Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
      6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/assembler.h"
     10 #include "src/debug.h"
     11 
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 bool CpuFeatures::SupportsCrankshaft() { return true; }
     18 
     19 
     20 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
     21   UNIMPLEMENTED();
     22 }
     23 
     24 
     25 void RelocInfo::set_target_address(Address target,
     26                                    WriteBarrierMode write_barrier_mode,
     27                                    ICacheFlushMode icache_flush_mode) {
     28   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
     29   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
     30   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
     31       IsCodeTarget(rmode_)) {
     32     Object* target_code = Code::GetCodeFromTargetAddress(target);
     33     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
     34         host(), this, HeapObject::cast(target_code));
     35   }
     36 }
     37 
     38 
     39 inline unsigned CPURegister::code() const {
     40   DCHECK(IsValid());
     41   return reg_code;
     42 }
     43 
     44 
     45 inline CPURegister::RegisterType CPURegister::type() const {
     46   DCHECK(IsValidOrNone());
     47   return reg_type;
     48 }
     49 
     50 
     51 inline RegList CPURegister::Bit() const {
     52   DCHECK(reg_code < (sizeof(RegList) * kBitsPerByte));
     53   return IsValid() ? 1UL << reg_code : 0;
     54 }
     55 
     56 
     57 inline unsigned CPURegister::SizeInBits() const {
     58   DCHECK(IsValid());
     59   return reg_size;
     60 }
     61 
     62 
     63 inline int CPURegister::SizeInBytes() const {
     64   DCHECK(IsValid());
     65   DCHECK(SizeInBits() % 8 == 0);
     66   return reg_size / 8;
     67 }
     68 
     69 
     70 inline bool CPURegister::Is32Bits() const {
     71   DCHECK(IsValid());
     72   return reg_size == 32;
     73 }
     74 
     75 
     76 inline bool CPURegister::Is64Bits() const {
     77   DCHECK(IsValid());
     78   return reg_size == 64;
     79 }
     80 
     81 
     82 inline bool CPURegister::IsValid() const {
     83   if (IsValidRegister() || IsValidFPRegister()) {
     84     DCHECK(!IsNone());
     85     return true;
     86   } else {
     87     DCHECK(IsNone());
     88     return false;
     89   }
     90 }
     91 
     92 
     93 inline bool CPURegister::IsValidRegister() const {
     94   return IsRegister() &&
     95          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
     96          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
     97 }
     98 
     99 
    100 inline bool CPURegister::IsValidFPRegister() const {
    101   return IsFPRegister() &&
    102          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
    103          (reg_code < kNumberOfFPRegisters);
    104 }
    105 
    106 
    107 inline bool CPURegister::IsNone() const {
    108   // kNoRegister types should always have size 0 and code 0.
    109   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
    110   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
    111 
    112   return reg_type == kNoRegister;
    113 }
    114 
    115 
    116 inline bool CPURegister::Is(const CPURegister& other) const {
    117   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    118   return Aliases(other) && (reg_size == other.reg_size);
    119 }
    120 
    121 
    122 inline bool CPURegister::Aliases(const CPURegister& other) const {
    123   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    124   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
    125 }
    126 
    127 
    128 inline bool CPURegister::IsRegister() const {
    129   return reg_type == kRegister;
    130 }
    131 
    132 
    133 inline bool CPURegister::IsFPRegister() const {
    134   return reg_type == kFPRegister;
    135 }
    136 
    137 
    138 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
    139   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
    140 }
    141 
    142 
    143 inline bool CPURegister::IsValidOrNone() const {
    144   return IsValid() || IsNone();
    145 }
    146 
    147 
    148 inline bool CPURegister::IsZero() const {
    149   DCHECK(IsValid());
    150   return IsRegister() && (reg_code == kZeroRegCode);
    151 }
    152 
    153 
    154 inline bool CPURegister::IsSP() const {
    155   DCHECK(IsValid());
    156   return IsRegister() && (reg_code == kSPRegInternalCode);
    157 }
    158 
    159 
    160 inline void CPURegList::Combine(const CPURegList& other) {
    161   DCHECK(IsValid());
    162   DCHECK(other.type() == type_);
    163   DCHECK(other.RegisterSizeInBits() == size_);
    164   list_ |= other.list();
    165 }
    166 
    167 
    168 inline void CPURegList::Remove(const CPURegList& other) {
    169   DCHECK(IsValid());
    170   if (other.type() == type_) {
    171     list_ &= ~other.list();
    172   }
    173 }
    174 
    175 
    176 inline void CPURegList::Combine(const CPURegister& other) {
    177   DCHECK(other.type() == type_);
    178   DCHECK(other.SizeInBits() == size_);
    179   Combine(other.code());
    180 }
    181 
    182 
    183 inline void CPURegList::Remove(const CPURegister& other1,
    184                                const CPURegister& other2,
    185                                const CPURegister& other3,
    186                                const CPURegister& other4) {
    187   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
    188   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
    189   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
    190   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
    191 }
    192 
    193 
    194 inline void CPURegList::Combine(int code) {
    195   DCHECK(IsValid());
    196   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    197   list_ |= (1UL << code);
    198 }
    199 
    200 
    201 inline void CPURegList::Remove(int code) {
    202   DCHECK(IsValid());
    203   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    204   list_ &= ~(1UL << code);
    205 }
    206 
    207 
    208 inline Register Register::XRegFromCode(unsigned code) {
    209   if (code == kSPRegInternalCode) {
    210     return csp;
    211   } else {
    212     DCHECK(code < kNumberOfRegisters);
    213     return Register::Create(code, kXRegSizeInBits);
    214   }
    215 }
    216 
    217 
    218 inline Register Register::WRegFromCode(unsigned code) {
    219   if (code == kSPRegInternalCode) {
    220     return wcsp;
    221   } else {
    222     DCHECK(code < kNumberOfRegisters);
    223     return Register::Create(code, kWRegSizeInBits);
    224   }
    225 }
    226 
    227 
    228 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
    229   DCHECK(code < kNumberOfFPRegisters);
    230   return FPRegister::Create(code, kSRegSizeInBits);
    231 }
    232 
    233 
    234 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
    235   DCHECK(code < kNumberOfFPRegisters);
    236   return FPRegister::Create(code, kDRegSizeInBits);
    237 }
    238 
    239 
    240 inline Register CPURegister::W() const {
    241   DCHECK(IsValidRegister());
    242   return Register::WRegFromCode(reg_code);
    243 }
    244 
    245 
    246 inline Register CPURegister::X() const {
    247   DCHECK(IsValidRegister());
    248   return Register::XRegFromCode(reg_code);
    249 }
    250 
    251 
    252 inline FPRegister CPURegister::S() const {
    253   DCHECK(IsValidFPRegister());
    254   return FPRegister::SRegFromCode(reg_code);
    255 }
    256 
    257 
    258 inline FPRegister CPURegister::D() const {
    259   DCHECK(IsValidFPRegister());
    260   return FPRegister::DRegFromCode(reg_code);
    261 }
    262 
    263 
    264 // Immediate.
    265 // Default initializer is for int types
    266 template<typename T>
    267 struct ImmediateInitializer {
    268   static const bool kIsIntType = true;
    269   static inline RelocInfo::Mode rmode_for(T) {
    270     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
    271   }
    272   static inline int64_t immediate_for(T t) {
    273     STATIC_ASSERT(sizeof(T) <= 8);
    274     return t;
    275   }
    276 };
    277 
    278 
    279 template<>
    280 struct ImmediateInitializer<Smi*> {
    281   static const bool kIsIntType = false;
    282   static inline RelocInfo::Mode rmode_for(Smi* t) {
    283     return RelocInfo::NONE64;
    284   }
    285   static inline int64_t immediate_for(Smi* t) {;
    286     return reinterpret_cast<int64_t>(t);
    287   }
    288 };
    289 
    290 
    291 template<>
    292 struct ImmediateInitializer<ExternalReference> {
    293   static const bool kIsIntType = false;
    294   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    295     return RelocInfo::EXTERNAL_REFERENCE;
    296   }
    297   static inline int64_t immediate_for(ExternalReference t) {;
    298     return reinterpret_cast<int64_t>(t.address());
    299   }
    300 };
    301 
    302 
    303 template<typename T>
    304 Immediate::Immediate(Handle<T> value) {
    305   InitializeHandle(value);
    306 }
    307 
    308 
    309 template<typename T>
    310 Immediate::Immediate(T t)
    311     : value_(ImmediateInitializer<T>::immediate_for(t)),
    312       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
    313 
    314 
    315 template<typename T>
    316 Immediate::Immediate(T t, RelocInfo::Mode rmode)
    317     : value_(ImmediateInitializer<T>::immediate_for(t)),
    318       rmode_(rmode) {
    319   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
    320 }
    321 
    322 
    323 // Operand.
    324 template<typename T>
    325 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
    326 
    327 
    328 template<typename T>
    329 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
    330 
    331 
    332 template<typename T>
    333 Operand::Operand(T t, RelocInfo::Mode rmode)
    334     : immediate_(t, rmode),
    335       reg_(NoReg) {}
    336 
    337 
    338 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    339     : immediate_(0),
    340       reg_(reg),
    341       shift_(shift),
    342       extend_(NO_EXTEND),
    343       shift_amount_(shift_amount) {
    344   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
    345   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
    346   DCHECK(!reg.IsSP());
    347 }
    348 
    349 
    350 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    351     : immediate_(0),
    352       reg_(reg),
    353       shift_(NO_SHIFT),
    354       extend_(extend),
    355       shift_amount_(shift_amount) {
    356   DCHECK(reg.IsValid());
    357   DCHECK(shift_amount <= 4);
    358   DCHECK(!reg.IsSP());
    359 
    360   // Extend modes SXTX and UXTX require a 64-bit register.
    361   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
    362 }
    363 
    364 
    365 bool Operand::IsImmediate() const {
    366   return reg_.Is(NoReg);
    367 }
    368 
    369 
    370 bool Operand::IsShiftedRegister() const {
    371   return reg_.IsValid() && (shift_ != NO_SHIFT);
    372 }
    373 
    374 
    375 bool Operand::IsExtendedRegister() const {
    376   return reg_.IsValid() && (extend_ != NO_EXTEND);
    377 }
    378 
    379 
    380 bool Operand::IsZero() const {
    381   if (IsImmediate()) {
    382     return ImmediateValue() == 0;
    383   } else {
    384     return reg().IsZero();
    385   }
    386 }
    387 
    388 
    389 Operand Operand::ToExtendedRegister() const {
    390   DCHECK(IsShiftedRegister());
    391   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
    392   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
    393 }
    394 
    395 
    396 Immediate Operand::immediate() const {
    397   DCHECK(IsImmediate());
    398   return immediate_;
    399 }
    400 
    401 
    402 int64_t Operand::ImmediateValue() const {
    403   DCHECK(IsImmediate());
    404   return immediate_.value();
    405 }
    406 
    407 
    408 Register Operand::reg() const {
    409   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    410   return reg_;
    411 }
    412 
    413 
    414 Shift Operand::shift() const {
    415   DCHECK(IsShiftedRegister());
    416   return shift_;
    417 }
    418 
    419 
    420 Extend Operand::extend() const {
    421   DCHECK(IsExtendedRegister());
    422   return extend_;
    423 }
    424 
    425 
    426 unsigned Operand::shift_amount() const {
    427   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    428   return shift_amount_;
    429 }
    430 
    431 
    432 Operand Operand::UntagSmi(Register smi) {
    433   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    434                                                          kSmiValueSize));
    435   DCHECK(smi.Is64Bits());
    436   return Operand(smi, ASR, kSmiShift);
    437 }
    438 
    439 
    440 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
    441   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    442                                                          kSmiValueSize));
    443   DCHECK(smi.Is64Bits());
    444   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
    445   if (scale > kSmiShift) {
    446     return Operand(smi, LSL, scale - kSmiShift);
    447   } else if (scale < kSmiShift) {
    448     return Operand(smi, ASR, kSmiShift - scale);
    449   }
    450   return Operand(smi);
    451 }
    452 
    453 
    454 MemOperand::MemOperand()
    455   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
    456     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    457 }
    458 
    459 
    460 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
    461   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
    462     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    463   DCHECK(base.Is64Bits() && !base.IsZero());
    464 }
    465 
    466 
    467 MemOperand::MemOperand(Register base,
    468                        Register regoffset,
    469                        Extend extend,
    470                        unsigned shift_amount)
    471   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    472     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
    473   DCHECK(base.Is64Bits() && !base.IsZero());
    474   DCHECK(!regoffset.IsSP());
    475   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
    476 
    477   // SXTX extend mode requires a 64-bit offset register.
    478   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
    479 }
    480 
    481 
    482 MemOperand::MemOperand(Register base,
    483                        Register regoffset,
    484                        Shift shift,
    485                        unsigned shift_amount)
    486   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    487     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
    488   DCHECK(base.Is64Bits() && !base.IsZero());
    489   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
    490   DCHECK(shift == LSL);
    491 }
    492 
    493 
    494 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    495   : base_(base), addrmode_(addrmode) {
    496   DCHECK(base.Is64Bits() && !base.IsZero());
    497 
    498   if (offset.IsImmediate()) {
    499     offset_ = offset.ImmediateValue();
    500 
    501     regoffset_ = NoReg;
    502   } else if (offset.IsShiftedRegister()) {
    503     DCHECK(addrmode == Offset);
    504 
    505     regoffset_ = offset.reg();
    506     shift_= offset.shift();
    507     shift_amount_ = offset.shift_amount();
    508 
    509     extend_ = NO_EXTEND;
    510     offset_ = 0;
    511 
    512     // These assertions match those in the shifted-register constructor.
    513     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
    514     DCHECK(shift_ == LSL);
    515   } else {
    516     DCHECK(offset.IsExtendedRegister());
    517     DCHECK(addrmode == Offset);
    518 
    519     regoffset_ = offset.reg();
    520     extend_ = offset.extend();
    521     shift_amount_ = offset.shift_amount();
    522 
    523     shift_= NO_SHIFT;
    524     offset_ = 0;
    525 
    526     // These assertions match those in the extended-register constructor.
    527     DCHECK(!regoffset_.IsSP());
    528     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    529     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
    530   }
    531 }
    532 
    533 bool MemOperand::IsImmediateOffset() const {
    534   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
    535 }
    536 
    537 
    538 bool MemOperand::IsRegisterOffset() const {
    539   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
    540 }
    541 
    542 
    543 bool MemOperand::IsPreIndex() const {
    544   return addrmode_ == PreIndex;
    545 }
    546 
    547 
    548 bool MemOperand::IsPostIndex() const {
    549   return addrmode_ == PostIndex;
    550 }
    551 
    552 Operand MemOperand::OffsetAsOperand() const {
    553   if (IsImmediateOffset()) {
    554     return offset();
    555   } else {
    556     DCHECK(IsRegisterOffset());
    557     if (extend() == NO_EXTEND) {
    558       return Operand(regoffset(), shift(), shift_amount());
    559     } else {
    560       return Operand(regoffset(), extend(), shift_amount());
    561     }
    562   }
    563 }
    564 
    565 
    566 void Assembler::Unreachable() {
    567 #ifdef USE_SIMULATOR
    568   debug("UNREACHABLE", __LINE__, BREAK);
    569 #else
    570   // Crash by branching to 0. lr now points near the fault.
    571   Emit(BLR | Rn(xzr));
    572 #endif
    573 }
    574 
    575 
    576 Address Assembler::target_pointer_address_at(Address pc) {
    577   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    578   DCHECK(instr->IsLdrLiteralX());
    579   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
    580 }
    581 
    582 
    583 // Read/Modify the code target address in the branch/call instruction at pc.
    584 Address Assembler::target_address_at(Address pc,
    585                                      ConstantPoolArray* constant_pool) {
    586   return Memory::Address_at(target_pointer_address_at(pc));
    587 }
    588 
    589 
    590 Address Assembler::target_address_at(Address pc, Code* code) {
    591   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    592   return target_address_at(pc, constant_pool);
    593 }
    594 
    595 
    596 Address Assembler::target_address_from_return_address(Address pc) {
    597   // Returns the address of the call target from the return address that will
    598   // be returned to after a call.
    599   // Call sequence on ARM64 is:
    600   //  ldr ip0, #... @ load from literal pool
    601   //  blr ip0
    602   Address candidate = pc - 2 * kInstructionSize;
    603   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
    604   USE(instr);
    605   DCHECK(instr->IsLdrLiteralX());
    606   return candidate;
    607 }
    608 
    609 
    610 Address Assembler::break_address_from_return_address(Address pc) {
    611   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
    612 }
    613 
    614 
    615 Address Assembler::return_address_from_call_start(Address pc) {
    616   // The call, generated by MacroAssembler::Call, is one of two possible
    617   // sequences:
    618   //
    619   // Without relocation:
    620   //  movz  temp, #(target & 0x000000000000ffff)
    621   //  movk  temp, #(target & 0x00000000ffff0000)
    622   //  movk  temp, #(target & 0x0000ffff00000000)
    623   //  blr   temp
    624   //
    625   // With relocation:
    626   //  ldr   temp, =target
    627   //  blr   temp
    628   //
    629   // The return address is immediately after the blr instruction in both cases,
    630   // so it can be found by adding the call size to the address at the start of
    631   // the call sequence.
    632   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
    633   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
    634 
    635   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    636   if (instr->IsMovz()) {
    637     // Verify the instruction sequence.
    638     DCHECK(instr->following(1)->IsMovk());
    639     DCHECK(instr->following(2)->IsMovk());
    640     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
    641     return pc + Assembler::kCallSizeWithoutRelocation;
    642   } else {
    643     // Verify the instruction sequence.
    644     DCHECK(instr->IsLdrLiteralX());
    645     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
    646     return pc + Assembler::kCallSizeWithRelocation;
    647   }
    648 }
    649 
    650 
    651 void Assembler::deserialization_set_special_target_at(
    652     Address constant_pool_entry, Code* code, Address target) {
    653   Memory::Address_at(constant_pool_entry) = target;
    654 }
    655 
    656 
    657 void Assembler::set_target_address_at(Address pc,
    658                                       ConstantPoolArray* constant_pool,
    659                                       Address target,
    660                                       ICacheFlushMode icache_flush_mode) {
    661   Memory::Address_at(target_pointer_address_at(pc)) = target;
    662   // Intuitively, we would think it is necessary to always flush the
    663   // instruction cache after patching a target address in the code as follows:
    664   //   CpuFeatures::FlushICache(pc, sizeof(target));
    665   // However, on ARM, an instruction is actually patched in the case of
    666   // embedded constants of the form:
    667   // ldr   ip, [pc, #...]
    668   // since the instruction accessing this address in the constant pool remains
    669   // unchanged, a flush is not required.
    670 }
    671 
    672 
    673 void Assembler::set_target_address_at(Address pc,
    674                                       Code* code,
    675                                       Address target,
    676                                       ICacheFlushMode icache_flush_mode) {
    677   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    678   set_target_address_at(pc, constant_pool, target, icache_flush_mode);
    679 }
    680 
    681 
    682 int RelocInfo::target_address_size() {
    683   return kPointerSize;
    684 }
    685 
    686 
    687 Address RelocInfo::target_address() {
    688   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    689   return Assembler::target_address_at(pc_, host_);
    690 }
    691 
    692 
    693 Address RelocInfo::target_address_address() {
    694   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    695                               || rmode_ == EMBEDDED_OBJECT
    696                               || rmode_ == EXTERNAL_REFERENCE);
    697   return Assembler::target_pointer_address_at(pc_);
    698 }
    699 
    700 
    701 Address RelocInfo::constant_pool_entry_address() {
    702   DCHECK(IsInConstantPool());
    703   return Assembler::target_pointer_address_at(pc_);
    704 }
    705 
    706 
    707 Object* RelocInfo::target_object() {
    708   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    709   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    710 }
    711 
    712 
    713 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    714   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    715   return Handle<Object>(reinterpret_cast<Object**>(
    716       Assembler::target_address_at(pc_, host_)));
    717 }
    718 
    719 
    720 void RelocInfo::set_target_object(Object* target,
    721                                   WriteBarrierMode write_barrier_mode,
    722                                   ICacheFlushMode icache_flush_mode) {
    723   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    724   Assembler::set_target_address_at(pc_, host_,
    725                                    reinterpret_cast<Address>(target),
    726                                    icache_flush_mode);
    727   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    728       host() != NULL &&
    729       target->IsHeapObject()) {
    730     host()->GetHeap()->incremental_marking()->RecordWrite(
    731         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
    732   }
    733 }
    734 
    735 
    736 Address RelocInfo::target_reference() {
    737   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    738   return Assembler::target_address_at(pc_, host_);
    739 }
    740 
    741 
    742 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    743   DCHECK(IsRuntimeEntry(rmode_));
    744   return target_address();
    745 }
    746 
    747 
    748 void RelocInfo::set_target_runtime_entry(Address target,
    749                                          WriteBarrierMode write_barrier_mode,
    750                                          ICacheFlushMode icache_flush_mode) {
    751   DCHECK(IsRuntimeEntry(rmode_));
    752   if (target_address() != target) {
    753     set_target_address(target, write_barrier_mode, icache_flush_mode);
    754   }
    755 }
    756 
    757 
    758 Handle<Cell> RelocInfo::target_cell_handle() {
    759   UNIMPLEMENTED();
    760   Cell *null_cell = NULL;
    761   return Handle<Cell>(null_cell);
    762 }
    763 
    764 
    765 Cell* RelocInfo::target_cell() {
    766   DCHECK(rmode_ == RelocInfo::CELL);
    767   return Cell::FromValueAddress(Memory::Address_at(pc_));
    768 }
    769 
    770 
    771 void RelocInfo::set_target_cell(Cell* cell,
    772                                 WriteBarrierMode write_barrier_mode,
    773                                 ICacheFlushMode icache_flush_mode) {
    774   UNIMPLEMENTED();
    775 }
    776 
    777 
    778 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
    779 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
    780 
    781 
    782 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    783   UNREACHABLE();  // This should never be reached on ARM64.
    784   return Handle<Object>();
    785 }
    786 
    787 
    788 Code* RelocInfo::code_age_stub() {
    789   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    790   // Read the stub entry point from the code age sequence.
    791   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    792   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
    793 }
    794 
    795 
    796 void RelocInfo::set_code_age_stub(Code* stub,
    797                                   ICacheFlushMode icache_flush_mode) {
    798   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    799   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
    800   // Overwrite the stub entry point in the code age sequence. This is loaded as
    801   // a literal so there is no need to call FlushICache here.
    802   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    803   Memory::Address_at(stub_entry_address) = stub->instruction_start();
    804 }
    805 
    806 
    807 Address RelocInfo::call_address() {
    808   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    809          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    810   // For the above sequences the Relocinfo points to the load literal loading
    811   // the call address.
    812   return Assembler::target_address_at(pc_, host_);
    813 }
    814 
    815 
    816 void RelocInfo::set_call_address(Address target) {
    817   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
    818          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
    819   Assembler::set_target_address_at(pc_, host_, target);
    820   if (host() != NULL) {
    821     Object* target_code = Code::GetCodeFromTargetAddress(target);
    822     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    823         host(), this, HeapObject::cast(target_code));
    824   }
    825 }
    826 
    827 
    828 void RelocInfo::WipeOut() {
    829   DCHECK(IsEmbeddedObject(rmode_) ||
    830          IsCodeTarget(rmode_) ||
    831          IsRuntimeEntry(rmode_) ||
    832          IsExternalReference(rmode_));
    833   Assembler::set_target_address_at(pc_, host_, NULL);
    834 }
    835 
    836 
    837 bool RelocInfo::IsPatchedReturnSequence() {
    838   // The sequence must be:
    839   //   ldr ip0, [pc, #offset]
    840   //   blr ip0
    841   // See arm64/debug-arm64.cc BreakLocationIterator::SetDebugBreakAtReturn().
    842   Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
    843   Instruction* i2 = i1->following();
    844   return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) &&
    845          i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code());
    846 }
    847 
    848 
    849 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
    850   Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
    851   return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
    852 }
    853 
    854 
    855 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    856   RelocInfo::Mode mode = rmode();
    857   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    858     visitor->VisitEmbeddedPointer(this);
    859   } else if (RelocInfo::IsCodeTarget(mode)) {
    860     visitor->VisitCodeTarget(this);
    861   } else if (mode == RelocInfo::CELL) {
    862     visitor->VisitCell(this);
    863   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    864     visitor->VisitExternalReference(this);
    865   } else if (((RelocInfo::IsJSReturn(mode) &&
    866               IsPatchedReturnSequence()) ||
    867              (RelocInfo::IsDebugBreakSlot(mode) &&
    868               IsPatchedDebugBreakSlotSequence())) &&
    869              isolate->debug()->has_break_points()) {
    870     visitor->VisitDebugTarget(this);
    871   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    872     visitor->VisitRuntimeEntry(this);
    873   }
    874 }
    875 
    876 
    877 template<typename StaticVisitor>
    878 void RelocInfo::Visit(Heap* heap) {
    879   RelocInfo::Mode mode = rmode();
    880   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    881     StaticVisitor::VisitEmbeddedPointer(heap, this);
    882   } else if (RelocInfo::IsCodeTarget(mode)) {
    883     StaticVisitor::VisitCodeTarget(heap, this);
    884   } else if (mode == RelocInfo::CELL) {
    885     StaticVisitor::VisitCell(heap, this);
    886   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    887     StaticVisitor::VisitExternalReference(this);
    888   } else if (heap->isolate()->debug()->has_break_points() &&
    889              ((RelocInfo::IsJSReturn(mode) &&
    890               IsPatchedReturnSequence()) ||
    891              (RelocInfo::IsDebugBreakSlot(mode) &&
    892               IsPatchedDebugBreakSlotSequence()))) {
    893     StaticVisitor::VisitDebugTarget(heap, this);
    894   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    895     StaticVisitor::VisitRuntimeEntry(this);
    896   }
    897 }
    898 
    899 
    900 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
    901   DCHECK(rt.IsValid());
    902   if (rt.IsRegister()) {
    903     return rt.Is64Bits() ? LDR_x : LDR_w;
    904   } else {
    905     DCHECK(rt.IsFPRegister());
    906     return rt.Is64Bits() ? LDR_d : LDR_s;
    907   }
    908 }
    909 
    910 
    911 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
    912                                          const CPURegister& rt2) {
    913   DCHECK(AreSameSizeAndType(rt, rt2));
    914   USE(rt2);
    915   if (rt.IsRegister()) {
    916     return rt.Is64Bits() ? LDP_x : LDP_w;
    917   } else {
    918     DCHECK(rt.IsFPRegister());
    919     return rt.Is64Bits() ? LDP_d : LDP_s;
    920   }
    921 }
    922 
    923 
    924 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
    925   DCHECK(rt.IsValid());
    926   if (rt.IsRegister()) {
    927     return rt.Is64Bits() ? STR_x : STR_w;
    928   } else {
    929     DCHECK(rt.IsFPRegister());
    930     return rt.Is64Bits() ? STR_d : STR_s;
    931   }
    932 }
    933 
    934 
    935 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
    936                                           const CPURegister& rt2) {
    937   DCHECK(AreSameSizeAndType(rt, rt2));
    938   USE(rt2);
    939   if (rt.IsRegister()) {
    940     return rt.Is64Bits() ? STP_x : STP_w;
    941   } else {
    942     DCHECK(rt.IsFPRegister());
    943     return rt.Is64Bits() ? STP_d : STP_s;
    944   }
    945 }
    946 
    947 
    948 LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
    949     const CPURegister& rt, const CPURegister& rt2) {
    950   DCHECK(AreSameSizeAndType(rt, rt2));
    951   USE(rt2);
    952   if (rt.IsRegister()) {
    953     return rt.Is64Bits() ? LDNP_x : LDNP_w;
    954   } else {
    955     DCHECK(rt.IsFPRegister());
    956     return rt.Is64Bits() ? LDNP_d : LDNP_s;
    957   }
    958 }
    959 
    960 
    961 LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
    962     const CPURegister& rt, const CPURegister& rt2) {
    963   DCHECK(AreSameSizeAndType(rt, rt2));
    964   USE(rt2);
    965   if (rt.IsRegister()) {
    966     return rt.Is64Bits() ? STNP_x : STNP_w;
    967   } else {
    968     DCHECK(rt.IsFPRegister());
    969     return rt.Is64Bits() ? STNP_d : STNP_s;
    970   }
    971 }
    972 
    973 
    974 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
    975   if (rt.IsRegister()) {
    976     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
    977   } else {
    978     DCHECK(rt.IsFPRegister());
    979     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
    980   }
    981 }
    982 
    983 
    984 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
    985   DCHECK(kStartOfLabelLinkChain == 0);
    986   int offset = LinkAndGetByteOffsetTo(label);
    987   DCHECK(IsAligned(offset, kInstructionSize));
    988   return offset >> kInstructionSizeLog2;
    989 }
    990 
    991 
    992 Instr Assembler::Flags(FlagsUpdate S) {
    993   if (S == SetFlags) {
    994     return 1 << FlagsUpdate_offset;
    995   } else if (S == LeaveFlags) {
    996     return 0 << FlagsUpdate_offset;
    997   }
    998   UNREACHABLE();
    999   return 0;
   1000 }
   1001 
   1002 
   1003 Instr Assembler::Cond(Condition cond) {
   1004   return cond << Condition_offset;
   1005 }
   1006 
   1007 
   1008 Instr Assembler::ImmPCRelAddress(int imm21) {
   1009   CHECK(is_int21(imm21));
   1010   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
   1011   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
   1012   Instr immlo = imm << ImmPCRelLo_offset;
   1013   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
   1014 }
   1015 
   1016 
   1017 Instr Assembler::ImmUncondBranch(int imm26) {
   1018   CHECK(is_int26(imm26));
   1019   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
   1020 }
   1021 
   1022 
   1023 Instr Assembler::ImmCondBranch(int imm19) {
   1024   CHECK(is_int19(imm19));
   1025   return truncate_to_int19(imm19) << ImmCondBranch_offset;
   1026 }
   1027 
   1028 
   1029 Instr Assembler::ImmCmpBranch(int imm19) {
   1030   CHECK(is_int19(imm19));
   1031   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   1032 }
   1033 
   1034 
   1035 Instr Assembler::ImmTestBranch(int imm14) {
   1036   CHECK(is_int14(imm14));
   1037   return truncate_to_int14(imm14) << ImmTestBranch_offset;
   1038 }
   1039 
   1040 
   1041 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
   1042   DCHECK(is_uint6(bit_pos));
   1043   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   1044   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   1045   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   1046   b5 &= ImmTestBranchBit5_mask;
   1047   b40 &= ImmTestBranchBit40_mask;
   1048   return b5 | b40;
   1049 }
   1050 
   1051 
   1052 Instr Assembler::SF(Register rd) {
   1053     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   1054 }
   1055 
   1056 
   1057 Instr Assembler::ImmAddSub(int64_t imm) {
   1058   DCHECK(IsImmAddSub(imm));
   1059   if (is_uint12(imm)) {  // No shift required.
   1060     return imm << ImmAddSub_offset;
   1061   } else {
   1062     return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   1063   }
   1064 }
   1065 
   1066 
   1067 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
   1068   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
   1069          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
   1070   USE(reg_size);
   1071   return imms << ImmS_offset;
   1072 }
   1073 
   1074 
   1075 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
   1076   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1077          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1078   USE(reg_size);
   1079   DCHECK(is_uint6(immr));
   1080   return immr << ImmR_offset;
   1081 }
   1082 
   1083 
   1084 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
   1085   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1086   DCHECK(is_uint6(imms));
   1087   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
   1088   USE(reg_size);
   1089   return imms << ImmSetBits_offset;
   1090 }
   1091 
   1092 
   1093 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
   1094   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1095   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1096          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1097   USE(reg_size);
   1098   return immr << ImmRotate_offset;
   1099 }
   1100 
   1101 
   1102 Instr Assembler::ImmLLiteral(int imm19) {
   1103   CHECK(is_int19(imm19));
   1104   return truncate_to_int19(imm19) << ImmLLiteral_offset;
   1105 }
   1106 
   1107 
   1108 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
   1109   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1110   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
   1111   USE(reg_size);
   1112   return bitn << BitN_offset;
   1113 }
   1114 
   1115 
   1116 Instr Assembler::ShiftDP(Shift shift) {
   1117   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   1118   return shift << ShiftDP_offset;
   1119 }
   1120 
   1121 
   1122 Instr Assembler::ImmDPShift(unsigned amount) {
   1123   DCHECK(is_uint6(amount));
   1124   return amount << ImmDPShift_offset;
   1125 }
   1126 
   1127 
   1128 Instr Assembler::ExtendMode(Extend extend) {
   1129   return extend << ExtendMode_offset;
   1130 }
   1131 
   1132 
   1133 Instr Assembler::ImmExtendShift(unsigned left_shift) {
   1134   DCHECK(left_shift <= 4);
   1135   return left_shift << ImmExtendShift_offset;
   1136 }
   1137 
   1138 
   1139 Instr Assembler::ImmCondCmp(unsigned imm) {
   1140   DCHECK(is_uint5(imm));
   1141   return imm << ImmCondCmp_offset;
   1142 }
   1143 
   1144 
   1145 Instr Assembler::Nzcv(StatusFlags nzcv) {
   1146   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   1147 }
   1148 
   1149 
   1150 Instr Assembler::ImmLSUnsigned(int imm12) {
   1151   DCHECK(is_uint12(imm12));
   1152   return imm12 << ImmLSUnsigned_offset;
   1153 }
   1154 
   1155 
   1156 Instr Assembler::ImmLS(int imm9) {
   1157   DCHECK(is_int9(imm9));
   1158   return truncate_to_int9(imm9) << ImmLS_offset;
   1159 }
   1160 
   1161 
   1162 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
   1163   DCHECK(((imm7 >> size) << size) == imm7);
   1164   int scaled_imm7 = imm7 >> size;
   1165   DCHECK(is_int7(scaled_imm7));
   1166   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   1167 }
   1168 
   1169 
   1170 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
   1171   DCHECK(is_uint1(shift_amount));
   1172   return shift_amount << ImmShiftLS_offset;
   1173 }
   1174 
   1175 
   1176 Instr Assembler::ImmException(int imm16) {
   1177   DCHECK(is_uint16(imm16));
   1178   return imm16 << ImmException_offset;
   1179 }
   1180 
   1181 
   1182 Instr Assembler::ImmSystemRegister(int imm15) {
   1183   DCHECK(is_uint15(imm15));
   1184   return imm15 << ImmSystemRegister_offset;
   1185 }
   1186 
   1187 
   1188 Instr Assembler::ImmHint(int imm7) {
   1189   DCHECK(is_uint7(imm7));
   1190   return imm7 << ImmHint_offset;
   1191 }
   1192 
   1193 
   1194 Instr Assembler::ImmBarrierDomain(int imm2) {
   1195   DCHECK(is_uint2(imm2));
   1196   return imm2 << ImmBarrierDomain_offset;
   1197 }
   1198 
   1199 
   1200 Instr Assembler::ImmBarrierType(int imm2) {
   1201   DCHECK(is_uint2(imm2));
   1202   return imm2 << ImmBarrierType_offset;
   1203 }
   1204 
   1205 
   1206 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
   1207   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
   1208   return static_cast<LSDataSize>(op >> SizeLS_offset);
   1209 }
   1210 
   1211 
   1212 Instr Assembler::ImmMoveWide(uint64_t imm) {
   1213   DCHECK(is_uint16(imm));
   1214   return imm << ImmMoveWide_offset;
   1215 }
   1216 
   1217 
   1218 Instr Assembler::ShiftMoveWide(int64_t shift) {
   1219   DCHECK(is_uint2(shift));
   1220   return shift << ShiftMoveWide_offset;
   1221 }
   1222 
   1223 
   1224 Instr Assembler::FPType(FPRegister fd) {
   1225   return fd.Is64Bits() ? FP64 : FP32;
   1226 }
   1227 
   1228 
   1229 Instr Assembler::FPScale(unsigned scale) {
   1230   DCHECK(is_uint6(scale));
   1231   return scale << FPScale_offset;
   1232 }
   1233 
   1234 
   1235 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
   1236   return reg.Is64Bits() ? xzr : wzr;
   1237 }
   1238 
   1239 
   1240 inline void Assembler::CheckBufferSpace() {
   1241   DCHECK(pc_ < (buffer_ + buffer_size_));
   1242   if (buffer_space() < kGap) {
   1243     GrowBuffer();
   1244   }
   1245 }
   1246 
   1247 
   1248 inline void Assembler::CheckBuffer() {
   1249   CheckBufferSpace();
   1250   if (pc_offset() >= next_veneer_pool_check_) {
   1251     CheckVeneerPool(false, true);
   1252   }
   1253   if (pc_offset() >= next_constant_pool_check_) {
   1254     CheckConstPool(false, true);
   1255   }
   1256 }
   1257 
   1258 
   1259 TypeFeedbackId Assembler::RecordedAstId() {
   1260   DCHECK(!recorded_ast_id_.IsNone());
   1261   return recorded_ast_id_;
   1262 }
   1263 
   1264 
   1265 void Assembler::ClearRecordedAstId() {
   1266   recorded_ast_id_ = TypeFeedbackId::None();
   1267 }
   1268 
   1269 
   1270 } }  // namespace v8::internal
   1271 
   1272 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
   1273