LValue;
   3829   ExprObjectKind OK = OK_Ordinary;
   3830 
   3831   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   3832   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   3833   // in the subscript position. As a result, we need to derive the array base
   3834   // and index from the expression types.
   3835   Expr *BaseExpr, *IndexExpr;
   3836   QualType ResultType;
   3837   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   3838     BaseExpr = LHSExp;
   3839     IndexExpr = RHSExp;
   3840     ResultType = Context.DependentTy;
   3841   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3842     BaseExpr = LHSExp;
   3843     IndexExpr = RHSExp;
   3844     ResultType = PTy->getPointeeType();
   3845   } else if (const ObjCObjectPointerType *PTy =
   3846                LHSTy->getAs<ObjCObjectPointerType>()) {
   3847     BaseExpr = LHSExp;
   3848     IndexExpr = RHSExp;
   3849 
   3850     // Use custom logic if this should be the pseudo-object subscript
   3851     // expression.
   3852     if (!LangOpts.isSubscriptPointerArithmetic())
   3853       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   3854                                           nullptr);
   3855 
   3856     ResultType = PTy->getPointeeType();
   3857   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   3858      // Handle the uncommon case of "123[Ptr]".
   3859     BaseExpr = RHSExp;
   3860     IndexExpr = LHSExp;
   3861     ResultType = PTy->getPointeeType();
   3862   } else if (const ObjCObjectPointerType *PTy =
   3863                RHSTy->getAs<ObjCObjectPointerType>()) {
   3864      // Handle the uncommon case of "123[Ptr]".
   3865     BaseExpr = RHSExp;
   3866     IndexExpr = LHSExp;
   3867     ResultType = PTy->getPointeeType();
   3868     if (!LangOpts.isSubscriptPointerArithmetic()) {
   3869       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3870         << ResultType << BaseExpr->getSourceRange();
   3871       return ExprError();
   3872     }
   3873   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   3874     BaseExpr = LHSExp;    // vectors: V[123]
   3875     IndexExpr = RHSExp;
   3876     VK = LHSExp->getValueKind();
   3877     if (VK != VK_RValue)
   3878       OK = OK_VectorComponent;
   3879 
   3880     // FIXME: need to deal with const...
   3881     ResultType = VTy->getElementType();
   3882   } else if (LHSTy->isArrayType()) {
   3883     // If we see an array that wasn't promoted by
   3884     // DefaultFunctionArrayLvalueConversion, it must be an array that
   3885     // wasn't promoted because of the C90 rule that doesn't
   3886     // allow promoting non-lvalue arrays.  Warn, then
   3887     // force the promotion here.
   3888     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3889         LHSExp->getSourceRange();
   3890     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   3891                                CK_ArrayToPointerDecay).get();
   3892     LHSTy = LHSExp->getType();
   3893 
   3894     BaseExpr = LHSExp;
   3895     IndexExpr = RHSExp;
   3896     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   3897   } else if (RHSTy->isArrayType()) {
   3898     // Same as previous, except for 123[f().a] case
   3899     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3900         RHSExp->getSourceRange();
   3901     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   3902                                CK_ArrayToPointerDecay).get();
   3903     RHSTy = RHSExp->getType();
   3904 
   3905     BaseExpr = RHSExp;
   3906     IndexExpr = LHSExp;
   3907     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   3908   } else {
   3909     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   3910        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   3911   }
   3912   // C99 6.5.2.1p1
   3913   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   3914     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   3915                      << IndexExpr->getSourceRange());
   3916 
   3917   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3918        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   3919          && !IndexExpr->isTypeDependent())
   3920     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   3921 
   3922   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   3923   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   3924   // type. Note that Functions are not objects, and that (in C99 parlance)
   3925   // incomplete types are not object types.
   3926   if (ResultType->isFunctionType()) {
   3927     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   3928       << ResultType << BaseExpr->getSourceRange();
   3929     return ExprError();
   3930   }
   3931 
   3932   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   3933     // GNU extension: subscripting on pointer to void
   3934     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   3935       << BaseExpr->getSourceRange();
   3936 
   3937     // C forbids expressions of unqualified void type from being l-values.
   3938     // See IsCForbiddenLValueType.
   3939     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   3940   } else if (!ResultType->isDependentType() &&
   3941       RequireCompleteType(LLoc, ResultType,
   3942                           diag::err_subscript_incomplete_type, BaseExpr))
   3943     return ExprError();
   3944 
   3945   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   3946          !ResultType.isCForbiddenLValueType());
   3947 
   3948   return new (Context)
   3949       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   3950 }
   3951 
   3952 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   3953                                         FunctionDecl *FD,
   3954                                         ParmVarDecl *Param) {
   3955   if (Param->hasUnparsedDefaultArg()) {
   3956     Diag(CallLoc,
   3957          diag::err_use_of_default_argument_to_function_declared_later) <<
   3958       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   3959     Diag(UnparsedDefaultArgLocs[Param],
   3960          diag::note_default_argument_declared_here);
   3961     return ExprError();
   3962   }
   3963 
   3964   if (Param->hasUninstantiatedDefaultArg()) {
   3965     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   3966 
   3967     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   3968                                                  Param);
   3969 
   3970     // Instantiate the expression.
   3971     MultiLevelTemplateArgumentList MutiLevelArgList
   3972       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   3973 
   3974     InstantiatingTemplate Inst(*this, CallLoc, Param,
   3975                                MutiLevelArgList.getInnermost());
   3976     if (Inst.isInvalid())
   3977       return ExprError();
   3978 
   3979     ExprResult Result;
   3980     {
   3981       // C++ [dcl.fct.default]p5:
   3982       //   The names in the [default argument] expression are bound, and
   3983       //   the semantic constraints are checked, at the point where the
   3984       //   default argument expression appears.
   3985       ContextRAII SavedContext(*this, FD);
   3986       LocalInstantiationScope Local(*this);
   3987       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   3988     }
   3989     if (Result.isInvalid())
   3990       return ExprError();
   3991 
   3992     // Check the expression as an initializer for the parameter.
   3993     InitializedEntity Entity
   3994       = InitializedEntity::InitializeParameter(Context, Param);
   3995     InitializationKind Kind
   3996       = InitializationKind::CreateCopy(Param->getLocation(),
   3997              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   3998     Expr *ResultE = Result.getAs<Expr>();
   3999 
   4000     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4001     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4002     if (Result.isInvalid())
   4003       return ExprError();
   4004 
   4005     Expr *Arg = Result.getAs<Expr>();
   4006     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   4007     // Build the default argument expression.
   4008     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
   4009   }
   4010 
   4011   // If the default expression creates temporaries, we need to
   4012   // push them to the current stack of expression temporaries so they'll
   4013   // be properly destroyed.
   4014   // FIXME: We should really be rebuilding the default argument with new
   4015   // bound temporaries; see the comment in PR5810.
   4016   // We don't need to do that with block decls, though, because
   4017   // blocks in default argument expression can never capture anything.
   4018   if (isa<ExprWithCleanups>(Param->getInit())) {
   4019     // Set the "needs cleanups" bit regardless of whether there are
   4020     // any explicit objects.
   4021     ExprNeedsCleanups = true;
   4022 
   4023     // Append all the objects to the cleanup list.  Right now, this
   4024     // should always be a no-op, because blocks in default argument
   4025     // expressions should never be able to capture anything.
   4026     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   4027            "default argument expression has capturing blocks?");
   4028   }
   4029 
   4030   // We already type-checked the argument, so we know it works.
   4031   // Just mark all of the declarations in this potentially-evaluated expression
   4032   // as being "referenced".
   4033   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4034                                    /*SkipLocalVariables=*/true);
   4035   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4036 }
   4037 
   4038 
   4039 Sema::VariadicCallType
   4040 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4041                           Expr *Fn) {
   4042   if (Proto && Proto->isVariadic()) {
   4043     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4044       return VariadicConstructor;
   4045     else if (Fn && Fn->getType()->isBlockPointerType())
   4046       return VariadicBlock;
   4047     else if (FDecl) {
   4048       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4049         if (Method->isInstance())
   4050           return VariadicMethod;
   4051     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4052       return VariadicMethod;
   4053     return VariadicFunction;
   4054   }
   4055   return VariadicDoesNotApply;
   4056 }
   4057 
   4058 namespace {
   4059 class FunctionCallCCC : public FunctionCallFilterCCC {
   4060 public:
   4061   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4062                   unsigned NumArgs, MemberExpr *ME)
   4063       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4064         FunctionName(FuncName) {}
   4065 
   4066   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4067     if (!candidate.getCorrectionSpecifier() ||
   4068         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4069       return false;
   4070     }
   4071 
   4072     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4073   }
   4074 
   4075 private:
   4076   const IdentifierInfo *const FunctionName;
   4077 };
   4078 }
   4079 
   4080 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4081                                                FunctionDecl *FDecl,
   4082                                                ArrayRef<Expr *> Args) {
   4083   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4084   DeclarationName FuncName = FDecl->getDeclName();
   4085   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4086   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
   4087 
   4088   if (TypoCorrection Corrected = S.CorrectTypo(
   4089           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4090           S.getScopeForContext(S.CurContext), nullptr, CCC,
   4091           Sema::CTK_ErrorRecovery)) {
   4092     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   4093       if (Corrected.isOverloaded()) {
   4094         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4095         OverloadCandidateSet::iterator Best;
   4096         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   4097                                            CDEnd = Corrected.end();
   4098              CD != CDEnd; ++CD) {
   4099           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   4100             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4101                                    OCS);
   4102         }
   4103         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4104         case OR_Success:
   4105           ND = Best->Function;
   4106           Corrected.setCorrectionDecl(ND);
   4107           break;
   4108         default:
   4109           break;
   4110         }
   4111       }
   4112       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   4113         return Corrected;
   4114       }
   4115     }
   4116   }
   4117   return TypoCorrection();
   4118 }
   4119 
   4120 /// ConvertArgumentsForCall - Converts the arguments specified in
   4121 /// Args/NumArgs to the parameter types of the function FDecl with
   4122 /// function prototype Proto. Call is the call expression itself, and
   4123 /// Fn is the function expression. For a C++ member function, this
   4124 /// routine does not attempt to convert the object argument. Returns
   4125 /// true if the call is ill-formed.
   4126 bool
   4127 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4128                               FunctionDecl *FDecl,
   4129                               const FunctionProtoType *Proto,
   4130                               ArrayRef<Expr *> Args,
   4131                               SourceLocation RParenLoc,
   4132                               bool IsExecConfig) {
   4133   // Bail out early if calling a builtin with custom typechecking.
   4134   // We don't need to do this in the
   4135   if (FDecl)
   4136     if (unsigned ID = FDecl->getBuiltinID())
   4137       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4138         return false;
   4139 
   4140   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4141   // assignment, to the types of the corresponding parameter, ...
   4142   unsigned NumParams = Proto->getNumParams();
   4143   bool Invalid = false;
   4144   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4145   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4146                        ? 1 /* block */
   4147                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4148                                        : 0 /* function */);
   4149 
   4150   // If too few arguments are available (and we don't have default
   4151   // arguments for the remaining parameters), don't make the call.
   4152   if (Args.size() < NumParams) {
   4153     if (Args.size() < MinArgs) {
   4154       TypoCorrection TC;
   4155       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4156         unsigned diag_id =
   4157             MinArgs == NumParams && !Proto->isVariadic()
   4158                 ? diag::err_typecheck_call_too_few_args_suggest
   4159                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4160         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4161                                         << static_cast<unsigned>(Args.size())
   4162                                         << TC.getCorrectionRange());
   4163       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4164         Diag(RParenLoc,
   4165              MinArgs == NumParams && !Proto->isVariadic()
   4166                  ? diag::err_typecheck_call_too_few_args_one
   4167                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4168             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4169       else
   4170         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4171                             ? diag::err_typecheck_call_too_few_args
   4172                             : diag::err_typecheck_call_too_few_args_at_least)
   4173             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4174             << Fn->getSourceRange();
   4175 
   4176       // Emit the location of the prototype.
   4177       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4178         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4179           << FDecl;
   4180 
   4181       return true;
   4182     }
   4183     Call->setNumArgs(Context, NumParams);
   4184   }
   4185 
   4186   // If too many are passed and not variadic, error on the extras and drop
   4187   // them.
   4188   if (Args.size() > NumParams) {
   4189     if (!Proto->isVariadic()) {
   4190       TypoCorrection TC;
   4191       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4192         unsigned diag_id =
   4193             MinArgs == NumParams && !Proto->isVariadic()
   4194                 ? diag::err_typecheck_call_too_many_args_suggest
   4195                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4196         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4197                                         << static_cast<unsigned>(Args.size())
   4198                                         << TC.getCorrectionRange());
   4199       } else if (NumParams == 1 && FDecl &&
   4200                  FDecl->getParamDecl(0)->getDeclName())
   4201         Diag(Args[NumParams]->getLocStart(),
   4202              MinArgs == NumParams
   4203                  ? diag::err_typecheck_call_too_many_args_one
   4204                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4205             << FnKind << FDecl->getParamDecl(0)
   4206             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4207             << SourceRange(Args[NumParams]->getLocStart(),
   4208                            Args.back()->getLocEnd());
   4209       else
   4210         Diag(Args[NumParams]->getLocStart(),
   4211              MinArgs == NumParams
   4212                  ? diag::err_typecheck_call_too_many_args
   4213                  : diag::err_typecheck_call_too_many_args_at_most)
   4214             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4215             << Fn->getSourceRange()
   4216             << SourceRange(Args[NumParams]->getLocStart(),
   4217                            Args.back()->getLocEnd());
   4218 
   4219       // Emit the location of the prototype.
   4220       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4221         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4222           << FDecl;
   4223 
   4224       // This deletes the extra arguments.
   4225       Call->setNumArgs(Context, NumParams);
   4226       return true;
   4227     }
   4228   }
   4229   SmallVector<Expr *, 8> AllArgs;
   4230   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4231 
   4232   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4233                                    Proto, 0, Args, AllArgs, CallType);
   4234   if (Invalid)
   4235     return true;
   4236   unsigned TotalNumArgs = AllArgs.size();
   4237   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4238     Call->setArg(i, AllArgs[i]);
   4239 
   4240   return false;
   4241 }
   4242 
   4243 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4244                                   const FunctionProtoType *Proto,
   4245                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4246                                   SmallVectorImpl<Expr *> &AllArgs,
   4247                                   VariadicCallType CallType, bool AllowExplicit,
   4248                                   bool IsListInitialization) {
   4249   unsigned NumParams = Proto->getNumParams();
   4250   bool Invalid = false;
   4251   unsigned ArgIx = 0;
   4252   // Continue to check argument types (even if we have too few/many args).
   4253   for (unsigned i = FirstParam; i < NumParams; i++) {
   4254     QualType ProtoArgType = Proto->getParamType(i);
   4255 
   4256     Expr *Arg;
   4257     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4258     if (ArgIx < Args.size()) {
   4259       Arg = Args[ArgIx++];
   4260 
   4261       if (RequireCompleteType(Arg->getLocStart(),
   4262                               ProtoArgType,
   4263                               diag::err_call_incomplete_argument, Arg))
   4264         return true;
   4265 
   4266       // Strip the unbridged-cast placeholder expression off, if applicable.
   4267       bool CFAudited = false;
   4268       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4269           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4270           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4271         Arg = stripARCUnbridgedCast(Arg);
   4272       else if (getLangOpts().ObjCAutoRefCount &&
   4273                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4274                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4275         CFAudited = true;
   4276 
   4277       InitializedEntity Entity =
   4278           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4279                                                          ProtoArgType)
   4280                 : InitializedEntity::InitializeParameter(
   4281                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4282 
   4283       // Remember that parameter belongs to a CF audited API.
   4284       if (CFAudited)
   4285         Entity.setParameterCFAudited();
   4286 
   4287       ExprResult ArgE = PerformCopyInitialization(
   4288           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4289       if (ArgE.isInvalid())
   4290         return true;
   4291 
   4292       Arg = ArgE.getAs<Expr>();
   4293     } else {
   4294       assert(Param && "can't use default arguments without a known callee");
   4295 
   4296       ExprResult ArgExpr =
   4297         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4298       if (ArgExpr.isInvalid())
   4299         return true;
   4300 
   4301       Arg = ArgExpr.getAs<Expr>();
   4302     }
   4303 
   4304     // Check for array bounds violations for each argument to the call. This
   4305     // check only triggers warnings when the argument isn't a more complex Expr
   4306     // with its own checking, such as a BinaryOperator.
   4307     CheckArrayAccess(Arg);
   4308 
   4309     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4310     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4311 
   4312     AllArgs.push_back(Arg);
   4313   }
   4314 
   4315   // If this is a variadic call, handle args passed through "...".
   4316   if (CallType != VariadicDoesNotApply) {
   4317     // Assume that extern "C" functions with variadic arguments that
   4318     // return __unknown_anytype aren't *really* variadic.
   4319     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4320         FDecl->isExternC()) {
   4321       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4322         QualType paramType; // ignored
   4323         ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
   4324         Invalid |= arg.isInvalid();
   4325         AllArgs.push_back(arg.get());
   4326       }
   4327 
   4328     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4329     } else {
   4330       for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
   4331         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
   4332                                                           FDecl);
   4333         Invalid |= Arg.isInvalid();
   4334         AllArgs.push_back(Arg.get());
   4335       }
   4336     }
   4337 
   4338     // Check for array bounds violations.
   4339     for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
   4340       CheckArrayAccess(Args[i]);
   4341   }
   4342   return Invalid;
   4343 }
   4344 
   4345 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4346   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4347   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4348     TL = DTL.getOriginalLoc();
   4349   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4350     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4351       << ATL.getLocalSourceRange();
   4352 }
   4353 
   4354 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4355 /// array parameter, check that it is non-null, and that if it is formed by
   4356 /// array-to-pointer decay, the underlying array is sufficiently large.
   4357 ///
   4358 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4359 /// array type derivation, then for each call to the function, the value of the
   4360 /// corresponding actual argument shall provide access to the first element of
   4361 /// an array with at least as many elements as specified by the size expression.
   4362 void
   4363 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4364                                ParmVarDecl *Param,
   4365                                const Expr *ArgExpr) {
   4366   // Static array parameters are not supported in C++.
   4367   if (!Param || getLangOpts().CPlusPlus)
   4368     return;
   4369 
   4370   QualType OrigTy = Param->getOriginalType();
   4371 
   4372   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4373   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4374     return;
   4375 
   4376   if (ArgExpr->isNullPointerConstant(Context,
   4377                                      Expr::NPC_NeverValueDependent)) {
   4378     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4379     DiagnoseCalleeStaticArrayParam(*this, Param);
   4380     return;
   4381   }
   4382 
   4383   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4384   if (!CAT)
   4385     return;
   4386 
   4387   const ConstantArrayType *ArgCAT =
   4388     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4389   if (!ArgCAT)
   4390     return;
   4391 
   4392   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4393     Diag(CallLoc, diag::warn_static_array_too_small)
   4394       << ArgExpr->getSourceRange()
   4395       << (unsigned) ArgCAT->getSize().getZExtValue()
   4396       << (unsigned) CAT->getSize().getZExtValue();
   4397     DiagnoseCalleeStaticArrayParam(*this, Param);
   4398   }
   4399 }
   4400 
   4401 /// Given a function expression of unknown-any type, try to rebuild it
   4402 /// to have a function type.
   4403 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4404 
   4405 /// Is the given type a placeholder that we need to lower out
   4406 /// immediately during argument processing?
   4407 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4408   // Placeholders are never sugared.
   4409   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4410   if (!placeholder) return false;
   4411 
   4412   switch (placeholder->getKind()) {
   4413   // Ignore all the non-placeholder types.
   4414 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4415 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4416 #include "clang/AST/BuiltinTypes.def"
   4417     return false;
   4418 
   4419   // We cannot lower out overload sets; they might validly be resolved
   4420   // by the call machinery.
   4421   case BuiltinType::Overload:
   4422     return false;
   4423 
   4424   // Unbridged casts in ARC can be handled in some call positions and
   4425   // should be left in place.
   4426   case BuiltinType::ARCUnbridgedCast:
   4427     return false;
   4428 
   4429   // Pseudo-objects should be converted as soon as possible.
   4430   case BuiltinType::PseudoObject:
   4431     return true;
   4432 
   4433   // The debugger mode could theoretically but currently does not try
   4434   // to resolve unknown-typed arguments based on known parameter types.
   4435   case BuiltinType::UnknownAny:
   4436     return true;
   4437 
   4438   // These are always invalid as call arguments and should be reported.
   4439   case BuiltinType::BoundMember:
   4440   case BuiltinType::BuiltinFn:
   4441     return true;
   4442   }
   4443   llvm_unreachable("bad builtin type kind");
   4444 }
   4445 
   4446 /// Check an argument list for placeholders that we won't try to
   4447 /// handle later.
   4448 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   4449   // Apply this processing to all the arguments at once instead of
   4450   // dying at the first failure.
   4451   bool hasInvalid = false;
   4452   for (size_t i = 0, e = args.size(); i != e; i++) {
   4453     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   4454       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   4455       if (result.isInvalid()) hasInvalid = true;
   4456       else args[i] = result.get();
   4457     }
   4458   }
   4459   return hasInvalid;
   4460 }
   4461 
   4462 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   4463 /// This provides the location of the left/right parens and a list of comma
   4464 /// locations.
   4465 ExprResult
   4466 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   4467                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   4468                     Expr *ExecConfig, bool IsExecConfig) {
   4469   // Since this might be a postfix expression, get rid of ParenListExprs.
   4470   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   4471   if (Result.isInvalid()) return ExprError();
   4472   Fn = Result.get();
   4473 
   4474   if (checkArgsForPlaceholders(*this, ArgExprs))
   4475     return ExprError();
   4476 
   4477   if (getLangOpts().CPlusPlus) {
   4478     // If this is a pseudo-destructor expression, build the call immediately.
   4479     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   4480       if (!ArgExprs.empty()) {
   4481         // Pseudo-destructor calls should not have any arguments.
   4482         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   4483           << FixItHint::CreateRemoval(
   4484                                     SourceRange(ArgExprs[0]->getLocStart(),
   4485                                                 ArgExprs.back()->getLocEnd()));
   4486       }
   4487 
   4488       return new (Context)
   4489           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   4490     }
   4491     if (Fn->getType() == Context.PseudoObjectTy) {
   4492       ExprResult result = CheckPlaceholderExpr(Fn);
   4493       if (result.isInvalid()) return ExprError();
   4494       Fn = result.get();
   4495     }
   4496 
   4497     // Determine whether this is a dependent call inside a C++ template,
   4498     // in which case we won't do any semantic analysis now.
   4499     // FIXME: Will need to cache the results of name lookup (including ADL) in
   4500     // Fn.
   4501     bool Dependent = false;
   4502     if (Fn->isTypeDependent())
   4503       Dependent = true;
   4504     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   4505       Dependent = true;
   4506 
   4507     if (Dependent) {
   4508       if (ExecConfig) {
   4509         return new (Context) CUDAKernelCallExpr(
   4510             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   4511             Context.DependentTy, VK_RValue, RParenLoc);
   4512       } else {
   4513         return new (Context) CallExpr(
   4514             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
   4515       }
   4516     }
   4517 
   4518     // Determine whether this is a call to an object (C++ [over.call.object]).
   4519     if (Fn->getType()->isRecordType())
   4520       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
   4521                                           RParenLoc);
   4522 
   4523     if (Fn->getType() == Context.UnknownAnyTy) {
   4524       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4525       if (result.isInvalid()) return ExprError();
   4526       Fn = result.get();
   4527     }
   4528 
   4529     if (Fn->getType() == Context.BoundMemberTy) {
   4530       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   4531     }
   4532   }
   4533 
   4534   // Check for overloaded calls.  This can happen even in C due to extensions.
   4535   if (Fn->getType() == Context.OverloadTy) {
   4536     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   4537 
   4538     // We aren't supposed to apply this logic for if there's an '&' involved.
   4539     if (!find.HasFormOfMemberPointer) {
   4540       OverloadExpr *ovl = find.Expression;
   4541       if (isa<UnresolvedLookupExpr>(ovl)) {
   4542         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   4543         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
   4544                                        RParenLoc, ExecConfig);
   4545       } else {
   4546         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
   4547                                          RParenLoc);
   4548       }
   4549     }
   4550   }
   4551 
   4552   // If we're directly calling a function, get the appropriate declaration.
   4553   if (Fn->getType() == Context.UnknownAnyTy) {
   4554     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4555     if (result.isInvalid()) return ExprError();
   4556     Fn = result.get();
   4557   }
   4558 
   4559   Expr *NakedFn = Fn->IgnoreParens();
   4560 
   4561   NamedDecl *NDecl = nullptr;
   4562   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   4563     if (UnOp->getOpcode() == UO_AddrOf)
   4564       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   4565 
   4566   if (isa<DeclRefExpr>(NakedFn))
   4567     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   4568   else if (isa<MemberExpr>(NakedFn))
   4569     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   4570 
   4571   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
   4572     if (FD->hasAttr<EnableIfAttr>()) {
   4573       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
   4574         Diag(Fn->getLocStart(),
   4575              isa<CXXMethodDecl>(FD) ?
   4576                  diag::err_ovl_no_viable_member_function_in_call :
   4577                  diag::err_ovl_no_viable_function_in_call)
   4578           << FD << FD->getSourceRange();
   4579         Diag(FD->getLocation(),
   4580              diag::note_ovl_candidate_disabled_by_enable_if_attr)
   4581             << Attr->getCond()->getSourceRange() << Attr->getMessage();
   4582       }
   4583     }
   4584   }
   4585 
   4586   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
   4587                                ExecConfig, IsExecConfig);
   4588 }
   4589 
   4590 ExprResult
   4591 Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
   4592                               MultiExprArg ExecConfig, SourceLocation GGGLoc) {
   4593   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
   4594   if (!ConfigDecl)
   4595     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
   4596                           << "cudaConfigureCall");
   4597   QualType ConfigQTy = ConfigDecl->getType();
   4598 
   4599   DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
   4600       ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
   4601   MarkFunctionReferenced(LLLLoc, ConfigDecl);
   4602 
   4603   return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
   4604                        /*IsExecConfig=*/true);
   4605 }
   4606 
   4607 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   4608 ///
   4609 /// __builtin_astype( value, dst type )
   4610 ///
   4611 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   4612                                  SourceLocation BuiltinLoc,
   4613                                  SourceLocation RParenLoc) {
   4614   ExprValueKind VK = VK_RValue;
   4615   ExprObjectKind OK = OK_Ordinary;
   4616   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   4617   QualType SrcTy = E->getType();
   4618   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   4619     return ExprError(Diag(BuiltinLoc,
   4620                           diag::err_invalid_astype_of_different_size)
   4621                      << DstTy
   4622                      << SrcTy
   4623                      << E->getSourceRange());
   4624   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   4625 }
   4626 
   4627 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
   4628 /// provided arguments.
   4629 ///
   4630 /// __builtin_convertvector( value, dst type )
   4631 ///
   4632 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
   4633                                         SourceLocation BuiltinLoc,
   4634                                         SourceLocation RParenLoc) {
   4635   TypeSourceInfo *TInfo;
   4636   GetTypeFromParser(ParsedDestTy, &TInfo);
   4637   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
   4638 }
   4639 
   4640 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   4641 /// i.e. an expression not of \p OverloadTy.  The expression should
   4642 /// unary-convert to an expression of function-pointer or
   4643 /// block-pointer type.
   4644 ///
   4645 /// \param NDecl the declaration being called, if available
   4646 ExprResult
   4647 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   4648                             SourceLocation LParenLoc,
   4649                             ArrayRef<Expr *> Args,
   4650                             SourceLocation RParenLoc,
   4651                             Expr *Config, bool IsExecConfig) {
   4652   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   4653   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   4654 
   4655   // Promote the function operand.
   4656   // We special-case function promotion here because we only allow promoting
   4657   // builtin functions to function pointers in the callee of a call.
   4658   ExprResult Result;
   4659   if (BuiltinID &&
   4660       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   4661     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   4662                                CK_BuiltinFnToFnPtr).get();
   4663   } else {
   4664     Result = CallExprUnaryConversions(Fn);
   4665   }
   4666   if (Result.isInvalid())
   4667     return ExprError();
   4668   Fn = Result.get();
   4669 
   4670   // Make the call expr early, before semantic checks.  This guarantees cleanup
   4671   // of arguments and function on error.
   4672   CallExpr *TheCall;
   4673   if (Config)
   4674     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   4675                                                cast<CallExpr>(Config), Args,
   4676                                                Context.BoolTy, VK_RValue,
   4677                                                RParenLoc);
   4678   else
   4679     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
   4680                                      VK_RValue, RParenLoc);
   4681 
   4682   // Bail out early if calling a builtin with custom typechecking.
   4683   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   4684     return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4685 
   4686  retry:
   4687   const FunctionType *FuncT;
   4688   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   4689     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   4690     // have type pointer to function".
   4691     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   4692     if (!FuncT)
   4693       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4694                          << Fn->getType() << Fn->getSourceRange());
   4695   } else if (const BlockPointerType *BPT =
   4696                Fn->getType()->getAs<BlockPointerType>()) {
   4697     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   4698   } else {
   4699     // Handle calls to expressions of unknown-any type.
   4700     if (Fn->getType() == Context.UnknownAnyTy) {
   4701       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   4702       if (rewrite.isInvalid()) return ExprError();
   4703       Fn = rewrite.get();
   4704       TheCall->setCallee(Fn);
   4705       goto retry;
   4706     }
   4707 
   4708     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   4709       << Fn->getType() << Fn->getSourceRange());
   4710   }
   4711 
   4712   if (getLangOpts().CUDA) {
   4713     if (Config) {
   4714       // CUDA: Kernel calls must be to global functions
   4715       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   4716         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   4717             << FDecl->getName() << Fn->getSourceRange());
   4718 
   4719       // CUDA: Kernel function must have 'void' return type
   4720       if (!FuncT->getReturnType()->isVoidType())
   4721         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   4722             << Fn->getType() << Fn->getSourceRange());
   4723     } else {
   4724       // CUDA: Calls to global functions must be configured
   4725       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   4726         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   4727             << FDecl->getName() << Fn->getSourceRange());
   4728     }
   4729   }
   4730 
   4731   // Check for a valid return type
   4732   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
   4733                           FDecl))
   4734     return ExprError();
   4735 
   4736   // We know the result type of the call, set it.
   4737   TheCall->setType(FuncT->getCallResultType(Context));
   4738   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
   4739 
   4740   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   4741   if (Proto) {
   4742     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
   4743                                 IsExecConfig))
   4744       return ExprError();
   4745   } else {
   4746     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   4747 
   4748     if (FDecl) {
   4749       // Check if we have too few/too many template arguments, based
   4750       // on our knowledge of the function definition.
   4751       const FunctionDecl *Def = nullptr;
   4752       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
   4753         Proto = Def->getType()->getAs<FunctionProtoType>();
   4754        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
   4755           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   4756           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
   4757       }
   4758 
   4759       // If the function we're calling isn't a function prototype, but we have
   4760       // a function prototype from a prior declaratiom, use that prototype.
   4761       if (!FDecl->hasPrototype())
   4762         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   4763     }
   4764 
   4765     // Promote the arguments (C99 6.5.2.2p6).
   4766     for (unsigned i = 0, e = Args.size(); i != e; i++) {
   4767       Expr *Arg = Args[i];
   4768 
   4769       if (Proto && i < Proto->getNumParams()) {
   4770         InitializedEntity Entity = InitializedEntity::InitializeParameter(
   4771             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
   4772         ExprResult ArgE =
   4773             PerformCopyInitialization(Entity, SourceLocation(), Arg);
   4774         if (ArgE.isInvalid())
   4775           return true;
   4776 
   4777         Arg = ArgE.getAs<Expr>();
   4778 
   4779       } else {
   4780         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   4781 
   4782         if (ArgE.isInvalid())
   4783           return true;
   4784 
   4785         Arg = ArgE.getAs<Expr>();
   4786       }
   4787 
   4788       if (RequireCompleteType(Arg->getLocStart(),
   4789                               Arg->getType(),
   4790                               diag::err_call_incomplete_argument, Arg))
   4791         return ExprError();
   4792 
   4793       TheCall->setArg(i, Arg);
   4794     }
   4795   }
   4796 
   4797   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4798     if (!Method->isStatic())
   4799       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   4800         << Fn->getSourceRange());
   4801 
   4802   // Check for sentinels
   4803   if (NDecl)
   4804     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
   4805 
   4806   // Do special checking on direct calls to functions.
   4807   if (FDecl) {
   4808     if (CheckFunctionCall(FDecl, TheCall, Proto))
   4809       return ExprError();
   4810 
   4811     if (BuiltinID)
   4812       return CheckBuiltinFunctionCall(BuiltinID, TheCall);
   4813   } else if (NDecl) {
   4814     if (CheckPointerCall(NDecl, TheCall, Proto))
   4815       return ExprError();
   4816   } else {
   4817     if (CheckOtherCall(TheCall, Proto))
   4818       return ExprError();
   4819   }
   4820 
   4821   return MaybeBindToTemporary(TheCall);
   4822 }
   4823 
   4824 ExprResult
   4825 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   4826                            SourceLocation RParenLoc, Expr *InitExpr) {
   4827   assert(Ty && "ActOnCompoundLiteral(): missing type");
   4828   // FIXME: put back this assert when initializers are worked out.
   4829   //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
   4830 
   4831   TypeSourceInfo *TInfo;
   4832   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   4833   if (!TInfo)
   4834     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   4835 
   4836   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   4837 }
   4838 
   4839 ExprResult
   4840 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   4841                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   4842   QualType literalType = TInfo->getType();
   4843 
   4844   if (literalType->isArrayType()) {
   4845     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   4846           diag::err_illegal_decl_array_incomplete_type,
   4847           SourceRange(LParenLoc,
   4848                       LiteralExpr->getSourceRange().getEnd())))
   4849       return ExprError();
   4850     if (literalType->isVariableArrayType())
   4851       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   4852         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   4853   } else if (!literalType->isDependentType() &&
   4854              RequireCompleteType(LParenLoc, literalType,
   4855                diag::err_typecheck_decl_incomplete_type,
   4856                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   4857     return ExprError();
   4858 
   4859   InitializedEntity Entity
   4860     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
   4861   InitializationKind Kind
   4862     = InitializationKind::CreateCStyleCast(LParenLoc,
   4863                                            SourceRange(LParenLoc, RParenLoc),
   4864                                            /*InitList=*/true);
   4865   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
   4866   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   4867                                       &literalType);
   4868   if (Result.isInvalid())
   4869     return ExprError();
   4870   LiteralExpr = Result.get();
   4871 
   4872   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
   4873   if (isFileScope &&
   4874       !LiteralExpr->isTypeDependent() &&
   4875       !LiteralExpr->isValueDependent() &&
   4876       !literalType->isDependentType()) { // 6.5.2.5p3
   4877     if (CheckForConstantInitializer(LiteralExpr, literalType))
   4878       return ExprError();
   4879   }
   4880 
   4881   // In C, compound literals are l-values for some reason.
   4882   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   4883 
   4884   return MaybeBindToTemporary(
   4885            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   4886                                              VK, LiteralExpr, isFileScope));
   4887 }
   4888 
   4889 ExprResult
   4890 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   4891                     SourceLocation RBraceLoc) {
   4892   // Immediately handle non-overload placeholders.  Overloads can be
   4893   // resolved contextually, but everything else here can't.
   4894   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   4895     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   4896       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   4897 
   4898       // Ignore failures; dropping the entire initializer list because
   4899       // of one failure would be terrible for indexing/etc.
   4900       if (result.isInvalid()) continue;
   4901 
   4902       InitArgList[I] = result.get();
   4903     }
   4904   }
   4905 
   4906   // Semantic analysis for initializers is done by ActOnDeclarator() and
   4907   // CheckInitializer() - it requires knowledge of the object being intialized.
   4908 
   4909   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   4910                                                RBraceLoc);
   4911   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   4912   return E;
   4913 }
   4914 
   4915 /// Do an explicit extend of the given block pointer if we're in ARC.
   4916 static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
   4917   assert(E.get()->getType()->isBlockPointerType());
   4918   assert(E.get()->isRValue());
   4919 
   4920   // Only do this in an r-value context.
   4921   if (!S.getLangOpts().ObjCAutoRefCount) return;
   4922 
   4923   E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
   4924                                CK_ARCExtendBlockObject, E.get(),
   4925                                /*base path*/ nullptr, VK_RValue);
   4926   S.ExprNeedsCleanups = true;
   4927 }
   4928 
   4929 /// Prepare a conversion of the given expression to an ObjC object
   4930 /// pointer type.
   4931 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   4932   QualType type = E.get()->getType();
   4933   if (type->isObjCObjectPointerType()) {
   4934     return CK_BitCast;
   4935   } else if (type->isBlockPointerType()) {
   4936     maybeExtendBlockObject(*this, E);
   4937     return CK_BlockPointerToObjCPointerCast;
   4938   } else {
   4939     assert(type->isPointerType());
   4940     return CK_CPointerToObjCPointerCast;
   4941   }
   4942 }
   4943 
   4944 /// Prepares for a scalar cast, performing all the necessary stages
   4945 /// except the final cast and returning the kind required.
   4946 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   4947   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   4948   // Also, callers should have filtered out the invalid cases with
   4949   // pointers.  Everything else should be possible.
   4950 
   4951   QualType SrcTy = Src.get()->getType();
   4952   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   4953     return CK_NoOp;
   4954 
   4955   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   4956   case Type::STK_MemberPointer:
   4957     llvm_unreachable("member pointer type in C");
   4958 
   4959   case Type::STK_CPointer:
   4960   case Type::STK_BlockPointer:
   4961   case Type::STK_ObjCObjectPointer:
   4962     switch (DestTy->getScalarTypeKind()) {
   4963     case Type::STK_CPointer: {
   4964       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
   4965       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
   4966       if (SrcAS != DestAS)
   4967         return CK_AddressSpaceConversion;
   4968       return CK_BitCast;
   4969     }
   4970     case Type::STK_BlockPointer:
   4971       return (SrcKind == Type::STK_BlockPointer
   4972                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   4973     case Type::STK_ObjCObjectPointer:
   4974       if (SrcKind == Type::STK_ObjCObjectPointer)
   4975         return CK_BitCast;
   4976       if (SrcKind == Type::STK_CPointer)
   4977         return CK_CPointerToObjCPointerCast;
   4978       maybeExtendBlockObject(*this, Src);
   4979       return CK_BlockPointerToObjCPointerCast;
   4980     case Type::STK_Bool:
   4981       return CK_PointerToBoolean;
   4982     case Type::STK_Integral:
   4983       return CK_PointerToIntegral;
   4984     case Type::STK_Floating:
   4985     case Type::STK_FloatingComplex:
   4986     case Type::STK_IntegralComplex:
   4987     case Type::STK_MemberPointer:
   4988       llvm_unreachable("illegal cast from pointer");
   4989     }
   4990     llvm_unreachable("Should have returned before this");
   4991 
   4992   case Type::STK_Bool: // casting from bool is like casting from an integer
   4993   case Type::STK_Integral:
   4994     switch (DestTy->getScalarTypeKind()) {
   4995     case Type::STK_CPointer:
   4996     case Type::STK_ObjCObjectPointer:
   4997     case Type::STK_BlockPointer:
   4998       if (Src.get()->isNullPointerConstant(Context,
   4999                                            Expr::NPC_ValueDependentIsNull))
   5000         return CK_NullToPointer;
   5001       return CK_IntegralToPointer;
   5002     case Type::STK_Bool:
   5003       return CK_IntegralToBoolean;
   5004     case Type::STK_Integral:
   5005       return CK_IntegralCast;
   5006     case Type::STK_Floating:
   5007       return CK_IntegralToFloating;
   5008     case Type::STK_IntegralComplex:
   5009       Src = ImpCastExprToType(Src.get(),
   5010                               DestTy->castAs<ComplexType>()->getElementType(),
   5011                               CK_IntegralCast);
   5012       return CK_IntegralRealToComplex;
   5013     case Type::STK_FloatingComplex:
   5014       Src = ImpCastExprToType(Src.get(),
   5015                               DestTy->castAs<ComplexType>()->getElementType(),
   5016                               CK_IntegralToFloating);
   5017       return CK_FloatingRealToComplex;
   5018     case Type::STK_MemberPointer:
   5019       llvm_unreachable("member pointer type in C");
   5020     }
   5021     llvm_unreachable("Should have returned before this");
   5022 
   5023   case Type::STK_Floating:
   5024     switch (DestTy->getScalarTypeKind()) {
   5025     case Type::STK_Floating:
   5026       return CK_FloatingCast;
   5027     case Type::STK_Bool:
   5028       return CK_FloatingToBoolean;
   5029     case Type::STK_Integral:
   5030       return CK_FloatingToIntegral;
   5031     case Type::STK_FloatingComplex:
   5032       Src = ImpCastExprToType(Src.get(),
   5033                               DestTy->castAs<ComplexType>()->getElementType(),
   5034                               CK_FloatingCast);
   5035       return CK_FloatingRealToComplex;
   5036     case Type::STK_IntegralComplex:
   5037       Src = ImpCastExprToType(Src.get(),
   5038                               DestTy->castAs<ComplexType>()->getElementType(),
   5039                               CK_FloatingToIntegral);
   5040       return CK_IntegralRealToComplex;
   5041     case Type::STK_CPointer:
   5042     case Type::STK_ObjCObjectPointer:
   5043     case Type::STK_BlockPointer:
   5044       llvm_unreachable("valid float->pointer cast?");
   5045     case Type::STK_MemberPointer:
   5046       llvm_unreachable("member pointer type in C");
   5047     }
   5048     llvm_unreachable("Should have returned before this");
   5049 
   5050   case Type::STK_FloatingComplex:
   5051     switch (DestTy->getScalarTypeKind()) {
   5052     case Type::STK_FloatingComplex:
   5053       return CK_FloatingComplexCast;
   5054     case Type::STK_IntegralComplex:
   5055       return CK_FloatingComplexToIntegralComplex;
   5056     case Type::STK_Floating: {
   5057       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5058       if (Context.hasSameType(ET, DestTy))
   5059         return CK_FloatingComplexToReal;
   5060       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
   5061       return CK_FloatingCast;
   5062     }
   5063     case Type::STK_Bool:
   5064       return CK_FloatingComplexToBoolean;
   5065     case Type::STK_Integral:
   5066       Src = ImpCastExprToType(Src.get(),
   5067                               SrcTy->castAs<ComplexType>()->getElementType(),
   5068                               CK_FloatingComplexToReal);
   5069       return CK_FloatingToIntegral;
   5070     case Type::STK_CPointer:
   5071     case Type::STK_ObjCObjectPointer:
   5072     case Type::STK_BlockPointer:
   5073       llvm_unreachable("valid complex float->pointer cast?");
   5074     case Type::STK_MemberPointer:
   5075       llvm_unreachable("member pointer type in C");
   5076     }
   5077     llvm_unreachable("Should have returned before this");
   5078 
   5079   case Type::STK_IntegralComplex:
   5080     switch (DestTy->getScalarTypeKind()) {
   5081     case Type::STK_FloatingComplex:
   5082       return CK_IntegralComplexToFloatingComplex;
   5083     case Type::STK_IntegralComplex:
   5084       return CK_IntegralComplexCast;
   5085     case Type::STK_Integral: {
   5086       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5087       if (Context.hasSameType(ET, DestTy))
   5088         return CK_IntegralComplexToReal;
   5089       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
   5090       return CK_IntegralCast;
   5091     }
   5092     case Type::STK_Bool:
   5093       return CK_IntegralComplexToBoolean;
   5094     case Type::STK_Floating:
   5095       Src = ImpCastExprToType(Src.get(),
   5096                               SrcTy->castAs<ComplexType>()->getElementType(),
   5097                               CK_IntegralComplexToReal);
   5098       return CK_IntegralToFloating;
   5099     case Type::STK_CPointer:
   5100     case Type::STK_ObjCObjectPointer:
   5101     case Type::STK_BlockPointer:
   5102       llvm_unreachable("valid complex int->pointer cast?");
   5103     case Type::STK_MemberPointer:
   5104       llvm_unreachable("member pointer type in C");
   5105     }
   5106     llvm_unreachable("Should have returned before this");
   5107   }
   5108 
   5109   llvm_unreachable("Unhandled scalar cast");
   5110 }
   5111 
   5112 static bool breakDownVectorType(QualType type, uint64_t &len,
   5113                                 QualType &eltType) {
   5114   // Vectors are simple.
   5115   if (const VectorType *vecType = type->getAs<VectorType>()) {
   5116     len = vecType->getNumElements();
   5117     eltType = vecType->getElementType();
   5118     assert(eltType->isScalarType());
   5119     return true;
   5120   }
   5121 
   5122   // We allow lax conversion to and from non-vector types, but only if
   5123   // they're real types (i.e. non-complex, non-pointer scalar types).
   5124   if (!type->isRealType()) return false;
   5125 
   5126   len = 1;
   5127   eltType = type;
   5128   return true;
   5129 }
   5130 
   5131 static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
   5132   uint64_t srcLen, destLen;
   5133   QualType srcElt, destElt;
   5134   if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
   5135   if (!breakDownVectorType(destTy, destLen, destElt)) return false;
   5136 
   5137   // ASTContext::getTypeSize will return the size rounded up to a
   5138   // power of 2, so instead of using that, we need to use the raw
   5139   // element size multiplied by the element count.
   5140   uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
   5141   uint64_t destEltSize = S.Context.getTypeSize(destElt);
   5142 
   5143   return (srcLen * srcEltSize == destLen * destEltSize);
   5144 }
   5145 
   5146 /// Is this a legal conversion between two known vector types?
   5147 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
   5148   assert(destTy->isVectorType() || srcTy->isVectorType());
   5149 
   5150   if (!Context.getLangOpts().LaxVectorConversions)
   5151     return false;
   5152   return VectorTypesMatch(*this, srcTy, destTy);
   5153 }
   5154 
   5155 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   5156                            CastKind &Kind) {
   5157   assert(VectorTy->isVectorType() && "Not a vector type!");
   5158 
   5159   if (Ty->isVectorType() || Ty->isIntegerType()) {
   5160     if (!VectorTypesMatch(*this, Ty, VectorTy))
   5161       return Diag(R.getBegin(),
   5162                   Ty->isVectorType() ?
   5163                   diag::err_invalid_conversion_between_vectors :
   5164                   diag::err_invalid_conversion_between_vector_and_integer)
   5165         << VectorTy << Ty << R;
   5166   } else
   5167     return Diag(R.getBegin(),
   5168                 diag::err_invalid_conversion_between_vector_and_scalar)
   5169       << VectorTy << Ty << R;
   5170 
   5171   Kind = CK_BitCast;
   5172   return false;
   5173 }
   5174 
   5175 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   5176                                     Expr *CastExpr, CastKind &Kind) {
   5177   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   5178 
   5179   QualType SrcTy = CastExpr->getType();
   5180 
   5181   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   5182   // an ExtVectorType.
   5183   // In OpenCL, casts between vectors of different types are not allowed.
   5184   // (See OpenCL 6.2).
   5185   if (SrcTy->isVectorType()) {
   5186     if (!VectorTypesMatch(*this, SrcTy, DestTy)
   5187         || (getLangOpts().OpenCL &&
   5188             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   5189       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   5190         << DestTy << SrcTy << R;
   5191       return ExprError();
   5192     }
   5193     Kind = CK_BitCast;
   5194     return CastExpr;
   5195   }
   5196 
   5197   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   5198   // conversion will take place first from scalar to elt type, and then
   5199   // splat from elt type to vector.
   5200   if (SrcTy->isPointerType())
   5201     return Diag(R.getBegin(),
   5202                 diag::err_invalid_conversion_between_vector_and_scalar)
   5203       << DestTy << SrcTy << R;
   5204 
   5205   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   5206   ExprResult CastExprRes = CastExpr;
   5207   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
   5208   if (CastExprRes.isInvalid())
   5209     return ExprError();
   5210   CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
   5211 
   5212   Kind = CK_VectorSplat;
   5213   return CastExpr;
   5214 }
   5215 
   5216 ExprResult
   5217 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   5218                     Declarator &D, ParsedType &Ty,
   5219                     SourceLocation RParenLoc, Expr *CastExpr) {
   5220   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
   5221          "ActOnCastExpr(): missing type or expr");
   5222 
   5223   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   5224   if (D.isInvalidType())
   5225     return ExprError();
   5226 
   5227   if (getLangOpts().CPlusPlus) {
   5228     // Check that there are no default arguments (C++ only).
   5229     CheckExtraCXXDefaultArguments(D);
   5230   }
   5231 
   5232   checkUnusedDeclAttributes(D);
   5233 
   5234   QualType castType = castTInfo->getType();
   5235   Ty = CreateParsedType(castType, castTInfo);
   5236 
   5237   bool isVectorLiteral = false;
   5238 
   5239   // Check for an altivec or OpenCL literal,
   5240   // i.e. all the elements are integer constants.
   5241   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   5242   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   5243   if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
   5244        && castType->isVectorType() && (PE || PLE)) {
   5245     if (PLE && PLE->getNumExprs() == 0) {
   5246       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   5247       return ExprError();
   5248     }
   5249     if (PE || PLE->getNumExprs() == 1) {
   5250       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   5251       if (!E->getType()->isVectorType())
   5252         isVectorLiteral = true;
   5253     }
   5254     else
   5255       isVectorLiteral = true;
   5256   }
   5257 
   5258   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   5259   // then handle it as such.
   5260   if (isVectorLiteral)
   5261     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   5262 
   5263   // If the Expr being casted is a ParenListExpr, handle it specially.
   5264   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   5265   // sequence of BinOp comma operators.
   5266   if (isa<ParenListExpr>(CastExpr)) {
   5267     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   5268     if (Result.isInvalid()) return ExprError();
   5269     CastExpr = Result.get();
   5270   }
   5271 
   5272   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
   5273       !getSourceManager().isInSystemMacro(LParenLoc))
   5274     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
   5275 
   5276   CheckTollFreeBridgeCast(castType, CastExpr);
   5277 
   5278   CheckObjCBridgeRelatedCast(castType, CastExpr);
   5279 
   5280   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   5281 }
   5282 
   5283 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   5284                                     SourceLocation RParenLoc, Expr *E,
   5285                                     TypeSourceInfo *TInfo) {
   5286   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   5287          "Expected paren or paren list expression");
   5288 
   5289   Expr **exprs;
   5290   unsigned numExprs;
   5291   Expr *subExpr;
   5292   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   5293   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   5294     LiteralLParenLoc = PE->getLParenLoc();
   5295     LiteralRParenLoc = PE->getRParenLoc();
   5296     exprs = PE->getExprs();
   5297     numExprs = PE->getNumExprs();
   5298   } else { // isa<ParenExpr> by assertion at function entrance
   5299     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   5300     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   5301     subExpr = cast<ParenExpr>(E)->getSubExpr();
   5302     exprs = &subExpr;
   5303     numExprs = 1;
   5304   }
   5305 
   5306   QualType Ty = TInfo->getType();
   5307   assert(Ty->isVectorType() && "Expected vector type");
   5308 
   5309   SmallVector<Expr *, 8> initExprs;
   5310   const VectorType *VTy = Ty->getAs<VectorType>();
   5311   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   5312 
   5313   // '(...)' form of vector initialization in AltiVec: the number of
   5314   // initializers must be one or must match the size of the vector.
   5315   // If a single value is specified in the initializer then it will be
   5316   // replicated to all the components of the vector
   5317   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   5318     // The number of initializers must be one or must match the size of the
   5319     // vector. If a single value is specified in the initializer then it will
   5320     // be replicated to all the components of the vector
   5321     if (numExprs == 1) {
   5322       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5323       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5324       if (Literal.isInvalid())
   5325         return ExprError();
   5326       Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5327                                   PrepareScalarCast(Literal, ElemTy));
   5328       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5329     }
   5330     else if (numExprs < numElems) {
   5331       Diag(E->getExprLoc(),
   5332            diag::err_incorrect_number_of_vector_initializers);
   5333       return ExprError();
   5334     }
   5335     else
   5336       initExprs.append(exprs, exprs + numExprs);
   5337   }
   5338   else {
   5339     // For OpenCL, when the number of initializers is a single value,
   5340     // it will be replicated to all components of the vector.
   5341     if (getLangOpts().OpenCL &&
   5342         VTy->getVectorKind() == VectorType::GenericVector &&
   5343         numExprs == 1) {
   5344         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5345         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5346         if (Literal.isInvalid())
   5347           return ExprError();
   5348         Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5349                                     PrepareScalarCast(Literal, ElemTy));
   5350         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5351     }
   5352 
   5353     initExprs.append(exprs, exprs + numExprs);
   5354   }
   5355   // FIXME: This means that pretty-printing the final AST will produce curly
   5356   // braces instead of the original commas.
   5357   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   5358                                                    initExprs, LiteralRParenLoc);
   5359   initE->setType(Ty);
   5360   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   5361 }
   5362 
   5363 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   5364 /// the ParenListExpr into a sequence of comma binary operators.
   5365 ExprResult
   5366 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   5367   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   5368   if (!E)
   5369     return OrigExpr;
   5370 
   5371   ExprResult Result(E->getExpr(0));
   5372 
   5373   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   5374     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   5375                         E->getExpr(i));
   5376 
   5377   if (Result.isInvalid()) return ExprError();
   5378 
   5379   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   5380 }
   5381 
   5382 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   5383                                     SourceLocation R,
   5384                                     MultiExprArg Val) {
   5385   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   5386   return expr;
   5387 }
   5388 
   5389 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   5390 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   5391 /// emitted.
   5392 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   5393                                       SourceLocation QuestionLoc) {
   5394   Expr *NullExpr = LHSExpr;
   5395   Expr *NonPointerExpr = RHSExpr;
   5396   Expr::NullPointerConstantKind NullKind =
   5397       NullExpr->isNullPointerConstant(Context,
   5398                                       Expr::NPC_ValueDependentIsNotNull);
   5399 
   5400   if (NullKind == Expr::NPCK_NotNull) {
   5401     NullExpr = RHSExpr;
   5402     NonPointerExpr = LHSExpr;
   5403     NullKind =
   5404         NullExpr->isNullPointerConstant(Context,
   5405                                         Expr::NPC_ValueDependentIsNotNull);
   5406   }
   5407 
   5408   if (NullKind == Expr::NPCK_NotNull)
   5409     return false;
   5410 
   5411   if (NullKind == Expr::NPCK_ZeroExpression)
   5412     return false;
   5413 
   5414   if (NullKind == Expr::NPCK_ZeroLiteral) {
   5415     // In this case, check to make sure that we got here from a "NULL"
   5416     // string in the source code.
   5417     NullExpr = NullExpr->IgnoreParenImpCasts();
   5418     SourceLocation loc = NullExpr->getExprLoc();
   5419     if (!findMacroSpelling(loc, "NULL"))
   5420       return false;
   5421   }
   5422 
   5423   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   5424   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   5425       << NonPointerExpr->getType() << DiagType
   5426       << NonPointerExpr->getSourceRange();
   5427   return true;
   5428 }
   5429 
   5430 /// \brief Return false if the condition expression is valid, true otherwise.
   5431 static bool checkCondition(Sema &S, Expr *Cond) {
   5432   QualType CondTy = Cond->getType();
   5433 
   5434   // C99 6.5.15p2
   5435   if (CondTy->isScalarType()) return false;
   5436 
   5437   // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
   5438   if (S.getLangOpts().OpenCL && CondTy->isVectorType())
   5439     return false;
   5440 
   5441   // Emit the proper error message.
   5442   S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
   5443                               diag::err_typecheck_cond_expect_scalar :
   5444                               diag::err_typecheck_cond_expect_scalar_or_vector)
   5445     << CondTy;
   5446   return true;
   5447 }
   5448 
   5449 /// \brief Return false if the two expressions can be converted to a vector,
   5450 /// true otherwise
   5451 static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
   5452                                                     ExprResult &RHS,
   5453                                                     QualType CondTy) {
   5454   // Both operands should be of scalar type.
   5455   if (!LHS.get()->getType()->isScalarType()) {
   5456     S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   5457       << CondTy;
   5458     return true;
   5459   }
   5460   if (!RHS.get()->getType()->isScalarType()) {
   5461     S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
   5462       << CondTy;
   5463     return true;
   5464   }
   5465 
   5466   // Implicity convert these scalars to the type of the condition.
   5467   LHS = S.ImpCastExprToType(LHS.get(), CondTy, CK_IntegralCast);
   5468   RHS = S.ImpCastExprToType(RHS.get(), CondTy, CK_IntegralCast);
   5469   return false;
   5470 }
   5471 
   5472 /// \brief Handle when one or both operands are void type.
   5473 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   5474                                          ExprResult &RHS) {
   5475     Expr *LHSExpr = LHS.get();
   5476     Expr *RHSExpr = RHS.get();
   5477 
   5478     if (!LHSExpr->getType()->isVoidType())
   5479       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5480         << RHSExpr->getSourceRange();
   5481     if (!RHSExpr->getType()->isVoidType())
   5482       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5483         << LHSExpr->getSourceRange();
   5484     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
   5485     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
   5486     return S.Context.VoidTy;
   5487 }
   5488 
   5489 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   5490 /// true otherwise.
   5491 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   5492                                         QualType PointerTy) {
   5493   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   5494       !NullExpr.get()->isNullPointerConstant(S.Context,
   5495                                             Expr::NPC_ValueDependentIsNull))
   5496     return true;
   5497 
   5498   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
   5499   return false;
   5500 }
   5501 
   5502 /// \brief Checks compatibility between two pointers and return the resulting
   5503 /// type.
   5504 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   5505                                                      ExprResult &RHS,
   5506                                                      SourceLocation Loc) {
   5507   QualType LHSTy = LHS.get()->getType();
   5508   QualType RHSTy = RHS.get()->getType();
   5509 
   5510   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   5511     // Two identical pointers types are always compatible.
   5512     return LHSTy;
   5513   }
   5514 
   5515   QualType lhptee, rhptee;
   5516 
   5517   // Get the pointee types.
   5518   bool IsBlockPointer = false;
   5519   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   5520     lhptee = LHSBTy->getPointeeType();
   5521     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   5522     IsBlockPointer = true;
   5523   } else {
   5524     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   5525     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   5526   }
   5527 
   5528   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   5529   // differently qualified versions of compatible types, the result type is
   5530   // a pointer to an appropriately qualified version of the composite
   5531   // type.
   5532 
   5533   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   5534   // clause doesn't make sense for our extensions. E.g. address space 2 should
   5535   // be incompatible with address space 3: they may live on different devices or
   5536   // anything.
   5537   Qualifiers lhQual = lhptee.getQualifiers();
   5538   Qualifiers rhQual = rhptee.getQualifiers();
   5539 
   5540   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   5541   lhQual.removeCVRQualifiers();
   5542   rhQual.removeCVRQualifiers();
   5543 
   5544   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   5545   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   5546 
   5547   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   5548 
   5549   if (CompositeTy.isNull()) {
   5550     S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
   5551       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5552       << RHS.get()->getSourceRange();
   5553     // In this situation, we assume void* type. No especially good
   5554     // reason, but this is what gcc does, and we do have to pick
   5555     // to get a consistent AST.
   5556     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   5557     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   5558     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   5559     return incompatTy;
   5560   }
   5561 
   5562   // The pointer types are compatible.
   5563   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   5564   if (IsBlockPointer)
   5565     ResultTy = S.Context.getBlockPointerType(ResultTy);
   5566   else
   5567     ResultTy = S.Context.getPointerType(ResultTy);
   5568 
   5569   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
   5570   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
   5571   return ResultTy;
   5572 }
   5573 
   5574 /// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
   5575 /// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
   5576 /// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
   5577 static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
   5578   if (QT->isObjCIdType())
   5579     return true;
   5580 
   5581   const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
   5582   if (!OPT)
   5583     return false;
   5584 
   5585   if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
   5586     if (ID->getIdentifier() != &C.Idents.get("NSObject"))
   5587       return false;
   5588 
   5589   ObjCProtocolDecl* PNSCopying =
   5590     S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
   5591   ObjCProtocolDecl* PNSObject =
   5592     S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
   5593 
   5594   for (auto *Proto : OPT->quals()) {
   5595     if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
   5596         (PNSObject && declaresSameEntity(Proto, PNSObject)))
   5597       ;
   5598     else
   5599       return false;
   5600   }
   5601   return true;
   5602 }
   5603 
   5604 /// \brief Return the resulting type when the operands are both block pointers.
   5605 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   5606                                                           ExprResult &LHS,
   5607                                                           ExprResult &RHS,
   5608                                                           SourceLocation Loc) {
   5609   QualType LHSTy = LHS.get()->getType();
   5610   QualType RHSTy = RHS.get()->getType();
   5611 
   5612   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   5613     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   5614       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   5615       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5616       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5617       return destType;
   5618     }
   5619     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   5620       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5621       << RHS.get()->getSourceRange();
   5622     return QualType();
   5623   }
   5624 
   5625   // We have 2 block pointer types.
   5626   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5627 }
   5628 
   5629 /// \brief Return the resulting type when the operands are both pointers.
   5630 static QualType
   5631 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   5632                                             ExprResult &RHS,
   5633                                             SourceLocation Loc) {
   5634   // get the pointer types
   5635   QualType LHSTy = LHS.get()->getType();
   5636   QualType RHSTy = RHS.get()->getType();
   5637 
   5638   // get the "pointed to" types
   5639   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   5640   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   5641 
   5642   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   5643   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   5644     // Figure out necessary qualifiers (C99 6.5.15p6)
   5645     QualType destPointee
   5646       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   5647     QualType destType = S.Context.getPointerType(destPointee);
   5648     // Add qualifiers if necessary.
   5649     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   5650     // Promote to void*.
   5651     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5652     return destType;
   5653   }
   5654   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   5655     QualType destPointee
   5656       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   5657     QualType destType = S.Context.getPointerType(destPointee);
   5658     // Add qualifiers if necessary.
   5659     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   5660     // Promote to void*.
   5661     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5662     return destType;
   5663   }
   5664 
   5665   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5666 }
   5667 
   5668 /// \brief Return false if the first expression is not an integer and the second
   5669 /// expression is not a pointer, true otherwise.
   5670 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   5671                                         Expr* PointerExpr, SourceLocation Loc,
   5672                                         bool IsIntFirstExpr) {
   5673   if (!PointerExpr->getType()->isPointerType() ||
   5674       !Int.get()->getType()->isIntegerType())
   5675     return false;
   5676 
   5677   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   5678   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   5679 
   5680   S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
   5681     << Expr1->getType() << Expr2->getType()
   5682     << Expr1->getSourceRange() << Expr2->getSourceRange();
   5683   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
   5684                             CK_IntegralToPointer);
   5685   return true;
   5686 }
   5687 
   5688 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   5689 /// In that case, LHS = cond.
   5690 /// C99 6.5.15
   5691 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   5692                                         ExprResult &RHS, ExprValueKind &VK,
   5693                                         ExprObjectKind &OK,
   5694                                         SourceLocation QuestionLoc) {
   5695 
   5696   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   5697   if (!LHSResult.isUsable()) return QualType();
   5698   LHS = LHSResult;
   5699 
   5700   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   5701   if (!RHSResult.isUsable()) return QualType();
   5702   RHS = RHSResult;
   5703 
   5704   // C++ is sufficiently different to merit its own checker.
   5705   if (getLangOpts().CPlusPlus)
   5706     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   5707 
   5708   VK = VK_RValue;
   5709   OK = OK_Ordinary;
   5710 
   5711   // First, check the condition.
   5712   Cond = UsualUnaryConversions(Cond.get());
   5713   if (Cond.isInvalid())
   5714     return QualType();
   5715   if (checkCondition(*this, Cond.get()))
   5716     return QualType();
   5717 
   5718   // Now check the two expressions.
   5719   if (LHS.get()->getType()->isVectorType() ||
   5720       RHS.get()->getType()->isVectorType())
   5721     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
   5722 
   5723   UsualArithmeticConversions(LHS, RHS);
   5724   if (LHS.isInvalid() || RHS.isInvalid())
   5725     return QualType();
   5726 
   5727   QualType CondTy = Cond.get()->getType();
   5728   QualType LHSTy = LHS.get()->getType();
   5729   QualType RHSTy = RHS.get()->getType();
   5730 
   5731   // If the condition is a vector, and both operands are scalar,
   5732   // attempt to implicity convert them to the vector type to act like the
   5733   // built in select. (OpenCL v1.1 s6.3.i)
   5734   if (getLangOpts().OpenCL && CondTy->isVectorType())
   5735     if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
   5736       return QualType();
   5737 
   5738   // If both operands have arithmetic type, do the usual arithmetic conversions
   5739   // to find a common type: C99 6.5.15p3,5.
   5740   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType())
   5741     return LHS.get()->getType();
   5742 
   5743   // If both operands are the same structure or union type, the result is that
   5744   // type.
   5745   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   5746     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   5747       if (LHSRT->getDecl() == RHSRT->getDecl())
   5748         // "If both the operands have structure or union type, the result has
   5749         // that type."  This implies that CV qualifiers are dropped.
   5750         return LHSTy.getUnqualifiedType();
   5751     // FIXME: Type of conditional expression must be complete in C mode.
   5752   }
   5753 
   5754   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   5755   // The following || allows only one side to be void (a GCC-ism).
   5756   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   5757     return checkConditionalVoidType(*this, LHS, RHS);
   5758   }
   5759 
   5760   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   5761   // the type of the other operand."
   5762   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
   5763   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
   5764 
   5765   // All objective-c pointer type analysis is done here.
   5766   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   5767                                                         QuestionLoc);
   5768   if (LHS.isInvalid() || RHS.isInvalid())
   5769     return QualType();
   5770   if (!compositeType.isNull())
   5771     return compositeType;
   5772 
   5773 
   5774   // Handle block pointer types.
   5775   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
   5776     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
   5777                                                      QuestionLoc);
   5778 
   5779   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   5780   if (LHSTy->isPointerType() && RHSTy->isPointerType())
   5781     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
   5782                                                        QuestionLoc);
   5783 
   5784   // GCC compatibility: soften pointer/integer mismatch.  Note that
   5785   // null pointers have been filtered out by this point.
   5786   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
   5787       /*isIntFirstExpr=*/true))
   5788     return RHSTy;
   5789   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
   5790       /*isIntFirstExpr=*/false))
   5791     return LHSTy;
   5792 
   5793   // Emit a better diagnostic if one of the expressions is a null pointer
   5794   // constant and the other is not a pointer type. In this case, the user most
   5795   // likely forgot to take the address of the other expression.
   5796   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   5797     return QualType();
   5798 
   5799   // Otherwise, the operands are not compatible.
   5800   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   5801     << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5802     << RHS.get()->getSourceRange();
   5803   return QualType();
   5804 }
   5805 
   5806 /// FindCompositeObjCPointerType - Helper method to find composite type of
   5807 /// two objective-c pointer types of the two input expressions.
   5808 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   5809                                             SourceLocation QuestionLoc) {
   5810   QualType LHSTy = LHS.get()->getType();
   5811   QualType RHSTy = RHS.get()->getType();
   5812 
   5813   // Handle things like Class and struct objc_class*.  Here we case the result
   5814   // to the pseudo-builtin, because that will be implicitly cast back to the
   5815   // redefinition type if an attempt is made to access its fields.
   5816   if (LHSTy->isObjCClassType() &&
   5817       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
   5818     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   5819     return LHSTy;
   5820   }
   5821   if (RHSTy->isObjCClassType() &&
   5822       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
   5823     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   5824     return RHSTy;
   5825   }
   5826   // And the same for struct objc_object* / id
   5827   if (LHSTy->isObjCIdType() &&
   5828       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
   5829     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   5830     return LHSTy;
   5831   }
   5832   if (RHSTy->isObjCIdType() &&
   5833       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
   5834     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   5835     return RHSTy;
   5836   }
   5837   // And the same for struct objc_selector* / SEL
   5838   if (Context.isObjCSelType(LHSTy) &&
   5839       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
   5840     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
   5841     return LHSTy;
   5842   }
   5843   if (Context.isObjCSelType(RHSTy) &&
   5844       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
   5845     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
   5846     return RHSTy;
   5847   }
   5848   // Check constraints for Objective-C object pointers types.
   5849   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   5850 
   5851     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   5852       // Two identical object pointer types are always compatible.
   5853       return LHSTy;
   5854     }
   5855     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
   5856     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
   5857     QualType compositeType = LHSTy;
   5858 
   5859     // If both operands are interfaces and either operand can be
   5860     // assigned to the other, use that type as the composite
   5861     // type. This allows
   5862     //   xxx ? (A*) a : (B*) b
   5863     // where B is a subclass of A.
   5864     //
   5865     // Additionally, as for assignment, if either type is 'id'
   5866     // allow silent coercion. Finally, if the types are
   5867     // incompatible then make sure to use 'id' as the composite
   5868     // type so the result is acceptable for sending messages to.
   5869 
   5870     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   5871     // It could return the composite type.
   5872     if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   5873       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   5874     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   5875       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   5876     } else if ((LHSTy->isObjCQualifiedIdType() ||
   5877                 RHSTy->isObjCQualifiedIdType()) &&
   5878                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   5879       // Need to handle "id<xx>" explicitly.
   5880       // GCC allows qualified id and any Objective-C type to devolve to
   5881       // id. Currently localizing to here until clear this should be
   5882       // part of ObjCQualifiedIdTypesAreCompatible.
   5883       compositeType = Context.getObjCIdType();
   5884     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   5885       compositeType = Context.getObjCIdType();
   5886     } else if (!(compositeType =
   5887                  Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
   5888       ;
   5889     else {
   5890       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   5891       << LHSTy << RHSTy
   5892       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5893       QualType incompatTy = Context.getObjCIdType();
   5894       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   5895       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   5896       return incompatTy;
   5897     }
   5898     // The object pointer types are compatible.
   5899     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
   5900     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
   5901     return compositeType;
   5902   }
   5903   // Check Objective-C object pointer types and 'void *'
   5904   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   5905     if (getLangOpts().ObjCAutoRefCount) {
   5906       // ARC forbids the implicit conversion of object pointers to 'void *',
   5907       // so these types are not compatible.
   5908       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   5909           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5910       LHS = RHS = true;
   5911       return QualType();
   5912     }
   5913     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   5914     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   5915     QualType destPointee
   5916     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   5917     QualType destType = Context.getPointerType(destPointee);
   5918     // Add qualifiers if necessary.
   5919     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   5920     // Promote to void*.
   5921     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5922     return destType;
   5923   }
   5924   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   5925     if (getLangOpts().ObjCAutoRefCount) {
   5926       // ARC forbids the implicit conversion of object pointers to 'void *',
   5927       // so these types are not compatible.
   5928       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   5929           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   5930       LHS = RHS = true;
   5931       return QualType();
   5932     }
   5933     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   5934     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   5935     QualType destPointee
   5936     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   5937     QualType destType = Context.getPointerType(destPointee);
   5938     // Add qualifiers if necessary.
   5939     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   5940     // Promote to void*.
   5941     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5942     return destType;
   5943   }
   5944   return QualType();
   5945 }
   5946 
   5947 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   5948 /// ParenRange in parentheses.
   5949 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   5950                                const PartialDiagnostic &Note,
   5951                                SourceRange ParenRange) {
   5952   SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
   5953   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   5954       EndLoc.isValid()) {
   5955     Self.Diag(Loc, Note)
   5956       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   5957       << FixItHint::CreateInsertion(EndLoc, ")");
   5958   } else {
   5959     // We can't display the parentheses, so just show the bare note.
   5960     Self.Diag(Loc, Note) << ParenRange;
   5961   }
   5962 }
   5963 
   5964 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   5965   return Opc >= BO_Mul && Opc <= BO_Shr;
   5966 }
   5967 
   5968 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   5969 /// expression, either using a built-in or overloaded operator,
   5970 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
   5971 /// expression.
   5972 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   5973                                    Expr **RHSExprs) {
   5974   // Don't strip parenthesis: we should not warn if E is in parenthesis.
   5975   E = E->IgnoreImpCasts();
   5976   E = E->IgnoreConversionOperator();
   5977   E = E->IgnoreImpCasts();
   5978 
   5979   // Built-in binary operator.
   5980   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   5981     if (IsArithmeticOp(OP->getOpcode())) {
   5982       *Opcode = OP->getOpcode();
   5983       *RHSExprs = OP->getRHS();
   5984       return true;
   5985     }
   5986   }
   5987 
   5988   // Overloaded operator.
   5989   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   5990     if (Call->getNumArgs() != 2)
   5991       return false;
   5992 
   5993     // Make sure this is really a binary operator that is safe to pass into
   5994     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   5995     OverloadedOperatorKind OO = Call->getOperator();
   5996     if (OO < OO_Plus || OO > OO_Arrow ||
   5997         OO == OO_PlusPlus || OO == OO_MinusMinus)
   5998       return false;
   5999 
   6000     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   6001     if (IsArithmeticOp(OpKind)) {
   6002       *Opcode = OpKind;
   6003       *RHSExprs = Call->getArg(1);
   6004       return true;
   6005     }
   6006   }
   6007 
   6008   return false;
   6009 }
   6010 
   6011 static bool IsLogicOp(BinaryOperatorKind Opc) {
   6012   return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
   6013 }
   6014 
   6015 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   6016 /// or is a logical expression such as (x==y) which has int type, but is
   6017 /// commonly interpreted as boolean.
   6018 static bool ExprLooksBoolean(Expr *E) {
   6019   E = E->IgnoreParenImpCasts();
   6020 
   6021   if (E->getType()->isBooleanType())
   6022     return true;
   6023   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   6024     return IsLogicOp(OP->getOpcode());
   6025   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   6026     return OP->getOpcode() == UO_LNot;
   6027 
   6028   return false;
   6029 }
   6030 
   6031 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   6032 /// and binary operator are mixed in a way that suggests the programmer assumed
   6033 /// the conditional operator has higher precedence, for example:
   6034 /// "int x = a + someBinaryCondition ? 1 : 2".
   6035 static void DiagnoseConditionalPrecedence(Sema &Self,
   6036                                           SourceLocation OpLoc,
   6037                                           Expr *Condition,
   6038                                           Expr *LHSExpr,
   6039                                           Expr *RHSExpr) {
   6040   BinaryOperatorKind CondOpcode;
   6041   Expr *CondRHS;
   6042 
   6043   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   6044     return;
   6045   if (!ExprLooksBoolean(CondRHS))
   6046     return;
   6047 
   6048   // The condition is an arithmetic binary expression, with a right-
   6049   // hand side that looks boolean, so warn.
   6050 
   6051   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   6052       << Condition->getSourceRange()
   6053       << BinaryOperator::getOpcodeStr(CondOpcode);
   6054 
   6055   SuggestParentheses(Self, OpLoc,
   6056     Self.PDiag(diag::note_precedence_silence)
   6057       << BinaryOperator::getOpcodeStr(CondOpcode),
   6058     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   6059 
   6060   SuggestParentheses(Self, OpLoc,
   6061     Self.PDiag(diag::note_precedence_conditional_first),
   6062     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
   6063 }
   6064 
   6065 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   6066 /// in the case of a the GNU conditional expr extension.
   6067 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   6068                                     SourceLocation ColonLoc,
   6069                                     Expr *CondExpr, Expr *LHSExpr,
   6070                                     Expr *RHSExpr) {
   6071   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   6072   // was the condition.
   6073   OpaqueValueExpr *opaqueValue = nullptr;
   6074   Expr *commonExpr = nullptr;
   6075   if (!LHSExpr) {
   6076     commonExpr = CondExpr;
   6077     // Lower out placeholder types first.  This is important so that we don't
   6078     // try to capture a placeholder. This happens in few cases in C++; such
   6079     // as Objective-C++'s dictionary subscripting syntax.
   6080     if (commonExpr->hasPlaceholderType()) {
   6081       ExprResult result = CheckPlaceholderExpr(commonExpr);
   6082       if (!result.isUsable()) return ExprError();
   6083       commonExpr = result.get();
   6084     }
   6085     // We usually want to apply unary conversions *before* saving, except
   6086     // in the special case of a C++ l-value conditional.
   6087     if (!(getLangOpts().CPlusPlus
   6088           && !commonExpr->isTypeDependent()
   6089           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   6090           && commonExpr->isGLValue()
   6091           && commonExpr->isOrdinaryOrBitFieldObject()
   6092           && RHSExpr->isOrdinaryOrBitFieldObject()
   6093           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   6094       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   6095       if (commonRes.isInvalid())
   6096         return ExprError();
   6097       commonExpr = commonRes.get();
   6098     }
   6099 
   6100     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   6101                                                 commonExpr->getType(),
   6102                                                 commonExpr->getValueKind(),
   6103                                                 commonExpr->getObjectKind(),
   6104                                                 commonExpr);
   6105     LHSExpr = CondExpr = opaqueValue;
   6106   }
   6107 
   6108   ExprValueKind VK = VK_RValue;
   6109   ExprObjectKind OK = OK_Ordinary;
   6110   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
   6111   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   6112                                              VK, OK, QuestionLoc);
   6113   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   6114       RHS.isInvalid())
   6115     return ExprError();
   6116 
   6117   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   6118                                 RHS.get());
   6119 
   6120   if (!commonExpr)
   6121     return new (Context)
   6122         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
   6123                             RHS.get(), result, VK, OK);
   6124 
   6125   return new (Context) BinaryConditionalOperator(
   6126       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
   6127       ColonLoc, result, VK, OK);
   6128 }
   6129 
   6130 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   6131 // being closely modeled after the C99 spec:-). The odd characteristic of this
   6132 // routine is it effectively iqnores the qualifiers on the top level pointee.
   6133 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   6134 // FIXME: add a couple examples in this comment.
   6135 static Sema::AssignConvertType
   6136 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
   6137   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6138   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6139 
   6140   // get the "pointed to" type (ignoring qualifiers at the top level)
   6141   const Type *lhptee, *rhptee;
   6142   Qualifiers lhq, rhq;
   6143   std::tie(lhptee, lhq) =
   6144       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
   6145   std::tie(rhptee, rhq) =
   6146       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
   6147 
   6148   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6149 
   6150   // C99 6.5.16.1p1: This following citation is common to constraints
   6151   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   6152   // qualifiers of the type *pointed to* by the right;
   6153 
   6154   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   6155   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   6156       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   6157     // Ignore lifetime for further calculation.
   6158     lhq.removeObjCLifetime();
   6159     rhq.removeObjCLifetime();
   6160   }
   6161 
   6162   if (!lhq.compatiblyIncludes(rhq)) {
   6163     // Treat address-space mismatches as fatal.  TODO: address subspaces
   6164     if (lhq.getAddressSpace() != rhq.getAddressSpace())
   6165       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6166 
   6167     // It's okay to add or remove GC or lifetime qualifiers when converting to
   6168     // and from void*.
   6169     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
   6170                         .compatiblyIncludes(
   6171                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
   6172              && (lhptee->isVoidType() || rhptee->isVoidType()))
   6173       ; // keep old
   6174 
   6175     // Treat lifetime mismatches as fatal.
   6176     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   6177       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6178 
   6179     // For GCC compatibility, other qualifier mismatches are treated
   6180     // as still compatible in C.
   6181     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6182   }
   6183 
   6184   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   6185   // incomplete type and the other is a pointer to a qualified or unqualified
   6186   // version of void...
   6187   if (lhptee->isVoidType()) {
   6188     if (rhptee->isIncompleteOrObjectType())
   6189       return ConvTy;
   6190 
   6191     // As an extension, we allow cast to/from void* to function pointer.
   6192     assert(rhptee->isFunctionType());
   6193     return Sema::FunctionVoidPointer;
   6194   }
   6195 
   6196   if (rhptee->isVoidType()) {
   6197     if (lhptee->isIncompleteOrObjectType())
   6198       return ConvTy;
   6199 
   6200     // As an extension, we allow cast to/from void* to function pointer.
   6201     assert(lhptee->isFunctionType());
   6202     return Sema::FunctionVoidPointer;
   6203   }
   6204 
   6205   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   6206   // unqualified versions of compatible types, ...
   6207   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   6208   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   6209     // Check if the pointee types are compatible ignoring the sign.
   6210     // We explicitly check for char so that we catch "char" vs
   6211     // "unsigned char" on systems where "char" is unsigned.
   6212     if (lhptee->isCharType())
   6213       ltrans = S.Context.UnsignedCharTy;
   6214     else if (lhptee->hasSignedIntegerRepresentation())
   6215       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   6216 
   6217     if (rhptee->isCharType())
   6218       rtrans = S.Context.UnsignedCharTy;
   6219     else if (rhptee->hasSignedIntegerRepresentation())
   6220       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   6221 
   6222     if (ltrans == rtrans) {
   6223       // Types are compatible ignoring the sign. Qualifier incompatibility
   6224       // takes priority over sign incompatibility because the sign
   6225       // warning can be disabled.
   6226       if (ConvTy != Sema::Compatible)
   6227         return ConvTy;
   6228 
   6229       return Sema::IncompatiblePointerSign;
   6230     }
   6231 
   6232     // If we are a multi-level pointer, it's possible that our issue is simply
   6233     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   6234     // the eventual target type is the same and the pointers have the same
   6235     // level of indirection, this must be the issue.
   6236     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   6237       do {
   6238         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   6239         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   6240       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   6241 
   6242       if (lhptee == rhptee)
   6243         return Sema::IncompatibleNestedPointerQualifiers;
   6244     }
   6245 
   6246     // General pointer incompatibility takes priority over qualifiers.
   6247     return Sema::IncompatiblePointer;
   6248   }
   6249   if (!S.getLangOpts().CPlusPlus &&
   6250       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
   6251     return Sema::IncompatiblePointer;
   6252   return ConvTy;
   6253 }
   6254 
   6255 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   6256 /// block pointer types are compatible or whether a block and normal pointer
   6257 /// are compatible. It is more restrict than comparing two function pointer
   6258 // types.
   6259 static Sema::AssignConvertType
   6260 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
   6261                                     QualType RHSType) {
   6262   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6263   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6264 
   6265   QualType lhptee, rhptee;
   6266 
   6267   // get the "pointed to" type (ignoring qualifiers at the top level)
   6268   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
   6269   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
   6270 
   6271   // In C++, the types have to match exactly.
   6272   if (S.getLangOpts().CPlusPlus)
   6273     return Sema::IncompatibleBlockPointer;
   6274 
   6275   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6276 
   6277   // For blocks we enforce that qualifiers are identical.
   6278   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   6279     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6280 
   6281   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
   6282     return Sema::IncompatibleBlockPointer;
   6283 
   6284   return ConvTy;
   6285 }
   6286 
   6287 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   6288 /// for assignment compatibility.
   6289 static Sema::AssignConvertType
   6290 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
   6291                                    QualType RHSType) {
   6292   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
   6293   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
   6294 
   6295   if (LHSType->isObjCBuiltinType()) {
   6296     // Class is not compatible with ObjC object pointers.
   6297     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
   6298         !RHSType->isObjCQualifiedClassType())
   6299       return Sema::IncompatiblePointer;
   6300     return Sema::Compatible;
   6301   }
   6302   if (RHSType->isObjCBuiltinType()) {
   6303     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
   6304         !LHSType->isObjCQualifiedClassType())
   6305       return Sema::IncompatiblePointer;
   6306     return Sema::Compatible;
   6307   }
   6308   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6309   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6310 
   6311   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
   6312       // make an exception for id<P>
   6313       !LHSType->isObjCQualifiedIdType())
   6314     return Sema::CompatiblePointerDiscardsQualifiers;
   6315 
   6316   if (S.Context.typesAreCompatible(LHSType, RHSType))
   6317     return Sema::Compatible;
   6318   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
   6319     return Sema::IncompatibleObjCQualifiedId;
   6320   return Sema::IncompatiblePointer;
   6321 }
   6322 
   6323 Sema::AssignConvertType
   6324 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   6325                                  QualType LHSType, QualType RHSType) {
   6326   // Fake up an opaque expression.  We don't actually care about what
   6327   // cast operations are required, so if CheckAssignmentConstraints
   6328   // adds casts to this they'll be wasted, but fortunately that doesn't
   6329   // usually happen on valid code.
   6330   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
   6331   ExprResult RHSPtr = &RHSExpr;
   6332   CastKind K = CK_Invalid;
   6333 
   6334   return CheckAssignmentConstraints(LHSType, RHSPtr, K);
   6335 }
   6336 
   6337 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   6338 /// has code to accommodate several GCC extensions when type checking
   6339 /// pointers. Here are some objectionable examples that GCC considers warnings:
   6340 ///
   6341 ///  int a, *pint;
   6342 ///  short *pshort;
   6343 ///  struct foo *pfoo;
   6344 ///
   6345 ///  pint = pshort; // warning: assignment from incompatible pointer type
   6346 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   6347 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   6348 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   6349 ///
   6350 /// As a result, the code for dealing with pointers is more complex than the
   6351 /// C99 spec dictates.
   6352 ///
   6353 /// Sets 'Kind' for any result kind except Incompatible.
   6354 Sema::AssignConvertType
   6355 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   6356                                  CastKind &Kind) {
   6357   QualType RHSType = RHS.get()->getType();
   6358   QualType OrigLHSType = LHSType;
   6359 
   6360   // Get canonical types.  We're not formatting these types, just comparing
   6361   // them.
   6362   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
   6363   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
   6364 
   6365   // Common case: no conversion required.
   6366   if (LHSType == RHSType) {
   6367     Kind = CK_NoOp;
   6368     return Compatible;
   6369   }
   6370 
   6371   // If we have an atomic type, try a non-atomic assignment, then just add an
   6372   // atomic qualification step.
   6373   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
   6374     Sema::AssignConvertType result =
   6375       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
   6376     if (result != Compatible)
   6377       return result;
   6378     if (Kind != CK_NoOp)
   6379       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
   6380     Kind = CK_NonAtomicToAtomic;
   6381     return Compatible;
   6382   }
   6383 
   6384   // If the left-hand side is a reference type, then we are in a
   6385   // (rare!) case where we've allowed the use of references in C,
   6386   // e.g., as a parameter type in a built-in function. In this case,
   6387   // just make sure that the type referenced is compatible with the
   6388   // right-hand side type. The caller is responsible for adjusting
   6389   // LHSType so that the resulting expression does not have reference
   6390   // type.
   6391   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
   6392     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
   6393       Kind = CK_LValueBitCast;
   6394       return Compatible;
   6395     }
   6396     return Incompatible;
   6397   }
   6398 
   6399   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   6400   // to the same ExtVector type.
   6401   if (LHSType->isExtVectorType()) {
   6402     if (RHSType->isExtVectorType())
   6403       return Incompatible;
   6404     if (RHSType->isArithmeticType()) {
   6405       // CK_VectorSplat does T -> vector T, so first cast to the
   6406       // element type.
   6407       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
   6408       if (elType != RHSType) {
   6409         Kind = PrepareScalarCast(RHS, elType);
   6410         RHS = ImpCastExprToType(RHS.get(), elType, Kind);
   6411       }
   6412       Kind = CK_VectorSplat;
   6413       return Compatible;
   6414     }
   6415   }
   6416 
   6417   // Conversions to or from vector type.
   6418   if (LHSType->isVectorType() || RHSType->isVectorType()) {
   6419     if (LHSType->isVectorType() && RHSType->isVectorType()) {
   6420       // Allow assignments of an AltiVec vector type to an equivalent GCC
   6421       // vector type and vice versa
   6422       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   6423         Kind = CK_BitCast;
   6424         return Compatible;
   6425       }
   6426 
   6427       // If we are allowing lax vector conversions, and LHS and RHS are both
   6428       // vectors, the total size only needs to be the same. This is a bitcast;
   6429       // no bits are changed but the result type is different.
   6430       if (isLaxVectorConversion(RHSType, LHSType)) {
   6431         Kind = CK_BitCast;
   6432         return IncompatibleVectors;
   6433       }
   6434     }
   6435     return Incompatible;
   6436   }
   6437 
   6438   // Arithmetic conversions.
   6439   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
   6440       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
   6441     Kind = PrepareScalarCast(RHS, LHSType);
   6442     return Compatible;
   6443   }
   6444 
   6445   // Conversions to normal pointers.
   6446   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
   6447     // U* -> T*
   6448     if (isa<PointerType>(RHSType)) {
   6449       Kind = CK_BitCast;
   6450       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
   6451     }
   6452 
   6453     // int -> T*
   6454     if (RHSType->isIntegerType()) {
   6455       Kind = CK_IntegralToPointer; // FIXME: null?
   6456       return IntToPointer;
   6457     }
   6458 
   6459     // C pointers are not compatible with ObjC object pointers,
   6460     // with two exceptions:
   6461     if (isa<ObjCObjectPointerType>(RHSType)) {
   6462       //  - conversions to void*
   6463       if (LHSPointer->getPointeeType()->isVoidType()) {
   6464         Kind = CK_BitCast;
   6465         return Compatible;
   6466       }
   6467 
   6468       //  - conversions from 'Class' to the redefinition type
   6469       if (RHSType->isObjCClassType() &&
   6470           Context.hasSameType(LHSType,
   6471                               Context.getObjCClassRedefinitionType())) {
   6472         Kind = CK_BitCast;
   6473         return Compatible;
   6474       }
   6475 
   6476       Kind = CK_BitCast;
   6477       return IncompatiblePointer;
   6478     }
   6479 
   6480     // U^ -> void*
   6481     if (RHSType->getAs<BlockPointerType>()) {
   6482       if (LHSPointer->getPointeeType()->isVoidType()) {
   6483         Kind = CK_BitCast;
   6484         return Compatible;
   6485       }
   6486     }
   6487 
   6488     return Incompatible;
   6489   }
   6490 
   6491   // Conversions to block pointers.
   6492   if (isa<BlockPointerType>(LHSType)) {
   6493     // U^ -> T^
   6494     if (RHSType->isBlockPointerType()) {
   6495       Kind = CK_BitCast;
   6496       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
   6497     }
   6498 
   6499     // int or null -> T^
   6500     if (RHSType->isIntegerType()) {
   6501       Kind = CK_IntegralToPointer; // FIXME: null
   6502       return IntToBlockPointer;
   6503     }
   6504 
   6505     // id -> T^
   6506     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
   6507       Kind = CK_AnyPointerToBlockPointerCast;
   6508       return Compatible;
   6509     }
   6510 
   6511     // void* -> T^
   6512     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
   6513       if (RHSPT->getPointeeType()->isVoidType()) {
   6514         Kind = CK_AnyPointerToBlockPointerCast;
   6515         return Compatible;
   6516       }
   6517 
   6518     return Incompatible;
   6519   }
   6520 
   6521   // Conversions to Objective-C pointers.
   6522   if (isa<ObjCObjectPointerType>(LHSType)) {
   6523     // A* -> B*
   6524     if (RHSType->isObjCObjectPointerType()) {
   6525       Kind = CK_BitCast;
   6526       Sema::AssignConvertType result =
   6527         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
   6528       if (getLangOpts().ObjCAutoRefCount &&
   6529           result == Compatible &&
   6530           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
   6531         result = IncompatibleObjCWeakRef;
   6532       return result;
   6533     }
   6534 
   6535     // int or null -> A*
   6536     if (RHSType->isIntegerType()) {
   6537       Kind = CK_IntegralToPointer; // FIXME: null
   6538       return IntToPointer;
   6539     }
   6540 
   6541     // In general, C pointers are not compatible with ObjC object pointers,
   6542     // with two exceptions:
   6543     if (isa<PointerType>(RHSType)) {
   6544       Kind = CK_CPointerToObjCPointerCast;
   6545 
   6546       //  - conversions from 'void*'
   6547       if (RHSType->isVoidPointerType()) {
   6548         return Compatible;
   6549       }
   6550 
   6551       //  - conversions to 'Class' from its redefinition type
   6552       if (LHSType->isObjCClassType() &&
   6553           Context.hasSameType(RHSType,
   6554                               Context.getObjCClassRedefinitionType())) {
   6555         return Compatible;
   6556       }
   6557 
   6558       return IncompatiblePointer;
   6559     }
   6560 
   6561     // Only under strict condition T^ is compatible with an Objective-C pointer.
   6562     if (RHSType->isBlockPointerType() &&
   6563         isObjCPtrBlockCompatible(*this, Context, LHSType)) {
   6564       maybeExtendBlockObject(*this, RHS);
   6565       Kind = CK_BlockPointerToObjCPointerCast;
   6566       return Compatible;
   6567     }
   6568 
   6569     return Incompatible;
   6570   }
   6571 
   6572   // Conversions from pointers that are not covered by the above.
   6573   if (isa<PointerType>(RHSType)) {
   6574     // T* -> _Bool
   6575     if (LHSType == Context.BoolTy) {
   6576       Kind = CK_PointerToBoolean;
   6577       return Compatible;
   6578     }
   6579 
   6580     // T* -> int
   6581     if (LHSType->isIntegerType()) {
   6582       Kind = CK_PointerToIntegral;
   6583       return PointerToInt;
   6584     }
   6585 
   6586     return Incompatible;
   6587   }
   6588 
   6589   // Conversions from Objective-C pointers that are not covered by the above.
   6590   if (isa<ObjCObjectPointerType>(RHSType)) {
   6591     // T* -> _Bool
   6592     if (LHSType == Context.BoolTy) {
   6593       Kind = CK_PointerToBoolean;
   6594       return Compatible;
   6595     }
   6596 
   6597     // T* -> int
   6598     if (LHSType->isIntegerType()) {
   6599       Kind = CK_PointerToIntegral;
   6600       return PointerToInt;
   6601     }
   6602 
   6603     return Incompatible;
   6604   }
   6605 
   6606   // struct A -> struct B
   6607   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
   6608     if (Context.typesAreCompatible(LHSType, RHSType)) {
   6609       Kind = CK_NoOp;
   6610       return Compatible;
   6611     }
   6612   }
   6613 
   6614   return Incompatible;
   6615 }
   6616 
   6617 /// \brief Constructs a transparent union from an expression that is
   6618 /// used to initialize the transparent union.
   6619 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
   6620                                       ExprResult &EResult, QualType UnionType,
   6621                                       FieldDecl *Field) {
   6622   // Build an initializer list that designates the appropriate member
   6623   // of the transparent union.
   6624   Expr *E = EResult.get();
   6625   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   6626                                                    E, SourceLocation());
   6627   Initializer->setType(UnionType);
   6628   Initializer->setInitializedFieldInUnion(Field);
   6629 
   6630   // Build a compound literal constructing a value of the transparent
   6631   // union type from this initializer list.
   6632   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   6633   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   6634                                         VK_RValue, Initializer, false);
   6635 }
   6636 
   6637 Sema::AssignConvertType
   6638 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
   6639                                                ExprResult &RHS) {
   6640   QualType RHSType = RHS.get()->getType();
   6641 
   6642   // If the ArgType is a Union type, we want to handle a potential
   6643   // transparent_union GCC extension.
   6644   const RecordType *UT = ArgType->getAsUnionType();
   6645   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   6646     return Incompatible;
   6647 
   6648   // The field to initialize within the transparent union.
   6649   RecordDecl *UD = UT->getDecl();
   6650   FieldDecl *InitField = nullptr;
   6651   // It's compatible if the expression matches any of the fields.
   6652   for (auto *it : UD->fields()) {
   6653     if (it->getType()->isPointerType()) {
   6654       // If the transparent union contains a pointer type, we allow:
   6655       // 1) void pointer
   6656       // 2) null pointer constant
   6657       if (RHSType->isPointerType())
   6658         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
   6659           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
   6660           InitField = it;
   6661           break;
   6662         }
   6663 
   6664       if (RHS.get()->isNullPointerConstant(Context,
   6665                                            Expr::NPC_ValueDependentIsNull)) {
   6666         RHS = ImpCastExprToType(RHS.get(), it->getType(),
   6667                                 CK_NullToPointer);
   6668         InitField = it;
   6669         break;
   6670       }
   6671     }
   6672 
   6673     CastKind Kind = CK_Invalid;
   6674     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
   6675           == Compatible) {
   6676       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
   6677       InitField = it;
   6678       break;
   6679     }
   6680   }
   6681 
   6682   if (!InitField)
   6683     return Incompatible;
   6684 
   6685   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
   6686   return Compatible;
   6687 }
   6688 
   6689 Sema::AssignConvertType
   6690 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   6691                                        bool Diagnose,
   6692                                        bool DiagnoseCFAudited) {
   6693   if (getLangOpts().CPlusPlus) {
   6694     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
   6695       // C++ 5.17p3: If the left operand is not of class type, the
   6696       // expression is implicitly converted (C++ 4) to the
   6697       // cv-unqualified type of the left operand.
   6698       ExprResult Res;
   6699       if (Diagnose) {
   6700         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6701                                         AA_Assigning);
   6702       } else {
   6703         ImplicitConversionSequence ICS =
   6704             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6705                                   /*SuppressUserConversions=*/false,
   6706                                   /*AllowExplicit=*/false,
   6707                                   /*InOverloadResolution=*/false,
   6708                                   /*CStyle=*/false,
   6709                                   /*AllowObjCWritebackConversion=*/false);
   6710         if (ICS.isFailure())
   6711           return Incompatible;
   6712         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   6713                                         ICS, AA_Assigning);
   6714       }
   6715       if (Res.isInvalid())
   6716         return Incompatible;
   6717       Sema::AssignConvertType result = Compatible;
   6718       if (getLangOpts().ObjCAutoRefCount &&
   6719           !CheckObjCARCUnavailableWeakConversion(LHSType,
   6720                                                  RHS.get()->getType()))
   6721         result = IncompatibleObjCWeakRef;
   6722       RHS = Res;
   6723       return result;
   6724     }
   6725 
   6726     // FIXME: Currently, we fall through and treat C++ classes like C
   6727     // structures.
   6728     // FIXME: We also fall through for atomics; not sure what should
   6729     // happen there, though.
   6730   }
   6731 
   6732   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   6733   // a null pointer constant.
   6734   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
   6735        LHSType->isBlockPointerType()) &&
   6736       RHS.get()->isNullPointerConstant(Context,
   6737                                        Expr::NPC_ValueDependentIsNull)) {
   6738     CastKind Kind;
   6739     CXXCastPath Path;
   6740     CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
   6741     RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
   6742     return Compatible;
   6743   }
   6744 
   6745   // This check seems unnatural, however it is necessary to ensure the proper
   6746   // conversion of functions/arrays. If the conversion were done for all
   6747   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   6748   // expressions that suppress this implicit conversion (&, sizeof).
   6749   //
   6750   // Suppress this for references: C++ 8.5.3p5.
   6751   if (!LHSType->isReferenceType()) {
   6752     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   6753     if (RHS.isInvalid())
   6754       return Incompatible;
   6755   }
   6756 
   6757   CastKind Kind = CK_Invalid;
   6758   Sema::AssignConvertType result =
   6759     CheckAssignmentConstraints(LHSType, RHS, Kind);
   6760 
   6761   // C99 6.5.16.1p2: The value of the right operand is converted to the
   6762   // type of the assignment expression.
   6763   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   6764   // so that we can use references in built-in functions even in C.
   6765   // The getNonReferenceType() call makes sure that the resulting expression
   6766   // does not have reference type.
   6767   if (result != Incompatible && RHS.get()->getType() != LHSType) {
   6768     QualType Ty = LHSType.getNonLValueExprType(Context);
   6769     Expr *E = RHS.get();
   6770     if (getLangOpts().ObjCAutoRefCount)
   6771       CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
   6772                              DiagnoseCFAudited);
   6773     if (getLangOpts().ObjC1 &&
   6774         (CheckObjCBridgeRelatedConversions(E->getLocStart(),
   6775                                           LHSType, E->getType(), E) ||
   6776          ConversionToObjCStringLiteralCheck(LHSType, E))) {
   6777       RHS = E;
   6778       return Compatible;
   6779     }
   6780 
   6781     RHS = ImpCastExprToType(E, Ty, Kind);
   6782   }
   6783   return result;
   6784 }
   6785 
   6786 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
   6787                                ExprResult &RHS) {
   6788   Diag(Loc, diag::err_typecheck_invalid_operands)
   6789     << LHS.get()->getType() << RHS.get()->getType()
   6790     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6791   return QualType();
   6792 }
   6793 
   6794 /// Try to convert a value of non-vector type to a vector type by converting
   6795 /// the type to the element type of the vector and then performing a splat.
   6796 /// If the language is OpenCL, we only use conversions that promote scalar
   6797 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
   6798 /// for float->int.
   6799 ///
   6800 /// \param scalar - if non-null, actually perform the conversions
   6801 /// \return true if the operation fails (but without diagnosing the failure)
   6802 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
   6803                                      QualType scalarTy,
   6804                                      QualType vectorEltTy,
   6805                                      QualType vectorTy) {
   6806   // The conversion to apply to the scalar before splatting it,
   6807   // if necessary.
   6808   CastKind scalarCast = CK_Invalid;
   6809 
   6810   if (vectorEltTy->isIntegralType(S.Context)) {
   6811     if (!scalarTy->isIntegralType(S.Context))
   6812       return true;
   6813     if (S.getLangOpts().OpenCL &&
   6814         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
   6815       return true;
   6816     scalarCast = CK_IntegralCast;
   6817   } else if (vectorEltTy->isRealFloatingType()) {
   6818     if (scalarTy->isRealFloatingType()) {
   6819       if (S.getLangOpts().OpenCL &&
   6820           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
   6821         return true;
   6822       scalarCast = CK_FloatingCast;
   6823     }
   6824     else if (scalarTy->isIntegralType(S.Context))
   6825       scalarCast = CK_IntegralToFloating;
   6826     else
   6827       return true;
   6828   } else {
   6829     return true;
   6830   }
   6831 
   6832   // Adjust scalar if desired.
   6833   if (scalar) {
   6834     if (scalarCast != CK_Invalid)
   6835       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
   6836     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
   6837   }
   6838   return false;
   6839 }
   6840 
   6841 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   6842                                    SourceLocation Loc, bool IsCompAssign) {
   6843   if (!IsCompAssign) {
   6844     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   6845     if (LHS.isInvalid())
   6846       return QualType();
   6847   }
   6848   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   6849   if (RHS.isInvalid())
   6850     return QualType();
   6851 
   6852   // For conversion purposes, we ignore any qualifiers.
   6853   // For example, "const float" and "float" are equivalent.
   6854   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
   6855   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
   6856 
   6857   // If the vector types are identical, return.
   6858   if (Context.hasSameType(LHSType, RHSType))
   6859     return LHSType;
   6860 
   6861   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
   6862   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
   6863   assert(LHSVecType || RHSVecType);
   6864 
   6865   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
   6866   if (LHSVecType && RHSVecType &&
   6867       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   6868     if (isa<ExtVectorType>(LHSVecType)) {
   6869       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   6870       return LHSType;
   6871     }
   6872 
   6873     if (!IsCompAssign)
   6874       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   6875     return RHSType;
   6876   }
   6877 
   6878   // If there's an ext-vector type and a scalar, try to convert the scalar to
   6879   // the vector element type and splat.
   6880   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
   6881     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
   6882                                   LHSVecType->getElementType(), LHSType))
   6883       return LHSType;
   6884   }
   6885   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
   6886     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
   6887                                   LHSType, RHSVecType->getElementType(),
   6888                                   RHSType))
   6889       return RHSType;
   6890   }
   6891 
   6892   // If we're allowing lax vector conversions, only the total (data) size
   6893   // needs to be the same.
   6894   // FIXME: Should we really be allowing this?
   6895   // FIXME: We really just pick the LHS type arbitrarily?
   6896   if (isLaxVectorConversion(RHSType, LHSType)) {
   6897     QualType resultType = LHSType;
   6898     RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
   6899     return resultType;
   6900   }
   6901 
   6902   // Okay, the expression is invalid.
   6903 
   6904   // If there's a non-vector, non-real operand, diagnose that.
   6905   if ((!RHSVecType && !RHSType->isRealType()) ||
   6906       (!LHSVecType && !LHSType->isRealType())) {
   6907     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
   6908       << LHSType << RHSType
   6909       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6910     return QualType();
   6911   }
   6912 
   6913   // Otherwise, use the generic diagnostic.
   6914   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   6915     << LHSType << RHSType
   6916     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6917   return QualType();
   6918 }
   6919 
   6920 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
   6921 // expression.  These are mainly cases where the null pointer is used as an
   6922 // integer instead of a pointer.
   6923 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
   6924                                 SourceLocation Loc, bool IsCompare) {
   6925   // The canonical way to check for a GNU null is with isNullPointerConstant,
   6926   // but we use a bit of a hack here for speed; this is a relatively
   6927   // hot path, and isNullPointerConstant is slow.
   6928   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
   6929   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
   6930 
   6931   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
   6932 
   6933   // Avoid analyzing cases where the result will either be invalid (and
   6934   // diagnosed as such) or entirely valid and not something to warn about.
   6935   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
   6936       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
   6937     return;
   6938 
   6939   // Comparison operations would not make sense with a null pointer no matter
   6940   // what the other expression is.
   6941   if (!IsCompare) {
   6942     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
   6943         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
   6944         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
   6945     return;
   6946   }
   6947 
   6948   // The rest of the operations only make sense with a null pointer
   6949   // if the other expression is a pointer.
   6950   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
   6951       NonNullType->canDecayToPointerType())
   6952     return;
   6953 
   6954   S.Diag(Loc, diag::warn_null_in_comparison_operation)
   6955       << LHSNull /* LHS is NULL */ << NonNullType
   6956       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6957 }
   6958 
   6959 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
   6960                                            SourceLocation Loc,
   6961                                            bool IsCompAssign, bool IsDiv) {
   6962   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6963 
   6964   if (LHS.get()->getType()->isVectorType() ||
   6965       RHS.get()->getType()->isVectorType())
   6966     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   6967 
   6968   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   6969   if (LHS.isInvalid() || RHS.isInvalid())
   6970     return QualType();
   6971 
   6972 
   6973   if (compType.isNull() || !compType->isArithmeticType())
   6974     return InvalidOperands(Loc, LHS, RHS);
   6975 
   6976   // Check for division by zero.
   6977   llvm::APSInt RHSValue;
   6978   if (IsDiv && !RHS.get()->isValueDependent() &&
   6979       RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
   6980     DiagRuntimeBehavior(Loc, RHS.get(),
   6981                         PDiag(diag::warn_division_by_zero)
   6982                           << RHS.get()->getSourceRange());
   6983 
   6984   return compType;
   6985 }
   6986 
   6987 QualType Sema::CheckRemainderOperands(
   6988   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   6989   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   6990 
   6991   if (LHS.get()->getType()->isVectorType() ||
   6992       RHS.get()->getType()->isVectorType()) {
   6993     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   6994         RHS.get()->getType()->hasIntegerRepresentation())
   6995       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   6996     return InvalidOperands(Loc, LHS, RHS);
   6997   }
   6998 
   6999   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   7000   if (LHS.isInvalid() || RHS.isInvalid())
   7001     return QualType();
   7002 
   7003   if (compType.isNull() || !compType->isIntegerType())
   7004     return InvalidOperands(Loc, LHS, RHS);
   7005 
   7006   // Check for remainder by zero.
   7007   llvm::APSInt RHSValue;
   7008   if (!RHS.get()->isValueDependent() &&
   7009       RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
   7010     DiagRuntimeBehavior(Loc, RHS.get(),
   7011                         PDiag(diag::warn_remainder_by_zero)
   7012                           << RHS.get()->getSourceRange());
   7013 
   7014   return compType;
   7015 }
   7016 
   7017 /// \brief Diagnose invalid arithmetic on two void pointers.
   7018 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   7019                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7020   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7021                 ? diag::err_typecheck_pointer_arith_void_type
   7022                 : diag::ext_gnu_void_ptr)
   7023     << 1 /* two pointers */ << LHSExpr->getSourceRange()
   7024                             << RHSExpr->getSourceRange();
   7025 }
   7026 
   7027 /// \brief Diagnose invalid arithmetic on a void pointer.
   7028 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   7029                                             Expr *Pointer) {
   7030   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7031                 ? diag::err_typecheck_pointer_arith_void_type
   7032                 : diag::ext_gnu_void_ptr)
   7033     << 0 /* one pointer */ << Pointer->getSourceRange();
   7034 }
   7035 
   7036 /// \brief Diagnose invalid arithmetic on two function pointers.
   7037 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   7038                                                     Expr *LHS, Expr *RHS) {
   7039   assert(LHS->getType()->isAnyPointerType());
   7040   assert(RHS->getType()->isAnyPointerType());
   7041   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7042                 ? diag::err_typecheck_pointer_arith_function_type
   7043                 : diag::ext_gnu_ptr_func_arith)
   7044     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   7045     // We only show the second type if it differs from the first.
   7046     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   7047                                                    RHS->getType())
   7048     << RHS->getType()->getPointeeType()
   7049     << LHS->getSourceRange() << RHS->getSourceRange();
   7050 }
   7051 
   7052 /// \brief Diagnose invalid arithmetic on a function pointer.
   7053 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   7054                                                 Expr *Pointer) {
   7055   assert(Pointer->getType()->isAnyPointerType());
   7056   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7057                 ? diag::err_typecheck_pointer_arith_function_type
   7058                 : diag::ext_gnu_ptr_func_arith)
   7059     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   7060     << 0 /* one pointer, so only one type */
   7061     << Pointer->getSourceRange();
   7062 }
   7063 
   7064 /// \brief Emit error if Operand is incomplete pointer type
   7065 ///
   7066 /// \returns True if pointer has incomplete type
   7067 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
   7068                                                  Expr *Operand) {
   7069   assert(Operand->getType()->isAnyPointerType() &&
   7070          !Operand->getType()->isDependentType());
   7071   QualType PointeeTy = Operand->getType()->getPointeeType();
   7072   return S.RequireCompleteType(Loc, PointeeTy,
   7073                                diag::err_typecheck_arithmetic_incomplete_type,
   7074                                PointeeTy, Operand->getSourceRange());
   7075 }
   7076 
   7077 /// \brief Check the validity of an arithmetic pointer operand.
   7078 ///
   7079 /// If the operand has pointer type, this code will check for pointer types
   7080 /// which are invalid in arithmetic operations. These will be diagnosed
   7081 /// appropriately, including whether or not the use is supported as an
   7082 /// extension.
   7083 ///
   7084 /// \returns True when the operand is valid to use (even if as an extension).
   7085 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   7086                                             Expr *Operand) {
   7087   if (!Operand->getType()->isAnyPointerType()) return true;
   7088 
   7089   QualType PointeeTy = Operand->getType()->getPointeeType();
   7090   if (PointeeTy->isVoidType()) {
   7091     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   7092     return !S.getLangOpts().CPlusPlus;
   7093   }
   7094   if (PointeeTy->isFunctionType()) {
   7095     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   7096     return !S.getLangOpts().CPlusPlus;
   7097   }
   7098 
   7099   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
   7100 
   7101   return true;
   7102 }
   7103 
   7104 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   7105 /// operands.
   7106 ///
   7107 /// This routine will diagnose any invalid arithmetic on pointer operands much
   7108 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   7109 /// for emitting a single diagnostic even for operations where both LHS and RHS
   7110 /// are (potentially problematic) pointers.
   7111 ///
   7112 /// \returns True when the operand is valid to use (even if as an extension).
   7113 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   7114                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7115   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
   7116   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
   7117   if (!isLHSPointer && !isRHSPointer) return true;
   7118 
   7119   QualType LHSPointeeTy, RHSPointeeTy;
   7120   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
   7121   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
   7122 
   7123   // Check for arithmetic on pointers to incomplete types.
   7124   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   7125   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   7126   if (isLHSVoidPtr || isRHSVoidPtr) {
   7127     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
   7128     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
   7129     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
   7130 
   7131     return !S.getLangOpts().CPlusPlus;
   7132   }
   7133 
   7134   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   7135   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   7136   if (isLHSFuncPtr || isRHSFuncPtr) {
   7137     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
   7138     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
   7139                                                                 RHSExpr);
   7140     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
   7141 
   7142     return !S.getLangOpts().CPlusPlus;
   7143   }
   7144 
   7145   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
   7146     return false;
   7147   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
   7148     return false;
   7149 
   7150   return true;
   7151 }
   7152 
   7153 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
   7154 /// literal.
   7155 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
   7156                                   Expr *LHSExpr, Expr *RHSExpr) {
   7157   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
   7158   Expr* IndexExpr = RHSExpr;
   7159   if (!StrExpr) {
   7160     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
   7161     IndexExpr = LHSExpr;
   7162   }
   7163 
   7164   bool IsStringPlusInt = StrExpr &&
   7165       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
   7166   if (!IsStringPlusInt)
   7167     return;
   7168 
   7169   llvm::APSInt index;
   7170   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
   7171     unsigned StrLenWithNull = StrExpr->getLength() + 1;
   7172     if (index.isNonNegative() &&
   7173         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
   7174                               index.isUnsigned()))
   7175       return;
   7176   }
   7177 
   7178   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7179   Self.Diag(OpLoc, diag::warn_string_plus_int)
   7180       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
   7181 
   7182   // Only print a fixit for "str" + int, not for int + "str".
   7183   if (IndexExpr == RHSExpr) {
   7184     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
   7185     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7186         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7187         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7188         << FixItHint::CreateInsertion(EndLoc, "]");
   7189   } else
   7190     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7191 }
   7192 
   7193 /// \brief Emit a warning when adding a char literal to a string.
   7194 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
   7195                                    Expr *LHSExpr, Expr *RHSExpr) {
   7196   const DeclRefExpr *StringRefExpr =
   7197       dyn_cast<DeclRefExpr>(LHSExpr->IgnoreImpCasts());
   7198   const CharacterLiteral *CharExpr =
   7199       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
   7200   if (!StringRefExpr) {
   7201     StringRefExpr = dyn_cast<DeclRefExpr>(RHSExpr->IgnoreImpCasts());
   7202     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
   7203   }
   7204 
   7205   if (!CharExpr || !StringRefExpr)
   7206     return;
   7207 
   7208   const QualType StringType = StringRefExpr->getType();
   7209 
   7210   // Return if not a PointerType.
   7211   if (!StringType->isAnyPointerType())
   7212     return;
   7213 
   7214   // Return if not a CharacterType.
   7215   if (!StringType->getPointeeType()->isAnyCharacterType())
   7216     return;
   7217 
   7218   ASTContext &Ctx = Self.getASTContext();
   7219   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7220 
   7221   const QualType CharType = CharExpr->getType();
   7222   if (!CharType->isAnyCharacterType() &&
   7223       CharType->isIntegerType() &&
   7224       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
   7225     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7226         << DiagRange << Ctx.CharTy;
   7227   } else {
   7228     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7229         << DiagRange << CharExpr->getType();
   7230   }
   7231 
   7232   // Only print a fixit for str + char, not for char + str.
   7233   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
   7234     SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
   7235     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7236         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7237         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7238         << FixItHint::CreateInsertion(EndLoc, "]");
   7239   } else {
   7240     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7241   }
   7242 }
   7243 
   7244 /// \brief Emit error when two pointers are incompatible.
   7245 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
   7246                                            Expr *LHSExpr, Expr *RHSExpr) {
   7247   assert(LHSExpr->getType()->isAnyPointerType());
   7248   assert(RHSExpr->getType()->isAnyPointerType());
   7249   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   7250     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
   7251     << RHSExpr->getSourceRange();
   7252 }
   7253 
   7254 QualType Sema::CheckAdditionOperands( // C99 6.5.6
   7255     ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
   7256     QualType* CompLHSTy) {
   7257   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7258 
   7259   if (LHS.get()->getType()->isVectorType() ||
   7260       RHS.get()->getType()->isVectorType()) {
   7261     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   7262     if (CompLHSTy) *CompLHSTy = compType;
   7263     return compType;
   7264   }
   7265 
   7266   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   7267   if (LHS.isInvalid() || RHS.isInvalid())
   7268     return QualType();
   7269 
   7270   // Diagnose "string literal" '+' int and string '+' "char literal".
   7271   if (Opc == BO_Add) {
   7272     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
   7273     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
   7274   }
   7275 
   7276   // handle the common case first (both operands are arithmetic).
   7277   if (!compType.isNull() && compType->isArithmeticType()) {
   7278     if (CompLHSTy) *CompLHSTy = compType;
   7279     return compType;
   7280   }
   7281 
   7282   // Type-checking.  Ultimately the pointer's going to be in PExp;
   7283   // note that we bias towards the LHS being the pointer.
   7284   Expr *PExp = LHS.get(), *IExp = RHS.get();
   7285 
   7286   bool isObjCPointer;
   7287   if (PExp->getType()->isPointerType()) {
   7288     isObjCPointer = false;
   7289   } else if (PExp->getType()->isObjCObjectPointerType()) {
   7290     isObjCPointer = true;
   7291   } else {
   7292     std::swap(PExp, IExp);
   7293     if (PExp->getType()->isPointerType()) {
   7294       isObjCPointer = false;
   7295     } else if (PExp->getType()->isObjCObjectPointerType()) {
   7296       isObjCPointer = true;
   7297     } else {
   7298       return InvalidOperands(Loc, LHS, RHS);
   7299     }
   7300   }
   7301   assert(PExp->getType()->isAnyPointerType());
   7302 
   7303   if (!IExp->getType()->isIntegerType())
   7304     return InvalidOperands(Loc, LHS, RHS);
   7305 
   7306   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   7307     return QualType();
   7308 
   7309   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
   7310     return QualType();
   7311 
   7312   // Check array bounds for pointer arithemtic
   7313   CheckArrayAccess(PExp, IExp);
   7314 
   7315   if (CompLHSTy) {
   7316     QualType LHSTy = Context.isPromotableBitField(LHS.get());
   7317     if (LHSTy.isNull()) {
   7318       LHSTy = LHS.get()->getType();
   7319       if (LHSTy->isPromotableIntegerType())
   7320         LHSTy = Context.getPromotedIntegerType(LHSTy);
   7321     }
   7322     *CompLHSTy = LHSTy;
   7323   }
   7324 
   7325   return PExp->getType();
   7326 }
   7327 
   7328 // C99 6.5.6
   7329 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
   7330                                         SourceLocation Loc,
   7331                                         QualType* CompLHSTy) {
   7332   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7333 
   7334   if (LHS.get()->getType()->isVectorType() ||
   7335       RHS.get()->getType()->isVectorType()) {
   7336     QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
   7337     if (CompLHSTy) *CompLHSTy = compType;
   7338     return compType;
   7339   }
   7340 
   7341   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   7342   if (LHS.isInvalid() || RHS.isInvalid())
   7343     return QualType();
   7344 
   7345   // Enforce type constraints: C99 6.5.6p3.
   7346 
   7347   // Handle the common case first (both operands are arithmetic).
   7348   if (!compType.isNull() && compType->isArithmeticType()) {
   7349     if (CompLHSTy) *CompLHSTy = compType;
   7350     return compType;
   7351   }
   7352 
   7353   // Either ptr - int   or   ptr - ptr.
   7354   if (LHS.get()->getType()->isAnyPointerType()) {
   7355     QualType lpointee = LHS.get()->getType()->getPointeeType();
   7356 
   7357     // Diagnose bad cases where we step over interface counts.
   7358     if (LHS.get()->getType()->isObjCObjectPointerType() &&
   7359         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
   7360       return QualType();
   7361 
   7362     // The result type of a pointer-int computation is the pointer type.
   7363     if (RHS.get()->getType()->isIntegerType()) {
   7364       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
   7365         return QualType();
   7366 
   7367       // Check array bounds for pointer arithemtic
   7368       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
   7369                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
   7370 
   7371       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   7372       return LHS.get()->getType();
   7373     }
   7374 
   7375     // Handle pointer-pointer subtractions.
   7376     if (const PointerType *RHSPTy
   7377           = RHS.get()->getType()->getAs<PointerType>()) {
   7378       QualType rpointee = RHSPTy->getPointeeType();
   7379 
   7380       if (getLangOpts().CPlusPlus) {
   7381         // Pointee types must be the same: C++ [expr.add]
   7382         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   7383           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   7384         }
   7385       } else {
   7386         // Pointee types must be compatible C99 6.5.6p3
   7387         if (!Context.typesAreCompatible(
   7388                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   7389                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   7390           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   7391           return QualType();
   7392         }
   7393       }
   7394 
   7395       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   7396                                                LHS.get(), RHS.get()))
   7397         return QualType();
   7398 
   7399       // The pointee type may have zero size.  As an extension, a structure or
   7400       // union may have zero size or an array may have zero length.  In this
   7401       // case subtraction does not make sense.
   7402       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
   7403         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
   7404         if (ElementSize.isZero()) {
   7405           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
   7406             << rpointee.getUnqualifiedType()
   7407             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7408         }
   7409       }
   7410 
   7411       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   7412       return Context.getPointerDiffType();
   7413     }
   7414   }
   7415 
   7416   return InvalidOperands(Loc, LHS, RHS);
   7417 }
   7418 
   7419 static bool isScopedEnumerationType(QualType T) {
   7420   if (const EnumType *ET = dyn_cast<EnumType>(T))
   7421     return ET->getDecl()->isScoped();
   7422   return false;
   7423 }
   7424 
   7425 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
   7426                                    SourceLocation Loc, unsigned Opc,
   7427                                    QualType LHSType) {
   7428   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
   7429   // so skip remaining warnings as we don't want to modify values within Sema.
   7430   if (S.getLangOpts().OpenCL)
   7431     return;
   7432 
   7433   llvm::APSInt Right;
   7434   // Check right/shifter operand
   7435   if (RHS.get()->isValueDependent() ||
   7436       !RHS.get()->isIntegerConstantExpr(Right, S.Context))
   7437     return;
   7438 
   7439   if (Right.isNegative()) {
   7440     S.DiagRuntimeBehavior(Loc, RHS.get(),
   7441                           S.PDiag(diag::warn_shift_negative)
   7442                             << RHS.get()->getSourceRange());
   7443     return;
   7444   }
   7445   llvm::APInt LeftBits(Right.getBitWidth(),
   7446                        S.Context.getTypeSize(LHS.get()->getType()));
   7447   if (Right.uge(LeftBits)) {
   7448     S.DiagRuntimeBehavior(Loc, RHS.get(),
   7449                           S.PDiag(diag::warn_shift_gt_typewidth)
   7450                             << RHS.get()->getSourceRange());
   7451     return;
   7452   }
   7453   if (Opc != BO_Shl)
   7454     return;
   7455 
   7456   // When left shifting an ICE which is signed, we can check for overflow which
   7457   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   7458   // integers have defined behavior modulo one more than the maximum value
   7459   // representable in the result type, so never warn for those.
   7460   llvm::APSInt Left;
   7461   if (LHS.get()->isValueDependent() ||
   7462       !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
   7463       LHSType->hasUnsignedIntegerRepresentation())
   7464     return;
   7465   llvm::APInt ResultBits =
   7466       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   7467   if (LeftBits.uge(ResultBits))
   7468     return;
   7469   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   7470   Result = Result.shl(Right);
   7471 
   7472   // Print the bit representation of the signed integer as an unsigned
   7473   // hexadecimal number.
   7474   SmallString<40> HexResult;
   7475   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   7476 
   7477   // If we are only missing a sign bit, this is less likely to result in actual
   7478   // bugs -- if the result is cast back to an unsigned type, it will have the
   7479   // expected value. Thus we place this behind a different warning that can be
   7480   // turned off separately if needed.
   7481   if (LeftBits == ResultBits - 1) {
   7482     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   7483         << HexResult.str() << LHSType
   7484         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7485     return;
   7486   }
   7487 
   7488   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   7489     << HexResult.str() << Result.getMinSignedBits() << LHSType
   7490     << Left.getBitWidth() << LHS.get()->getSourceRange()
   7491     << RHS.get()->getSourceRange();
   7492 }
   7493 
   7494 // C99 6.5.7
   7495 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
   7496                                   SourceLocation Loc, unsigned Opc,
   7497                                   bool IsCompAssign) {
   7498   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7499 
   7500   // Vector shifts promote their scalar inputs to vector type.
   7501   if (LHS.get()->getType()->isVectorType() ||
   7502       RHS.get()->getType()->isVectorType())
   7503     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   7504 
   7505   // Shifts don't perform usual arithmetic conversions, they just do integer
   7506   // promotions on each operand. C99 6.5.7p3
   7507 
   7508   // For the LHS, do usual unary conversions, but then reset them away
   7509   // if this is a compound assignment.
   7510   ExprResult OldLHS = LHS;
   7511   LHS = UsualUnaryConversions(LHS.get());
   7512   if (LHS.isInvalid())
   7513     return QualType();
   7514   QualType LHSType = LHS.get()->getType();
   7515   if (IsCompAssign) LHS = OldLHS;
   7516 
   7517   // The RHS is simpler.
   7518   RHS = UsualUnaryConversions(RHS.get());
   7519   if (RHS.isInvalid())
   7520     return QualType();
   7521   QualType RHSType = RHS.get()->getType();
   7522 
   7523   // C99 6.5.7p2: Each of the operands shall have integer type.
   7524   if (!LHSType->hasIntegerRepresentation() ||
   7525       !RHSType->hasIntegerRepresentation())
   7526     return InvalidOperands(Loc, LHS, RHS);
   7527 
   7528   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   7529   // hasIntegerRepresentation() above instead of this.
   7530   if (isScopedEnumerationType(LHSType) ||
   7531       isScopedEnumerationType(RHSType)) {
   7532     return InvalidOperands(Loc, LHS, RHS);
   7533   }
   7534   // Sanity-check shift operands
   7535   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
   7536 
   7537   // "The type of the result is that of the promoted left operand."
   7538   return LHSType;
   7539 }
   7540 
   7541 static bool IsWithinTemplateSpecialization(Decl *D) {
   7542   if (DeclContext *DC = D->getDeclContext()) {
   7543     if (isa<ClassTemplateSpecializationDecl>(DC))
   7544       return true;
   7545     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   7546       return FD->isFunctionTemplateSpecialization();
   7547   }
   7548   return false;
   7549 }
   7550 
   7551 /// If two different enums are compared, raise a warning.
   7552 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
   7553                                 Expr *RHS) {
   7554   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
   7555   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
   7556 
   7557   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
   7558   if (!LHSEnumType)
   7559     return;
   7560   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
   7561   if (!RHSEnumType)
   7562     return;
   7563 
   7564   // Ignore anonymous enums.
   7565   if (!LHSEnumType->getDecl()->getIdentifier())
   7566     return;
   7567   if (!RHSEnumType->getDecl()->getIdentifier())
   7568     return;
   7569 
   7570   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
   7571     return;
   7572 
   7573   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   7574       << LHSStrippedType << RHSStrippedType
   7575       << LHS->getSourceRange() << RHS->getSourceRange();
   7576 }
   7577 
   7578 /// \brief Diagnose bad pointer comparisons.
   7579 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
   7580                                               ExprResult &LHS, ExprResult &RHS,
   7581                                               bool IsError) {
   7582   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
   7583                       : diag::ext_typecheck_comparison_of_distinct_pointers)
   7584     << LHS.get()->getType() << RHS.get()->getType()
   7585     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7586 }
   7587 
   7588 /// \brief Returns false if the pointers are converted to a composite type,
   7589 /// true otherwise.
   7590 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
   7591                                            ExprResult &LHS, ExprResult &RHS) {
   7592   // C++ [expr.rel]p2:
   7593   //   [...] Pointer conversions (4.10) and qualification
   7594   //   conversions (4.4) are performed on pointer operands (or on
   7595   //   a pointer operand and a null pointer constant) to bring
   7596   //   them to their composite pointer type. [...]
   7597   //
   7598   // C++ [expr.eq]p1 uses the same notion for (in)equality
   7599   // comparisons of pointers.
   7600 
   7601   // C++ [expr.eq]p2:
   7602   //   In addition, pointers to members can be compared, or a pointer to
   7603   //   member and a null pointer constant. Pointer to member conversions
   7604   //   (4.11) and qualification conversions (4.4) are performed to bring
   7605   //   them to a common type. If one operand is a null pointer constant,
   7606   //   the common type is the type of the other operand. Otherwise, the
   7607   //   common type is a pointer to member type similar (4.4) to the type
   7608   //   of one of the operands, with a cv-qualification signature (4.4)
   7609   //   that is the union of the cv-qualification signatures of the operand
   7610   //   types.
   7611 
   7612   QualType LHSType = LHS.get()->getType();
   7613   QualType RHSType = RHS.get()->getType();
   7614   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
   7615          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
   7616 
   7617   bool NonStandardCompositeType = false;
   7618   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
   7619   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
   7620   if (T.isNull()) {
   7621     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
   7622     return true;
   7623   }
   7624 
   7625   if (NonStandardCompositeType)
   7626     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   7627       << LHSType << RHSType << T << LHS.get()->getSourceRange()
   7628       << RHS.get()->getSourceRange();
   7629 
   7630   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
   7631   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
   7632   return false;
   7633 }
   7634 
   7635 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
   7636                                                     ExprResult &LHS,
   7637                                                     ExprResult &RHS,
   7638                                                     bool IsError) {
   7639   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
   7640                       : diag::ext_typecheck_comparison_of_fptr_to_void)
   7641     << LHS.get()->getType() << RHS.get()->getType()
   7642     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7643 }
   7644 
   7645 static bool isObjCObjectLiteral(ExprResult &E) {
   7646   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
   7647   case Stmt::ObjCArrayLiteralClass:
   7648   case Stmt::ObjCDictionaryLiteralClass:
   7649   case Stmt::ObjCStringLiteralClass:
   7650   case Stmt::ObjCBoxedExprClass:
   7651     return true;
   7652   default:
   7653     // Note that ObjCBoolLiteral is NOT an object literal!
   7654     return false;
   7655   }
   7656 }
   7657 
   7658 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
   7659   const ObjCObjectPointerType *Type =
   7660     LHS->getType()->getAs<ObjCObjectPointerType>();
   7661 
   7662   // If this is not actually an Objective-C object, bail out.
   7663   if (!Type)
   7664     return false;
   7665 
   7666   // Get the LHS object's interface type.
   7667   QualType InterfaceType = Type->getPointeeType();
   7668   if (const ObjCObjectType *iQFaceTy =
   7669       InterfaceType->getAsObjCQualifiedInterfaceType())
   7670     InterfaceType = iQFaceTy->getBaseType();
   7671 
   7672   // If the RHS isn't an Objective-C object, bail out.
   7673   if (!RHS->getType()->isObjCObjectPointerType())
   7674     return false;
   7675 
   7676   // Try to find the -isEqual: method.
   7677   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
   7678   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
   7679                                                       InterfaceType,
   7680                                                       /*instance=*/true);
   7681   if (!Method) {
   7682     if (Type->isObjCIdType()) {
   7683       // For 'id', just check the global pool.
   7684       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
   7685                                                   /*receiverId=*/true,
   7686                                                   /*warn=*/false);
   7687     } else {
   7688       // Check protocols.
   7689       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
   7690                                              /*instance=*/true);
   7691     }
   7692   }
   7693 
   7694   if (!Method)
   7695     return false;
   7696 
   7697   QualType T = Method->parameters()[0]->getType();
   7698   if (!T->isObjCObjectPointerType())
   7699     return false;
   7700 
   7701   QualType R = Method->getReturnType();
   7702   if (!R->isScalarType())
   7703     return false;
   7704 
   7705   return true;
   7706 }
   7707 
   7708 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
   7709   FromE = FromE->IgnoreParenImpCasts();
   7710   switch (FromE->getStmtClass()) {
   7711     default:
   7712       break;
   7713     case Stmt::ObjCStringLiteralClass:
   7714       // "string literal"
   7715       return LK_String;
   7716     case Stmt::ObjCArrayLiteralClass:
   7717       // "array literal"
   7718       return LK_Array;
   7719     case Stmt::ObjCDictionaryLiteralClass:
   7720       // "dictionary literal"
   7721       return LK_Dictionary;
   7722     case Stmt::BlockExprClass:
   7723       return LK_Block;
   7724     case Stmt::ObjCBoxedExprClass: {
   7725       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
   7726       switch (Inner->getStmtClass()) {
   7727         case Stmt::IntegerLiteralClass:
   7728         case Stmt::FloatingLiteralClass:
   7729         case Stmt::CharacterLiteralClass:
   7730         case Stmt::ObjCBoolLiteralExprClass:
   7731         case Stmt::CXXBoolLiteralExprClass:
   7732           // "numeric literal"
   7733           return LK_Numeric;
   7734         case Stmt::ImplicitCastExprClass: {
   7735           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
   7736           // Boolean literals can be represented by implicit casts.
   7737           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
   7738             return LK_Numeric;
   7739           break;
   7740         }
   7741         default:
   7742           break;
   7743       }
   7744       return LK_Boxed;
   7745     }
   7746   }
   7747   return LK_None;
   7748 }
   7749 
   7750 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
   7751                                           ExprResult &LHS, ExprResult &RHS,
   7752                                           BinaryOperator::Opcode Opc){
   7753   Expr *Literal;
   7754   Expr *Other;
   7755   if (isObjCObjectLiteral(LHS)) {
   7756     Literal = LHS.get();
   7757     Other = RHS.get();
   7758   } else {
   7759     Literal = RHS.get();
   7760     Other = LHS.get();
   7761   }
   7762 
   7763   // Don't warn on comparisons against nil.
   7764   Other = Other->IgnoreParenCasts();
   7765   if (Other->isNullPointerConstant(S.getASTContext(),
   7766                                    Expr::NPC_ValueDependentIsNotNull))
   7767     return;
   7768 
   7769   // This should be kept in sync with warn_objc_literal_comparison.
   7770   // LK_String should always be after the other literals, since it has its own
   7771   // warning flag.
   7772   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
   7773   assert(LiteralKind != Sema::LK_Block);
   7774   if (LiteralKind == Sema::LK_None) {
   7775     llvm_unreachable("Unknown Objective-C object literal kind");
   7776   }
   7777 
   7778   if (LiteralKind == Sema::LK_String)
   7779     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
   7780       << Literal->getSourceRange();
   7781   else
   7782     S.Diag(Loc, diag::warn_objc_literal_comparison)
   7783       << LiteralKind << Literal->getSourceRange();
   7784 
   7785   if (BinaryOperator::isEqualityOp(Opc) &&
   7786       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
   7787     SourceLocation Start = LHS.get()->getLocStart();
   7788     SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
   7789     CharSourceRange OpRange =
   7790       CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
   7791 
   7792     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
   7793       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
   7794       << FixItHint::CreateReplacement(OpRange, " isEqual:")
   7795       << FixItHint::CreateInsertion(End, "]");
   7796   }
   7797 }
   7798 
   7799 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
   7800                                                 ExprResult &RHS,
   7801                                                 SourceLocation Loc,
   7802                                                 unsigned OpaqueOpc) {
   7803   // This checking requires bools.
   7804   if (!S.getLangOpts().Bool) return;
   7805 
   7806   // Check that left hand side is !something.
   7807   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
   7808   if (!UO || UO->getOpcode() != UO_LNot) return;
   7809 
   7810   // Only check if the right hand side is non-bool arithmetic type.
   7811   if (RHS.get()->getType()->isBooleanType()) return;
   7812 
   7813   // Make sure that the something in !something is not bool.
   7814   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
   7815   if (SubExpr->getType()->isBooleanType()) return;
   7816 
   7817   // Emit warning.
   7818   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
   7819       << Loc;
   7820 
   7821   // First note suggest !(x < y)
   7822   SourceLocation FirstOpen = SubExpr->getLocStart();
   7823   SourceLocation FirstClose = RHS.get()->getLocEnd();
   7824   FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
   7825   if (FirstClose.isInvalid())
   7826     FirstOpen = SourceLocation();
   7827   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
   7828       << FixItHint::CreateInsertion(FirstOpen, "(")
   7829       << FixItHint::CreateInsertion(FirstClose, ")");
   7830 
   7831   // Second note suggests (!x) < y
   7832   SourceLocation SecondOpen = LHS.get()->getLocStart();
   7833   SourceLocation SecondClose = LHS.get()->getLocEnd();
   7834   SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
   7835   if (SecondClose.isInvalid())
   7836     SecondOpen = SourceLocation();
   7837   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
   7838       << FixItHint::CreateInsertion(SecondOpen, "(")
   7839       << FixItHint::CreateInsertion(SecondClose, ")");
   7840 }
   7841 
   7842 // Get the decl for a simple expression: a reference to a variable,
   7843 // an implicit C++ field reference, or an implicit ObjC ivar reference.
   7844 static ValueDecl *getCompareDecl(Expr *E) {
   7845   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
   7846     return DR->getDecl();
   7847   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
   7848     if (Ivar->isFreeIvar())
   7849       return Ivar->getDecl();
   7850   }
   7851   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
   7852     if (Mem->isImplicitAccess())
   7853       return Mem->getMemberDecl();
   7854   }
   7855   return nullptr;
   7856 }
   7857 
   7858 // C99 6.5.8, C++ [expr.rel]
   7859 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
   7860                                     SourceLocation Loc, unsigned OpaqueOpc,
   7861                                     bool IsRelational) {
   7862   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
   7863 
   7864   BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
   7865 
   7866   // Handle vector comparisons separately.
   7867   if (LHS.get()->getType()->isVectorType() ||
   7868       RHS.get()->getType()->isVectorType())
   7869     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
   7870 
   7871   QualType LHSType = LHS.get()->getType();
   7872   QualType RHSType = RHS.get()->getType();
   7873 
   7874   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
   7875   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
   7876 
   7877   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
   7878   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
   7879 
   7880   if (!LHSType->hasFloatingRepresentation() &&
   7881       !(LHSType->isBlockPointerType() && IsRelational) &&
   7882       !LHS.get()->getLocStart().isMacroID() &&
   7883       !RHS.get()->getLocStart().isMacroID() &&
   7884       ActiveTemplateInstantiations.empty()) {
   7885     // For non-floating point types, check for self-comparisons of the form
   7886     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   7887     // often indicate logic errors in the program.
   7888     //
   7889     // NOTE: Don't warn about comparison expressions resulting from macro
   7890     // expansion. Also don't warn about comparisons which are only self
   7891     // comparisons within a template specialization. The warnings should catch
   7892     // obvious cases in the definition of the template anyways. The idea is to
   7893     // warn when the typed comparison operator will always evaluate to the same
   7894     // result.
   7895     ValueDecl *DL = getCompareDecl(LHSStripped);
   7896     ValueDecl *DR = getCompareDecl(RHSStripped);
   7897     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
   7898       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   7899                           << 0 // self-
   7900                           << (Opc == BO_EQ
   7901                               || Opc == BO_LE
   7902                               || Opc == BO_GE));
   7903     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
   7904                !DL->getType()->isReferenceType() &&
   7905                !DR->getType()->isReferenceType()) {
   7906         // what is it always going to eval to?
   7907         char always_evals_to;
   7908         switch(Opc) {
   7909         case BO_EQ: // e.g. array1 == array2
   7910           always_evals_to = 0; // false
   7911           break;
   7912         case BO_NE: // e.g. array1 != array2
   7913           always_evals_to = 1; // true
   7914           break;
   7915         default:
   7916           // best we can say is 'a constant'
   7917           always_evals_to = 2; // e.g. array1 <= array2
   7918           break;
   7919         }
   7920         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   7921                             << 1 // array
   7922                             << always_evals_to);
   7923     }
   7924 
   7925     if (isa<CastExpr>(LHSStripped))
   7926       LHSStripped = LHSStripped->IgnoreParenCasts();
   7927     if (isa<CastExpr>(RHSStripped))
   7928       RHSStripped = RHSStripped->IgnoreParenCasts();
   7929 
   7930     // Warn about comparisons against a string constant (unless the other
   7931     // operand is null), the user probably wants strcmp.
   7932     Expr *literalString = nullptr;
   7933     Expr *literalStringStripped = nullptr;
   7934     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   7935         !RHSStripped->isNullPointerConstant(Context,
   7936                                             Expr::NPC_ValueDependentIsNull)) {
   7937       literalString = LHS.get();
   7938       literalStringStripped = LHSStripped;
   7939     } else if ((isa<StringLiteral>(RHSStripped) ||
   7940                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   7941                !LHSStripped->isNullPointerConstant(Context,
   7942                                             Expr::NPC_ValueDependentIsNull)) {
   7943       literalString = RHS.get();
   7944       literalStringStripped = RHSStripped;
   7945     }
   7946 
   7947     if (literalString) {
   7948       DiagRuntimeBehavior(Loc, nullptr,
   7949         PDiag(diag::warn_stringcompare)
   7950           << isa<ObjCEncodeExpr>(literalStringStripped)
   7951           << literalString->getSourceRange());
   7952     }
   7953   }
   7954 
   7955   // C99 6.5.8p3 / C99 6.5.9p4
   7956   UsualArithmeticConversions(LHS, RHS);
   7957   if (LHS.isInvalid() || RHS.isInvalid())
   7958     return QualType();
   7959 
   7960   LHSType = LHS.get()->getType();
   7961   RHSType = RHS.get()->getType();
   7962 
   7963   // The result of comparisons is 'bool' in C++, 'int' in C.
   7964   QualType ResultTy = Context.getLogicalOperationType();
   7965 
   7966   if (IsRelational) {
   7967     if (LHSType->isRealType() && RHSType->isRealType())
   7968       return ResultTy;
   7969   } else {
   7970     // Check for comparisons of floating point operands using != and ==.
   7971     if (LHSType->hasFloatingRepresentation())
   7972       CheckFloatComparison(Loc, LHS.get(), RHS.get());
   7973 
   7974     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
   7975       return ResultTy;
   7976   }
   7977 
   7978   const Expr::NullPointerConstantKind LHSNullKind =
   7979       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   7980   const Expr::NullPointerConstantKind RHSNullKind =
   7981       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   7982   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
   7983   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
   7984 
   7985   if (!IsRelational && LHSIsNull != RHSIsNull) {
   7986     bool IsEquality = Opc == BO_EQ;
   7987     if (RHSIsNull)
   7988       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
   7989                                    RHS.get()->getSourceRange());
   7990     else
   7991       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
   7992                                    LHS.get()->getSourceRange());
   7993   }
   7994 
   7995   // All of the following pointer-related warnings are GCC extensions, except
   7996   // when handling null pointer constants.
   7997   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
   7998     QualType LCanPointeeTy =
   7999       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8000     QualType RCanPointeeTy =
   8001       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8002 
   8003     if (getLangOpts().CPlusPlus) {
   8004       if (LCanPointeeTy == RCanPointeeTy)
   8005         return ResultTy;
   8006       if (!IsRelational &&
   8007           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8008         // Valid unless comparison between non-null pointer and function pointer
   8009         // This is a gcc extension compatibility comparison.
   8010         // In a SFINAE context, we treat this as a hard error to maintain
   8011         // conformance with the C++ standard.
   8012         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8013             && !LHSIsNull && !RHSIsNull) {
   8014           diagnoseFunctionPointerToVoidComparison(
   8015               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
   8016 
   8017           if (isSFINAEContext())
   8018             return QualType();
   8019 
   8020           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8021           return ResultTy;
   8022         }
   8023       }
   8024 
   8025       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8026         return QualType();
   8027       else
   8028         return ResultTy;
   8029     }
   8030     // C99 6.5.9p2 and C99 6.5.8p2
   8031     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   8032                                    RCanPointeeTy.getUnqualifiedType())) {
   8033       // Valid unless a relational comparison of function pointers
   8034       if (IsRelational && LCanPointeeTy->isFunctionType()) {
   8035         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   8036           << LHSType << RHSType << LHS.get()->getSourceRange()
   8037           << RHS.get()->getSourceRange();
   8038       }
   8039     } else if (!IsRelational &&
   8040                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8041       // Valid unless comparison between non-null pointer and function pointer
   8042       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8043           && !LHSIsNull && !RHSIsNull)
   8044         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
   8045                                                 /*isError*/false);
   8046     } else {
   8047       // Invalid
   8048       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
   8049     }
   8050     if (LCanPointeeTy != RCanPointeeTy) {
   8051       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
   8052       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
   8053       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
   8054                                                : CK_BitCast;
   8055       if (LHSIsNull && !RHSIsNull)
   8056         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
   8057       else
   8058         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
   8059     }
   8060     return ResultTy;
   8061   }
   8062 
   8063   if (getLangOpts().CPlusPlus) {
   8064     // Comparison of nullptr_t with itself.
   8065     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
   8066       return ResultTy;
   8067 
   8068     // Comparison of pointers with null pointer constants and equality
   8069     // comparisons of member pointers to null pointer constants.
   8070     if (RHSIsNull &&
   8071         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
   8072          (!IsRelational &&
   8073           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
   8074       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8075                         LHSType->isMemberPointerType()
   8076                           ? CK_NullToMemberPointer
   8077                           : CK_NullToPointer);
   8078       return ResultTy;
   8079     }
   8080     if (LHSIsNull &&
   8081         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
   8082          (!IsRelational &&
   8083           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
   8084       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8085                         RHSType->isMemberPointerType()
   8086                           ? CK_NullToMemberPointer
   8087                           : CK_NullToPointer);
   8088       return ResultTy;
   8089     }
   8090 
   8091     // Comparison of member pointers.
   8092     if (!IsRelational &&
   8093         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
   8094       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8095         return QualType();
   8096       else
   8097         return ResultTy;
   8098     }
   8099 
   8100     // Handle scoped enumeration types specifically, since they don't promote
   8101     // to integers.
   8102     if (LHS.get()->getType()->isEnumeralType() &&
   8103         Context.hasSameUnqualifiedType(LHS.get()->getType(),
   8104                                        RHS.get()->getType()))
   8105       return ResultTy;
   8106   }
   8107 
   8108   // Handle block pointer types.
   8109   if (!IsRelational && LHSType->isBlockPointerType() &&
   8110       RHSType->isBlockPointerType()) {
   8111     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
   8112     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
   8113 
   8114     if (!LHSIsNull && !RHSIsNull &&
   8115         !Context.typesAreCompatible(lpointee, rpointee)) {
   8116       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8117         << LHSType << RHSType << LHS.get()->getSourceRange()
   8118         << RHS.get()->getSourceRange();
   8119     }
   8120     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8121     return ResultTy;
   8122   }
   8123 
   8124   // Allow block pointers to be compared with null pointer constants.
   8125   if (!IsRelational
   8126       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
   8127           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
   8128     if (!LHSIsNull && !RHSIsNull) {
   8129       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
   8130              ->getPointeeType()->isVoidType())
   8131             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
   8132                 ->getPointeeType()->isVoidType())))
   8133         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8134           << LHSType << RHSType << LHS.get()->getSourceRange()
   8135           << RHS.get()->getSourceRange();
   8136     }
   8137     if (LHSIsNull && !RHSIsNull)
   8138       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8139                               RHSType->isPointerType() ? CK_BitCast
   8140                                 : CK_AnyPointerToBlockPointerCast);
   8141     else
   8142       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8143                               LHSType->isPointerType() ? CK_BitCast
   8144                                 : CK_AnyPointerToBlockPointerCast);
   8145     return ResultTy;
   8146   }
   8147 
   8148   if (LHSType->isObjCObjectPointerType() ||
   8149       RHSType->isObjCObjectPointerType()) {
   8150     const PointerType *LPT = LHSType->getAs<PointerType>();
   8151     const PointerType *RPT = RHSType->getAs<PointerType>();
   8152     if (LPT || RPT) {
   8153       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   8154       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   8155 
   8156       if (!LPtrToVoid && !RPtrToVoid &&
   8157           !Context.typesAreCompatible(LHSType, RHSType)) {
   8158         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8159                                           /*isError*/false);
   8160       }
   8161       if (LHSIsNull && !RHSIsNull) {
   8162         Expr *E = LHS.get();
   8163         if (getLangOpts().ObjCAutoRefCount)
   8164           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
   8165         LHS = ImpCastExprToType(E, RHSType,
   8166                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8167       }
   8168       else {
   8169         Expr *E = RHS.get();
   8170         if (getLangOpts().ObjCAutoRefCount)
   8171           CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
   8172                                  Opc);
   8173         RHS = ImpCastExprToType(E, LHSType,
   8174                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8175       }
   8176       return ResultTy;
   8177     }
   8178     if (LHSType->isObjCObjectPointerType() &&
   8179         RHSType->isObjCObjectPointerType()) {
   8180       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
   8181         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8182                                           /*isError*/false);
   8183       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
   8184         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
   8185 
   8186       if (LHSIsNull && !RHSIsNull)
   8187         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   8188       else
   8189         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8190       return ResultTy;
   8191     }
   8192   }
   8193   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
   8194       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
   8195     unsigned DiagID = 0;
   8196     bool isError = false;
   8197     if (LangOpts.DebuggerSupport) {
   8198       // Under a debugger, allow the comparison of pointers to integers,
   8199       // since users tend to want to compare addresses.
   8200     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
   8201         (RHSIsNull && RHSType->isIntegerType())) {
   8202       if (IsRelational && !getLangOpts().CPlusPlus)
   8203         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   8204     } else if (IsRelational && !getLangOpts().CPlusPlus)
   8205       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   8206     else if (getLangOpts().CPlusPlus) {
   8207       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   8208       isError = true;
   8209     } else
   8210       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   8211 
   8212     if (DiagID) {
   8213       Diag(Loc, DiagID)
   8214         << LHSType << RHSType << LHS.get()->getSourceRange()
   8215         << RHS.get()->getSourceRange();
   8216       if (isError)
   8217         return QualType();
   8218     }
   8219 
   8220     if (LHSType->isIntegerType())
   8221       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8222                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8223     else
   8224       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8225                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8226     return ResultTy;
   8227   }
   8228 
   8229   // Handle block pointers.
   8230   if (!IsRelational && RHSIsNull
   8231       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
   8232     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
   8233     return ResultTy;
   8234   }
   8235   if (!IsRelational && LHSIsNull
   8236       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
   8237     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
   8238     return ResultTy;
   8239   }
   8240 
   8241   return InvalidOperands(Loc, LHS, RHS);
   8242 }
   8243 
   8244 
   8245 // Return a signed type that is of identical size and number of elements.
   8246 // For floating point vectors, return an integer type of identical size
   8247 // and number of elements.
   8248 QualType Sema::GetSignedVectorType(QualType V) {
   8249   const VectorType *VTy = V->getAs<VectorType>();
   8250   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   8251   if (TypeSize == Context.getTypeSize(Context.CharTy))
   8252     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
   8253   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
   8254     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
   8255   else if (TypeSize == Context.getTypeSize(Context.IntTy))
   8256     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   8257   else if (TypeSize == Context.getTypeSize(Context.LongTy))
   8258     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   8259   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   8260          "Unhandled vector element size in vector compare");
   8261   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   8262 }
   8263 
   8264 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   8265 /// operates on extended vector types.  Instead of producing an IntTy result,
   8266 /// like a scalar comparison, a vector comparison produces a vector of integer
   8267 /// types.
   8268 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
   8269                                           SourceLocation Loc,
   8270                                           bool IsRelational) {
   8271   // Check to make sure we're operating on vectors of the same type and width,
   8272   // Allowing one side to be a scalar of element type.
   8273   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
   8274   if (vType.isNull())
   8275     return vType;
   8276 
   8277   QualType LHSType = LHS.get()->getType();
   8278 
   8279   // If AltiVec, the comparison results in a numeric type, i.e.
   8280   // bool for C++, int for C
   8281   if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   8282     return Context.getLogicalOperationType();
   8283 
   8284   // For non-floating point types, check for self-comparisons of the form
   8285   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   8286   // often indicate logic errors in the program.
   8287   if (!LHSType->hasFloatingRepresentation() &&
   8288       ActiveTemplateInstantiations.empty()) {
   8289     if (DeclRefExpr* DRL
   8290           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
   8291       if (DeclRefExpr* DRR
   8292             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
   8293         if (DRL->getDecl() == DRR->getDecl())
   8294           DiagRuntimeBehavior(Loc, nullptr,
   8295                               PDiag(diag::warn_comparison_always)
   8296                                 << 0 // self-
   8297                                 << 2 // "a constant"
   8298                               );
   8299   }
   8300 
   8301   // Check for comparisons of floating point operands using != and ==.
   8302   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
   8303     assert (RHS.get()->getType()->hasFloatingRepresentation());
   8304     CheckFloatComparison(Loc, LHS.get(), RHS.get());
   8305   }
   8306 
   8307   // Return a signed type for the vector.
   8308   return GetSignedVectorType(LHSType);
   8309 }
   8310 
   8311 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   8312                                           SourceLocation Loc) {
   8313   // Ensure that either both operands are of the same vector type, or
   8314   // one operand is of a vector type and the other is of its element type.
   8315   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
   8316   if (vType.isNull())
   8317     return InvalidOperands(Loc, LHS, RHS);
   8318   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
   8319       vType->hasFloatingRepresentation())
   8320     return InvalidOperands(Loc, LHS, RHS);
   8321 
   8322   return GetSignedVectorType(LHS.get()->getType());
   8323 }
   8324 
   8325 inline QualType Sema::CheckBitwiseOperands(
   8326   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   8327   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8328 
   8329   if (LHS.get()->getType()->isVectorType() ||
   8330       RHS.get()->getType()->isVectorType()) {
   8331     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   8332         RHS.get()->getType()->hasIntegerRepresentation())
   8333       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
   8334 
   8335     return InvalidOperands(Loc, LHS, RHS);
   8336   }
   8337 
   8338   ExprResult LHSResult = LHS, RHSResult = RHS;
   8339   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
   8340                                                  IsCompAssign);
   8341   if (LHSResult.isInvalid() || RHSResult.isInvalid())
   8342     return QualType();
   8343   LHS = LHSResult.get();
   8344   RHS = RHSResult.get();
   8345 
   8346   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
   8347     return compType;
   8348   return InvalidOperands(Loc, LHS, RHS);
   8349 }
   8350 
   8351 inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
   8352   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
   8353 
   8354   // Check vector operands differently.
   8355   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
   8356     return CheckVectorLogicalOperands(LHS, RHS, Loc);
   8357 
   8358   // Diagnose cases where the user write a logical and/or but probably meant a
   8359   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   8360   // is a constant.
   8361   if (LHS.get()->getType()->isIntegerType() &&
   8362       !LHS.get()->getType()->isBooleanType() &&
   8363       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
   8364       // Don't warn in macros or template instantiations.
   8365       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   8366     // If the RHS can be constant folded, and if it constant folds to something
   8367     // that isn't 0 or 1 (which indicate a potential logical operation that
   8368     // happened to fold to true/false) then warn.
   8369     // Parens on the RHS are ignored.
   8370     llvm::APSInt Result;
   8371     if (RHS.get()->EvaluateAsInt(Result, Context))
   8372       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
   8373            !RHS.get()->getExprLoc().isMacroID()) ||
   8374           (Result != 0 && Result != 1)) {
   8375         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   8376           << RHS.get()->getSourceRange()
   8377           << (Opc == BO_LAnd ? "&&" : "||");
   8378         // Suggest replacing the logical operator with the bitwise version
   8379         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
   8380             << (Opc == BO_LAnd ? "&" : "|")
   8381             << FixItHint::CreateReplacement(SourceRange(
   8382                 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
   8383                                                 getLangOpts())),
   8384                                             Opc == BO_LAnd ? "&" : "|");
   8385         if (Opc == BO_LAnd)
   8386           // Suggest replacing "Foo() && kNonZero" with "Foo()"
   8387           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
   8388               << FixItHint::CreateRemoval(
   8389                   SourceRange(
   8390                       Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
   8391                                                  0, getSourceManager(),
   8392                                                  getLangOpts()),
   8393                       RHS.get()->getLocEnd()));
   8394       }
   8395   }
   8396 
   8397   if (!Context.getLangOpts().CPlusPlus) {
   8398     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
   8399     // not operate on the built-in scalar and vector float types.
   8400     if (Context.getLangOpts().OpenCL &&
   8401         Context.getLangOpts().OpenCLVersion < 120) {
   8402       if (LHS.get()->getType()->isFloatingType() ||
   8403           RHS.get()->getType()->isFloatingType())
   8404         return InvalidOperands(Loc, LHS, RHS);
   8405     }
   8406 
   8407     LHS = UsualUnaryConversions(LHS.get());
   8408     if (LHS.isInvalid())
   8409       return QualType();
   8410 
   8411     RHS = UsualUnaryConversions(RHS.get());
   8412     if (RHS.isInvalid())
   8413       return QualType();
   8414 
   8415     if (!LHS.get()->getType()->isScalarType() ||
   8416         !RHS.get()->getType()->isScalarType())
   8417       return InvalidOperands(Loc, LHS, RHS);
   8418 
   8419     return Context.IntTy;
   8420   }
   8421 
   8422   // The following is safe because we only use this method for
   8423   // non-overloadable operands.
   8424 
   8425   // C++ [expr.log.and]p1
   8426   // C++ [expr.log.or]p1
   8427   // The operands are both contextually converted to type bool.
   8428   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
   8429   if (LHSRes.isInvalid())
   8430     return InvalidOperands(Loc, LHS, RHS);
   8431   LHS = LHSRes;
   8432 
   8433   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
   8434   if (RHSRes.isInvalid())
   8435     return InvalidOperands(Loc, LHS, RHS);
   8436   RHS = RHSRes;
   8437 
   8438   // C++ [expr.log.and]p2
   8439   // C++ [expr.log.or]p2
   8440   // The result is a bool.
   8441   return Context.BoolTy;
   8442 }
   8443 
   8444 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   8445   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   8446   if (!ME) return false;
   8447   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
   8448   ObjCMessageExpr *Base =
   8449     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
   8450   if (!Base) return false;
   8451   return Base->getMethodDecl() != nullptr;
   8452 }
   8453 
   8454 /// Is the given expression (which must be 'const') a reference to a
   8455 /// variable which was originally non-const, but which has become
   8456 /// 'const' due to being captured within a block?
   8457 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
   8458 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
   8459   assert(E->isLValue() && E->getType().isConstQualified());
   8460   E = E->IgnoreParens();
   8461 
   8462   // Must be a reference to a declaration from an enclosing scope.
   8463   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   8464   if (!DRE) return NCCK_None;
   8465   if (!DRE->refersToEnclosingLocal()) return NCCK_None;
   8466 
   8467   // The declaration must be a variable which is not declared 'const'.
   8468   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
   8469   if (!var) return NCCK_None;
   8470   if (var->getType().isConstQualified()) return NCCK_None;
   8471   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
   8472 
   8473   // Decide whether the first capture was for a block or a lambda.
   8474   DeclContext *DC = S.CurContext, *Prev = nullptr;
   8475   while (DC != var->getDeclContext()) {
   8476     Prev = DC;
   8477     DC = DC->getParent();
   8478   }
   8479   // Unless we have an init-capture, we've gone one step too far.
   8480   if (!var->isInitCapture())
   8481     DC = Prev;
   8482   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
   8483 }
   8484 
   8485 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   8486 /// emit an error and return true.  If so, return false.
   8487 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   8488   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
   8489   SourceLocation OrigLoc = Loc;
   8490   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   8491                                                               &Loc);
   8492   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   8493     IsLV = Expr::MLV_InvalidMessageExpression;
   8494   if (IsLV == Expr::MLV_Valid)
   8495     return false;
   8496 
   8497   unsigned Diag = 0;
   8498   bool NeedType = false;
   8499   switch (IsLV) { // C99 6.5.16p2
   8500   case Expr::MLV_ConstQualified:
   8501     Diag = diag::err_typecheck_assign_const;
   8502 
   8503     // Use a specialized diagnostic when we're assigning to an object
   8504     // from an enclosing function or block.
   8505     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
   8506       if (NCCK == NCCK_Block)
   8507         Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
   8508       else
   8509         Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
   8510       break;
   8511     }
   8512 
   8513     // In ARC, use some specialized diagnostics for occasions where we
   8514     // infer 'const'.  These are always pseudo-strong variables.
   8515     if (S.getLangOpts().ObjCAutoRefCount) {
   8516       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   8517       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   8518         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   8519 
   8520         // Use the normal diagnostic if it's pseudo-__strong but the
   8521         // user actually wrote 'const'.
   8522         if (var->isARCPseudoStrong() &&
   8523             (!var->getTypeSourceInfo() ||
   8524              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   8525           // There are two pseudo-strong cases:
   8526           //  - self
   8527           ObjCMethodDecl *method = S.getCurMethodDecl();
   8528           if (method && var == method->getSelfDecl())
   8529             Diag = method->isClassMethod()
   8530               ? diag::err_typecheck_arc_assign_self_class_method
   8531               : diag::err_typecheck_arc_assign_self;
   8532 
   8533           //  - fast enumeration variables
   8534           else
   8535             Diag = diag::err_typecheck_arr_assign_enumeration;
   8536 
   8537           SourceRange Assign;
   8538           if (Loc != OrigLoc)
   8539             Assign = SourceRange(OrigLoc, OrigLoc);
   8540           S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   8541           // We need to preserve the AST regardless, so migration tool
   8542           // can do its job.
   8543           return false;
   8544         }
   8545       }
   8546     }
   8547 
   8548     break;
   8549   case Expr::MLV_ArrayType:
   8550   case Expr::MLV_ArrayTemporary:
   8551     Diag = diag::err_typecheck_array_not_modifiable_lvalue;
   8552     NeedType = true;
   8553     break;
   8554   case Expr::MLV_NotObjectType:
   8555     Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
   8556     NeedType = true;
   8557     break;
   8558   case Expr::MLV_LValueCast:
   8559     Diag = diag::err_typecheck_lvalue_casts_not_supported;
   8560     break;
   8561   case Expr::MLV_Valid:
   8562     llvm_unreachable("did not take early return for MLV_Valid");
   8563   case Expr::MLV_InvalidExpression:
   8564   case Expr::MLV_MemberFunction:
   8565   case Expr::MLV_ClassTemporary:
   8566     Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
   8567     break;
   8568   case Expr::MLV_IncompleteType:
   8569   case Expr::MLV_IncompleteVoidType:
   8570     return S.RequireCompleteType(Loc, E->getType(),
   8571              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
   8572   case Expr::MLV_DuplicateVectorComponents:
   8573     Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   8574     break;
   8575   case Expr::MLV_NoSetterProperty:
   8576     llvm_unreachable("readonly properties should be processed differently");
   8577   case Expr::MLV_InvalidMessageExpression:
   8578     Diag = diag::error_readonly_message_assignment;
   8579     break;
   8580   case Expr::MLV_SubObjCPropertySetting:
   8581     Diag = diag::error_no_subobject_property_setting;
   8582     break;
   8583   }
   8584 
   8585   SourceRange Assign;
   8586   if (Loc != OrigLoc)
   8587     Assign = SourceRange(OrigLoc, OrigLoc);
   8588   if (NeedType)
   8589     S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
   8590   else
   8591     S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
   8592   return true;
   8593 }
   8594 
   8595 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
   8596                                          SourceLocation Loc,
   8597                                          Sema &Sema) {
   8598   // C / C++ fields
   8599   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
   8600   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
   8601   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
   8602     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
   8603       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
   8604   }
   8605 
   8606   // Objective-C instance variables
   8607   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
   8608   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
   8609   if (OL && OR && OL->getDecl() == OR->getDecl()) {
   8610     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
   8611     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
   8612     if (RL && RR && RL->getDecl() == RR->getDecl())
   8613       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
   8614   }
   8615 }
   8616 
   8617 // C99 6.5.16.1
   8618 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
   8619                                        SourceLocation Loc,
   8620                                        QualType CompoundType) {
   8621   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
   8622 
   8623   // Verify that LHS is a modifiable lvalue, and emit error if not.
   8624   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
   8625     return QualType();
   8626 
   8627   QualType LHSType = LHSExpr->getType();
   8628   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
   8629                                              CompoundType;
   8630   AssignConvertType ConvTy;
   8631   if (CompoundType.isNull()) {
   8632     Expr *RHSCheck = RHS.get();
   8633 
   8634     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
   8635 
   8636     QualType LHSTy(LHSType);
   8637     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   8638     if (RHS.isInvalid())
   8639       return QualType();
   8640     // Special case of NSObject attributes on c-style pointer types.
   8641     if (ConvTy == IncompatiblePointer &&
   8642         ((Context.isObjCNSObjectType(LHSType) &&
   8643           RHSType->isObjCObjectPointerType()) ||
   8644          (Context.isObjCNSObjectType(RHSType) &&
   8645           LHSType->isObjCObjectPointerType())))
   8646       ConvTy = Compatible;
   8647 
   8648     if (ConvTy == Compatible &&
   8649         LHSType->isObjCObjectType())
   8650         Diag(Loc, diag::err_objc_object_assignment)
   8651           << LHSType;
   8652 
   8653     // If the RHS is a unary plus or minus, check to see if they = and + are
   8654     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   8655     // instead of "x += 4".
   8656     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   8657       RHSCheck = ICE->getSubExpr();
   8658     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   8659       if ((UO->getOpcode() == UO_Plus ||
   8660            UO->getOpcode() == UO_Minus) &&
   8661           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   8662           // Only if the two operators are exactly adjacent.
   8663           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
   8664           // And there is a space or other character before the subexpr of the
   8665           // unary +/-.  We don't want to warn on "x=-1".
   8666           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   8667           UO->getSubExpr()->getLocStart().isFileID()) {
   8668         Diag(Loc, diag::warn_not_compound_assign)
   8669           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   8670           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   8671       }
   8672     }
   8673 
   8674     if (ConvTy == Compatible) {
   8675       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
   8676         // Warn about retain cycles where a block captures the LHS, but
   8677         // not if the LHS is a simple variable into which the block is
   8678         // being stored...unless that variable can be captured by reference!
   8679         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
   8680         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
   8681         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
   8682           checkRetainCycles(LHSExpr, RHS.get());
   8683 
   8684         // It is safe to assign a weak reference into a strong variable.
   8685         // Although this code can still have problems:
   8686         //   id x = self.weakProp;
   8687         //   id y = self.weakProp;
   8688         // we do not warn to warn spuriously when 'x' and 'y' are on separate
   8689         // paths through the function. This should be revisited if
   8690         // -Wrepeated-use-of-weak is made flow-sensitive.
   8691         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   8692                              RHS.get()->getLocStart()))
   8693           getCurFunction()->markSafeWeakUse(RHS.get());
   8694 
   8695       } else if (getLangOpts().ObjCAutoRefCount) {
   8696         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
   8697       }
   8698     }
   8699   } else {
   8700     // Compound assignment "x += y"
   8701     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   8702   }
   8703 
   8704   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   8705                                RHS.get(), AA_Assigning))
   8706     return QualType();
   8707 
   8708   CheckForNullPointerDereference(*this, LHSExpr);
   8709 
   8710   // C99 6.5.16p3: The type of an assignment expression is the type of the
   8711   // left operand unless the left operand has qualified type, in which case
   8712   // it is the unqualified version of the type of the left operand.
   8713   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   8714   // is converted to the type of the assignment expression (above).
   8715   // C++ 5.17p1: the type of the assignment expression is that of its left
   8716   // operand.
   8717   return (getLangOpts().CPlusPlus
   8718           ? LHSType : LHSType.getUnqualifiedType());
   8719 }
   8720 
   8721 // C99 6.5.17
   8722 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   8723                                    SourceLocation Loc) {
   8724   LHS = S.CheckPlaceholderExpr(LHS.get());
   8725   RHS = S.CheckPlaceholderExpr(RHS.get());
   8726   if (LHS.isInvalid() || RHS.isInvalid())
   8727     return QualType();
   8728 
   8729   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   8730   // operands, but not unary promotions.
   8731   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   8732 
   8733   // So we treat the LHS as a ignored value, and in C++ we allow the
   8734   // containing site to determine what should be done with the RHS.
   8735   LHS = S.IgnoredValueConversions(LHS.get());
   8736   if (LHS.isInvalid())
   8737     return QualType();
   8738 
   8739   S.DiagnoseUnusedExprResult(LHS.get());
   8740 
   8741   if (!S.getLangOpts().CPlusPlus) {
   8742     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   8743     if (RHS.isInvalid())
   8744       return QualType();
   8745     if (!RHS.get()->getType()->isVoidType())
   8746       S.RequireCompleteType(Loc, RHS.get()->getType(),
   8747                             diag::err_incomplete_type);
   8748   }
   8749 
   8750   return RHS.get()->getType();
   8751 }
   8752 
   8753 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   8754 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   8755 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   8756                                                ExprValueKind &VK,
   8757                                                SourceLocation OpLoc,
   8758                                                bool IsInc, bool IsPrefix) {
   8759   if (Op->isTypeDependent())
   8760     return S.Context.DependentTy;
   8761 
   8762   QualType ResType = Op->getType();
   8763   // Atomic types can be used for increment / decrement where the non-atomic
   8764   // versions can, so ignore the _Atomic() specifier for the purpose of
   8765   // checking.
   8766   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   8767     ResType = ResAtomicType->getValueType();
   8768 
   8769   assert(!ResType.isNull() && "no type for increment/decrement expression");
   8770 
   8771   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
   8772     // Decrement of bool is not allowed.
   8773     if (!IsInc) {
   8774       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   8775       return QualType();
   8776     }
   8777     // Increment of bool sets it to true, but is deprecated.
   8778     S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
   8779   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
   8780     // Error on enum increments and decrements in C++ mode
   8781     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
   8782     return QualType();
   8783   } else if (ResType->isRealType()) {
   8784     // OK!
   8785   } else if (ResType->isPointerType()) {
   8786     // C99 6.5.2.4p2, 6.5.6p2
   8787     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   8788       return QualType();
   8789   } else if (ResType->isObjCObjectPointerType()) {
   8790     // On modern runtimes, ObjC pointer arithmetic is forbidden.
   8791     // Otherwise, we just need a complete type.
   8792     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
   8793         checkArithmeticOnObjCPointer(S, OpLoc, Op))
   8794       return QualType();
   8795   } else if (ResType->isAnyComplexType()) {
   8796     // C99 does not support ++/-- on complex types, we allow as an extension.
   8797     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   8798       << ResType << Op->getSourceRange();
   8799   } else if (ResType->isPlaceholderType()) {
   8800     ExprResult PR = S.CheckPlaceholderExpr(Op);
   8801     if (PR.isInvalid()) return QualType();
   8802     return CheckIncrementDecrementOperand(S, PR.get(), VK, OpLoc,
   8803                                           IsInc, IsPrefix);
   8804   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
   8805     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   8806   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
   8807             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
   8808     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
   8809   } else {
   8810     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   8811       << ResType << int(IsInc) << Op->getSourceRange();
   8812     return QualType();
   8813   }
   8814   // At this point, we know we have a real, complex or pointer type.
   8815   // Now make sure the operand is a modifiable lvalue.
   8816   if (CheckForModifiableLvalue(Op, OpLoc, S))
   8817     return QualType();
   8818   // In C++, a prefix increment is the same type as the operand. Otherwise
   8819   // (in C or with postfix), the increment is the unqualified type of the
   8820   // operand.
   8821   if (IsPrefix && S.getLangOpts().CPlusPlus) {
   8822     VK = VK_LValue;
   8823     return ResType;
   8824   } else {
   8825     VK = VK_RValue;
   8826     return ResType.getUnqualifiedType();
   8827   }
   8828 }
   8829 
   8830 
   8831 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   8832 /// This routine allows us to typecheck complex/recursive expressions
   8833 /// where the declaration is needed for type checking. We only need to
   8834 /// handle cases when the expression references a function designator
   8835 /// or is an lvalue. Here are some examples:
   8836 ///  - &(x) => x
   8837 ///  - &*****f => f for f a function designator.
   8838 ///  - &s.xx => s
   8839 ///  - &s.zz[1].yy -> s, if zz is an array
   8840 ///  - *(x + 1) -> x, if x is an array
   8841 ///  - &"123"[2] -> 0
   8842 ///  - & __real__ x -> x
   8843 static ValueDecl *getPrimaryDecl(Expr *E) {
   8844   switch (E->getStmtClass()) {
   8845   case Stmt::DeclRefExprClass:
   8846     return cast<DeclRefExpr>(E)->getDecl();
   8847   case Stmt::MemberExprClass:
   8848     // If this is an arrow operator, the address is an offset from
   8849     // the base's value, so the object the base refers to is
   8850     // irrelevant.
   8851     if (cast<MemberExpr>(E)->isArrow())
   8852       return nullptr;
   8853     // Otherwise, the expression refers to a part of the base
   8854     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   8855   case Stmt::ArraySubscriptExprClass: {
   8856     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   8857     // promotion of register arrays earlier.
   8858     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   8859     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   8860       if (ICE->getSubExpr()->getType()->isArrayType())
   8861         return getPrimaryDecl(ICE->getSubExpr());
   8862     }
   8863     return nullptr;
   8864   }
   8865   case Stmt::UnaryOperatorClass: {
   8866     UnaryOperator *UO = cast<UnaryOperator>(E);
   8867 
   8868     switch(UO->getOpcode()) {
   8869     case UO_Real:
   8870     case UO_Imag:
   8871     case UO_Extension:
   8872       return getPrimaryDecl(UO->getSubExpr());
   8873     default:
   8874       return nullptr;
   8875     }
   8876   }
   8877   case Stmt::ParenExprClass:
   8878     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   8879   case Stmt::ImplicitCastExprClass:
   8880     // If the result of an implicit cast is an l-value, we care about
   8881     // the sub-expression; otherwise, the result here doesn't matter.
   8882     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   8883   default:
   8884     return nullptr;
   8885   }
   8886 }
   8887 
   8888 namespace {
   8889   enum {
   8890     AO_Bit_Field = 0,
   8891     AO_Vector_Element = 1,
   8892     AO_Property_Expansion = 2,
   8893     AO_Register_Variable = 3,
   8894     AO_No_Error = 4
   8895   };
   8896 }
   8897 /// \brief Diagnose invalid operand for address of operations.
   8898 ///
   8899 /// \param Type The type of operand which cannot have its address taken.
   8900 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
   8901                                          Expr *E, unsigned Type) {
   8902   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
   8903 }
   8904 
   8905 /// CheckAddressOfOperand - The operand of & must be either a function
   8906 /// designator or an lvalue designating an object. If it is an lvalue, the
   8907 /// object cannot be declared with storage class register or be a bit field.
   8908 /// Note: The usual conversions are *not* applied to the operand of the &
   8909 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   8910 /// In C++, the operand might be an overloaded function name, in which case
   8911 /// we allow the '&' but retain the overloaded-function type.
   8912 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
   8913   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
   8914     if (PTy->getKind() == BuiltinType::Overload) {
   8915       Expr *E = OrigOp.get()->IgnoreParens();
   8916       if (!isa<OverloadExpr>(E)) {
   8917         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
   8918         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
   8919           << OrigOp.get()->getSourceRange();
   8920         return QualType();
   8921       }
   8922 
   8923       OverloadExpr *Ovl = cast<OverloadExpr>(E);
   8924       if (isa<UnresolvedMemberExpr>(Ovl))
   8925         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
   8926           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   8927             << OrigOp.get()->getSourceRange();
   8928           return QualType();
   8929         }
   8930 
   8931       return Context.OverloadTy;
   8932     }
   8933 
   8934     if (PTy->getKind() == BuiltinType::UnknownAny)
   8935       return Context.UnknownAnyTy;
   8936 
   8937     if (PTy->getKind() == BuiltinType::BoundMember) {
   8938       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   8939         << OrigOp.get()->getSourceRange();
   8940       return QualType();
   8941     }
   8942 
   8943     OrigOp = CheckPlaceholderExpr(OrigOp.get());
   8944     if (OrigOp.isInvalid()) return QualType();
   8945   }
   8946 
   8947   if (OrigOp.get()->isTypeDependent())
   8948     return Context.DependentTy;
   8949 
   8950   assert(!OrigOp.get()->getType()->isPlaceholderType());
   8951 
   8952   // Make sure to ignore parentheses in subsequent checks
   8953   Expr *op = OrigOp.get()->IgnoreParens();
   8954 
   8955   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   8956   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
   8957     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
   8958     return QualType();
   8959   }
   8960 
   8961   if (getLangOpts().C99) {
   8962     // Implement C99-only parts of addressof rules.
   8963     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   8964       if (uOp->getOpcode() == UO_Deref)
   8965         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   8966         // (assuming the deref expression is valid).
   8967         return uOp->getSubExpr()->getType();
   8968     }
   8969     // Technically, there should be a check for array subscript
   8970     // expressions here, but the result of one is always an lvalue anyway.
   8971   }
   8972   ValueDecl *dcl = getPrimaryDecl(op);
   8973   Expr::LValueClassification lval = op->ClassifyLValue(Context);
   8974   unsigned AddressOfError = AO_No_Error;
   8975 
   8976   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
   8977     bool sfinae = (bool)isSFINAEContext();
   8978     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
   8979                                   : diag::ext_typecheck_addrof_temporary)
   8980       << op->getType() << op->getSourceRange();
   8981     if (sfinae)
   8982       return QualType();
   8983     // Materialize the temporary as an lvalue so that we can take its address.
   8984     OrigOp = op = new (Context)
   8985         MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
   8986   } else if (isa<ObjCSelectorExpr>(op)) {
   8987     return Context.getPointerType(op->getType());
   8988   } else if (lval == Expr::LV_MemberFunction) {
   8989     // If it's an instance method, make a member pointer.
   8990     // The expression must have exactly the form &A::foo.
   8991 
   8992     // If the underlying expression isn't a decl ref, give up.
   8993     if (!isa<DeclRefExpr>(op)) {
   8994       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   8995         << OrigOp.get()->getSourceRange();
   8996       return QualType();
   8997     }
   8998     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   8999     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   9000 
   9001     // The id-expression was parenthesized.
   9002     if (OrigOp.get() != DRE) {
   9003       Diag(OpLoc, diag::err_parens_pointer_member_function)
   9004         << OrigOp.get()->getSourceRange();
   9005 
   9006     // The method was named without a qualifier.
   9007     } else if (!DRE->getQualifier()) {
   9008       if (MD->getParent()->getName().empty())
   9009         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9010           << op->getSourceRange();
   9011       else {
   9012         SmallString<32> Str;
   9013         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
   9014         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9015           << op->getSourceRange()
   9016           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
   9017       }
   9018     }
   9019 
   9020     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
   9021     if (isa<CXXDestructorDecl>(MD))
   9022       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
   9023 
   9024     QualType MPTy = Context.getMemberPointerType(
   9025         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
   9026     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   9027       RequireCompleteType(OpLoc, MPTy, 0);
   9028     return MPTy;
   9029   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   9030     // C99 6.5.3.2p1
   9031     // The operand must be either an l-value or a function designator
   9032     if (!op->getType()->isFunctionType()) {
   9033       // Use a special diagnostic for loads from property references.
   9034       if (isa<PseudoObjectExpr>(op)) {
   9035         AddressOfError = AO_Property_Expansion;
   9036       } else {
   9037         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   9038           << op->getType() << op->getSourceRange();
   9039         return QualType();
   9040       }
   9041     }
   9042   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   9043     // The operand cannot be a bit-field
   9044     AddressOfError = AO_Bit_Field;
   9045   } else if (op->getObjectKind() == OK_VectorComponent) {
   9046     // The operand cannot be an element of a vector
   9047     AddressOfError = AO_Vector_Element;
   9048   } else if (dcl) { // C99 6.5.3.2p1
   9049     // We have an lvalue with a decl. Make sure the decl is not declared
   9050     // with the register storage-class specifier.
   9051     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   9052       // in C++ it is not error to take address of a register
   9053       // variable (c++03 7.1.1P3)
   9054       if (vd->getStorageClass() == SC_Register &&
   9055           !getLangOpts().CPlusPlus) {
   9056         AddressOfError = AO_Register_Variable;
   9057       }
   9058     } else if (isa<FunctionTemplateDecl>(dcl)) {
   9059       return Context.OverloadTy;
   9060     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   9061       // Okay: we can take the address of a field.
   9062       // Could be a pointer to member, though, if there is an explicit
   9063       // scope qualifier for the class.
   9064       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   9065         DeclContext *Ctx = dcl->getDeclContext();
   9066         if (Ctx && Ctx->isRecord()) {
   9067           if (dcl->getType()->isReferenceType()) {
   9068             Diag(OpLoc,
   9069                  diag::err_cannot_form_pointer_to_member_of_reference_type)
   9070               << dcl->getDeclName() << dcl->getType();
   9071             return QualType();
   9072           }
   9073 
   9074           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   9075             Ctx = Ctx->getParent();
   9076 
   9077           QualType MPTy = Context.getMemberPointerType(
   9078               op->getType(),
   9079               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   9080           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   9081             RequireCompleteType(OpLoc, MPTy, 0);
   9082           return MPTy;
   9083         }
   9084       }
   9085     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
   9086       llvm_unreachable("Unknown/unexpected decl type");
   9087   }
   9088 
   9089   if (AddressOfError != AO_No_Error) {
   9090     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
   9091     return QualType();
   9092   }
   9093 
   9094   if (lval == Expr::LV_IncompleteVoidType) {
   9095     // Taking the address of a void variable is technically illegal, but we
   9096     // allow it in cases which are otherwise valid.
   9097     // Example: "extern void x; void* y = &x;".
   9098     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   9099   }
   9100 
   9101   // If the operand has type "type", the result has type "pointer to type".
   9102   if (op->getType()->isObjCObjectType())
   9103     return Context.getObjCObjectPointerType(op->getType());
   9104   return Context.getPointerType(op->getType());
   9105 }
   9106 
   9107 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   9108 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   9109                                         SourceLocation OpLoc) {
   9110   if (Op->isTypeDependent())
   9111     return S.Context.DependentTy;
   9112 
   9113   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   9114   if (ConvResult.isInvalid())
   9115     return QualType();
   9116   Op = ConvResult.get();
   9117   QualType OpTy = Op->getType();
   9118   QualType Result;
   9119 
   9120   if (isa<CXXReinterpretCastExpr>(Op)) {
   9121     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   9122     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   9123                                      Op->getSourceRange());
   9124   }
   9125 
   9126   if (const PointerType *PT = OpTy->getAs<PointerType>())
   9127     Result = PT->getPointeeType();
   9128   else if (const ObjCObjectPointerType *OPT =
   9129              OpTy->getAs<ObjCObjectPointerType>())
   9130     Result = OPT->getPointeeType();
   9131   else {
   9132     ExprResult PR = S.CheckPlaceholderExpr(Op);
   9133     if (PR.isInvalid()) return QualType();
   9134     if (PR.get() != Op)
   9135       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
   9136   }
   9137 
   9138   if (Result.isNull()) {
   9139     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   9140       << OpTy << Op->getSourceRange();
   9141     return QualType();
   9142   }
   9143 
   9144   // Note that per both C89 and C99, indirection is always legal, even if Result
   9145   // is an incomplete type or void.  It would be possible to warn about
   9146   // dereferencing a void pointer, but it's completely well-defined, and such a
   9147   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
   9148   // for pointers to 'void' but is fine for any other pointer type:
   9149   //
   9150   // C++ [expr.unary.op]p1:
   9151   //   [...] the expression to which [the unary * operator] is applied shall
   9152   //   be a pointer to an object type, or a pointer to a function type
   9153   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
   9154     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
   9155       << OpTy << Op->getSourceRange();
   9156 
   9157   // Dereferences are usually l-values...
   9158   VK = VK_LValue;
   9159 
   9160   // ...except that certain expressions are never l-values in C.
   9161   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
   9162     VK = VK_RValue;
   9163 
   9164   return Result;
   9165 }
   9166 
   9167 static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
   9168   tok::TokenKind Kind) {
   9169   BinaryOperatorKind Opc;
   9170   switch (Kind) {
   9171   default: llvm_unreachable("Unknown binop!");
   9172   case tok::periodstar:           Opc = BO_PtrMemD; break;
   9173   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   9174   case tok::star:                 Opc = BO_Mul; break;
   9175   case tok::slash:                Opc = BO_Div; break;
   9176   case tok::percent:              Opc = BO_Rem; break;
   9177   case tok::plus:                 Opc = BO_Add; break;
   9178   case tok::minus:                Opc = BO_Sub; break;
   9179   case tok::lessless:             Opc = BO_Shl; break;
   9180   case tok::greatergreater:       Opc = BO_Shr; break;
   9181   case tok::lessequal:            Opc = BO_LE; break;
   9182   case tok::less:                 Opc = BO_LT; break;
   9183   case tok::greaterequal:         Opc = BO_GE; break;
   9184   case tok::greater:              Opc = BO_GT; break;
   9185   case tok::exclaimequal:         Opc = BO_NE; break;
   9186   case tok::equalequal:           Opc = BO_EQ; break;
   9187   case tok::amp:                  Opc = BO_And; break;
   9188   case tok::caret:                Opc = BO_Xor; break;
   9189   case tok::pipe:                 Opc = BO_Or; break;
   9190   case tok::ampamp:               Opc = BO_LAnd; break;
   9191   case tok::pipepipe:             Opc = BO_LOr; break;
   9192   case tok::equal:                Opc = BO_Assign; break;
   9193   case tok::starequal:            Opc = BO_MulAssign; break;
   9194   case tok::slashequal:           Opc = BO_DivAssign; break;
   9195   case tok::percentequal:         Opc = BO_RemAssign; break;
   9196   case tok::plusequal:            Opc = BO_AddAssign; break;
   9197   case tok::minusequal:           Opc = BO_SubAssign; break;
   9198   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   9199   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   9200   case tok::ampequal:             Opc = BO_AndAssign; break;
   9201   case tok::caretequal:           Opc = BO_XorAssign; break;
   9202   case tok::pipeequal:            Opc = BO_OrAssign; break;
   9203   case tok::comma:                Opc = BO_Comma; break;
   9204   }
   9205   return Opc;
   9206 }
   9207 
   9208 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   9209   tok::TokenKind Kind) {
   9210   UnaryOperatorKind Opc;
   9211   switch (Kind) {
   9212   default: llvm_unreachable("Unknown unary op!");
   9213   case tok::plusplus:     Opc = UO_PreInc; break;
   9214   case tok::minusminus:   Opc = UO_PreDec; break;
   9215   case tok::amp:          Opc = UO_AddrOf; break;
   9216   case tok::star:         Opc = UO_Deref; break;
   9217   case tok::plus:         Opc = UO_Plus; break;
   9218   case tok::minus:        Opc = UO_Minus; break;
   9219   case tok::tilde:        Opc = UO_Not; break;
   9220   case tok::exclaim:      Opc = UO_LNot; break;
   9221   case tok::kw___real:    Opc = UO_Real; break;
   9222   case tok::kw___imag:    Opc = UO_Imag; break;
   9223   case tok::kw___extension__: Opc = UO_Extension; break;
   9224   }
   9225   return Opc;
   9226 }
   9227 
   9228 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   9229 /// This warning is only emitted for builtin assignment operations. It is also
   9230 /// suppressed in the event of macro expansions.
   9231 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
   9232                                    SourceLocation OpLoc) {
   9233   if (!S.ActiveTemplateInstantiations.empty())
   9234     return;
   9235   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   9236     return;
   9237   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   9238   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   9239   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   9240   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   9241   if (!LHSDeclRef || !RHSDeclRef ||
   9242       LHSDeclRef->getLocation().isMacroID() ||
   9243       RHSDeclRef->getLocation().isMacroID())
   9244     return;
   9245   const ValueDecl *LHSDecl =
   9246     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
   9247   const ValueDecl *RHSDecl =
   9248     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
   9249   if (LHSDecl != RHSDecl)
   9250     return;
   9251   if (LHSDecl->getType().isVolatileQualified())
   9252     return;
   9253   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
   9254     if (RefTy->getPointeeType().isVolatileQualified())
   9255       return;
   9256 
   9257   S.Diag(OpLoc, diag::warn_self_assignment)
   9258       << LHSDeclRef->getType()
   9259       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   9260 }
   9261 
   9262 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
   9263 /// is usually indicative of introspection within the Objective-C pointer.
   9264 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
   9265                                           SourceLocation OpLoc) {
   9266   if (!S.getLangOpts().ObjC1)
   9267     return;
   9268 
   9269   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
   9270   const Expr *LHS = L.get();
   9271   const Expr *RHS = R.get();
   9272 
   9273   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   9274     ObjCPointerExpr = LHS;
   9275     OtherExpr = RHS;
   9276   }
   9277   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   9278     ObjCPointerExpr = RHS;
   9279     OtherExpr = LHS;
   9280   }
   9281 
   9282   // This warning is deliberately made very specific to reduce false
   9283   // positives with logic that uses '&' for hashing.  This logic mainly
   9284   // looks for code trying to introspect into tagged pointers, which
   9285   // code should generally never do.
   9286   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
   9287     unsigned Diag = diag::warn_objc_pointer_masking;
   9288     // Determine if we are introspecting the result of performSelectorXXX.
   9289     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
   9290     // Special case messages to -performSelector and friends, which
   9291     // can return non-pointer values boxed in a pointer value.
   9292     // Some clients may wish to silence warnings in this subcase.
   9293     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
   9294       Selector S = ME->getSelector();
   9295       StringRef SelArg0 = S.getNameForSlot(0);
   9296       if (SelArg0.startswith("performSelector"))
   9297         Diag = diag::warn_objc_pointer_masking_performSelector;
   9298     }
   9299 
   9300     S.Diag(OpLoc, Diag)
   9301       << ObjCPointerExpr->getSourceRange();
   9302   }
   9303 }
   9304 
   9305 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   9306 /// operator @p Opc at location @c TokLoc. This routine only supports
   9307 /// built-in operations; ActOnBinOp handles overloaded operators.
   9308 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   9309                                     BinaryOperatorKind Opc,
   9310                                     Expr *LHSExpr, Expr *RHSExpr) {
   9311   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
   9312     // The syntax only allows initializer lists on the RHS of assignment,
   9313     // so we don't need to worry about accepting invalid code for
   9314     // non-assignment operators.
   9315     // C++11 5.17p9:
   9316     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
   9317     //   of x = {} is x = T().
   9318     InitializationKind Kind =
   9319         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
   9320     InitializedEntity Entity =
   9321         InitializedEntity::InitializeTemporary(LHSExpr->getType());
   9322     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
   9323     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
   9324     if (Init.isInvalid())
   9325       return Init;
   9326     RHSExpr = Init.get();
   9327   }
   9328 
   9329   ExprResult LHS = LHSExpr, RHS = RHSExpr;
   9330   QualType ResultTy;     // Result type of the binary operator.
   9331   // The following two variables are used for compound assignment operators
   9332   QualType CompLHSTy;    // Type of LHS after promotions for computation
   9333   QualType CompResultTy; // Type of computation result
   9334   ExprValueKind VK = VK_RValue;
   9335   ExprObjectKind OK = OK_Ordinary;
   9336 
   9337   switch (Opc) {
   9338   case BO_Assign:
   9339     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
   9340     if (getLangOpts().CPlusPlus &&
   9341         LHS.get()->getObjectKind() != OK_ObjCProperty) {
   9342       VK = LHS.get()->getValueKind();
   9343       OK = LHS.get()->getObjectKind();
   9344     }
   9345     if (!ResultTy.isNull())
   9346       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   9347     break;
   9348   case BO_PtrMemD:
   9349   case BO_PtrMemI:
   9350     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
   9351                                             Opc == BO_PtrMemI);
   9352     break;
   9353   case BO_Mul:
   9354   case BO_Div:
   9355     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
   9356                                            Opc == BO_Div);
   9357     break;
   9358   case BO_Rem:
   9359     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
   9360     break;
   9361   case BO_Add:
   9362     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
   9363     break;
   9364   case BO_Sub:
   9365     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
   9366     break;
   9367   case BO_Shl:
   9368   case BO_Shr:
   9369     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
   9370     break;
   9371   case BO_LE:
   9372   case BO_LT:
   9373   case BO_GE:
   9374   case BO_GT:
   9375     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
   9376     break;
   9377   case BO_EQ:
   9378   case BO_NE:
   9379     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
   9380     break;
   9381   case BO_And:
   9382     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
   9383   case BO_Xor:
   9384   case BO_Or:
   9385     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
   9386     break;
   9387   case BO_LAnd:
   9388   case BO_LOr:
   9389     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
   9390     break;
   9391   case BO_MulAssign:
   9392   case BO_DivAssign:
   9393     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
   9394                                                Opc == BO_DivAssign);
   9395     CompLHSTy = CompResultTy;
   9396     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9397       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9398     break;
   9399   case BO_RemAssign:
   9400     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
   9401     CompLHSTy = CompResultTy;
   9402     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9403       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9404     break;
   9405   case BO_AddAssign:
   9406     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
   9407     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9408       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9409     break;
   9410   case BO_SubAssign:
   9411     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
   9412     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9413       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9414     break;
   9415   case BO_ShlAssign:
   9416   case BO_ShrAssign:
   9417     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
   9418     CompLHSTy = CompResultTy;
   9419     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9420       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9421     break;
   9422   case BO_AndAssign:
   9423   case BO_OrAssign: // fallthrough
   9424 	  DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   9425   case BO_XorAssign:
   9426     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
   9427     CompLHSTy = CompResultTy;
   9428     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   9429       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   9430     break;
   9431   case BO_Comma:
   9432     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
   9433     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
   9434       VK = RHS.get()->getValueKind();
   9435       OK = RHS.get()->getObjectKind();
   9436     }
   9437     break;
   9438   }
   9439   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
   9440     return ExprError();
   9441 
   9442   // Check for array bounds violations for both sides of the BinaryOperator
   9443   CheckArrayAccess(LHS.get());
   9444   CheckArrayAccess(RHS.get());
   9445 
   9446   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
   9447     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
   9448                                                  &Context.Idents.get("object_setClass"),
   9449                                                  SourceLocation(), LookupOrdinaryName);
   9450     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
   9451       SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
   9452       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
   9453       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
   9454       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
   9455       FixItHint::CreateInsertion(RHSLocEnd, ")");
   9456     }
   9457     else
   9458       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
   9459   }
   9460   else if (const ObjCIvarRefExpr *OIRE =
   9461            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
   9462     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
   9463 
   9464   if (CompResultTy.isNull())
   9465     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
   9466                                         OK, OpLoc, FPFeatures.fp_contract);
   9467   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
   9468       OK_ObjCProperty) {
   9469     VK = VK_LValue;
   9470     OK = LHS.get()->getObjectKind();
   9471   }
   9472   return new (Context) CompoundAssignOperator(
   9473       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
   9474       OpLoc, FPFeatures.fp_contract);
   9475 }
   9476 
   9477 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   9478 /// operators are mixed in a way that suggests that the programmer forgot that
   9479 /// comparison operators have higher precedence. The most typical example of
   9480 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   9481 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   9482                                       SourceLocation OpLoc, Expr *LHSExpr,
   9483                                       Expr *RHSExpr) {
   9484   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
   9485   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
   9486 
   9487   // Check that one of the sides is a comparison operator.
   9488   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
   9489   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
   9490   if (!isLeftComp && !isRightComp)
   9491     return;
   9492 
   9493   // Bitwise operations are sometimes used as eager logical ops.
   9494   // Don't diagnose this.
   9495   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
   9496   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
   9497   if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
   9498     return;
   9499 
   9500   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
   9501                                                    OpLoc)
   9502                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
   9503   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
   9504   SourceRange ParensRange = isLeftComp ?
   9505       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
   9506     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
   9507 
   9508   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   9509     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
   9510   SuggestParentheses(Self, OpLoc,
   9511     Self.PDiag(diag::note_precedence_silence) << OpStr,
   9512     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
   9513   SuggestParentheses(Self, OpLoc,
   9514     Self.PDiag(diag::note_precedence_bitwise_first)
   9515       << BinaryOperator::getOpcodeStr(Opc),
   9516     ParensRange);
   9517 }
   9518 
   9519 /// \brief It accepts a '&' expr that is inside a '|' one.
   9520 /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
   9521 /// in parentheses.
   9522 static void
   9523 EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
   9524                                        BinaryOperator *Bop) {
   9525   assert(Bop->getOpcode() == BO_And);
   9526   Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
   9527       << Bop->getSourceRange() << OpLoc;
   9528   SuggestParentheses(Self, Bop->getOperatorLoc(),
   9529     Self.PDiag(diag::note_precedence_silence)
   9530       << Bop->getOpcodeStr(),
   9531     Bop->getSourceRange());
   9532 }
   9533 
   9534 /// \brief It accepts a '&&' expr that is inside a '||' one.
   9535 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   9536 /// in parentheses.
   9537 static void
   9538 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   9539                                        BinaryOperator *Bop) {
   9540   assert(Bop->getOpcode() == BO_LAnd);
   9541   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   9542       << Bop->getSourceRange() << OpLoc;
   9543   SuggestParentheses(Self, Bop->getOperatorLoc(),
   9544     Self.PDiag(diag::note_precedence_silence)
   9545       << Bop->getOpcodeStr(),
   9546     Bop->getSourceRange());
   9547 }
   9548 
   9549 /// \brief Returns true if the given expression can be evaluated as a constant
   9550 /// 'true'.
   9551 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   9552   bool Res;
   9553   return !E->isValueDependent() &&
   9554          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   9555 }
   9556 
   9557 /// \brief Returns true if the given expression can be evaluated as a constant
   9558 /// 'false'.
   9559 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   9560   bool Res;
   9561   return !E->isValueDependent() &&
   9562          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   9563 }
   9564 
   9565 /// \brief Look for '&&' in the left hand of a '||' expr.
   9566 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   9567                                              Expr *LHSExpr, Expr *RHSExpr) {
   9568   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
   9569     if (Bop->getOpcode() == BO_LAnd) {
   9570       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   9571       if (EvaluatesAsFalse(S, RHSExpr))
   9572         return;
   9573       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   9574       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   9575         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   9576     } else if (Bop->getOpcode() == BO_LOr) {
   9577       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   9578         // If it's "a || b && 1 || c" we didn't warn earlier for
   9579         // "a || b && 1", but warn now.
   9580         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   9581           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   9582       }
   9583     }
   9584   }
   9585 }
   9586 
   9587 /// \brief Look for '&&' in the right hand of a '||' expr.
   9588 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   9589                                              Expr *LHSExpr, Expr *RHSExpr) {
   9590   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
   9591     if (Bop->getOpcode() == BO_LAnd) {
   9592       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   9593       if (EvaluatesAsFalse(S, LHSExpr))
   9594         return;
   9595       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   9596       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   9597         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   9598     }
   9599   }
   9600 }
   9601 
   9602 /// \brief Look for '&' in the left or right hand of a '|' expr.
   9603 static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
   9604                                              Expr *OrArg) {
   9605   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
   9606     if (Bop->getOpcode() == BO_And)
   9607       return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
   9608   }
   9609 }
   9610 
   9611 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
   9612                                     Expr *SubExpr, StringRef Shift) {
   9613   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   9614     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
   9615       StringRef Op = Bop->getOpcodeStr();
   9616       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
   9617           << Bop->getSourceRange() << OpLoc << Shift << Op;
   9618       SuggestParentheses(S, Bop->getOperatorLoc(),
   9619           S.PDiag(diag::note_precedence_silence) << Op,
   9620           Bop->getSourceRange());
   9621     }
   9622   }
   9623 }
   9624 
   9625 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
   9626                                  Expr *LHSExpr, Expr *RHSExpr) {
   9627   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
   9628   if (!OCE)
   9629     return;
   9630 
   9631   FunctionDecl *FD = OCE->getDirectCallee();
   9632   if (!FD || !FD->isOverloadedOperator())
   9633     return;
   9634 
   9635   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
   9636   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
   9637     return;
   9638 
   9639   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
   9640       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
   9641       << (Kind == OO_LessLess);
   9642   SuggestParentheses(S, OCE->getOperatorLoc(),
   9643                      S.PDiag(diag::note_precedence_silence)
   9644                          << (Kind == OO_LessLess ? "<<" : ">>"),
   9645                      OCE->getSourceRange());
   9646   SuggestParentheses(S, OpLoc,
   9647                      S.PDiag(diag::note_evaluate_comparison_first),
   9648                      SourceRange(OCE->getArg(1)->getLocStart(),
   9649                                  RHSExpr->getLocEnd()));
   9650 }
   9651 
   9652 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   9653 /// precedence.
   9654 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   9655                                     SourceLocation OpLoc, Expr *LHSExpr,
   9656                                     Expr *RHSExpr){
   9657   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   9658   if (BinaryOperator::isBitwiseOp(Opc))
   9659     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
   9660 
   9661   // Diagnose "arg1 & arg2 | arg3"
   9662   if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   9663     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
   9664     DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
   9665   }
   9666 
   9667   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   9668   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   9669   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   9670     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
   9671     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
   9672   }
   9673 
   9674   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
   9675       || Opc == BO_Shr) {
   9676     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
   9677     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
   9678     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
   9679   }
   9680 
   9681   // Warn on overloaded shift operators and comparisons, such as:
   9682   // cout << 5 == 4;
   9683   if (BinaryOperator::isComparisonOp(Opc))
   9684     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
   9685 }
   9686 
   9687 // Binary Operators.  'Tok' is the token for the operator.
   9688 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   9689                             tok::TokenKind Kind,
   9690                             Expr *LHSExpr, Expr *RHSExpr) {
   9691   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   9692   assert(LHSExpr && "ActOnBinOp(): missing left expression");
   9693   assert(RHSExpr && "ActOnBinOp(): missing right expression");
   9694 
   9695   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   9696   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
   9697 
   9698   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
   9699 }
   9700 
   9701 /// Build an overloaded binary operator expression in the given scope.
   9702 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
   9703                                        BinaryOperatorKind Opc,
   9704                                        Expr *LHS, Expr *RHS) {
   9705   // Find all of the overloaded operators visible from this
   9706   // point. We perform both an operator-name lookup from the local
   9707   // scope and an argument-dependent lookup based on the types of
   9708   // the arguments.
   9709   UnresolvedSet<16> Functions;
   9710   OverloadedOperatorKind OverOp
   9711     = BinaryOperator::getOverloadedOperator(Opc);
   9712   if (Sc && OverOp != OO_None)
   9713     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
   9714                                    RHS->getType(), Functions);
   9715 
   9716   // Build the (potentially-overloaded, potentially-dependent)
   9717   // binary operation.
   9718   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
   9719 }
   9720 
   9721 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   9722                             BinaryOperatorKind Opc,
   9723                             Expr *LHSExpr, Expr *RHSExpr) {
   9724   // We want to end up calling one of checkPseudoObjectAssignment
   9725   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
   9726   // both expressions are overloadable or either is type-dependent),
   9727   // or CreateBuiltinBinOp (in any other case).  We also want to get
   9728   // any placeholder types out of the way.
   9729 
   9730   // Handle pseudo-objects in the LHS.
   9731   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
   9732     // Assignments with a pseudo-object l-value need special analysis.
   9733     if (pty->getKind() == BuiltinType::PseudoObject &&
   9734         BinaryOperator::isAssignmentOp(Opc))
   9735       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
   9736 
   9737     // Don't resolve overloads if the other type is overloadable.
   9738     if (pty->getKind() == BuiltinType::Overload) {
   9739       // We can't actually test that if we still have a placeholder,
   9740       // though.  Fortunately, none of the exceptions we see in that
   9741       // code below are valid when the LHS is an overload set.  Note
   9742       // that an overload set can be dependently-typed, but it never
   9743       // instantiates to having an overloadable type.
   9744       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   9745       if (resolvedRHS.isInvalid()) return ExprError();
   9746       RHSExpr = resolvedRHS.get();
   9747 
   9748       if (RHSExpr->isTypeDependent() ||
   9749           RHSExpr->getType()->isOverloadableType())
   9750         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9751     }
   9752 
   9753     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
   9754     if (LHS.isInvalid()) return ExprError();
   9755     LHSExpr = LHS.get();
   9756   }
   9757 
   9758   // Handle pseudo-objects in the RHS.
   9759   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
   9760     // An overload in the RHS can potentially be resolved by the type
   9761     // being assigned to.
   9762     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
   9763       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   9764         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9765 
   9766       if (LHSExpr->getType()->isOverloadableType())
   9767         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9768 
   9769       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   9770     }
   9771 
   9772     // Don't resolve overloads if the other type is overloadable.
   9773     if (pty->getKind() == BuiltinType::Overload &&
   9774         LHSExpr->getType()->isOverloadableType())
   9775       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9776 
   9777     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   9778     if (!resolvedRHS.isUsable()) return ExprError();
   9779     RHSExpr = resolvedRHS.get();
   9780   }
   9781 
   9782   if (getLangOpts().CPlusPlus) {
   9783     // If either expression is type-dependent, always build an
   9784     // overloaded op.
   9785     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   9786       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9787 
   9788     // Otherwise, build an overloaded op if either expression has an
   9789     // overloadable type.
   9790     if (LHSExpr->getType()->isOverloadableType() ||
   9791         RHSExpr->getType()->isOverloadableType())
   9792       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   9793   }
   9794 
   9795   // Build a built-in binary operation.
   9796   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   9797 }
   9798 
   9799 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   9800                                       UnaryOperatorKind Opc,
   9801                                       Expr *InputExpr) {
   9802   ExprResult Input = InputExpr;
   9803   ExprValueKind VK = VK_RValue;
   9804   ExprObjectKind OK = OK_Ordinary;
   9805   QualType resultType;
   9806   switch (Opc) {
   9807   case UO_PreInc:
   9808   case UO_PreDec:
   9809   case UO_PostInc:
   9810   case UO_PostDec:
   9811     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
   9812                                                 Opc == UO_PreInc ||
   9813                                                 Opc == UO_PostInc,
   9814                                                 Opc == UO_PreInc ||
   9815                                                 Opc == UO_PreDec);
   9816     break;
   9817   case UO_AddrOf:
   9818     resultType = CheckAddressOfOperand(Input, OpLoc);
   9819     break;
   9820   case UO_Deref: {
   9821     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   9822     if (Input.isInvalid()) return ExprError();
   9823     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   9824     break;
   9825   }
   9826   case UO_Plus:
   9827   case UO_Minus:
   9828     Input = UsualUnaryConversions(Input.get());
   9829     if (Input.isInvalid()) return ExprError();
   9830     resultType = Input.get()->getType();
   9831     if (resultType->isDependentType())
   9832       break;
   9833     if (resultType->isArithmeticType() || // C99 6.5.3.3p1
   9834         resultType->isVectorType())
   9835       break;
   9836     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
   9837              Opc == UO_Plus &&
   9838              resultType->isPointerType())
   9839       break;
   9840 
   9841     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9842       << resultType << Input.get()->getSourceRange());
   9843 
   9844   case UO_Not: // bitwise complement
   9845     Input = UsualUnaryConversions(Input.get());
   9846     if (Input.isInvalid())
   9847       return ExprError();
   9848     resultType = Input.get()->getType();
   9849     if (resultType->isDependentType())
   9850       break;
   9851     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   9852     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   9853       // C99 does not support '~' for complex conjugation.
   9854       Diag(OpLoc, diag::ext_integer_complement_complex)
   9855           << resultType << Input.get()->getSourceRange();
   9856     else if (resultType->hasIntegerRepresentation())
   9857       break;
   9858     else if (resultType->isExtVectorType()) {
   9859       if (Context.getLangOpts().OpenCL) {
   9860         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
   9861         // on vector float types.
   9862         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   9863         if (!T->isIntegerType())
   9864           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9865                            << resultType << Input.get()->getSourceRange());
   9866       }
   9867       break;
   9868     } else {
   9869       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9870                        << resultType << Input.get()->getSourceRange());
   9871     }
   9872     break;
   9873 
   9874   case UO_LNot: // logical negation
   9875     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   9876     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   9877     if (Input.isInvalid()) return ExprError();
   9878     resultType = Input.get()->getType();
   9879 
   9880     // Though we still have to promote half FP to float...
   9881     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
   9882       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
   9883       resultType = Context.FloatTy;
   9884     }
   9885 
   9886     if (resultType->isDependentType())
   9887       break;
   9888     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
   9889       // C99 6.5.3.3p1: ok, fallthrough;
   9890       if (Context.getLangOpts().CPlusPlus) {
   9891         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   9892         // operand contextually converted to bool.
   9893         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
   9894                                   ScalarTypeToBooleanCastKind(resultType));
   9895       } else if (Context.getLangOpts().OpenCL &&
   9896                  Context.getLangOpts().OpenCLVersion < 120) {
   9897         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   9898         // operate on scalar float types.
   9899         if (!resultType->isIntegerType())
   9900           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9901                            << resultType << Input.get()->getSourceRange());
   9902       }
   9903     } else if (resultType->isExtVectorType()) {
   9904       if (Context.getLangOpts().OpenCL &&
   9905           Context.getLangOpts().OpenCLVersion < 120) {
   9906         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   9907         // operate on vector float types.
   9908         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   9909         if (!T->isIntegerType())
   9910           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9911                            << resultType << Input.get()->getSourceRange());
   9912       }
   9913       // Vector logical not returns the signed variant of the operand type.
   9914       resultType = GetSignedVectorType(resultType);
   9915       break;
   9916     } else {
   9917       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   9918         << resultType << Input.get()->getSourceRange());
   9919     }
   9920 
   9921     // LNot always has type int. C99 6.5.3.3p5.
   9922     // In C++, it's bool. C++ 5.3.1p8
   9923     resultType = Context.getLogicalOperationType();
   9924     break;
   9925   case UO_Real:
   9926   case UO_Imag:
   9927     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   9928     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
   9929     // complex l-values to ordinary l-values and all other values to r-values.
   9930     if (Input.isInvalid()) return ExprError();
   9931     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
   9932       if (Input.get()->getValueKind() != VK_RValue &&
   9933           Input.get()->getObjectKind() == OK_Ordinary)
   9934         VK = Input.get()->getValueKind();
   9935     } else if (!getLangOpts().CPlusPlus) {
   9936       // In C, a volatile scalar is read by __imag. In C++, it is not.
   9937       Input = DefaultLvalueConversion(Input.get());
   9938     }
   9939     break;
   9940   case UO_Extension:
   9941     resultType = Input.get()->getType();
   9942     VK = Input.get()->getValueKind();
   9943     OK = Input.get()->getObjectKind();
   9944     break;
   9945   }
   9946   if (resultType.isNull() || Input.isInvalid())
   9947     return ExprError();
   9948 
   9949   // Check for array bounds violations in the operand of the UnaryOperator,
   9950   // except for the '*' and '&' operators that have to be handled specially
   9951   // by CheckArrayAccess (as there are special cases like &array[arraysize]
   9952   // that are explicitly defined as valid by the standard).
   9953   if (Opc != UO_AddrOf && Opc != UO_Deref)
   9954     CheckArrayAccess(Input.get());
   9955 
   9956   return new (Context)
   9957       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
   9958 }
   9959 
   9960 /// \brief Determine whether the given expression is a qualified member
   9961 /// access expression, of a form that could be turned into a pointer to member
   9962 /// with the address-of operator.
   9963 static bool isQualifiedMemberAccess(Expr *E) {
   9964   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   9965     if (!DRE->getQualifier())
   9966       return false;
   9967 
   9968     ValueDecl *VD = DRE->getDecl();
   9969     if (!VD->isCXXClassMember())
   9970       return false;
   9971 
   9972     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
   9973       return true;
   9974     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
   9975       return Method->isInstance();
   9976 
   9977     return false;
   9978   }
   9979 
   9980   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   9981     if (!ULE->getQualifier())
   9982       return false;
   9983 
   9984     for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
   9985                                            DEnd = ULE->decls_end();
   9986          D != DEnd; ++D) {
   9987       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
   9988         if (Method->isInstance())
   9989           return true;
   9990       } else {
   9991         // Overload set does not contain methods.
   9992         break;
   9993       }
   9994     }
   9995 
   9996     return false;
   9997   }
   9998 
   9999   return false;
   10000 }
   10001 
   10002 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   10003                               UnaryOperatorKind Opc, Expr *Input) {
   10004   // First things first: handle placeholders so that the
   10005   // overloaded-operator check considers the right type.
   10006   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
   10007     // Increment and decrement of pseudo-object references.
   10008     if (pty->getKind() == BuiltinType::PseudoObject &&
   10009         UnaryOperator::isIncrementDecrementOp(Opc))
   10010       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
   10011 
   10012     // extension is always a builtin operator.
   10013     if (Opc == UO_Extension)
   10014       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10015 
   10016     // & gets special logic for several kinds of placeholder.
   10017     // The builtin code knows what to do.
   10018     if (Opc == UO_AddrOf &&
   10019         (pty->getKind() == BuiltinType::Overload ||
   10020          pty->getKind() == BuiltinType::UnknownAny ||
   10021          pty->getKind() == BuiltinType::BoundMember))
   10022       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10023 
   10024     // Anything else needs to be handled now.
   10025     ExprResult Result = CheckPlaceholderExpr(Input);
   10026     if (Result.isInvalid()) return ExprError();
   10027     Input = Result.get();
   10028   }
   10029 
   10030   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
   10031       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
   10032       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
   10033     // Find all of the overloaded operators visible from this
   10034     // point. We perform both an operator-name lookup from the local
   10035     // scope and an argument-dependent lookup based on the types of
   10036     // the arguments.
   10037     UnresolvedSet<16> Functions;
   10038     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   10039     if (S && OverOp != OO_None)
   10040       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   10041                                    Functions);
   10042 
   10043     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   10044   }
   10045 
   10046   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   10047 }
   10048 
   10049 // Unary Operators.  'Tok' is the token for the operator.
   10050 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   10051                               tok::TokenKind Op, Expr *Input) {
   10052   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   10053 }
   10054 
   10055 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   10056 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   10057                                 LabelDecl *TheDecl) {
   10058   TheDecl->markUsed(Context);
   10059   // Create the AST node.  The address of a label always has type 'void*'.
   10060   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   10061                                      Context.getPointerType(Context.VoidTy));
   10062 }
   10063 
   10064 /// Given the last statement in a statement-expression, check whether
   10065 /// the result is a producing expression (like a call to an
   10066 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   10067 /// release out of the full-expression.  Otherwise, return null.
   10068 /// Cannot fail.
   10069 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
   10070   // Should always be wrapped with one of these.
   10071   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
   10072   if (!cleanups) return nullptr;
   10073 
   10074   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   10075   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
   10076     return nullptr;
   10077 
   10078   // Splice out the cast.  This shouldn't modify any interesting
   10079   // features of the statement.
   10080   Expr *producer = cast->getSubExpr();
   10081   assert(producer->getType() == cast->getType());
   10082   assert(producer->getValueKind() == cast->getValueKind());
   10083   cleanups->setSubExpr(producer);
   10084   return cleanups;
   10085 }
   10086 
   10087 void Sema::ActOnStartStmtExpr() {
   10088   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
   10089 }
   10090 
   10091 void Sema::ActOnStmtExprError() {
   10092   // Note that function is also called by TreeTransform when leaving a
   10093   // StmtExpr scope without rebuilding anything.
   10094 
   10095   DiscardCleanupsInEvaluationContext();
   10096   PopExpressionEvaluationContext();
   10097 }
   10098 
   10099 ExprResult
   10100 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   10101                     SourceLocation RPLoc) { // "({..})"
   10102   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   10103   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   10104 
   10105   if (hasAnyUnrecoverableErrorsInThisFunction())
   10106     DiscardCleanupsInEvaluationContext();
   10107   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
   10108   PopExpressionEvaluationContext();
   10109 
   10110   bool isFileScope
   10111     = (getCurFunctionOrMethodDecl() == nullptr) && (getCurBlock() == nullptr);
   10112   if (isFileScope)
   10113     return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
   10114 
   10115   // FIXME: there are a variety of strange constraints to enforce here, for
   10116   // example, it is not possible to goto into a stmt expression apparently.
   10117   // More semantic analysis is needed.
   10118 
   10119   // If there are sub-stmts in the compound stmt, take the type of the last one
   10120   // as the type of the stmtexpr.
   10121   QualType Ty = Context.VoidTy;
   10122   bool StmtExprMayBindToTemp = false;
   10123   if (!Compound->body_empty()) {
   10124     Stmt *LastStmt = Compound->body_back();
   10125     LabelStmt *LastLabelStmt = nullptr;
   10126     // If LastStmt is a label, skip down through into the body.
   10127     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   10128       LastLabelStmt = Label;
   10129       LastStmt = Label->getSubStmt();
   10130     }
   10131 
   10132     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   10133       // Do function/array conversion on the last expression, but not
   10134       // lvalue-to-rvalue.  However, initialize an unqualified type.
   10135       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   10136       if (LastExpr.isInvalid())
   10137         return ExprError();
   10138       Ty = LastExpr.get()->getType().getUnqualifiedType();
   10139 
   10140       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   10141         // In ARC, if the final expression ends in a consume, splice
   10142         // the consume out and bind it later.  In the alternate case
   10143         // (when dealing with a retainable type), the result
   10144         // initialization will create a produce.  In both cases the
   10145         // result will be +1, and we'll need to balance that out with
   10146         // a bind.
   10147         if (Expr *rebuiltLastStmt
   10148               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   10149           LastExpr = rebuiltLastStmt;
   10150         } else {
   10151           LastExpr = PerformCopyInitialization(
   10152                             InitializedEntity::InitializeResult(LPLoc,
   10153                                                                 Ty,
   10154                                                                 false),
   10155                                                    SourceLocation(),
   10156                                                LastExpr);
   10157         }
   10158 
   10159         if (LastExpr.isInvalid())
   10160           return ExprError();
   10161         if (LastExpr.get() != nullptr) {
   10162           if (!LastLabelStmt)
   10163             Compound->setLastStmt(LastExpr.get());
   10164           else
   10165             LastLabelStmt->setSubStmt(LastExpr.get());
   10166           StmtExprMayBindToTemp = true;
   10167         }
   10168       }
   10169     }
   10170   }
   10171 
   10172   // FIXME: Check that expression type is complete/non-abstract; statement
   10173   // expressions are not lvalues.
   10174   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   10175   if (StmtExprMayBindToTemp)
   10176     return MaybeBindToTemporary(ResStmtExpr);
   10177   return ResStmtExpr;
   10178 }
   10179 
   10180 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   10181                                       TypeSourceInfo *TInfo,
   10182                                       OffsetOfComponent *CompPtr,
   10183                                       unsigned NumComponents,
   10184                                       SourceLocation RParenLoc) {
   10185   QualType ArgTy = TInfo->getType();
   10186   bool Dependent = ArgTy->isDependentType();
   10187   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   10188 
   10189   // We must have at least one component that refers to the type, and the first
   10190   // one is known to be a field designator.  Verify that the ArgTy represents
   10191   // a struct/union/class.
   10192   if (!Dependent && !ArgTy->isRecordType())
   10193     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   10194                        << ArgTy << TypeRange);
   10195 
   10196   // Type must be complete per C99 7.17p3 because a declaring a variable
   10197   // with an incomplete type would be ill-formed.
   10198   if (!Dependent
   10199       && RequireCompleteType(BuiltinLoc, ArgTy,
   10200                              diag::err_offsetof_incomplete_type, TypeRange))
   10201     return ExprError();
   10202 
   10203   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   10204   // GCC extension, diagnose them.
   10205   // FIXME: This diagnostic isn't actually visible because the location is in
   10206   // a system header!
   10207   if (NumComponents != 1)
   10208     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   10209       << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
   10210 
   10211   bool DidWarnAboutNonPOD = false;
   10212   QualType CurrentType = ArgTy;
   10213   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
   10214   SmallVector<OffsetOfNode, 4> Comps;
   10215   SmallVector<Expr*, 4> Exprs;
   10216   for (unsigned i = 0; i != NumComponents; ++i) {
   10217     const OffsetOfComponent &OC = CompPtr[i];
   10218     if (OC.isBrackets) {
   10219       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   10220       if (!CurrentType->isDependentType()) {
   10221         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   10222         if(!AT)
   10223           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   10224                            << CurrentType);
   10225         CurrentType = AT->getElementType();
   10226       } else
   10227         CurrentType = Context.DependentTy;
   10228 
   10229       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
   10230       if (IdxRval.isInvalid())
   10231         return ExprError();
   10232       Expr *Idx = IdxRval.get();
   10233 
   10234       // The expression must be an integral expression.
   10235       // FIXME: An integral constant expression?
   10236       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   10237           !Idx->getType()->isIntegerType())
   10238         return ExprError(Diag(Idx->getLocStart(),
   10239                               diag::err_typecheck_subscript_not_integer)
   10240                          << Idx->getSourceRange());
   10241 
   10242       // Record this array index.
   10243       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   10244       Exprs.push_back(Idx);
   10245       continue;
   10246     }
   10247 
   10248     // Offset of a field.
   10249     if (CurrentType->isDependentType()) {
   10250       // We have the offset of a field, but we can't look into the dependent
   10251       // type. Just record the identifier of the field.
   10252       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   10253       CurrentType = Context.DependentTy;
   10254       continue;
   10255     }
   10256 
   10257     // We need to have a complete type to look into.
   10258     if (RequireCompleteType(OC.LocStart, CurrentType,
   10259                             diag::err_offsetof_incomplete_type))
   10260       return ExprError();
   10261 
   10262     // Look for the designated field.
   10263     const RecordType *RC = CurrentType->getAs<RecordType>();
   10264     if (!RC)
   10265       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   10266                        << CurrentType);
   10267     RecordDecl *RD = RC->getDecl();
   10268 
   10269     // C++ [lib.support.types]p5:
   10270     //   The macro offsetof accepts a restricted set of type arguments in this
   10271     //   International Standard. type shall be a POD structure or a POD union
   10272     //   (clause 9).
   10273     // C++11 [support.types]p4:
   10274     //   If type is not a standard-layout class (Clause 9), the results are
   10275     //   undefined.
   10276     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   10277       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
   10278       unsigned DiagID =
   10279         LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
   10280                             : diag::warn_offsetof_non_pod_type;
   10281 
   10282       if (!IsSafe && !DidWarnAboutNonPOD &&
   10283           DiagRuntimeBehavior(BuiltinLoc, nullptr,
   10284                               PDiag(DiagID)
   10285                               << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
   10286                               << CurrentType))
   10287         DidWarnAboutNonPOD = true;
   10288     }
   10289 
   10290     // Look for the field.
   10291     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   10292     LookupQualifiedName(R, RD);
   10293     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   10294     IndirectFieldDecl *IndirectMemberDecl = nullptr;
   10295     if (!MemberDecl) {
   10296       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   10297         MemberDecl = IndirectMemberDecl->getAnonField();
   10298     }
   10299 
   10300     if (!MemberDecl)
   10301       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   10302                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   10303                                                               OC.LocEnd));
   10304 
   10305     // C99 7.17p3:
   10306     //   (If the specified member is a bit-field, the behavior is undefined.)
   10307     //
   10308     // We diagnose this as an error.
   10309     if (MemberDecl->isBitField()) {
   10310       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   10311         << MemberDecl->getDeclName()
   10312         << SourceRange(BuiltinLoc, RParenLoc);
   10313       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   10314       return ExprError();
   10315     }
   10316 
   10317     RecordDecl *Parent = MemberDecl->getParent();
   10318     if (IndirectMemberDecl)
   10319       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   10320 
   10321     // If the member was found in a base class, introduce OffsetOfNodes for
   10322     // the base class indirections.
   10323     CXXBasePaths Paths;
   10324     if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
   10325       if (Paths.getDetectedVirtual()) {
   10326         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
   10327           << MemberDecl->getDeclName()
   10328           << SourceRange(BuiltinLoc, RParenLoc);
   10329         return ExprError();
   10330       }
   10331 
   10332       CXXBasePath &Path = Paths.front();
   10333       for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
   10334            B != BEnd; ++B)
   10335         Comps.push_back(OffsetOfNode(B->Base));
   10336     }
   10337 
   10338     if (IndirectMemberDecl) {
   10339       for (auto *FI : IndirectMemberDecl->chain()) {
   10340         assert(isa<FieldDecl>(FI));
   10341         Comps.push_back(OffsetOfNode(OC.LocStart,
   10342                                      cast<FieldDecl>(FI), OC.LocEnd));
   10343       }
   10344     } else
   10345       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   10346 
   10347     CurrentType = MemberDecl->getType().getNonReferenceType();
   10348   }
   10349 
   10350   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
   10351                               Comps, Exprs, RParenLoc);
   10352 }
   10353 
   10354 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   10355                                       SourceLocation BuiltinLoc,
   10356                                       SourceLocation TypeLoc,
   10357                                       ParsedType ParsedArgTy,
   10358                                       OffsetOfComponent *CompPtr,
   10359                                       unsigned NumComponents,
   10360                                       SourceLocation RParenLoc) {
   10361 
   10362   TypeSourceInfo *ArgTInfo;
   10363   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
   10364   if (ArgTy.isNull())
   10365     return ExprError();
   10366 
   10367   if (!ArgTInfo)
   10368     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   10369 
   10370   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
   10371                               RParenLoc);
   10372 }
   10373 
   10374 
   10375 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   10376                                  Expr *CondExpr,
   10377                                  Expr *LHSExpr, Expr *RHSExpr,
   10378                                  SourceLocation RPLoc) {
   10379   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   10380 
   10381   ExprValueKind VK = VK_RValue;
   10382   ExprObjectKind OK = OK_Ordinary;
   10383   QualType resType;
   10384   bool ValueDependent = false;
   10385   bool CondIsTrue = false;
   10386   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   10387     resType = Context.DependentTy;
   10388     ValueDependent = true;
   10389   } else {
   10390     // The conditional expression is required to be a constant expression.
   10391     llvm::APSInt condEval(32);
   10392     ExprResult CondICE
   10393       = VerifyIntegerConstantExpression(CondExpr, &condEval,
   10394           diag::err_typecheck_choose_expr_requires_constant, false);
   10395     if (CondICE.isInvalid())
   10396       return ExprError();
   10397     CondExpr = CondICE.get();
   10398     CondIsTrue = condEval.getZExtValue();
   10399 
   10400     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   10401     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
   10402 
   10403     resType = ActiveExpr->getType();
   10404     ValueDependent = ActiveExpr->isValueDependent();
   10405     VK = ActiveExpr->getValueKind();
   10406     OK = ActiveExpr->getObjectKind();
   10407   }
   10408 
   10409   return new (Context)
   10410       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
   10411                  CondIsTrue, resType->isDependentType(), ValueDependent);
   10412 }
   10413 
   10414 //===----------------------------------------------------------------------===//
   10415 // Clang Extensions.
   10416 //===----------------------------------------------------------------------===//
   10417 
   10418 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   10419 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
   10420   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   10421 
   10422   if (LangOpts.CPlusPlus) {
   10423     Decl *ManglingContextDecl;
   10424     if (MangleNumberingContext *MCtx =
   10425             getCurrentMangleNumberContext(Block->getDeclContext(),
   10426                                           ManglingContextDecl)) {
   10427       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
   10428       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
   10429     }
   10430   }
   10431 
   10432   PushBlockScope(CurScope, Block);
   10433   CurContext->addDecl(Block);
   10434   if (CurScope)
   10435     PushDeclContext(CurScope, Block);
   10436   else
   10437     CurContext = Block;
   10438 
   10439   getCurBlock()->HasImplicitReturnType = true;
   10440 
   10441   // Enter a new evaluation context to insulate the block from any
   10442   // cleanups from the enclosing full-expression.
   10443   PushExpressionEvaluationContext(PotentiallyEvaluated);
   10444 }
   10445 
   10446 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
   10447                                Scope *CurScope) {
   10448   assert(ParamInfo.getIdentifier() == nullptr &&
   10449          "block-id should have no identifier!");
   10450   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   10451   BlockScopeInfo *CurBlock = getCurBlock();
   10452 
   10453   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   10454   QualType T = Sig->getType();
   10455 
   10456   // FIXME: We should allow unexpanded parameter packs here, but that would,
   10457   // in turn, make the block expression contain unexpanded parameter packs.
   10458   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
   10459     // Drop the parameters.
   10460     FunctionProtoType::ExtProtoInfo EPI;
   10461     EPI.HasTrailingReturn = false;
   10462     EPI.TypeQuals |= DeclSpec::TQ_const;
   10463     T = Context.getFunctionType(Context.DependentTy, None, EPI);
   10464     Sig = Context.getTrivialTypeSourceInfo(T);
   10465   }
   10466 
   10467   // GetTypeForDeclarator always produces a function type for a block
   10468   // literal signature.  Furthermore, it is always a FunctionProtoType
   10469   // unless the function was written with a typedef.
   10470   assert(T->isFunctionType() &&
   10471          "GetTypeForDeclarator made a non-function block signature");
   10472 
   10473   // Look for an explicit signature in that function type.
   10474   FunctionProtoTypeLoc ExplicitSignature;
   10475 
   10476   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   10477   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
   10478 
   10479     // Check whether that explicit signature was synthesized by
   10480     // GetTypeForDeclarator.  If so, don't save that as part of the
   10481     // written signature.
   10482     if (ExplicitSignature.getLocalRangeBegin() ==
   10483         ExplicitSignature.getLocalRangeEnd()) {
   10484       // This would be much cheaper if we stored TypeLocs instead of
   10485       // TypeSourceInfos.
   10486       TypeLoc Result = ExplicitSignature.getReturnLoc();
   10487       unsigned Size = Result.getFullDataSize();
   10488       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   10489       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   10490 
   10491       ExplicitSignature = FunctionProtoTypeLoc();
   10492     }
   10493   }
   10494 
   10495   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   10496   CurBlock->FunctionType = T;
   10497 
   10498   const FunctionType *Fn = T->getAs<FunctionType>();
   10499   QualType RetTy = Fn->getReturnType();
   10500   bool isVariadic =
   10501     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   10502 
   10503   CurBlock->TheDecl->setIsVariadic(isVariadic);
   10504 
   10505   // Context.DependentTy is used as a placeholder for a missing block
   10506   // return type.  TODO:  what should we do with declarators like:
   10507   //   ^ * { ... }
   10508   // If the answer is "apply template argument deduction"....
   10509   if (RetTy != Context.DependentTy) {
   10510     CurBlock->ReturnType = RetTy;
   10511     CurBlock->TheDecl->setBlockMissingReturnType(false);
   10512     CurBlock->HasImplicitReturnType = false;
   10513   }
   10514 
   10515   // Push block parameters from the declarator if we had them.
   10516   SmallVector<ParmVarDecl*, 8> Params;
   10517   if (ExplicitSignature) {
   10518     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
   10519       ParmVarDecl *Param = ExplicitSignature.getParam(I);
   10520       if (Param->getIdentifier() == nullptr &&
   10521           !Param->isImplicit() &&
   10522           !Param->isInvalidDecl() &&
   10523           !getLangOpts().CPlusPlus)
   10524         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   10525       Params.push_back(Param);
   10526     }
   10527 
   10528   // Fake up parameter variables if we have a typedef, like
   10529   //   ^ fntype { ... }
   10530   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   10531     for (const auto &I : Fn->param_types()) {
   10532       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
   10533           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
   10534       Params.push_back(Param);
   10535     }
   10536   }
   10537 
   10538   // Set the parameters on the block decl.
   10539   if (!Params.empty()) {
   10540     CurBlock->TheDecl->setParams(Params);
   10541     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
   10542                              CurBlock->TheDecl->param_end(),
   10543                              /*CheckParameterNames=*/false);
   10544   }
   10545 
   10546   // Finally we can process decl attributes.
   10547   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   10548 
   10549   // Put the parameter variables in scope.
   10550   for (auto AI : CurBlock->TheDecl->params()) {
   10551     AI->setOwningFunction(CurBlock->TheDecl);
   10552 
   10553     // If this has an identifier, add it to the scope stack.
   10554     if (AI->getIdentifier()) {
   10555       CheckShadow(CurBlock->TheScope, AI);
   10556 
   10557       PushOnScopeChains(AI, CurBlock->TheScope);
   10558     }
   10559   }
   10560 }
   10561 
   10562 /// ActOnBlockError - If there is an error parsing a block, this callback
   10563 /// is invoked to pop the information about the block from the action impl.
   10564 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   10565   // Leave the expression-evaluation context.
   10566   DiscardCleanupsInEvaluationContext();
   10567   PopExpressionEvaluationContext();
   10568 
   10569   // Pop off CurBlock, handle nested blocks.
   10570   PopDeclContext();
   10571   PopFunctionScopeInfo();
   10572 }
   10573 
   10574 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   10575 /// literal was successfully completed.  ^(int x){...}
   10576 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   10577                                     Stmt *Body, Scope *CurScope) {
   10578   // If blocks are disabled, emit an error.
   10579   if (!LangOpts.Blocks)
   10580     Diag(CaretLoc, diag::err_blocks_disable);
   10581 
   10582   // Leave the expression-evaluation context.
   10583   if (hasAnyUnrecoverableErrorsInThisFunction())
   10584     DiscardCleanupsInEvaluationContext();
   10585   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
   10586   PopExpressionEvaluationContext();
   10587 
   10588   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   10589 
   10590   if (BSI->HasImplicitReturnType)
   10591     deduceClosureReturnType(*BSI);
   10592 
   10593   PopDeclContext();
   10594 
   10595   QualType RetTy = Context.VoidTy;
   10596   if (!BSI->ReturnType.isNull())
   10597     RetTy = BSI->ReturnType;
   10598 
   10599   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
   10600   QualType BlockTy;
   10601 
   10602   // Set the captured variables on the block.
   10603   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
   10604   SmallVector<BlockDecl::Capture, 4> Captures;
   10605   for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
   10606     CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
   10607     if (Cap.isThisCapture())
   10608       continue;
   10609     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
   10610                               Cap.isNested(), Cap.getInitExpr());
   10611     Captures.push_back(NewCap);
   10612   }
   10613   BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
   10614                             BSI->CXXThisCaptureIndex != 0);
   10615 
   10616   // If the user wrote a function type in some form, try to use that.
   10617   if (!BSI->FunctionType.isNull()) {
   10618     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   10619 
   10620     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   10621     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   10622 
   10623     // Turn protoless block types into nullary block types.
   10624     if (isa<FunctionNoProtoType>(FTy)) {
   10625       FunctionProtoType::ExtProtoInfo EPI;
   10626       EPI.ExtInfo = Ext;
   10627       BlockTy = Context.getFunctionType(RetTy, None, EPI);
   10628 
   10629     // Otherwise, if we don't need to change anything about the function type,
   10630     // preserve its sugar structure.
   10631     } else if (FTy->getReturnType() == RetTy &&
   10632                (!NoReturn || FTy->getNoReturnAttr())) {
   10633       BlockTy = BSI->FunctionType;
   10634 
   10635     // Otherwise, make the minimal modifications to the function type.
   10636     } else {
   10637       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   10638       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   10639       EPI.TypeQuals = 0; // FIXME: silently?
   10640       EPI.ExtInfo = Ext;
   10641       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
   10642     }
   10643 
   10644   // If we don't have a function type, just build one from nothing.
   10645   } else {
   10646     FunctionProtoType::ExtProtoInfo EPI;
   10647     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   10648     BlockTy = Context.getFunctionType(RetTy, None, EPI);
   10649   }
   10650 
   10651   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
   10652                            BSI->TheDecl->param_end());
   10653   BlockTy = Context.getBlockPointerType(BlockTy);
   10654 
   10655   // If needed, diagnose invalid gotos and switches in the block.
   10656   if (getCurFunction()->NeedsScopeChecking() &&
   10657       !PP.isCodeCompletionEnabled())
   10658     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   10659 
   10660   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   10661 
   10662   // Try to apply the named return value optimization. We have to check again
   10663   // if we can do this, though, because blocks keep return statements around
   10664   // to deduce an implicit return type.
   10665   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
   10666       !BSI->TheDecl->isDependentContext())
   10667     computeNRVO(Body, BSI);
   10668 
   10669   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   10670   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   10671   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
   10672 
   10673   // If the block isn't obviously global, i.e. it captures anything at
   10674   // all, then we need to do a few things in the surrounding context:
   10675   if (Result->getBlockDecl()->hasCaptures()) {
   10676     // First, this expression has a new cleanup object.
   10677     ExprCleanupObjects.push_back(Result->getBlockDecl());
   10678     ExprNeedsCleanups = true;
   10679 
   10680     // It also gets a branch-protected scope if any of the captured
   10681     // variables needs destruction.
   10682     for (const auto &CI : Result->getBlockDecl()->captures()) {
   10683       const VarDecl *var = CI.getVariable();
   10684       if (var->getType().isDestructedType() != QualType::DK_none) {
   10685         getCurFunction()->setHasBranchProtectedScope();
   10686         break;
   10687       }
   10688     }
   10689   }
   10690 
   10691   return Result;
   10692 }
   10693 
   10694 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
   10695                                         Expr *E, ParsedType Ty,
   10696                                         SourceLocation RPLoc) {
   10697   TypeSourceInfo *TInfo;
   10698   GetTypeFromParser(Ty, &TInfo);
   10699   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
   10700 }
   10701 
   10702 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   10703                                 Expr *E, TypeSourceInfo *TInfo,
   10704                                 SourceLocation RPLoc) {
   10705   Expr *OrigExpr = E;
   10706 
   10707   // Get the va_list type
   10708   QualType VaListType = Context.getBuiltinVaListType();
   10709   if (VaListType->isArrayType()) {
   10710     // Deal with implicit array decay; for example, on x86-64,
   10711     // va_list is an array, but it's supposed to decay to
   10712     // a pointer for va_arg.
   10713     VaListType = Context.getArrayDecayedType(VaListType);
   10714     // Make sure the input expression also decays appropriately.
   10715     ExprResult Result = UsualUnaryConversions(E);
   10716     if (Result.isInvalid())
   10717       return ExprError();
   10718     E = Result.get();
   10719   } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
   10720     // If va_list is a record type and we are compiling in C++ mode,
   10721     // check the argument using reference binding.
   10722     InitializedEntity Entity
   10723       = InitializedEntity::InitializeParameter(Context,
   10724           Context.getLValueReferenceType(VaListType), false);
   10725     ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
   10726     if (Init.isInvalid())
   10727       return ExprError();
   10728     E = Init.getAs<Expr>();
   10729   } else {
   10730     // Otherwise, the va_list argument must be an l-value because
   10731     // it is modified by va_arg.
   10732     if (!E->isTypeDependent() &&
   10733         CheckForModifiableLvalue(E, BuiltinLoc, *this))
   10734       return ExprError();
   10735   }
   10736 
   10737   if (!E->isTypeDependent() &&
   10738       !Context.hasSameType(VaListType, E->getType())) {
   10739     return ExprError(Diag(E->getLocStart(),
   10740                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   10741       << OrigExpr->getType() << E->getSourceRange());
   10742   }
   10743 
   10744   if (!TInfo->getType()->isDependentType()) {
   10745     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   10746                             diag::err_second_parameter_to_va_arg_incomplete,
   10747                             TInfo->getTypeLoc()))
   10748       return ExprError();
   10749 
   10750     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   10751                                TInfo->getType(),
   10752                                diag::err_second_parameter_to_va_arg_abstract,
   10753                                TInfo->getTypeLoc()))
   10754       return ExprError();
   10755 
   10756     if (!TInfo->getType().isPODType(Context)) {
   10757       Diag(TInfo->getTypeLoc().getBeginLoc(),
   10758            TInfo->getType()->isObjCLifetimeType()
   10759              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
   10760              : diag::warn_second_parameter_to_va_arg_not_pod)
   10761         << TInfo->getType()
   10762         << TInfo->getTypeLoc().getSourceRange();
   10763     }
   10764 
   10765     // Check for va_arg where arguments of the given type will be promoted
   10766     // (i.e. this va_arg is guaranteed to have undefined behavior).
   10767     QualType PromoteType;
   10768     if (TInfo->getType()->isPromotableIntegerType()) {
   10769       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   10770       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   10771         PromoteType = QualType();
   10772     }
   10773     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   10774       PromoteType = Context.DoubleTy;
   10775     if (!PromoteType.isNull())
   10776       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
   10777                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
   10778                           << TInfo->getType()
   10779                           << PromoteType
   10780                           << TInfo->getTypeLoc().getSourceRange());
   10781   }
   10782 
   10783   QualType T = TInfo->getType().getNonLValueExprType(Context);
   10784   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T);
   10785 }
   10786 
   10787 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   10788   // The type of __null will be int or long, depending on the size of
   10789   // pointers on the target.
   10790   QualType Ty;
   10791   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
   10792   if (pw == Context.getTargetInfo().getIntWidth())
   10793     Ty = Context.IntTy;
   10794   else if (pw == Context.getTargetInfo().getLongWidth())
   10795     Ty = Context.LongTy;
   10796   else if (pw == Context.getTargetInfo().getLongLongWidth())
   10797     Ty = Context.LongLongTy;
   10798   else {
   10799     llvm_unreachable("I don't know size of pointer!");
   10800   }
   10801 
   10802   return new (Context) GNUNullExpr(Ty, TokenLoc);
   10803 }
   10804 
   10805 bool
   10806 Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
   10807   if (!getLangOpts().ObjC1)
   10808     return false;
   10809 
   10810   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   10811   if (!PT)
   10812     return false;
   10813 
   10814   if (!PT->isObjCIdType()) {
   10815     // Check if the destination is the 'NSString' interface.
   10816     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   10817     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   10818       return false;
   10819   }
   10820 
   10821   // Ignore any parens, implicit casts (should only be
   10822   // array-to-pointer decays), and not-so-opaque values.  The last is
   10823   // important for making this trigger for property assignments.
   10824   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
   10825   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
   10826     if (OV->getSourceExpr())
   10827       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
   10828 
   10829   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
   10830   if (!SL || !SL->isAscii())
   10831     return false;
   10832   Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
   10833     << FixItHint::CreateInsertion(SL->getLocStart(), "@");
   10834   Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
   10835   return true;
   10836 }
   10837 
   10838 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   10839                                     SourceLocation Loc,
   10840                                     QualType DstType, QualType SrcType,
   10841                                     Expr *SrcExpr, AssignmentAction Action,
   10842                                     bool *Complained) {
   10843   if (Complained)
   10844     *Complained = false;
   10845 
   10846   // Decode the result (notice that AST's are still created for extensions).
   10847   bool CheckInferredResultType = false;
   10848   bool isInvalid = false;
   10849   unsigned DiagKind = 0;
   10850   FixItHint Hint;
   10851   ConversionFixItGenerator ConvHints;
   10852   bool MayHaveConvFixit = false;
   10853   bool MayHaveFunctionDiff = false;
   10854   const ObjCInterfaceDecl *IFace = nullptr;
   10855   const ObjCProtocolDecl *PDecl = nullptr;
   10856 
   10857   switch (ConvTy) {
   10858   case Compatible:
   10859       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
   10860       return false;
   10861 
   10862   case PointerToInt:
   10863     DiagKind = diag::ext_typecheck_convert_pointer_int;
   10864     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   10865     MayHaveConvFixit = true;
   10866     break;
   10867   case IntToPointer:
   10868     DiagKind = diag::ext_typecheck_convert_int_pointer;
   10869     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   10870     MayHaveConvFixit = true;
   10871     break;
   10872   case IncompatiblePointer:
   10873       DiagKind =
   10874         (Action == AA_Passing_CFAudited ?
   10875           diag::err_arc_typecheck_convert_incompatible_pointer :
   10876           diag::ext_typecheck_convert_incompatible_pointer);
   10877     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   10878       SrcType->isObjCObjectPointerType();
   10879     if (Hint.isNull() && !CheckInferredResultType) {
   10880       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   10881     }
   10882     else if (CheckInferredResultType) {
   10883       SrcType = SrcType.getUnqualifiedType();
   10884       DstType = DstType.getUnqualifiedType();
   10885     }
   10886     MayHaveConvFixit = true;
   10887     break;
   10888   case IncompatiblePointerSign:
   10889     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   10890     break;
   10891   case FunctionVoidPointer:
   10892     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   10893     break;
   10894   case IncompatiblePointerDiscardsQualifiers: {
   10895     // Perform array-to-pointer decay if necessary.
   10896     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   10897 
   10898     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   10899     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   10900     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   10901       DiagKind = diag::err_typecheck_incompatible_address_space;
   10902       break;
   10903 
   10904 
   10905     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   10906       DiagKind = diag::err_typecheck_incompatible_ownership;
   10907       break;
   10908     }
   10909 
   10910     llvm_unreachable("unknown error case for discarding qualifiers!");
   10911     // fallthrough
   10912   }
   10913   case CompatiblePointerDiscardsQualifiers:
   10914     // If the qualifiers lost were because we were applying the
   10915     // (deprecated) C++ conversion from a string literal to a char*
   10916     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   10917     // Ideally, this check would be performed in
   10918     // checkPointerTypesForAssignment. However, that would require a
   10919     // bit of refactoring (so that the second argument is an
   10920     // expression, rather than a type), which should be done as part
   10921     // of a larger effort to fix checkPointerTypesForAssignment for
   10922     // C++ semantics.
   10923     if (getLangOpts().CPlusPlus &&
   10924         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   10925       return false;
   10926     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   10927     break;
   10928   case IncompatibleNestedPointerQualifiers:
   10929     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   10930     break;
   10931   case IntToBlockPointer:
   10932     DiagKind = diag::err_int_to_block_pointer;
   10933     break;
   10934   case IncompatibleBlockPointer:
   10935     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   10936     break;
   10937   case IncompatibleObjCQualifiedId: {
   10938     if (SrcType->isObjCQualifiedIdType()) {
   10939       const ObjCObjectPointerType *srcOPT =
   10940                 SrcType->getAs<ObjCObjectPointerType>();
   10941       for (auto *srcProto : srcOPT->quals()) {
   10942         PDecl = srcProto;
   10943         break;
   10944       }
   10945       if (const ObjCInterfaceType *IFaceT =
   10946             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   10947         IFace = IFaceT->getDecl();
   10948     }
   10949     else if (DstType->isObjCQualifiedIdType()) {
   10950       const ObjCObjectPointerType *dstOPT =
   10951         DstType->getAs<ObjCObjectPointerType>();
   10952       for (auto *dstProto : dstOPT->quals()) {
   10953         PDecl = dstProto;
   10954         break;
   10955       }
   10956       if (const ObjCInterfaceType *IFaceT =
   10957             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   10958         IFace = IFaceT->getDecl();
   10959     }
   10960     DiagKind = diag::warn_incompatible_qualified_id;
   10961     break;
   10962   }
   10963   case IncompatibleVectors:
   10964     DiagKind = diag::warn_incompatible_vectors;
   10965     break;
   10966   case IncompatibleObjCWeakRef:
   10967     DiagKind = diag::err_arc_weak_unavailable_assign;
   10968     break;
   10969   case Incompatible:
   10970     DiagKind = diag::err_typecheck_convert_incompatible;
   10971     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   10972     MayHaveConvFixit = true;
   10973     isInvalid = true;
   10974     MayHaveFunctionDiff = true;
   10975     break;
   10976   }
   10977 
   10978   QualType FirstType, SecondType;
   10979   switch (Action) {
   10980   case AA_Assigning:
   10981   case AA_Initializing:
   10982     // The destination type comes first.
   10983     FirstType = DstType;
   10984     SecondType = SrcType;
   10985     break;
   10986 
   10987   case AA_Returning:
   10988   case AA_Passing:
   10989   case AA_Passing_CFAudited:
   10990   case AA_Converting:
   10991   case AA_Sending:
   10992   case AA_Casting:
   10993     // The source type comes first.
   10994     FirstType = SrcType;
   10995     SecondType = DstType;
   10996     break;
   10997   }
   10998 
   10999   PartialDiagnostic FDiag = PDiag(DiagKind);
   11000   if (Action == AA_Passing_CFAudited)
   11001     FDiag << FirstType << SecondType << SrcExpr->getSourceRange();
   11002   else
   11003     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
   11004 
   11005   // If we can fix the conversion, suggest the FixIts.
   11006   assert(ConvHints.isNull() || Hint.isNull());
   11007   if (!ConvHints.isNull()) {
   11008     for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
   11009          HE = ConvHints.Hints.end(); HI != HE; ++HI)
   11010       FDiag << *HI;
   11011   } else {
   11012     FDiag << Hint;
   11013   }
   11014   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
   11015 
   11016   if (MayHaveFunctionDiff)
   11017     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
   11018 
   11019   Diag(Loc, FDiag);
   11020   if (DiagKind == diag::warn_incompatible_qualified_id &&
   11021       PDecl && IFace && !IFace->hasDefinition())
   11022       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
   11023         << IFace->getName() << PDecl->getName();
   11024 
   11025   if (SecondType == Context.OverloadTy)
   11026     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
   11027                               FirstType);
   11028 
   11029   if (CheckInferredResultType)
   11030     EmitRelatedResultTypeNote(SrcExpr);
   11031 
   11032   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
   11033     EmitRelatedResultTypeNoteForReturn(DstType);
   11034 
   11035   if (Complained)
   11036     *Complained = true;
   11037   return isInvalid;
   11038 }
   11039 
   11040 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   11041                                                  llvm::APSInt *Result) {
   11042   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
   11043   public:
   11044     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   11045       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
   11046     }
   11047   } Diagnoser;
   11048 
   11049   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
   11050 }
   11051 
   11052 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   11053                                                  llvm::APSInt *Result,
   11054                                                  unsigned DiagID,
   11055                                                  bool AllowFold) {
   11056   class IDDiagnoser : public VerifyICEDiagnoser {
   11057     unsigned DiagID;
   11058 
   11059   public:
   11060     IDDiagnoser(unsigned DiagID)
   11061       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
   11062 
   11063     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   11064       S.Diag(Loc, DiagID) << SR;
   11065     }
   11066   } Diagnoser(DiagID);
   11067 
   11068   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
   11069 }
   11070 
   11071 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
   11072                                             SourceRange SR) {
   11073   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
   11074 }
   11075 
   11076 ExprResult
   11077 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
   11078                                       VerifyICEDiagnoser &Diagnoser,
   11079                                       bool AllowFold) {
   11080   SourceLocation DiagLoc = E->getLocStart();
   11081 
   11082   if (getLangOpts().CPlusPlus11) {
   11083     // C++11 [expr.const]p5:
   11084     //   If an expression of literal class type is used in a context where an
   11085     //   integral constant expression is required, then that class type shall
   11086     //   have a single non-explicit conversion function to an integral or
   11087     //   unscoped enumeration type
   11088     ExprResult Converted;
   11089     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
   11090     public:
   11091       CXX11ConvertDiagnoser(bool Silent)
   11092           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
   11093                                 Silent, true) {}
   11094 
   11095       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   11096                                            QualType T) override {
   11097         return S.Diag(Loc, diag::err_ice_not_integral) << T;
   11098       }
   11099 
   11100       SemaDiagnosticBuilder diagnoseIncomplete(
   11101           Sema &S, SourceLocation Loc, QualType T) override {
   11102         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
   11103       }
   11104 
   11105       SemaDiagnosticBuilder diagnoseExplicitConv(
   11106           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   11107         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
   11108       }
   11109 
   11110       SemaDiagnosticBuilder noteExplicitConv(
   11111           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   11112         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   11113                  << ConvTy->isEnumeralType() << ConvTy;
   11114       }
   11115 
   11116       SemaDiagnosticBuilder diagnoseAmbiguous(
   11117           Sema &S, SourceLocation Loc, QualType T) override {
   11118         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
   11119       }
   11120 
   11121       SemaDiagnosticBuilder noteAmbiguous(
   11122           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   11123         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   11124                  << ConvTy->isEnumeralType() << ConvTy;
   11125       }
   11126 
   11127       SemaDiagnosticBuilder diagnoseConversion(
   11128           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   11129         llvm_unreachable("conversion functions are permitted");
   11130       }
   11131     } ConvertDiagnoser(Diagnoser.Suppress);
   11132 
   11133     Converted = PerformContextualImplicitConversion(DiagLoc, E,
   11134                                                     ConvertDiagnoser);
   11135     if (Converted.isInvalid())
   11136       return Converted;
   11137     E = Converted.get();
   11138     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
   11139       return ExprError();
   11140   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
   11141     // An ICE must be of integral or unscoped enumeration type.
   11142     if (!Diagnoser.Suppress)
   11143       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   11144     return ExprError();
   11145   }
   11146 
   11147   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
   11148   // in the non-ICE case.
   11149   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
   11150     if (Result)
   11151       *Result = E->EvaluateKnownConstInt(Context);
   11152     return E;
   11153   }
   11154 
   11155   Expr::EvalResult EvalResult;
   11156   SmallVector<PartialDiagnosticAt, 8> Notes;
   11157   EvalResult.Diag = &Notes;
   11158 
   11159   // Try to evaluate the expression, and produce diagnostics explaining why it's
   11160   // not a constant expression as a side-effect.
   11161   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
   11162                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
   11163 
   11164   // In C++11, we can rely on diagnostics being produced for any expression
   11165   // which is not a constant expression. If no diagnostics were produced, then
   11166   // this is a constant expression.
   11167   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
   11168     if (Result)
   11169       *Result = EvalResult.Val.getInt();
   11170     return E;
   11171   }
   11172 
   11173   // If our only note is the usual "invalid subexpression" note, just point
   11174   // the caret at its location rather than producing an essentially
   11175   // redundant note.
   11176   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   11177         diag::note_invalid_subexpr_in_const_expr) {
   11178     DiagLoc = Notes[0].first;
   11179     Notes.clear();
   11180   }
   11181 
   11182   if (!Folded || !AllowFold) {
   11183     if (!Diagnoser.Suppress) {
   11184       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   11185       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   11186         Diag(Notes[I].first, Notes[I].second);
   11187     }
   11188 
   11189     return ExprError();
   11190   }
   11191 
   11192   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
   11193   for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   11194     Diag(Notes[I].first, Notes[I].second);
   11195 
   11196   if (Result)
   11197     *Result = EvalResult.Val.getInt();
   11198   return E;
   11199 }
   11200 
   11201 namespace {
   11202   // Handle the case where we conclude a expression which we speculatively
   11203   // considered to be unevaluated is actually evaluated.
   11204   class TransformToPE : public TreeTransform<TransformToPE> {
   11205     typedef TreeTransform<TransformToPE> BaseTransform;
   11206 
   11207   public:
   11208     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
   11209 
   11210     // Make sure we redo semantic analysis
   11211     bool AlwaysRebuild() { return true; }
   11212 
   11213     // Make sure we handle LabelStmts correctly.
   11214     // FIXME: This does the right thing, but maybe we need a more general
   11215     // fix to TreeTransform?
   11216     StmtResult TransformLabelStmt(LabelStmt *S) {
   11217       S->getDecl()->setStmt(nullptr);
   11218       return BaseTransform::TransformLabelStmt(S);
   11219     }
   11220 
   11221     // We need to special-case DeclRefExprs referring to FieldDecls which
   11222     // are not part of a member pointer formation; normal TreeTransforming
   11223     // doesn't catch this case because of the way we represent them in the AST.
   11224     // FIXME: This is a bit ugly; is it really the best way to handle this
   11225     // case?
   11226     //
   11227     // Error on DeclRefExprs referring to FieldDecls.
   11228     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
   11229       if (isa<FieldDecl>(E->getDecl()) &&
   11230           !SemaRef.isUnevaluatedContext())
   11231         return SemaRef.Diag(E->getLocation(),
   11232                             diag::err_invalid_non_static_member_use)
   11233             << E->getDecl() << E->getSourceRange();
   11234 
   11235       return BaseTransform::TransformDeclRefExpr(E);
   11236     }
   11237 
   11238     // Exception: filter out member pointer formation
   11239     ExprResult TransformUnaryOperator(UnaryOperator *E) {
   11240       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
   11241         return E;
   11242 
   11243       return BaseTransform::TransformUnaryOperator(E);
   11244     }
   11245 
   11246     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   11247       // Lambdas never need to be transformed.
   11248       return E;
   11249     }
   11250   };
   11251 }
   11252 
   11253 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
   11254   assert(isUnevaluatedContext() &&
   11255          "Should only transform unevaluated expressions");
   11256   ExprEvalContexts.back().Context =
   11257       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
   11258   if (isUnevaluatedContext())
   11259     return E;
   11260   return TransformToPE(*this).TransformExpr(E);
   11261 }
   11262 
   11263 void
   11264 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   11265                                       Decl *LambdaContextDecl,
   11266                                       bool IsDecltype) {
   11267   ExprEvalContexts.push_back(
   11268              ExpressionEvaluationContextRecord(NewContext,
   11269                                                ExprCleanupObjects.size(),
   11270                                                ExprNeedsCleanups,
   11271                                                LambdaContextDecl,
   11272                                                IsDecltype));
   11273   ExprNeedsCleanups = false;
   11274   if (!MaybeODRUseExprs.empty())
   11275     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
   11276 }
   11277 
   11278 void
   11279 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   11280                                       ReuseLambdaContextDecl_t,
   11281                                       bool IsDecltype) {
   11282   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
   11283   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
   11284 }
   11285 
   11286 void Sema::PopExpressionEvaluationContext() {
   11287   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
   11288 
   11289   if (!Rec.Lambdas.empty()) {
   11290     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   11291       unsigned D;
   11292       if (Rec.isUnevaluated()) {
   11293         // C++11 [expr.prim.lambda]p2:
   11294         //   A lambda-expression shall not appear in an unevaluated operand
   11295         //   (Clause 5).
   11296         D = diag::err_lambda_unevaluated_operand;
   11297       } else {
   11298         // C++1y [expr.const]p2:
   11299         //   A conditional-expression e is a core constant expression unless the
   11300         //   evaluation of e, following the rules of the abstract machine, would
   11301         //   evaluate [...] a lambda-expression.
   11302         D = diag::err_lambda_in_constant_expression;
   11303       }
   11304       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
   11305         Diag(Rec.Lambdas[I]->getLocStart(), D);
   11306     } else {
   11307       // Mark the capture expressions odr-used. This was deferred
   11308       // during lambda expression creation.
   11309       for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
   11310         LambdaExpr *Lambda = Rec.Lambdas[I];
   11311         for (LambdaExpr::capture_init_iterator
   11312                   C = Lambda->capture_init_begin(),
   11313                CEnd = Lambda->capture_init_end();
   11314              C != CEnd; ++C) {
   11315           MarkDeclarationsReferencedInExpr(*C);
   11316         }
   11317       }
   11318     }
   11319   }
   11320 
   11321   // When are coming out of an unevaluated context, clear out any
   11322   // temporaries that we may have created as part of the evaluation of
   11323   // the expression in that context: they aren't relevant because they
   11324   // will never be constructed.
   11325   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   11326     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
   11327                              ExprCleanupObjects.end());
   11328     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
   11329     CleanupVarDeclMarking();
   11330     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
   11331   // Otherwise, merge the contexts together.
   11332   } else {
   11333     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
   11334     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
   11335                             Rec.SavedMaybeODRUseExprs.end());
   11336   }
   11337 
   11338   // Pop the current expression evaluation context off the stack.
   11339   ExprEvalContexts.pop_back();
   11340 }
   11341 
   11342 void Sema::DiscardCleanupsInEvaluationContext() {
   11343   ExprCleanupObjects.erase(
   11344          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
   11345          ExprCleanupObjects.end());
   11346   ExprNeedsCleanups = false;
   11347   MaybeODRUseExprs.clear();
   11348 }
   11349 
   11350 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
   11351   if (!E->getType()->isVariablyModifiedType())
   11352     return E;
   11353   return TransformToPotentiallyEvaluated(E);
   11354 }
   11355 
   11356 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
   11357   // Do not mark anything as "used" within a dependent context; wait for
   11358   // an instantiation.
   11359   if (SemaRef.CurContext->isDependentContext())
   11360     return false;
   11361 
   11362   switch (SemaRef.ExprEvalContexts.back().Context) {
   11363     case Sema::Unevaluated:
   11364     case Sema::UnevaluatedAbstract:
   11365       // We are in an expression that is not potentially evaluated; do nothing.
   11366       // (Depending on how you read the standard, we actually do need to do
   11367       // something here for null pointer constants, but the standard's
   11368       // definition of a null pointer constant is completely crazy.)
   11369       return false;
   11370 
   11371     case Sema::ConstantEvaluated:
   11372     case Sema::PotentiallyEvaluated:
   11373       // We are in a potentially evaluated expression (or a constant-expression
   11374       // in C++03); we need to do implicit template instantiation, implicitly
   11375       // define class members, and mark most declarations as used.
   11376       return true;
   11377 
   11378     case Sema::PotentiallyEvaluatedIfUsed:
   11379       // Referenced declarations will only be used if the construct in the
   11380       // containing expression is used.
   11381       return false;
   11382   }
   11383   llvm_unreachable("Invalid context");
   11384 }
   11385 
   11386 /// \brief Mark a function referenced, and check whether it is odr-used
   11387 /// (C++ [basic.def.odr]p2, C99 6.9p3)
   11388 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
   11389   assert(Func && "No function?");
   11390 
   11391   Func->setReferenced();
   11392 
   11393   // C++11 [basic.def.odr]p3:
   11394   //   A function whose name appears as a potentially-evaluated expression is
   11395   //   odr-used if it is the unique lookup result or the selected member of a
   11396   //   set of overloaded functions [...].
   11397   //
   11398   // We (incorrectly) mark overload resolution as an unevaluated context, so we
   11399   // can just check that here. Skip the rest of this function if we've already
   11400   // marked the function as used.
   11401   if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
   11402     // C++11 [temp.inst]p3:
   11403     //   Unless a function template specialization has been explicitly
   11404     //   instantiated or explicitly specialized, the function template
   11405     //   specialization is implicitly instantiated when the specialization is
   11406     //   referenced in a context that requires a function definition to exist.
   11407     //
   11408     // We consider constexpr function templates to be referenced in a context
   11409     // that requires a definition to exist whenever they are referenced.
   11410     //
   11411     // FIXME: This instantiates constexpr functions too frequently. If this is
   11412     // really an unevaluated context (and we're not just in the definition of a
   11413     // function template or overload resolution or other cases which we
   11414     // incorrectly consider to be unevaluated contexts), and we're not in a
   11415     // subexpression which we actually need to evaluate (for instance, a
   11416     // template argument, array bound or an expression in a braced-init-list),
   11417     // we are not permitted to instantiate this constexpr function definition.
   11418     //
   11419     // FIXME: This also implicitly defines special members too frequently. They
   11420     // are only supposed to be implicitly defined if they are odr-used, but they
   11421     // are not odr-used from constant expressions in unevaluated contexts.
   11422     // However, they cannot be referenced if they are deleted, and they are
   11423     // deleted whenever the implicit definition of the special member would
   11424     // fail.
   11425     if (!Func->isConstexpr() || Func->getBody())
   11426       return;
   11427     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
   11428     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
   11429       return;
   11430   }
   11431 
   11432   // Note that this declaration has been used.
   11433   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
   11434     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
   11435     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
   11436       if (Constructor->isDefaultConstructor()) {
   11437         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
   11438           return;
   11439         DefineImplicitDefaultConstructor(Loc, Constructor);
   11440       } else if (Constructor->isCopyConstructor()) {
   11441         DefineImplicitCopyConstructor(Loc, Constructor);
   11442       } else if (Constructor->isMoveConstructor()) {
   11443         DefineImplicitMoveConstructor(Loc, Constructor);
   11444       }
   11445     } else if (Constructor->getInheritedConstructor()) {
   11446       DefineInheritingConstructor(Loc, Constructor);
   11447     }
   11448 
   11449     MarkVTableUsed(Loc, Constructor->getParent());
   11450   } else if (CXXDestructorDecl *Destructor =
   11451                  dyn_cast<CXXDestructorDecl>(Func)) {
   11452     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
   11453     if (Destructor->isDefaulted() && !Destructor->isDeleted())
   11454       DefineImplicitDestructor(Loc, Destructor);
   11455     if (Destructor->isVirtual())
   11456       MarkVTableUsed(Loc, Destructor->getParent());
   11457   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
   11458     if (MethodDecl->isOverloadedOperator() &&
   11459         MethodDecl->getOverloadedOperator() == OO_Equal) {
   11460       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
   11461       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
   11462         if (MethodDecl->isCopyAssignmentOperator())
   11463           DefineImplicitCopyAssignment(Loc, MethodDecl);
   11464         else
   11465           DefineImplicitMoveAssignment(Loc, MethodDecl);
   11466       }
   11467     } else if (isa<CXXConversionDecl>(MethodDecl) &&
   11468                MethodDecl->getParent()->isLambda()) {
   11469       CXXConversionDecl *Conversion =
   11470           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
   11471       if (Conversion->isLambdaToBlockPointerConversion())
   11472         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
   11473       else
   11474         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
   11475     } else if (MethodDecl->isVirtual())
   11476       MarkVTableUsed(Loc, MethodDecl->getParent());
   11477   }
   11478 
   11479   // Recursive functions should be marked when used from another function.
   11480   // FIXME: Is this really right?
   11481   if (CurContext == Func) return;
   11482 
   11483   // Resolve the exception specification for any function which is
   11484   // used: CodeGen will need it.
   11485   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
   11486   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
   11487     ResolveExceptionSpec(Loc, FPT);
   11488 
   11489   // Implicit instantiation of function templates and member functions of
   11490   // class templates.
   11491   if (Func->isImplicitlyInstantiable()) {
   11492     bool AlreadyInstantiated = false;
   11493     SourceLocation PointOfInstantiation = Loc;
   11494     if (FunctionTemplateSpecializationInfo *SpecInfo
   11495                               = Func->getTemplateSpecializationInfo()) {
   11496       if (SpecInfo->getPointOfInstantiation().isInvalid())
   11497         SpecInfo->setPointOfInstantiation(Loc);
   11498       else if (SpecInfo->getTemplateSpecializationKind()
   11499                  == TSK_ImplicitInstantiation) {
   11500         AlreadyInstantiated = true;
   11501         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
   11502       }
   11503     } else if (MemberSpecializationInfo *MSInfo
   11504                                 = Func->getMemberSpecializationInfo()) {
   11505       if (MSInfo->getPointOfInstantiation().isInvalid())
   11506         MSInfo->setPointOfInstantiation(Loc);
   11507       else if (MSInfo->getTemplateSpecializationKind()
   11508                  == TSK_ImplicitInstantiation) {
   11509         AlreadyInstantiated = true;
   11510         PointOfInstantiation = MSInfo->getPointOfInstantiation();
   11511       }
   11512     }
   11513 
   11514     if (!AlreadyInstantiated || Func->isConstexpr()) {
   11515       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
   11516           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
   11517           ActiveTemplateInstantiations.size())
   11518         PendingLocalImplicitInstantiations.push_back(
   11519             std::make_pair(Func, PointOfInstantiation));
   11520       else if (Func->isConstexpr())
   11521         // Do not defer instantiations of constexpr functions, to avoid the
   11522         // expression evaluator needing to call back into Sema if it sees a
   11523         // call to such a function.
   11524         InstantiateFunctionDefinition(PointOfInstantiation, Func);
   11525       else {
   11526         PendingInstantiations.push_back(std::make_pair(Func,
   11527                                                        PointOfInstantiation));
   11528         // Notify the consumer that a function was implicitly instantiated.
   11529         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
   11530       }
   11531     }
   11532   } else {
   11533     // Walk redefinitions, as some of them may be instantiable.
   11534     for (auto i : Func->redecls()) {
   11535       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   11536         MarkFunctionReferenced(Loc, i);
   11537     }
   11538   }
   11539 
   11540   // Keep track of used but undefined functions.
   11541   if (!Func->isDefined()) {
   11542     if (mightHaveNonExternalLinkage(Func))
   11543       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   11544     else if (Func->getMostRecentDecl()->isInlined() &&
   11545              (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
   11546              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
   11547       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   11548   }
   11549 
   11550   // Normally the most current decl is marked used while processing the use and
   11551   // any subsequent decls are marked used by decl merging. This fails with
   11552   // template instantiation since marking can happen at the end of the file
   11553   // and, because of the two phase lookup, this function is called with at
   11554   // decl in the middle of a decl chain. We loop to maintain the invariant
   11555   // that once a decl is used, all decls after it are also used.
   11556   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
   11557     F->markUsed(Context);
   11558     if (F == Func)
   11559       break;
   11560   }
   11561 }
   11562 
   11563 static void
   11564 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   11565                                    VarDecl *var, DeclContext *DC) {
   11566   DeclContext *VarDC = var->getDeclContext();
   11567 
   11568   //  If the parameter still belongs to the translation unit, then
   11569   //  we're actually just using one parameter in the declaration of
   11570   //  the next.
   11571   if (isa<ParmVarDecl>(var) &&
   11572       isa<TranslationUnitDecl>(VarDC))
   11573     return;
   11574 
   11575   // For C code, don't diagnose about capture if we're not actually in code
   11576   // right now; it's impossible to write a non-constant expression outside of
   11577   // function context, so we'll get other (more useful) diagnostics later.
   11578   //
   11579   // For C++, things get a bit more nasty... it would be nice to suppress this
   11580   // diagnostic for certain cases like using a local variable in an array bound
   11581   // for a member of a local class, but the correct predicate is not obvious.
   11582   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
   11583     return;
   11584 
   11585   if (isa<CXXMethodDecl>(VarDC) &&
   11586       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
   11587     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
   11588       << var->getIdentifier();
   11589   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
   11590     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   11591       << var->getIdentifier() << fn->getDeclName();
   11592   } else if (isa<BlockDecl>(VarDC)) {
   11593     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
   11594       << var->getIdentifier();
   11595   } else {
   11596     // FIXME: Is there any other context where a local variable can be
   11597     // declared?
   11598     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
   11599       << var->getIdentifier();
   11600   }
   11601 
   11602   S.Diag(var->getLocation(), diag::note_entity_declared_at)
   11603       << var->getIdentifier();
   11604 
   11605   // FIXME: Add additional diagnostic info about class etc. which prevents
   11606   // capture.
   11607 }
   11608 
   11609 
   11610 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
   11611                                       bool &SubCapturesAreNested,
   11612                                       QualType &CaptureType,
   11613                                       QualType &DeclRefType) {
   11614    // Check whether we've already captured it.
   11615   if (CSI->CaptureMap.count(Var)) {
   11616     // If we found a capture, any subcaptures are nested.
   11617     SubCapturesAreNested = true;
   11618 
   11619     // Retrieve the capture type for this variable.
   11620     CaptureType = CSI->getCapture(Var).getCaptureType();
   11621 
   11622     // Compute the type of an expression that refers to this variable.
   11623     DeclRefType = CaptureType.getNonReferenceType();
   11624 
   11625     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
   11626     if (Cap.isCopyCapture() &&
   11627         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
   11628       DeclRefType.addConst();
   11629     return true;
   11630   }
   11631   return false;
   11632 }
   11633 
   11634 // Only block literals, captured statements, and lambda expressions can
   11635 // capture; other scopes don't work.
   11636 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
   11637                                  SourceLocation Loc,
   11638                                  const bool Diagnose, Sema &S) {
   11639   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
   11640     return getLambdaAwareParentOfDeclContext(DC);
   11641   else {
   11642     if (Diagnose)
   11643        diagnoseUncapturableValueReference(S, Loc, Var, DC);
   11644   }
   11645   return nullptr;
   11646 }
   11647 
   11648 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   11649 // certain types of variables (unnamed, variably modified types etc.)
   11650 // so check for eligibility.
   11651 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
   11652                                  SourceLocation Loc,
   11653                                  const bool Diagnose, Sema &S) {
   11654 
   11655   bool IsBlock = isa<BlockScopeInfo>(CSI);
   11656   bool IsLambda = isa<LambdaScopeInfo>(CSI);
   11657 
   11658   // Lambdas are not allowed to capture unnamed variables
   11659   // (e.g. anonymous unions).
   11660   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
   11661   // assuming that's the intent.
   11662   if (IsLambda && !Var->getDeclName()) {
   11663     if (Diagnose) {
   11664       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
   11665       S.Diag(Var->getLocation(), diag::note_declared_at);
   11666     }
   11667     return false;
   11668   }
   11669 
   11670   // Prohibit variably-modified types; they're difficult to deal with.
   11671   if (Var->getType()->isVariablyModifiedType() && (IsBlock || IsLambda)) {
   11672     if (Diagnose) {
   11673       if (IsBlock)
   11674         S.Diag(Loc, diag::err_ref_vm_type);
   11675       else
   11676         S.Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
   11677       S.Diag(Var->getLocation(), diag::note_previous_decl)
   11678         << Var->getDeclName();
   11679     }
   11680     return false;
   11681   }
   11682   // Prohibit structs with flexible array members too.
   11683   // We cannot capture what is in the tail end of the struct.
   11684   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
   11685     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
   11686       if (Diagnose) {
   11687         if (IsBlock)
   11688           S.Diag(Loc, diag::err_ref_flexarray_type);
   11689         else
   11690           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
   11691             << Var->getDeclName();
   11692         S.Diag(Var->getLocation(), diag::note_previous_decl)
   11693           << Var->getDeclName();
   11694       }
   11695       return false;
   11696     }
   11697   }
   11698   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   11699   // Lambdas and captured statements are not allowed to capture __block
   11700   // variables; they don't support the expected semantics.
   11701   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
   11702     if (Diagnose) {
   11703       S.Diag(Loc, diag::err_capture_block_variable)
   11704         << Var->getDeclName() << !IsLambda;
   11705       S.Diag(Var->getLocation(), diag::note_previous_decl)
   11706         << Var->getDeclName();
   11707     }
   11708     return false;
   11709   }
   11710 
   11711   return true;
   11712 }
   11713 
   11714 // Returns true if the capture by block was successful.
   11715 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
   11716                                  SourceLocation Loc,
   11717                                  const bool BuildAndDiagnose,
   11718                                  QualType &CaptureType,
   11719                                  QualType &DeclRefType,
   11720                                  const bool Nested,
   11721                                  Sema &S) {
   11722   Expr *CopyExpr = nullptr;
   11723   bool ByRef = false;
   11724 
   11725   // Blocks are not allowed to capture arrays.
   11726   if (CaptureType->isArrayType()) {
   11727     if (BuildAndDiagnose) {
   11728       S.Diag(Loc, diag::err_ref_array_type);
   11729       S.Diag(Var->getLocation(), diag::note_previous_decl)
   11730       << Var->getDeclName();
   11731     }
   11732     return false;
   11733   }
   11734 
   11735   // Forbid the block-capture of autoreleasing variables.
   11736   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   11737     if (BuildAndDiagnose) {
   11738       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
   11739         << /*block*/ 0;
   11740       S.Diag(Var->getLocation(), diag::note_previous_decl)
   11741         << Var->getDeclName();
   11742     }
   11743     return false;
   11744   }
   11745   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   11746   if (HasBlocksAttr || CaptureType->isReferenceType()) {
   11747     // Block capture by reference does not change the capture or
   11748     // declaration reference types.
   11749     ByRef = true;
   11750   } else {
   11751     // Block capture by copy introduces 'const'.
   11752     CaptureType = CaptureType.getNonReferenceType().withConst();
   11753     DeclRefType = CaptureType;
   11754 
   11755     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
   11756       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
   11757         // The capture logic needs the destructor, so make sure we mark it.
   11758         // Usually this is unnecessary because most local variables have
   11759         // their destructors marked at declaration time, but parameters are
   11760         // an exception because it's technically only the call site that
   11761         // actually requires the destructor.
   11762         if (isa<ParmVarDecl>(Var))
   11763           S.FinalizeVarWithDestructor(Var, Record);
   11764 
   11765         // Enter a new evaluation context to insulate the copy
   11766         // full-expression.
   11767         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
   11768 
   11769         // According to the blocks spec, the capture of a variable from
   11770         // the stack requires a const copy constructor.  This is not true
   11771         // of the copy/move done to move a __block variable to the heap.
   11772         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
   11773                                                   DeclRefType.withConst(),
   11774                                                   VK_LValue, Loc);
   11775 
   11776         ExprResult Result
   11777           = S.PerformCopyInitialization(
   11778               InitializedEntity::InitializeBlock(Var->getLocation(),
   11779                                                   CaptureType, false),
   11780               Loc, DeclRef);
   11781 
   11782         // Build a full-expression copy expression if initialization
   11783         // succeeded and used a non-trivial constructor.  Recover from
   11784         // errors by pretending that the copy isn't necessary.
   11785         if (!Result.isInvalid() &&
   11786             !cast<CXXConstructExpr>(Result.get())->getConstructor()
   11787                 ->isTrivial()) {
   11788           Result = S.MaybeCreateExprWithCleanups(Result);
   11789           CopyExpr = Result.get();
   11790         }
   11791       }
   11792     }
   11793   }
   11794 
   11795   // Actually capture the variable.
   11796   if (BuildAndDiagnose)
   11797     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
   11798                     SourceLocation(), CaptureType, CopyExpr);
   11799 
   11800   return true;
   11801 
   11802 }
   11803 
   11804 
   11805 /// \brief Capture the given variable in the captured region.
   11806 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
   11807                                     VarDecl *Var,
   11808                                     SourceLocation Loc,
   11809                                     const bool BuildAndDiagnose,
   11810                                     QualType &CaptureType,
   11811                                     QualType &DeclRefType,
   11812                                     const bool RefersToEnclosingLocal,
   11813                                     Sema &S) {
   11814 
   11815   // By default, capture variables by reference.
   11816   bool ByRef = true;
   11817   // Using an LValue reference type is consistent with Lambdas (see below).
   11818   CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   11819   Expr *CopyExpr = nullptr;
   11820   if (BuildAndDiagnose) {
   11821     // The current implementation assumes that all variables are captured
   11822     // by references. Since there is no capture by copy, no expression
   11823     // evaluation will be needed.
   11824     RecordDecl *RD = RSI->TheRecordDecl;
   11825 
   11826     FieldDecl *Field
   11827       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
   11828                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
   11829                           nullptr, false, ICIS_NoInit);
   11830     Field->setImplicit(true);
   11831     Field->setAccess(AS_private);
   11832     RD->addDecl(Field);
   11833 
   11834     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
   11835                                             DeclRefType, VK_LValue, Loc);
   11836     Var->setReferenced(true);
   11837     Var->markUsed(S.Context);
   11838   }
   11839 
   11840   // Actually capture the variable.
   11841   if (BuildAndDiagnose)
   11842     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToEnclosingLocal, Loc,
   11843                     SourceLocation(), CaptureType, CopyExpr);
   11844 
   11845 
   11846   return true;
   11847 }
   11848 
   11849 /// \brief Create a field within the lambda class for the variable
   11850 ///  being captured.  Handle Array captures.
   11851 static ExprResult addAsFieldToClosureType(Sema &S,
   11852                                  LambdaScopeInfo *LSI,
   11853                                   VarDecl *Var, QualType FieldType,
   11854                                   QualType DeclRefType,
   11855                                   SourceLocation Loc,
   11856                                   bool RefersToEnclosingLocal) {
   11857   CXXRecordDecl *Lambda = LSI->Lambda;
   11858 
   11859   // Build the non-static data member.
   11860   FieldDecl *Field
   11861     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
   11862                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
   11863                         nullptr, false, ICIS_NoInit);
   11864   Field->setImplicit(true);
   11865   Field->setAccess(AS_private);
   11866   Lambda->addDecl(Field);
   11867 
   11868   // C++11 [expr.prim.lambda]p21:
   11869   //   When the lambda-expression is evaluated, the entities that
   11870   //   are captured by copy are used to direct-initialize each
   11871   //   corresponding non-static data member of the resulting closure
   11872   //   object. (For array members, the array elements are
   11873   //   direct-initialized in increasing subscript order.) These
   11874   //   initializations are performed in the (unspecified) order in
   11875   //   which the non-static data members are declared.
   11876 
   11877   // Introduce a new evaluation context for the initialization, so
   11878   // that temporaries introduced as part of the capture are retained
   11879   // to be re-"exported" from the lambda expression itself.
   11880   EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
   11881 
   11882   // C++ [expr.prim.labda]p12:
   11883   //   An entity captured by a lambda-expression is odr-used (3.2) in
   11884   //   the scope containing the lambda-expression.
   11885   Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
   11886                                           DeclRefType, VK_LValue, Loc);
   11887   Var->setReferenced(true);
   11888   Var->markUsed(S.Context);
   11889 
   11890   // When the field has array type, create index variables for each
   11891   // dimension of the array. We use these index variables to subscript
   11892   // the source array, and other clients (e.g., CodeGen) will perform
   11893   // the necessary iteration with these index variables.
   11894   SmallVector<VarDecl *, 4> IndexVariables;
   11895   QualType BaseType = FieldType;
   11896   QualType SizeType = S.Context.getSizeType();
   11897   LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
   11898   while (const ConstantArrayType *Array
   11899                         = S.Context.getAsConstantArrayType(BaseType)) {
   11900     // Create the iteration variable for this array index.
   11901     IdentifierInfo *IterationVarName = nullptr;
   11902     {
   11903       SmallString<8> Str;
   11904       llvm::raw_svector_ostream OS(Str);
   11905       OS << "__i" << IndexVariables.size();
   11906       IterationVarName = &S.Context.Idents.get(OS.str());
   11907     }
   11908     VarDecl *IterationVar
   11909       = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
   11910                         IterationVarName, SizeType,
   11911                         S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
   11912                         SC_None);
   11913     IndexVariables.push_back(IterationVar);
   11914     LSI->ArrayIndexVars.push_back(IterationVar);
   11915 
   11916     // Create a reference to the iteration variable.
   11917     ExprResult IterationVarRef
   11918       = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
   11919     assert(!IterationVarRef.isInvalid() &&
   11920            "Reference to invented variable cannot fail!");
   11921     IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
   11922     assert(!IterationVarRef.isInvalid() &&
   11923            "Conversion of invented variable cannot fail!");
   11924 
   11925     // Subscript the array with this iteration variable.
   11926     ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
   11927                              Ref, Loc, IterationVarRef.get(), Loc);
   11928     if (Subscript.isInvalid()) {
   11929       S.CleanupVarDeclMarking();
   11930       S.DiscardCleanupsInEvaluationContext();
   11931       return ExprError();
   11932     }
   11933 
   11934     Ref = Subscript.get();
   11935     BaseType = Array->getElementType();
   11936   }
   11937 
   11938   // Construct the entity that we will be initializing. For an array, this
   11939   // will be first element in the array, which may require several levels
   11940   // of array-subscript entities.
   11941   SmallVector<InitializedEntity, 4> Entities;
   11942   Entities.reserve(1 + IndexVariables.size());
   11943   Entities.push_back(
   11944     InitializedEntity::InitializeLambdaCapture(Var->getIdentifier(),
   11945         Field->getType(), Loc));
   11946   for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
   11947     Entities.push_back(InitializedEntity::InitializeElement(S.Context,
   11948                                                             0,
   11949                                                             Entities.back()));
   11950 
   11951   InitializationKind InitKind
   11952     = InitializationKind::CreateDirect(Loc, Loc, Loc);
   11953   InitializationSequence Init(S, Entities.back(), InitKind, Ref);
   11954   ExprResult Result(true);
   11955   if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
   11956     Result = Init.Perform(S, Entities.back(), InitKind, Ref);
   11957 
   11958   // If this initialization requires any cleanups (e.g., due to a
   11959   // default argument to a copy constructor), note that for the
   11960   // lambda.
   11961   if (S.ExprNeedsCleanups)
   11962     LSI->ExprNeedsCleanups = true;
   11963 
   11964   // Exit the expression evaluation context used for the capture.
   11965   S.CleanupVarDeclMarking();
   11966   S.DiscardCleanupsInEvaluationContext();
   11967   return Result;
   11968 }
   11969 
   11970 
   11971 
   11972 /// \brief Capture the given variable in the lambda.
   11973 static bool captureInLambda(LambdaScopeInfo *LSI,
   11974                             VarDecl *Var,
   11975                             SourceLocation Loc,
   11976                             const bool BuildAndDiagnose,
   11977                             QualType &CaptureType,
   11978                             QualType &DeclRefType,
   11979                             const bool RefersToEnclosingLocal,
   11980                             const Sema::TryCaptureKind Kind,
   11981                             SourceLocation EllipsisLoc,
   11982                             const bool IsTopScope,
   11983                             Sema &S) {
   11984 
   11985   // Determine whether we are capturing by reference or by value.
   11986   bool ByRef = false;
   11987   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
   11988     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
   11989   } else {
   11990     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
   11991   }
   11992 
   11993   // Compute the type of the field that will capture this variable.
   11994   if (ByRef) {
   11995     // C++11 [expr.prim.lambda]p15:
   11996     //   An entity is captured by reference if it is implicitly or
   11997     //   explicitly captured but not captured by copy. It is
   11998     //   unspecified whether additional unnamed non-static data
   11999     //   members are declared in the closure type for entities
   12000     //   captured by reference.
   12001     //
   12002     // FIXME: It is not clear whether we want to build an lvalue reference
   12003     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
   12004     // to do the former, while EDG does the latter. Core issue 1249 will
   12005     // clarify, but for now we follow GCC because it's a more permissive and
   12006     // easily defensible position.
   12007     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   12008   } else {
   12009     // C++11 [expr.prim.lambda]p14:
   12010     //   For each entity captured by copy, an unnamed non-static
   12011     //   data member is declared in the closure type. The
   12012     //   declaration order of these members is unspecified. The type
   12013     //   of such a data member is the type of the corresponding
   12014     //   captured entity if the entity is not a reference to an
   12015     //   object, or the referenced type otherwise. [Note: If the
   12016     //   captured entity is a reference to a function, the
   12017     //   corresponding data member is also a reference to a
   12018     //   function. - end note ]
   12019     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
   12020       if (!RefType->getPointeeType()->isFunctionType())
   12021         CaptureType = RefType->getPointeeType();
   12022     }
   12023 
   12024     // Forbid the lambda copy-capture of autoreleasing variables.
   12025     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   12026       if (BuildAndDiagnose) {
   12027         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
   12028         S.Diag(Var->getLocation(), diag::note_previous_decl)
   12029           << Var->getDeclName();
   12030       }
   12031       return false;
   12032     }
   12033 
   12034     // Make sure that by-copy captures are of a complete and non-abstract type.
   12035     if (BuildAndDiagnose) {
   12036       if (!CaptureType->isDependentType() &&
   12037           S.RequireCompleteType(Loc, CaptureType,
   12038                                 diag::err_capture_of_incomplete_type,
   12039                                 Var->getDeclName()))
   12040         return false;
   12041 
   12042       if (S.RequireNonAbstractType(Loc, CaptureType,
   12043                                    diag::err_capture_of_abstract_type))
   12044         return false;
   12045     }
   12046   }
   12047 
   12048   // Capture this variable in the lambda.
   12049   Expr *CopyExpr = nullptr;
   12050   if (BuildAndDiagnose) {
   12051     ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
   12052                                         CaptureType, DeclRefType, Loc,
   12053                                         RefersToEnclosingLocal);
   12054     if (!Result.isInvalid())
   12055       CopyExpr = Result.get();
   12056   }
   12057 
   12058   // Compute the type of a reference to this captured variable.
   12059   if (ByRef)
   12060     DeclRefType = CaptureType.getNonReferenceType();
   12061   else {
   12062     // C++ [expr.prim.lambda]p5:
   12063     //   The closure type for a lambda-expression has a public inline
   12064     //   function call operator [...]. This function call operator is
   12065     //   declared const (9.3.1) if and only if the lambda-expressions
   12066     //   parameter-declaration-clause is not followed by mutable.
   12067     DeclRefType = CaptureType.getNonReferenceType();
   12068     if (!LSI->Mutable && !CaptureType->isReferenceType())
   12069       DeclRefType.addConst();
   12070   }
   12071 
   12072   // Add the capture.
   12073   if (BuildAndDiagnose)
   12074     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToEnclosingLocal,
   12075                     Loc, EllipsisLoc, CaptureType, CopyExpr);
   12076 
   12077   return true;
   12078 }
   12079 
   12080 
   12081 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
   12082                               TryCaptureKind Kind, SourceLocation EllipsisLoc,
   12083                               bool BuildAndDiagnose,
   12084                               QualType &CaptureType,
   12085                               QualType &DeclRefType,
   12086 						                const unsigned *const FunctionScopeIndexToStopAt) {
   12087   bool Nested = false;
   12088 
   12089   DeclContext *DC = CurContext;
   12090   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
   12091       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
   12092   // We need to sync up the Declaration Context with the
   12093   // FunctionScopeIndexToStopAt
   12094   if (FunctionScopeIndexToStopAt) {
   12095     unsigned FSIndex = FunctionScopes.size() - 1;
   12096     while (FSIndex != MaxFunctionScopesIndex) {
   12097       DC = getLambdaAwareParentOfDeclContext(DC);
   12098       --FSIndex;
   12099     }
   12100   }
   12101 
   12102 
   12103   // If the variable is declared in the current context (and is not an
   12104   // init-capture), there is no need to capture it.
   12105   if (!Var->isInitCapture() && Var->getDeclContext() == DC) return true;
   12106   if (!Var->hasLocalStorage()) return true;
   12107 
   12108   // Walk up the stack to determine whether we can capture the variable,
   12109   // performing the "simple" checks that don't depend on type. We stop when
   12110   // we've either hit the declared scope of the variable or find an existing
   12111   // capture of that variable.  We start from the innermost capturing-entity
   12112   // (the DC) and ensure that all intervening capturing-entities
   12113   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
   12114   // declcontext can either capture the variable or have already captured
   12115   // the variable.
   12116   CaptureType = Var->getType();
   12117   DeclRefType = CaptureType.getNonReferenceType();
   12118   bool Explicit = (Kind != TryCapture_Implicit);
   12119   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
   12120   do {
   12121     // Only block literals, captured statements, and lambda expressions can
   12122     // capture; other scopes don't work.
   12123     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
   12124                                                               ExprLoc,
   12125                                                               BuildAndDiagnose,
   12126                                                               *this);
   12127     if (!ParentDC) return true;
   12128 
   12129     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
   12130     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
   12131 
   12132 
   12133     // Check whether we've already captured it.
   12134     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
   12135                                              DeclRefType))
   12136       break;
   12137     // If we are instantiating a generic lambda call operator body,
   12138     // we do not want to capture new variables.  What was captured
   12139     // during either a lambdas transformation or initial parsing
   12140     // should be used.
   12141     if (isGenericLambdaCallOperatorSpecialization(DC)) {
   12142       if (BuildAndDiagnose) {
   12143         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   12144         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
   12145           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   12146           Diag(Var->getLocation(), diag::note_previous_decl)
   12147              << Var->getDeclName();
   12148           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
   12149         } else
   12150           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
   12151       }
   12152       return true;
   12153     }
   12154     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   12155     // certain types of variables (unnamed, variably modified types etc.)
   12156     // so check for eligibility.
   12157     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
   12158        return true;
   12159 
   12160     // Try to capture variable-length arrays types.
   12161     if (Var->getType()->isVariablyModifiedType()) {
   12162       // We're going to walk down into the type and look for VLA
   12163       // expressions.
   12164       QualType QTy = Var->getType();
   12165       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
   12166         QTy = PVD->getOriginalType();
   12167       do {
   12168         const Type *Ty = QTy.getTypePtr();
   12169         switch (Ty->getTypeClass()) {
   12170 #define TYPE(Class, Base)
   12171 #define ABSTRACT_TYPE(Class, Base)
   12172 #define NON_CANONICAL_TYPE(Class, Base)
   12173 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   12174 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   12175 #include "clang/AST/TypeNodes.def"
   12176           QTy = QualType();
   12177           break;
   12178         // These types are never variably-modified.
   12179         case Type::Builtin:
   12180         case Type::Complex:
   12181         case Type::Vector:
   12182         case Type::ExtVector:
   12183         case Type::Record:
   12184         case Type::Enum:
   12185         case Type::Elaborated:
   12186         case Type::TemplateSpecialization:
   12187         case Type::ObjCObject:
   12188         case Type::ObjCInterface:
   12189         case Type::ObjCObjectPointer:
   12190           llvm_unreachable("type class is never variably-modified!");
   12191         case Type::Adjusted:
   12192           QTy = cast<AdjustedType>(Ty)->getOriginalType();
   12193           break;
   12194         case Type::Decayed:
   12195           QTy = cast<DecayedType>(Ty)->getPointeeType();
   12196           break;
   12197         case Type::Pointer:
   12198           QTy = cast<PointerType>(Ty)->getPointeeType();
   12199           break;
   12200         case Type::BlockPointer:
   12201           QTy = cast<BlockPointerType>(Ty)->getPointeeType();
   12202           break;
   12203         case Type::LValueReference:
   12204         case Type::RValueReference:
   12205           QTy = cast<ReferenceType>(Ty)->getPointeeType();
   12206           break;
   12207         case Type::MemberPointer:
   12208           QTy = cast<MemberPointerType>(Ty)->getPointeeType();
   12209           break;
   12210         case Type::ConstantArray:
   12211         case Type::IncompleteArray:
   12212           // Losing element qualification here is fine.
   12213           QTy = cast<ArrayType>(Ty)->getElementType();
   12214           break;
   12215         case Type::VariableArray: {
   12216           // Losing element qualification here is fine.
   12217           const VariableArrayType *Vat = cast<VariableArrayType>(Ty);
   12218 
   12219           // Unknown size indication requires no size computation.
   12220           // Otherwise, evaluate and record it.
   12221           if (Expr *Size = Vat->getSizeExpr()) {
   12222             MarkDeclarationsReferencedInExpr(Size);
   12223           }
   12224           QTy = Vat->getElementType();
   12225           break;
   12226         }
   12227         case Type::FunctionProto:
   12228         case Type::FunctionNoProto:
   12229           QTy = cast<FunctionType>(Ty)->getReturnType();
   12230           break;
   12231         case Type::Paren:
   12232         case Type::TypeOf:
   12233         case Type::UnaryTransform:
   12234         case Type::Attributed:
   12235         case Type::SubstTemplateTypeParm:
   12236         case Type::PackExpansion:
   12237           // Keep walking after single level desugaring.
   12238           QTy = QTy.getSingleStepDesugaredType(getASTContext());
   12239           break;
   12240         case Type::Typedef:
   12241           QTy = cast<TypedefType>(Ty)->desugar();
   12242           break;
   12243         case Type::Decltype:
   12244           QTy = cast<DecltypeType>(Ty)->desugar();
   12245           break;
   12246         case Type::Auto:
   12247           QTy = cast<AutoType>(Ty)->getDeducedType();
   12248           break;
   12249         case Type::TypeOfExpr:
   12250           QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
   12251           break;
   12252         case Type::Atomic:
   12253           QTy = cast<AtomicType>(Ty)->getValueType();
   12254           break;
   12255         }
   12256       } while (!QTy.isNull() && QTy->isVariablyModifiedType());
   12257     }
   12258 
   12259     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
   12260       // No capture-default, and this is not an explicit capture
   12261       // so cannot capture this variable.
   12262       if (BuildAndDiagnose) {
   12263         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   12264         Diag(Var->getLocation(), diag::note_previous_decl)
   12265           << Var->getDeclName();
   12266         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
   12267              diag::note_lambda_decl);
   12268         // FIXME: If we error out because an outer lambda can not implicitly
   12269         // capture a variable that an inner lambda explicitly captures, we
   12270         // should have the inner lambda do the explicit capture - because
   12271         // it makes for cleaner diagnostics later.  This would purely be done
   12272         // so that the diagnostic does not misleadingly claim that a variable
   12273         // can not be captured by a lambda implicitly even though it is captured
   12274         // explicitly.  Suggestion:
   12275         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
   12276         //    at the function head
   12277         //  - cache the StartingDeclContext - this must be a lambda
   12278         //  - captureInLambda in the innermost lambda the variable.
   12279       }
   12280       return true;
   12281     }
   12282 
   12283     FunctionScopesIndex--;
   12284     DC = ParentDC;
   12285     Explicit = false;
   12286   } while (!Var->getDeclContext()->Equals(DC));
   12287 
   12288   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
   12289   // computing the type of the capture at each step, checking type-specific
   12290   // requirements, and adding captures if requested.
   12291   // If the variable had already been captured previously, we start capturing
   12292   // at the lambda nested within that one.
   12293   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
   12294        ++I) {
   12295     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
   12296 
   12297     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
   12298       if (!captureInBlock(BSI, Var, ExprLoc,
   12299                           BuildAndDiagnose, CaptureType,
   12300                           DeclRefType, Nested, *this))
   12301         return true;
   12302       Nested = true;
   12303     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   12304       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
   12305                                    BuildAndDiagnose, CaptureType,
   12306                                    DeclRefType, Nested, *this))
   12307         return true;
   12308       Nested = true;
   12309     } else {
   12310       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   12311       if (!captureInLambda(LSI, Var, ExprLoc,
   12312                            BuildAndDiagnose, CaptureType,
   12313                            DeclRefType, Nested, Kind, EllipsisLoc,
   12314                             /*IsTopScope*/I == N - 1, *this))
   12315         return true;
   12316       Nested = true;
   12317     }
   12318   }
   12319   return false;
   12320 }
   12321 
   12322 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   12323                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
   12324   QualType CaptureType;
   12325   QualType DeclRefType;
   12326   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
   12327                             /*BuildAndDiagnose=*/true, CaptureType,
   12328                             DeclRefType, nullptr);
   12329 }
   12330 
   12331 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
   12332   QualType CaptureType;
   12333   QualType DeclRefType;
   12334 
   12335   // Determine whether we can capture this variable.
   12336   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   12337                          /*BuildAndDiagnose=*/false, CaptureType,
   12338                          DeclRefType, nullptr))
   12339     return QualType();
   12340 
   12341   return DeclRefType;
   12342 }
   12343 
   12344 
   12345 
   12346 // If either the type of the variable or the initializer is dependent,
   12347 // return false. Otherwise, determine whether the variable is a constant
   12348 // expression. Use this if you need to know if a variable that might or
   12349 // might not be dependent is truly a constant expression.
   12350 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
   12351     ASTContext &Context) {
   12352 
   12353   if (Var->getType()->isDependentType())
   12354     return false;
   12355   const VarDecl *DefVD = nullptr;
   12356   Var->getAnyInitializer(DefVD);
   12357   if (!DefVD)
   12358     return false;
   12359   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   12360   Expr *Init = cast<Expr>(Eval->Value);
   12361   if (Init->isValueDependent())
   12362     return false;
   12363   return IsVariableAConstantExpression(Var, Context);
   12364 }
   12365 
   12366 
   12367 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
   12368   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
   12369   // an object that satisfies the requirements for appearing in a
   12370   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
   12371   // is immediately applied."  This function handles the lvalue-to-rvalue
   12372   // conversion part.
   12373   MaybeODRUseExprs.erase(E->IgnoreParens());
   12374 
   12375   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
   12376   // to a variable that is a constant expression, and if so, identify it as
   12377   // a reference to a variable that does not involve an odr-use of that
   12378   // variable.
   12379   if (LambdaScopeInfo *LSI = getCurLambda()) {
   12380     Expr *SansParensExpr = E->IgnoreParens();
   12381     VarDecl *Var = nullptr;
   12382     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
   12383       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
   12384     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
   12385       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
   12386 
   12387     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
   12388       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
   12389   }
   12390 }
   12391 
   12392 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
   12393   if (!Res.isUsable())
   12394     return Res;
   12395 
   12396   // If a constant-expression is a reference to a variable where we delay
   12397   // deciding whether it is an odr-use, just assume we will apply the
   12398   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
   12399   // (a non-type template argument), we have special handling anyway.
   12400   UpdateMarkingForLValueToRValue(Res.get());
   12401   return Res;
   12402 }
   12403 
   12404 void Sema::CleanupVarDeclMarking() {
   12405   for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
   12406                                         e = MaybeODRUseExprs.end();
   12407        i != e; ++i) {
   12408     VarDecl *Var;
   12409     SourceLocation Loc;
   12410     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
   12411       Var = cast<VarDecl>(DRE->getDecl());
   12412       Loc = DRE->getLocation();
   12413     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
   12414       Var = cast<VarDecl>(ME->getMemberDecl());
   12415       Loc = ME->getMemberLoc();
   12416     } else {
   12417       llvm_unreachable("Unexpcted expression");
   12418     }
   12419 
   12420     MarkVarDeclODRUsed(Var, Loc, *this,
   12421                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
   12422   }
   12423 
   12424   MaybeODRUseExprs.clear();
   12425 }
   12426 
   12427 
   12428 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
   12429                                     VarDecl *Var, Expr *E) {
   12430   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
   12431          "Invalid Expr argument to DoMarkVarDeclReferenced");
   12432   Var->setReferenced();
   12433 
   12434   // If the context is not potentially evaluated, this is not an odr-use and
   12435   // does not trigger instantiation.
   12436   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
   12437     if (SemaRef.isUnevaluatedContext())
   12438       return;
   12439 
   12440     // If we don't yet know whether this context is going to end up being an
   12441     // evaluated context, and we're referencing a variable from an enclosing
   12442     // scope, add a potential capture.
   12443     //
   12444     // FIXME: Is this necessary? These contexts are only used for default
   12445     // arguments, where local variables can't be used.
   12446     const bool RefersToEnclosingScope =
   12447         (SemaRef.CurContext != Var->getDeclContext() &&
   12448          Var->getDeclContext()->isFunctionOrMethod() &&
   12449          Var->hasLocalStorage());
   12450     if (!RefersToEnclosingScope)
   12451       return;
   12452 
   12453     if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
   12454       // If a variable could potentially be odr-used, defer marking it so
   12455       // until we finish analyzing the full expression for any lvalue-to-rvalue
   12456       // or discarded value conversions that would obviate odr-use.
   12457       // Add it to the list of potential captures that will be analyzed
   12458       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
   12459       // unless the variable is a reference that was initialized by a constant
   12460       // expression (this will never need to be captured or odr-used).
   12461       assert(E && "Capture variable should be used in an expression.");
   12462       if (!Var->getType()->isReferenceType() ||
   12463           !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
   12464         LSI->addPotentialCapture(E->IgnoreParens());
   12465     }
   12466     return;
   12467   }
   12468 
   12469   VarTemplateSpecializationDecl *VarSpec =
   12470       dyn_cast<VarTemplateSpecializationDecl>(Var);
   12471   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
   12472          "Can't instantiate a partial template specialization.");
   12473 
   12474   // Perform implicit instantiation of static data members, static data member
   12475   // templates of class templates, and variable template specializations. Delay
   12476   // instantiations of variable templates, except for those that could be used
   12477   // in a constant expression.
   12478   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
   12479   if (isTemplateInstantiation(TSK)) {
   12480     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
   12481 
   12482     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
   12483       if (Var->getPointOfInstantiation().isInvalid()) {
   12484         // This is a modification of an existing AST node. Notify listeners.
   12485         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
   12486           L->StaticDataMemberInstantiated(Var);
   12487       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
   12488         // Don't bother trying to instantiate it again, unless we might need
   12489         // its initializer before we get to the end of the TU.
   12490         TryInstantiating = false;
   12491     }
   12492 
   12493     if (Var->getPointOfInstantiation().isInvalid())
   12494       Var->setTemplateSpecializationKind(TSK, Loc);
   12495 
   12496     if (TryInstantiating) {
   12497       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
   12498       bool InstantiationDependent = false;
   12499       bool IsNonDependent =
   12500           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
   12501                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
   12502                   : true;
   12503 
   12504       // Do not instantiate specializations that are still type-dependent.
   12505       if (IsNonDependent) {
   12506         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
   12507           // Do not defer instantiations of variables which could be used in a
   12508           // constant expression.
   12509           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
   12510         } else {
   12511           SemaRef.PendingInstantiations
   12512               .push_back(std::make_pair(Var, PointOfInstantiation));
   12513         }
   12514       }
   12515     }
   12516   }
   12517 
   12518   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
   12519   // the requirements for appearing in a constant expression (5.19) and, if
   12520   // it is an object, the lvalue-to-rvalue conversion (4.1)
   12521   // is immediately applied."  We check the first part here, and
   12522   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
   12523   // Note that we use the C++11 definition everywhere because nothing in
   12524   // C++03 depends on whether we get the C++03 version correct. The second
   12525   // part does not apply to references, since they are not objects.
   12526   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
   12527     // A reference initialized by a constant expression can never be
   12528     // odr-used, so simply ignore it.
   12529     if (!Var->getType()->isReferenceType())
   12530       SemaRef.MaybeODRUseExprs.insert(E);
   12531   } else
   12532     MarkVarDeclODRUsed(Var, Loc, SemaRef,
   12533                        /*MaxFunctionScopeIndex ptr*/ nullptr);
   12534 }
   12535 
   12536 /// \brief Mark a variable referenced, and check whether it is odr-used
   12537 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
   12538 /// used directly for normal expressions referring to VarDecl.
   12539 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
   12540   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
   12541 }
   12542 
   12543 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
   12544                                Decl *D, Expr *E, bool OdrUse) {
   12545   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   12546     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
   12547     return;
   12548   }
   12549 
   12550   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
   12551 
   12552   // If this is a call to a method via a cast, also mark the method in the
   12553   // derived class used in case codegen can devirtualize the call.
   12554   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   12555   if (!ME)
   12556     return;
   12557   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
   12558   if (!MD)
   12559     return;
   12560   const Expr *Base = ME->getBase();
   12561   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   12562   if (!MostDerivedClassDecl)
   12563     return;
   12564   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
   12565   if (!DM || DM->isPure())
   12566     return;
   12567   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
   12568 }
   12569 
   12570 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
   12571 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
   12572   // TODO: update this with DR# once a defect report is filed.
   12573   // C++11 defect. The address of a pure member should not be an ODR use, even
   12574   // if it's a qualified reference.
   12575   bool OdrUse = true;
   12576   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
   12577     if (Method->isVirtual())
   12578       OdrUse = false;
   12579   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
   12580 }
   12581 
   12582 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
   12583 void Sema::MarkMemberReferenced(MemberExpr *E) {
   12584   // C++11 [basic.def.odr]p2:
   12585   //   A non-overloaded function whose name appears as a potentially-evaluated
   12586   //   expression or a member of a set of candidate functions, if selected by
   12587   //   overload resolution when referred to from a potentially-evaluated
   12588   //   expression, is odr-used, unless it is a pure virtual function and its
   12589   //   name is not explicitly qualified.
   12590   bool OdrUse = true;
   12591   if (!E->hasQualifier()) {
   12592     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
   12593       if (Method->isPure())
   12594         OdrUse = false;
   12595   }
   12596   SourceLocation Loc = E->getMemberLoc().isValid() ?
   12597                             E->getMemberLoc() : E->getLocStart();
   12598   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
   12599 }
   12600 
   12601 /// \brief Perform marking for a reference to an arbitrary declaration.  It
   12602 /// marks the declaration referenced, and performs odr-use checking for
   12603 /// functions and variables. This method should not be used when building a
   12604 /// normal expression which refers to a variable.
   12605 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
   12606   if (OdrUse) {
   12607     if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
   12608       MarkVariableReferenced(Loc, VD);
   12609       return;
   12610     }
   12611     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   12612       MarkFunctionReferenced(Loc, FD);
   12613       return;
   12614     }
   12615   }
   12616   D->setReferenced();
   12617 }
   12618 
   12619 namespace {
   12620   // Mark all of the declarations referenced
   12621   // FIXME: Not fully implemented yet! We need to have a better understanding
   12622   // of when we're entering
   12623   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   12624     Sema &S;
   12625     SourceLocation Loc;
   12626 
   12627   public:
   12628     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   12629 
   12630     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   12631 
   12632     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   12633     bool TraverseRecordType(RecordType *T);
   12634   };
   12635 }
   12636 
   12637 bool MarkReferencedDecls::TraverseTemplateArgument(
   12638     const TemplateArgument &Arg) {
   12639   if (Arg.getKind() == TemplateArgument::Declaration) {
   12640     if (Decl *D = Arg.getAsDecl())
   12641       S.MarkAnyDeclReferenced(Loc, D, true);
   12642   }
   12643 
   12644   return Inherited::TraverseTemplateArgument(Arg);
   12645 }
   12646 
   12647 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   12648   if (ClassTemplateSpecializationDecl *Spec
   12649                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   12650     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   12651     return TraverseTemplateArguments(Args.data(), Args.size());
   12652   }
   12653 
   12654   return true;
   12655 }
   12656 
   12657 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   12658   MarkReferencedDecls Marker(*this, Loc);
   12659   Marker.TraverseType(Context.getCanonicalType(T));
   12660 }
   12661 
   12662 namespace {
   12663   /// \brief Helper class that marks all of the declarations referenced by
   12664   /// potentially-evaluated subexpressions as "referenced".
   12665   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   12666     Sema &S;
   12667     bool SkipLocalVariables;
   12668 
   12669   public:
   12670     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   12671 
   12672     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
   12673       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
   12674 
   12675     void VisitDeclRefExpr(DeclRefExpr *E) {
   12676       // If we were asked not to visit local variables, don't.
   12677       if (SkipLocalVariables) {
   12678         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   12679           if (VD->hasLocalStorage())
   12680             return;
   12681       }
   12682 
   12683       S.MarkDeclRefReferenced(E);
   12684     }
   12685 
   12686     void VisitMemberExpr(MemberExpr *E) {
   12687       S.MarkMemberReferenced(E);
   12688       Inherited::VisitMemberExpr(E);
   12689     }
   12690 
   12691     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   12692       S.MarkFunctionReferenced(E->getLocStart(),
   12693             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
   12694       Visit(E->getSubExpr());
   12695     }
   12696 
   12697     void VisitCXXNewExpr(CXXNewExpr *E) {
   12698       if (E->getOperatorNew())
   12699         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
   12700       if (E->getOperatorDelete())
   12701         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   12702       Inherited::VisitCXXNewExpr(E);
   12703     }
   12704 
   12705     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   12706       if (E->getOperatorDelete())
   12707         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   12708       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   12709       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   12710         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   12711         S.MarkFunctionReferenced(E->getLocStart(),
   12712                                     S.LookupDestructor(Record));
   12713       }
   12714 
   12715       Inherited::VisitCXXDeleteExpr(E);
   12716     }
   12717 
   12718     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   12719       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
   12720       Inherited::VisitCXXConstructExpr(E);
   12721     }
   12722 
   12723     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   12724       Visit(E->getExpr());
   12725     }
   12726 
   12727     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   12728       Inherited::VisitImplicitCastExpr(E);
   12729 
   12730       if (E->getCastKind() == CK_LValueToRValue)
   12731         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
   12732     }
   12733   };
   12734 }
   12735 
   12736 /// \brief Mark any declarations that appear within this expression or any
   12737 /// potentially-evaluated subexpressions as "referenced".
   12738 ///
   12739 /// \param SkipLocalVariables If true, don't mark local variables as
   12740 /// 'referenced'.
   12741 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
   12742                                             bool SkipLocalVariables) {
   12743   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
   12744 }
   12745 
   12746 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   12747 /// of the program being compiled.
   12748 ///
   12749 /// This routine emits the given diagnostic when the code currently being
   12750 /// type-checked is "potentially evaluated", meaning that there is a
   12751 /// possibility that the code will actually be executable. Code in sizeof()
   12752 /// expressions, code used only during overload resolution, etc., are not
   12753 /// potentially evaluated. This routine will suppress such diagnostics or,
   12754 /// in the absolutely nutty case of potentially potentially evaluated
   12755 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   12756 /// later.
   12757 ///
   12758 /// This routine should be used for all diagnostics that describe the run-time
   12759 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   12760 /// Failure to do so will likely result in spurious diagnostics or failures
   12761 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   12762 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
   12763                                const PartialDiagnostic &PD) {
   12764   switch (ExprEvalContexts.back().Context) {
   12765   case Unevaluated:
   12766   case UnevaluatedAbstract:
   12767     // The argument will never be evaluated, so don't complain.
   12768     break;
   12769 
   12770   case ConstantEvaluated:
   12771     // Relevant diagnostics should be produced by constant evaluation.
   12772     break;
   12773 
   12774   case PotentiallyEvaluated:
   12775   case PotentiallyEvaluatedIfUsed:
   12776     if (Statement && getCurFunctionOrMethodDecl()) {
   12777       FunctionScopes.back()->PossiblyUnreachableDiags.
   12778         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
   12779     }
   12780     else
   12781       Diag(Loc, PD);
   12782 
   12783     return true;
   12784   }
   12785 
   12786   return false;
   12787 }
   12788 
   12789 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   12790                                CallExpr *CE, FunctionDecl *FD) {
   12791   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   12792     return false;
   12793 
   12794   // If we're inside a decltype's expression, don't check for a valid return
   12795   // type or construct temporaries until we know whether this is the last call.
   12796   if (ExprEvalContexts.back().IsDecltype) {
   12797     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
   12798     return false;
   12799   }
   12800 
   12801   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
   12802     FunctionDecl *FD;
   12803     CallExpr *CE;
   12804 
   12805   public:
   12806     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
   12807       : FD(FD), CE(CE) { }
   12808 
   12809     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   12810       if (!FD) {
   12811         S.Diag(Loc, diag::err_call_incomplete_return)
   12812           << T << CE->getSourceRange();
   12813         return;
   12814       }
   12815 
   12816       S.Diag(Loc, diag::err_call_function_incomplete_return)
   12817         << CE->getSourceRange() << FD->getDeclName() << T;
   12818       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
   12819           << FD->getDeclName();
   12820     }
   12821   } Diagnoser(FD, CE);
   12822 
   12823   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
   12824     return true;
   12825 
   12826   return false;
   12827 }
   12828 
   12829 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   12830 // will prevent this condition from triggering, which is what we want.
   12831 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   12832   SourceLocation Loc;
   12833 
   12834   unsigned diagnostic = diag::warn_condition_is_assignment;
   12835   bool IsOrAssign = false;
   12836 
   12837   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
   12838     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   12839       return;
   12840 
   12841     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   12842 
   12843     // Greylist some idioms by putting them into a warning subcategory.
   12844     if (ObjCMessageExpr *ME
   12845           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   12846       Selector Sel = ME->getSelector();
   12847 
   12848       // self = [<foo> init...]
   12849       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
   12850         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   12851 
   12852       // <foo> = [<bar> nextObject]
   12853       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   12854         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   12855     }
   12856 
   12857     Loc = Op->getOperatorLoc();
   12858   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
   12859     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   12860       return;
   12861 
   12862     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   12863     Loc = Op->getOperatorLoc();
   12864   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
   12865     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
   12866   else {
   12867     // Not an assignment.
   12868     return;
   12869   }
   12870 
   12871   Diag(Loc, diagnostic) << E->getSourceRange();
   12872 
   12873   SourceLocation Open = E->getLocStart();
   12874   SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
   12875   Diag(Loc, diag::note_condition_assign_silence)
   12876         << FixItHint::CreateInsertion(Open, "(")
   12877         << FixItHint::CreateInsertion(Close, ")");
   12878 
   12879   if (IsOrAssign)
   12880     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   12881       << FixItHint::CreateReplacement(Loc, "!=");
   12882   else
   12883     Diag(Loc, diag::note_condition_assign_to_comparison)
   12884       << FixItHint::CreateReplacement(Loc, "==");
   12885 }
   12886 
   12887 /// \brief Redundant parentheses over an equality comparison can indicate
   12888 /// that the user intended an assignment used as condition.
   12889 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
   12890   // Don't warn if the parens came from a macro.
   12891   SourceLocation parenLoc = ParenE->getLocStart();
   12892   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   12893     return;
   12894   // Don't warn for dependent expressions.
   12895   if (ParenE->isTypeDependent())
   12896     return;
   12897 
   12898   Expr *E = ParenE->IgnoreParens();
   12899 
   12900   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   12901     if (opE->getOpcode() == BO_EQ &&
   12902         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   12903                                                            == Expr::MLV_Valid) {
   12904       SourceLocation Loc = opE->getOperatorLoc();
   12905 
   12906       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   12907       SourceRange ParenERange = ParenE->getSourceRange();
   12908       Diag(Loc, diag::note_equality_comparison_silence)
   12909         << FixItHint::CreateRemoval(ParenERange.getBegin())
   12910         << FixItHint::CreateRemoval(ParenERange.getEnd());
   12911       Diag(Loc, diag::note_equality_comparison_to_assign)
   12912         << FixItHint::CreateReplacement(Loc, "=");
   12913     }
   12914 }
   12915 
   12916 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
   12917   DiagnoseAssignmentAsCondition(E);
   12918   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   12919     DiagnoseEqualityWithExtraParens(parenE);
   12920 
   12921   ExprResult result = CheckPlaceholderExpr(E);
   12922   if (result.isInvalid()) return ExprError();
   12923   E = result.get();
   12924 
   12925   if (!E->isTypeDependent()) {
   12926     if (getLangOpts().CPlusPlus)
   12927       return CheckCXXBooleanCondition(E); // C++ 6.4p4
   12928 
   12929     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   12930     if (ERes.isInvalid())
   12931       return ExprError();
   12932     E = ERes.get();
   12933 
   12934     QualType T = E->getType();
   12935     if (!T->isScalarType()) { // C99 6.8.4.1p1
   12936       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   12937         << T << E->getSourceRange();
   12938       return ExprError();
   12939     }
   12940   }
   12941 
   12942   return E;
   12943 }
   12944 
   12945 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
   12946                                        Expr *SubExpr) {
   12947   if (!SubExpr)
   12948     return ExprError();
   12949 
   12950   return CheckBooleanCondition(SubExpr, Loc);
   12951 }
   12952 
   12953 namespace {
   12954   /// A visitor for rebuilding a call to an __unknown_any expression
   12955   /// to have an appropriate type.
   12956   struct RebuildUnknownAnyFunction
   12957     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   12958 
   12959     Sema &S;
   12960 
   12961     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   12962 
   12963     ExprResult VisitStmt(Stmt *S) {
   12964       llvm_unreachable("unexpected statement!");
   12965     }
   12966 
   12967     ExprResult VisitExpr(Expr *E) {
   12968       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
   12969         << E->getSourceRange();
   12970       return ExprError();
   12971     }
   12972 
   12973     /// Rebuild an expression which simply semantically wraps another
   12974     /// expression which it shares the type and value kind of.
   12975     template <class T> ExprResult rebuildSugarExpr(T *E) {
   12976       ExprResult SubResult = Visit(E->getSubExpr());
   12977       if (SubResult.isInvalid()) return ExprError();
   12978 
   12979       Expr *SubExpr = SubResult.get();
   12980       E->setSubExpr(SubExpr);
   12981       E->setType(SubExpr->getType());
   12982       E->setValueKind(SubExpr->getValueKind());
   12983       assert(E->getObjectKind() == OK_Ordinary);
   12984       return E;
   12985     }
   12986 
   12987     ExprResult VisitParenExpr(ParenExpr *E) {
   12988       return rebuildSugarExpr(E);
   12989     }
   12990 
   12991     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   12992       return rebuildSugarExpr(E);
   12993     }
   12994 
   12995     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   12996       ExprResult SubResult = Visit(E->getSubExpr());
   12997       if (SubResult.isInvalid()) return ExprError();
   12998 
   12999       Expr *SubExpr = SubResult.get();
   13000       E->setSubExpr(SubExpr);
   13001       E->setType(S.Context.getPointerType(SubExpr->getType()));
   13002       assert(E->getValueKind() == VK_RValue);
   13003       assert(E->getObjectKind() == OK_Ordinary);
   13004       return E;
   13005     }
   13006 
   13007     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
   13008       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
   13009 
   13010       E->setType(VD->getType());
   13011 
   13012       assert(E->getValueKind() == VK_RValue);
   13013       if (S.getLangOpts().CPlusPlus &&
   13014           !(isa<CXXMethodDecl>(VD) &&
   13015             cast<CXXMethodDecl>(VD)->isInstance()))
   13016         E->setValueKind(VK_LValue);
   13017 
   13018       return E;
   13019     }
   13020 
   13021     ExprResult VisitMemberExpr(MemberExpr *E) {
   13022       return resolveDecl(E, E->getMemberDecl());
   13023     }
   13024 
   13025     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   13026       return resolveDecl(E, E->getDecl());
   13027     }
   13028   };
   13029 }
   13030 
   13031 /// Given a function expression of unknown-any type, try to rebuild it
   13032 /// to have a function type.
   13033 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
   13034   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
   13035   if (Result.isInvalid()) return ExprError();
   13036   return S.DefaultFunctionArrayConversion(Result.get());
   13037 }
   13038 
   13039 namespace {
   13040   /// A visitor for rebuilding an expression of type __unknown_anytype
   13041   /// into one which resolves the type directly on the referring
   13042   /// expression.  Strict preservation of the original source
   13043   /// structure is not a goal.
   13044   struct RebuildUnknownAnyExpr
   13045     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   13046 
   13047     Sema &S;
   13048 
   13049     /// The current destination type.
   13050     QualType DestType;
   13051 
   13052     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
   13053       : S(S), DestType(CastType) {}
   13054 
   13055     ExprResult VisitStmt(Stmt *S) {
   13056       llvm_unreachable("unexpected statement!");
   13057     }
   13058 
   13059     ExprResult VisitExpr(Expr *E) {
   13060       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   13061         << E->getSourceRange();
   13062       return ExprError();
   13063     }
   13064 
   13065     ExprResult VisitCallExpr(CallExpr *E);
   13066     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
   13067 
   13068     /// Rebuild an expression which simply semantically wraps another
   13069     /// expression which it shares the type and value kind of.
   13070     template <class T> ExprResult rebuildSugarExpr(T *E) {
   13071       ExprResult SubResult = Visit(E->getSubExpr());
   13072       if (SubResult.isInvalid()) return ExprError();
   13073       Expr *SubExpr = SubResult.get();
   13074       E->setSubExpr(SubExpr);
   13075       E->setType(SubExpr->getType());
   13076       E->setValueKind(SubExpr->getValueKind());
   13077       assert(E->getObjectKind() == OK_Ordinary);
   13078       return E;
   13079     }
   13080 
   13081     ExprResult VisitParenExpr(ParenExpr *E) {
   13082       return rebuildSugarExpr(E);
   13083     }
   13084 
   13085     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   13086       return rebuildSugarExpr(E);
   13087     }
   13088 
   13089     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   13090       const PointerType *Ptr = DestType->getAs<PointerType>();
   13091       if (!Ptr) {
   13092         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
   13093           << E->getSourceRange();
   13094         return ExprError();
   13095       }
   13096       assert(E->getValueKind() == VK_RValue);
   13097       assert(E->getObjectKind() == OK_Ordinary);
   13098       E->setType(DestType);
   13099 
   13100       // Build the sub-expression as if it were an object of the pointee type.
   13101       DestType = Ptr->getPointeeType();
   13102       ExprResult SubResult = Visit(E->getSubExpr());
   13103       if (SubResult.isInvalid()) return ExprError();
   13104       E->setSubExpr(SubResult.get());
   13105       return E;
   13106     }
   13107 
   13108     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
   13109 
   13110     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
   13111 
   13112     ExprResult VisitMemberExpr(MemberExpr *E) {
   13113       return resolveDecl(E, E->getMemberDecl());
   13114     }
   13115 
   13116     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   13117       return resolveDecl(E, E->getDecl());
   13118     }
   13119   };
   13120 }
   13121 
   13122 /// Rebuilds a call expression which yielded __unknown_anytype.
   13123 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
   13124   Expr *CalleeExpr = E->getCallee();
   13125 
   13126   enum FnKind {
   13127     FK_MemberFunction,
   13128     FK_FunctionPointer,
   13129     FK_BlockPointer
   13130   };
   13131 
   13132   FnKind Kind;
   13133   QualType CalleeType = CalleeExpr->getType();
   13134   if (CalleeType == S.Context.BoundMemberTy) {
   13135     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
   13136     Kind = FK_MemberFunction;
   13137     CalleeType = Expr::findBoundMemberType(CalleeExpr);
   13138   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
   13139     CalleeType = Ptr->getPointeeType();
   13140     Kind = FK_FunctionPointer;
   13141   } else {
   13142     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
   13143     Kind = FK_BlockPointer;
   13144   }
   13145   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   13146 
   13147   // Verify that this is a legal result type of a function.
   13148   if (DestType->isArrayType() || DestType->isFunctionType()) {
   13149     unsigned diagID = diag::err_func_returning_array_function;
   13150     if (Kind == FK_BlockPointer)
   13151       diagID = diag::err_block_returning_array_function;
   13152 
   13153     S.Diag(E->getExprLoc(), diagID)
   13154       << DestType->isFunctionType() << DestType;
   13155     return ExprError();
   13156   }
   13157 
   13158   // Otherwise, go ahead and set DestType as the call's result.
   13159   E->setType(DestType.getNonLValueExprType(S.Context));
   13160   E->setValueKind(Expr::getValueKindForType(DestType));
   13161   assert(E->getObjectKind() == OK_Ordinary);
   13162 
   13163   // Rebuild the function type, replacing the result type with DestType.
   13164   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
   13165   if (Proto) {
   13166     // __unknown_anytype(...) is a special case used by the debugger when
   13167     // it has no idea what a function's signature is.
   13168     //
   13169     // We want to build this call essentially under the K&R
   13170     // unprototyped rules, but making a FunctionNoProtoType in C++
   13171     // would foul up all sorts of assumptions.  However, we cannot
   13172     // simply pass all arguments as variadic arguments, nor can we
   13173     // portably just call the function under a non-variadic type; see
   13174     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
   13175     // However, it turns out that in practice it is generally safe to
   13176     // call a function declared as "A foo(B,C,D);" under the prototype
   13177     // "A foo(B,C,D,...);".  The only known exception is with the
   13178     // Windows ABI, where any variadic function is implicitly cdecl
   13179     // regardless of its normal CC.  Therefore we change the parameter
   13180     // types to match the types of the arguments.
   13181     //
   13182     // This is a hack, but it is far superior to moving the
   13183     // corresponding target-specific code from IR-gen to Sema/AST.
   13184 
   13185     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
   13186     SmallVector<QualType, 8> ArgTypes;
   13187     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
   13188       ArgTypes.reserve(E->getNumArgs());
   13189       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   13190         Expr *Arg = E->getArg(i);
   13191         QualType ArgType = Arg->getType();
   13192         if (E->isLValue()) {
   13193           ArgType = S.Context.getLValueReferenceType(ArgType);
   13194         } else if (E->isXValue()) {
   13195           ArgType = S.Context.getRValueReferenceType(ArgType);
   13196         }
   13197         ArgTypes.push_back(ArgType);
   13198       }
   13199       ParamTypes = ArgTypes;
   13200     }
   13201     DestType = S.Context.getFunctionType(DestType, ParamTypes,
   13202                                          Proto->getExtProtoInfo());
   13203   } else {
   13204     DestType = S.Context.getFunctionNoProtoType(DestType,
   13205                                                 FnType->getExtInfo());
   13206   }
   13207 
   13208   // Rebuild the appropriate pointer-to-function type.
   13209   switch (Kind) {
   13210   case FK_MemberFunction:
   13211     // Nothing to do.
   13212     break;
   13213 
   13214   case FK_FunctionPointer:
   13215     DestType = S.Context.getPointerType(DestType);
   13216     break;
   13217 
   13218   case FK_BlockPointer:
   13219     DestType = S.Context.getBlockPointerType(DestType);
   13220     break;
   13221   }
   13222 
   13223   // Finally, we can recurse.
   13224   ExprResult CalleeResult = Visit(CalleeExpr);
   13225   if (!CalleeResult.isUsable()) return ExprError();
   13226   E->setCallee(CalleeResult.get());
   13227 
   13228   // Bind a temporary if necessary.
   13229   return S.MaybeBindToTemporary(E);
   13230 }
   13231 
   13232 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
   13233   // Verify that this is a legal result type of a call.
   13234   if (DestType->isArrayType() || DestType->isFunctionType()) {
   13235     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
   13236       << DestType->isFunctionType() << DestType;
   13237     return ExprError();
   13238   }
   13239 
   13240   // Rewrite the method result type if available.
   13241   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
   13242     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
   13243     Method->setReturnType(DestType);
   13244   }
   13245 
   13246   // Change the type of the message.
   13247   E->setType(DestType.getNonReferenceType());
   13248   E->setValueKind(Expr::getValueKindForType(DestType));
   13249 
   13250   return S.MaybeBindToTemporary(E);
   13251 }
   13252 
   13253 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
   13254   // The only case we should ever see here is a function-to-pointer decay.
   13255   if (E->getCastKind() == CK_FunctionToPointerDecay) {
   13256     assert(E->getValueKind() == VK_RValue);
   13257     assert(E->getObjectKind() == OK_Ordinary);
   13258 
   13259     E->setType(DestType);
   13260 
   13261     // Rebuild the sub-expression as the pointee (function) type.
   13262     DestType = DestType->castAs<PointerType>()->getPointeeType();
   13263 
   13264     ExprResult Result = Visit(E->getSubExpr());
   13265     if (!Result.isUsable()) return ExprError();
   13266 
   13267     E->setSubExpr(Result.get());
   13268     return E;
   13269   } else if (E->getCastKind() == CK_LValueToRValue) {
   13270     assert(E->getValueKind() == VK_RValue);
   13271     assert(E->getObjectKind() == OK_Ordinary);
   13272 
   13273     assert(isa<BlockPointerType>(E->getType()));
   13274 
   13275     E->setType(DestType);
   13276 
   13277     // The sub-expression has to be a lvalue reference, so rebuild it as such.
   13278     DestType = S.Context.getLValueReferenceType(DestType);
   13279 
   13280     ExprResult Result = Visit(E->getSubExpr());
   13281     if (!Result.isUsable()) return ExprError();
   13282 
   13283     E->setSubExpr(Result.get());
   13284     return E;
   13285   } else {
   13286     llvm_unreachable("Unhandled cast type!");
   13287   }
   13288 }
   13289 
   13290 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
   13291   ExprValueKind ValueKind = VK_LValue;
   13292   QualType Type = DestType;
   13293 
   13294   // We know how to make this work for certain kinds of decls:
   13295 
   13296   //  - functions
   13297   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
   13298     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
   13299       DestType = Ptr->getPointeeType();
   13300       ExprResult Result = resolveDecl(E, VD);
   13301       if (Result.isInvalid()) return ExprError();
   13302       return S.ImpCastExprToType(Result.get(), Type,
   13303                                  CK_FunctionToPointerDecay, VK_RValue);
   13304     }
   13305 
   13306     if (!Type->isFunctionType()) {
   13307       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
   13308         << VD << E->getSourceRange();
   13309       return ExprError();
   13310     }
   13311 
   13312     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   13313       if (MD->isInstance()) {
   13314         ValueKind = VK_RValue;
   13315         Type = S.Context.BoundMemberTy;
   13316       }
   13317 
   13318     // Function references aren't l-values in C.
   13319     if (!S.getLangOpts().CPlusPlus)
   13320       ValueKind = VK_RValue;
   13321 
   13322   //  - variables
   13323   } else if (isa<VarDecl>(VD)) {
   13324     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
   13325       Type = RefTy->getPointeeType();
   13326     } else if (Type->isFunctionType()) {
   13327       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
   13328         << VD << E->getSourceRange();
   13329       return ExprError();
   13330     }
   13331 
   13332   //  - nothing else
   13333   } else {
   13334     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   13335       << VD << E->getSourceRange();
   13336     return ExprError();
   13337   }
   13338 
   13339   // Modifying the declaration like this is friendly to IR-gen but
   13340   // also really dangerous.
   13341   VD->setType(DestType);
   13342   E->setType(Type);
   13343   E->setValueKind(ValueKind);
   13344   return E;
   13345 }
   13346 
   13347 /// Check a cast of an unknown-any type.  We intentionally only
   13348 /// trigger this for C-style casts.
   13349 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
   13350                                      Expr *CastExpr, CastKind &CastKind,
   13351                                      ExprValueKind &VK, CXXCastPath &Path) {
   13352   // Rewrite the casted expression from scratch.
   13353   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
   13354   if (!result.isUsable()) return ExprError();
   13355 
   13356   CastExpr = result.get();
   13357   VK = CastExpr->getValueKind();
   13358   CastKind = CK_NoOp;
   13359 
   13360   return CastExpr;
   13361 }
   13362 
   13363 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
   13364   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
   13365 }
   13366 
   13367 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
   13368                                     Expr *arg, QualType &paramType) {
   13369   // If the syntactic form of the argument is not an explicit cast of
   13370   // any sort, just do default argument promotion.
   13371   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
   13372   if (!castArg) {
   13373     ExprResult result = DefaultArgumentPromotion(arg);
   13374     if (result.isInvalid()) return ExprError();
   13375     paramType = result.get()->getType();
   13376     return result;
   13377   }
   13378 
   13379   // Otherwise, use the type that was written in the explicit cast.
   13380   assert(!arg->hasPlaceholderType());
   13381   paramType = castArg->getTypeAsWritten();
   13382 
   13383   // Copy-initialize a parameter of that type.
   13384   InitializedEntity entity =
   13385     InitializedEntity::InitializeParameter(Context, paramType,
   13386                                            /*consumed*/ false);
   13387   return PerformCopyInitialization(entity, callLoc, arg);
   13388 }
   13389 
   13390 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
   13391   Expr *orig = E;
   13392   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   13393   while (true) {
   13394     E = E->IgnoreParenImpCasts();
   13395     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
   13396       E = call->getCallee();
   13397       diagID = diag::err_uncasted_call_of_unknown_any;
   13398     } else {
   13399       break;
   13400     }
   13401   }
   13402 
   13403   SourceLocation loc;
   13404   NamedDecl *d;
   13405   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
   13406     loc = ref->getLocation();
   13407     d = ref->getDecl();
   13408   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
   13409     loc = mem->getMemberLoc();
   13410     d = mem->getMemberDecl();
   13411   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
   13412     diagID = diag::err_uncasted_call_of_unknown_any;
   13413     loc = msg->getSelectorStartLoc();
   13414     d = msg->getMethodDecl();
   13415     if (!d) {
   13416       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
   13417         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
   13418         << orig->getSourceRange();
   13419       return ExprError();
   13420     }
   13421   } else {
   13422     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   13423       << E->getSourceRange();
   13424     return ExprError();
   13425   }
   13426 
   13427   S.Diag(loc, diagID) << d << orig->getSourceRange();
   13428 
   13429   // Never recoverable.
   13430   return ExprError();
   13431 }
   13432 
   13433 /// Check for operands with placeholder types and complain if found.
   13434 /// Returns true if there was an error and no recovery was possible.
   13435 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   13436   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
   13437   if (!placeholderType) return E;
   13438 
   13439   switch (placeholderType->getKind()) {
   13440 
   13441   // Overloaded expressions.
   13442   case BuiltinType::Overload: {
   13443     // Try to resolve a single function template specialization.
   13444     // This is obligatory.
   13445     ExprResult result = E;
   13446     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
   13447       return result;
   13448 
   13449     // If that failed, try to recover with a call.
   13450     } else {
   13451       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
   13452                            /*complain*/ true);
   13453       return result;
   13454     }
   13455   }
   13456 
   13457   // Bound member functions.
   13458   case BuiltinType::BoundMember: {
   13459     ExprResult result = E;
   13460     tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
   13461                          /*complain*/ true);
   13462     return result;
   13463   }
   13464 
   13465   // ARC unbridged casts.
   13466   case BuiltinType::ARCUnbridgedCast: {
   13467     Expr *realCast = stripARCUnbridgedCast(E);
   13468     diagnoseARCUnbridgedCast(realCast);
   13469     return realCast;
   13470   }
   13471 
   13472   // Expressions of unknown type.
   13473   case BuiltinType::UnknownAny:
   13474     return diagnoseUnknownAnyExpr(*this, E);
   13475 
   13476   // Pseudo-objects.
   13477   case BuiltinType::PseudoObject:
   13478     return checkPseudoObjectRValue(E);
   13479 
   13480   case BuiltinType::BuiltinFn:
   13481     Diag(E->getLocStart(), diag::err_builtin_fn_use);
   13482     return ExprError();
   13483 
   13484   // Everything else should be impossible.
   13485 #define BUILTIN_TYPE(Id, SingletonId) \
   13486   case BuiltinType::Id:
   13487 #define PLACEHOLDER_TYPE(Id, SingletonId)
   13488 #include "clang/AST/BuiltinTypes.def"
   13489     break;
   13490   }
   13491 
   13492   llvm_unreachable("invalid placeholder type!");
   13493 }
   13494 
   13495 bool Sema::CheckCaseExpression(Expr *E) {
   13496   if (E->isTypeDependent())
   13497     return true;
   13498   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
   13499     return E->getType()->isIntegralOrEnumerationType();
   13500   return false;
   13501 }
   13502 
   13503 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
   13504 ExprResult
   13505 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
   13506   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
   13507          "Unknown Objective-C Boolean value!");
   13508   QualType BoolT = Context.ObjCBuiltinBoolTy;
   13509   if (!Context.getBOOLDecl()) {
   13510     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
   13511                         Sema::LookupOrdinaryName);
   13512     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
   13513       NamedDecl *ND = Result.getFoundDecl();
   13514       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
   13515         Context.setBOOLDecl(TD);
   13516     }
   13517   }
   13518   if (Context.getBOOLDecl())
   13519     BoolT = Context.getBOOLType();
   13520   return new (Context)
   13521       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
   13522 }
   13523