Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements basic block placement transformations using the CFG
     11 // structure and branch probability estimates.
     12 //
     13 // The pass strives to preserve the structure of the CFG (that is, retain
     14 // a topological ordering of basic blocks) in the absence of a *strong* signal
     15 // to the contrary from probabilities. However, within the CFG structure, it
     16 // attempts to choose an ordering which favors placing more likely sequences of
     17 // blocks adjacent to each other.
     18 //
     19 // The algorithm works from the inner-most loop within a function outward, and
     20 // at each stage walks through the basic blocks, trying to coalesce them into
     21 // sequential chains where allowed by the CFG (or demanded by heavy
     22 // probabilities). Finally, it walks the blocks in topological order, and the
     23 // first time it reaches a chain of basic blocks, it schedules them in the
     24 // function in-order.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "llvm/CodeGen/Passes.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 #include "llvm/ADT/Statistic.h"
     33 #include "llvm/CodeGen/MachineBasicBlock.h"
     34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     36 #include "llvm/CodeGen/MachineFunction.h"
     37 #include "llvm/CodeGen/MachineFunctionPass.h"
     38 #include "llvm/CodeGen/MachineLoopInfo.h"
     39 #include "llvm/CodeGen/MachineModuleInfo.h"
     40 #include "llvm/Support/Allocator.h"
     41 #include "llvm/Support/CommandLine.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetLowering.h"
     45 #include <algorithm>
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "block-placement2"
     49 
     50 STATISTIC(NumCondBranches, "Number of conditional branches");
     51 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
     52 STATISTIC(CondBranchTakenFreq,
     53           "Potential frequency of taking conditional branches");
     54 STATISTIC(UncondBranchTakenFreq,
     55           "Potential frequency of taking unconditional branches");
     56 
     57 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
     58                                        cl::desc("Force the alignment of all "
     59                                                 "blocks in the function."),
     60                                        cl::init(0), cl::Hidden);
     61 
     62 // FIXME: Find a good default for this flag and remove the flag.
     63 static cl::opt<unsigned>
     64 ExitBlockBias("block-placement-exit-block-bias",
     65               cl::desc("Block frequency percentage a loop exit block needs "
     66                        "over the original exit to be considered the new exit."),
     67               cl::init(0), cl::Hidden);
     68 
     69 namespace {
     70 class BlockChain;
     71 /// \brief Type for our function-wide basic block -> block chain mapping.
     72 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
     73 }
     74 
     75 namespace {
     76 /// \brief A chain of blocks which will be laid out contiguously.
     77 ///
     78 /// This is the datastructure representing a chain of consecutive blocks that
     79 /// are profitable to layout together in order to maximize fallthrough
     80 /// probabilities and code locality. We also can use a block chain to represent
     81 /// a sequence of basic blocks which have some external (correctness)
     82 /// requirement for sequential layout.
     83 ///
     84 /// Chains can be built around a single basic block and can be merged to grow
     85 /// them. They participate in a block-to-chain mapping, which is updated
     86 /// automatically as chains are merged together.
     87 class BlockChain {
     88   /// \brief The sequence of blocks belonging to this chain.
     89   ///
     90   /// This is the sequence of blocks for a particular chain. These will be laid
     91   /// out in-order within the function.
     92   SmallVector<MachineBasicBlock *, 4> Blocks;
     93 
     94   /// \brief A handle to the function-wide basic block to block chain mapping.
     95   ///
     96   /// This is retained in each block chain to simplify the computation of child
     97   /// block chains for SCC-formation and iteration. We store the edges to child
     98   /// basic blocks, and map them back to their associated chains using this
     99   /// structure.
    100   BlockToChainMapType &BlockToChain;
    101 
    102 public:
    103   /// \brief Construct a new BlockChain.
    104   ///
    105   /// This builds a new block chain representing a single basic block in the
    106   /// function. It also registers itself as the chain that block participates
    107   /// in with the BlockToChain mapping.
    108   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
    109     : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
    110     assert(BB && "Cannot create a chain with a null basic block");
    111     BlockToChain[BB] = this;
    112   }
    113 
    114   /// \brief Iterator over blocks within the chain.
    115   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
    116 
    117   /// \brief Beginning of blocks within the chain.
    118   iterator begin() { return Blocks.begin(); }
    119 
    120   /// \brief End of blocks within the chain.
    121   iterator end() { return Blocks.end(); }
    122 
    123   /// \brief Merge a block chain into this one.
    124   ///
    125   /// This routine merges a block chain into this one. It takes care of forming
    126   /// a contiguous sequence of basic blocks, updating the edge list, and
    127   /// updating the block -> chain mapping. It does not free or tear down the
    128   /// old chain, but the old chain's block list is no longer valid.
    129   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    130     assert(BB);
    131     assert(!Blocks.empty());
    132 
    133     // Fast path in case we don't have a chain already.
    134     if (!Chain) {
    135       assert(!BlockToChain[BB]);
    136       Blocks.push_back(BB);
    137       BlockToChain[BB] = this;
    138       return;
    139     }
    140 
    141     assert(BB == *Chain->begin());
    142     assert(Chain->begin() != Chain->end());
    143 
    144     // Update the incoming blocks to point to this chain, and add them to the
    145     // chain structure.
    146     for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
    147          BI != BE; ++BI) {
    148       Blocks.push_back(*BI);
    149       assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
    150       BlockToChain[*BI] = this;
    151     }
    152   }
    153 
    154 #ifndef NDEBUG
    155   /// \brief Dump the blocks in this chain.
    156   LLVM_DUMP_METHOD void dump() {
    157     for (iterator I = begin(), E = end(); I != E; ++I)
    158       (*I)->dump();
    159   }
    160 #endif // NDEBUG
    161 
    162   /// \brief Count of predecessors within the loop currently being processed.
    163   ///
    164   /// This count is updated at each loop we process to represent the number of
    165   /// in-loop predecessors of this chain.
    166   unsigned LoopPredecessors;
    167 };
    168 }
    169 
    170 namespace {
    171 class MachineBlockPlacement : public MachineFunctionPass {
    172   /// \brief A typedef for a block filter set.
    173   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
    174 
    175   /// \brief A handle to the branch probability pass.
    176   const MachineBranchProbabilityInfo *MBPI;
    177 
    178   /// \brief A handle to the function-wide block frequency pass.
    179   const MachineBlockFrequencyInfo *MBFI;
    180 
    181   /// \brief A handle to the loop info.
    182   const MachineLoopInfo *MLI;
    183 
    184   /// \brief A handle to the target's instruction info.
    185   const TargetInstrInfo *TII;
    186 
    187   /// \brief A handle to the target's lowering info.
    188   const TargetLoweringBase *TLI;
    189 
    190   /// \brief Allocator and owner of BlockChain structures.
    191   ///
    192   /// We build BlockChains lazily while processing the loop structure of
    193   /// a function. To reduce malloc traffic, we allocate them using this
    194   /// slab-like allocator, and destroy them after the pass completes. An
    195   /// important guarantee is that this allocator produces stable pointers to
    196   /// the chains.
    197   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
    198 
    199   /// \brief Function wide BasicBlock to BlockChain mapping.
    200   ///
    201   /// This mapping allows efficiently moving from any given basic block to the
    202   /// BlockChain it participates in, if any. We use it to, among other things,
    203   /// allow implicitly defining edges between chains as the existing edges
    204   /// between basic blocks.
    205   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
    206 
    207   void markChainSuccessors(BlockChain &Chain,
    208                            MachineBasicBlock *LoopHeaderBB,
    209                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    210                            const BlockFilterSet *BlockFilter = nullptr);
    211   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
    212                                          BlockChain &Chain,
    213                                          const BlockFilterSet *BlockFilter);
    214   MachineBasicBlock *selectBestCandidateBlock(
    215       BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
    216       const BlockFilterSet *BlockFilter);
    217   MachineBasicBlock *getFirstUnplacedBlock(
    218       MachineFunction &F,
    219       const BlockChain &PlacedChain,
    220       MachineFunction::iterator &PrevUnplacedBlockIt,
    221       const BlockFilterSet *BlockFilter);
    222   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
    223                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    224                   const BlockFilterSet *BlockFilter = nullptr);
    225   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
    226                                      const BlockFilterSet &LoopBlockSet);
    227   MachineBasicBlock *findBestLoopExit(MachineFunction &F,
    228                                       MachineLoop &L,
    229                                       const BlockFilterSet &LoopBlockSet);
    230   void buildLoopChains(MachineFunction &F, MachineLoop &L);
    231   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
    232                   const BlockFilterSet &LoopBlockSet);
    233   void buildCFGChains(MachineFunction &F);
    234 
    235 public:
    236   static char ID; // Pass identification, replacement for typeid
    237   MachineBlockPlacement() : MachineFunctionPass(ID) {
    238     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
    239   }
    240 
    241   bool runOnMachineFunction(MachineFunction &F) override;
    242 
    243   void getAnalysisUsage(AnalysisUsage &AU) const override {
    244     AU.addRequired<MachineBranchProbabilityInfo>();
    245     AU.addRequired<MachineBlockFrequencyInfo>();
    246     AU.addRequired<MachineLoopInfo>();
    247     MachineFunctionPass::getAnalysisUsage(AU);
    248   }
    249 };
    250 }
    251 
    252 char MachineBlockPlacement::ID = 0;
    253 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
    254 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
    255                       "Branch Probability Basic Block Placement", false, false)
    256 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    257 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    258 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    259 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
    260                     "Branch Probability Basic Block Placement", false, false)
    261 
    262 #ifndef NDEBUG
    263 /// \brief Helper to print the name of a MBB.
    264 ///
    265 /// Only used by debug logging.
    266 static std::string getBlockName(MachineBasicBlock *BB) {
    267   std::string Result;
    268   raw_string_ostream OS(Result);
    269   OS << "BB#" << BB->getNumber()
    270      << " (derived from LLVM BB '" << BB->getName() << "')";
    271   OS.flush();
    272   return Result;
    273 }
    274 
    275 /// \brief Helper to print the number of a MBB.
    276 ///
    277 /// Only used by debug logging.
    278 static std::string getBlockNum(MachineBasicBlock *BB) {
    279   std::string Result;
    280   raw_string_ostream OS(Result);
    281   OS << "BB#" << BB->getNumber();
    282   OS.flush();
    283   return Result;
    284 }
    285 #endif
    286 
    287 /// \brief Mark a chain's successors as having one fewer preds.
    288 ///
    289 /// When a chain is being merged into the "placed" chain, this routine will
    290 /// quickly walk the successors of each block in the chain and mark them as
    291 /// having one fewer active predecessor. It also adds any successors of this
    292 /// chain which reach the zero-predecessor state to the worklist passed in.
    293 void MachineBlockPlacement::markChainSuccessors(
    294     BlockChain &Chain,
    295     MachineBasicBlock *LoopHeaderBB,
    296     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    297     const BlockFilterSet *BlockFilter) {
    298   // Walk all the blocks in this chain, marking their successors as having
    299   // a predecessor placed.
    300   for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
    301        CBI != CBE; ++CBI) {
    302     // Add any successors for which this is the only un-placed in-loop
    303     // predecessor to the worklist as a viable candidate for CFG-neutral
    304     // placement. No subsequent placement of this block will violate the CFG
    305     // shape, so we get to use heuristics to choose a favorable placement.
    306     for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
    307                                           SE = (*CBI)->succ_end();
    308          SI != SE; ++SI) {
    309       if (BlockFilter && !BlockFilter->count(*SI))
    310         continue;
    311       BlockChain &SuccChain = *BlockToChain[*SI];
    312       // Disregard edges within a fixed chain, or edges to the loop header.
    313       if (&Chain == &SuccChain || *SI == LoopHeaderBB)
    314         continue;
    315 
    316       // This is a cross-chain edge that is within the loop, so decrement the
    317       // loop predecessor count of the destination chain.
    318       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
    319         BlockWorkList.push_back(*SuccChain.begin());
    320     }
    321   }
    322 }
    323 
    324 /// \brief Select the best successor for a block.
    325 ///
    326 /// This looks across all successors of a particular block and attempts to
    327 /// select the "best" one to be the layout successor. It only considers direct
    328 /// successors which also pass the block filter. It will attempt to avoid
    329 /// breaking CFG structure, but cave and break such structures in the case of
    330 /// very hot successor edges.
    331 ///
    332 /// \returns The best successor block found, or null if none are viable.
    333 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
    334     MachineBasicBlock *BB, BlockChain &Chain,
    335     const BlockFilterSet *BlockFilter) {
    336   const BranchProbability HotProb(4, 5); // 80%
    337 
    338   MachineBasicBlock *BestSucc = nullptr;
    339   // FIXME: Due to the performance of the probability and weight routines in
    340   // the MBPI analysis, we manually compute probabilities using the edge
    341   // weights. This is suboptimal as it means that the somewhat subtle
    342   // definition of edge weight semantics is encoded here as well. We should
    343   // improve the MBPI interface to efficiently support query patterns such as
    344   // this.
    345   uint32_t BestWeight = 0;
    346   uint32_t WeightScale = 0;
    347   uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
    348   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
    349   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    350                                         SE = BB->succ_end();
    351        SI != SE; ++SI) {
    352     if (BlockFilter && !BlockFilter->count(*SI))
    353       continue;
    354     BlockChain &SuccChain = *BlockToChain[*SI];
    355     if (&SuccChain == &Chain) {
    356       DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Already merged!\n");
    357       continue;
    358     }
    359     if (*SI != *SuccChain.begin()) {
    360       DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> Mid chain!\n");
    361       continue;
    362     }
    363 
    364     uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
    365     BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
    366 
    367     // Only consider successors which are either "hot", or wouldn't violate
    368     // any CFG constraints.
    369     if (SuccChain.LoopPredecessors != 0) {
    370       if (SuccProb < HotProb) {
    371         DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
    372                      << " (prob) (CFG conflict)\n");
    373         continue;
    374       }
    375 
    376       // Make sure that a hot successor doesn't have a globally more important
    377       // predecessor.
    378       BlockFrequency CandidateEdgeFreq
    379         = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
    380       bool BadCFGConflict = false;
    381       for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
    382                                             PE = (*SI)->pred_end();
    383            PI != PE; ++PI) {
    384         if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
    385             BlockToChain[*PI] == &Chain)
    386           continue;
    387         BlockFrequency PredEdgeFreq
    388           = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
    389         if (PredEdgeFreq >= CandidateEdgeFreq) {
    390           BadCFGConflict = true;
    391           break;
    392         }
    393       }
    394       if (BadCFGConflict) {
    395         DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
    396                      << " (prob) (non-cold CFG conflict)\n");
    397         continue;
    398       }
    399     }
    400 
    401     DEBUG(dbgs() << "    " << getBlockName(*SI) << " -> " << SuccProb
    402                  << " (prob)"
    403                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
    404                  << "\n");
    405     if (BestSucc && BestWeight >= SuccWeight)
    406       continue;
    407     BestSucc = *SI;
    408     BestWeight = SuccWeight;
    409   }
    410   return BestSucc;
    411 }
    412 
    413 /// \brief Select the best block from a worklist.
    414 ///
    415 /// This looks through the provided worklist as a list of candidate basic
    416 /// blocks and select the most profitable one to place. The definition of
    417 /// profitable only really makes sense in the context of a loop. This returns
    418 /// the most frequently visited block in the worklist, which in the case of
    419 /// a loop, is the one most desirable to be physically close to the rest of the
    420 /// loop body in order to improve icache behavior.
    421 ///
    422 /// \returns The best block found, or null if none are viable.
    423 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    424     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
    425     const BlockFilterSet *BlockFilter) {
    426   // Once we need to walk the worklist looking for a candidate, cleanup the
    427   // worklist of already placed entries.
    428   // FIXME: If this shows up on profiles, it could be folded (at the cost of
    429   // some code complexity) into the loop below.
    430   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
    431                                 [&](MachineBasicBlock *BB) {
    432                    return BlockToChain.lookup(BB) == &Chain;
    433                  }),
    434                  WorkList.end());
    435 
    436   MachineBasicBlock *BestBlock = nullptr;
    437   BlockFrequency BestFreq;
    438   for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
    439                                                       WBE = WorkList.end();
    440        WBI != WBE; ++WBI) {
    441     BlockChain &SuccChain = *BlockToChain[*WBI];
    442     if (&SuccChain == &Chain) {
    443       DEBUG(dbgs() << "    " << getBlockName(*WBI)
    444                    << " -> Already merged!\n");
    445       continue;
    446     }
    447     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
    448 
    449     BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
    450     DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> ";
    451                  MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
    452     if (BestBlock && BestFreq >= CandidateFreq)
    453       continue;
    454     BestBlock = *WBI;
    455     BestFreq = CandidateFreq;
    456   }
    457   return BestBlock;
    458 }
    459 
    460 /// \brief Retrieve the first unplaced basic block.
    461 ///
    462 /// This routine is called when we are unable to use the CFG to walk through
    463 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
    464 /// We walk through the function's blocks in order, starting from the
    465 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
    466 /// re-scanning the entire sequence on repeated calls to this routine.
    467 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    468     MachineFunction &F, const BlockChain &PlacedChain,
    469     MachineFunction::iterator &PrevUnplacedBlockIt,
    470     const BlockFilterSet *BlockFilter) {
    471   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
    472        ++I) {
    473     if (BlockFilter && !BlockFilter->count(I))
    474       continue;
    475     if (BlockToChain[I] != &PlacedChain) {
    476       PrevUnplacedBlockIt = I;
    477       // Now select the head of the chain to which the unplaced block belongs
    478       // as the block to place. This will force the entire chain to be placed,
    479       // and satisfies the requirements of merging chains.
    480       return *BlockToChain[I]->begin();
    481     }
    482   }
    483   return nullptr;
    484 }
    485 
    486 void MachineBlockPlacement::buildChain(
    487     MachineBasicBlock *BB,
    488     BlockChain &Chain,
    489     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    490     const BlockFilterSet *BlockFilter) {
    491   assert(BB);
    492   assert(BlockToChain[BB] == &Chain);
    493   MachineFunction &F = *BB->getParent();
    494   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
    495 
    496   MachineBasicBlock *LoopHeaderBB = BB;
    497   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
    498   BB = *std::prev(Chain.end());
    499   for (;;) {
    500     assert(BB);
    501     assert(BlockToChain[BB] == &Chain);
    502     assert(*std::prev(Chain.end()) == BB);
    503 
    504     // Look for the best viable successor if there is one to place immediately
    505     // after this block.
    506     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
    507 
    508     // If an immediate successor isn't available, look for the best viable
    509     // block among those we've identified as not violating the loop's CFG at
    510     // this point. This won't be a fallthrough, but it will increase locality.
    511     if (!BestSucc)
    512       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
    513 
    514     if (!BestSucc) {
    515       BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
    516                                        BlockFilter);
    517       if (!BestSucc)
    518         break;
    519 
    520       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
    521                       "layout successor until the CFG reduces\n");
    522     }
    523 
    524     // Place this block, updating the datastructures to reflect its placement.
    525     BlockChain &SuccChain = *BlockToChain[BestSucc];
    526     // Zero out LoopPredecessors for the successor we're about to merge in case
    527     // we selected a successor that didn't fit naturally into the CFG.
    528     SuccChain.LoopPredecessors = 0;
    529     DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
    530                  << " to " << getBlockNum(BestSucc) << "\n");
    531     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
    532     Chain.merge(BestSucc, &SuccChain);
    533     BB = *std::prev(Chain.end());
    534   }
    535 
    536   DEBUG(dbgs() << "Finished forming chain for header block "
    537                << getBlockNum(*Chain.begin()) << "\n");
    538 }
    539 
    540 /// \brief Find the best loop top block for layout.
    541 ///
    542 /// Look for a block which is strictly better than the loop header for laying
    543 /// out at the top of the loop. This looks for one and only one pattern:
    544 /// a latch block with no conditional exit. This block will cause a conditional
    545 /// jump around it or will be the bottom of the loop if we lay it out in place,
    546 /// but if it it doesn't end up at the bottom of the loop for any reason,
    547 /// rotation alone won't fix it. Because such a block will always result in an
    548 /// unconditional jump (for the backedge) rotating it in front of the loop
    549 /// header is always profitable.
    550 MachineBasicBlock *
    551 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
    552                                        const BlockFilterSet &LoopBlockSet) {
    553   // Check that the header hasn't been fused with a preheader block due to
    554   // crazy branches. If it has, we need to start with the header at the top to
    555   // prevent pulling the preheader into the loop body.
    556   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    557   if (!LoopBlockSet.count(*HeaderChain.begin()))
    558     return L.getHeader();
    559 
    560   DEBUG(dbgs() << "Finding best loop top for: "
    561                << getBlockName(L.getHeader()) << "\n");
    562 
    563   BlockFrequency BestPredFreq;
    564   MachineBasicBlock *BestPred = nullptr;
    565   for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
    566                                         PE = L.getHeader()->pred_end();
    567        PI != PE; ++PI) {
    568     MachineBasicBlock *Pred = *PI;
    569     if (!LoopBlockSet.count(Pred))
    570       continue;
    571     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
    572                  << Pred->succ_size() << " successors, ";
    573                  MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
    574     if (Pred->succ_size() > 1)
    575       continue;
    576 
    577     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
    578     if (!BestPred || PredFreq > BestPredFreq ||
    579         (!(PredFreq < BestPredFreq) &&
    580          Pred->isLayoutSuccessor(L.getHeader()))) {
    581       BestPred = Pred;
    582       BestPredFreq = PredFreq;
    583     }
    584   }
    585 
    586   // If no direct predecessor is fine, just use the loop header.
    587   if (!BestPred)
    588     return L.getHeader();
    589 
    590   // Walk backwards through any straight line of predecessors.
    591   while (BestPred->pred_size() == 1 &&
    592          (*BestPred->pred_begin())->succ_size() == 1 &&
    593          *BestPred->pred_begin() != L.getHeader())
    594     BestPred = *BestPred->pred_begin();
    595 
    596   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
    597   return BestPred;
    598 }
    599 
    600 
    601 /// \brief Find the best loop exiting block for layout.
    602 ///
    603 /// This routine implements the logic to analyze the loop looking for the best
    604 /// block to layout at the top of the loop. Typically this is done to maximize
    605 /// fallthrough opportunities.
    606 MachineBasicBlock *
    607 MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
    608                                         MachineLoop &L,
    609                                         const BlockFilterSet &LoopBlockSet) {
    610   // We don't want to layout the loop linearly in all cases. If the loop header
    611   // is just a normal basic block in the loop, we want to look for what block
    612   // within the loop is the best one to layout at the top. However, if the loop
    613   // header has be pre-merged into a chain due to predecessors not having
    614   // analyzable branches, *and* the predecessor it is merged with is *not* part
    615   // of the loop, rotating the header into the middle of the loop will create
    616   // a non-contiguous range of blocks which is Very Bad. So start with the
    617   // header and only rotate if safe.
    618   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    619   if (!LoopBlockSet.count(*HeaderChain.begin()))
    620     return nullptr;
    621 
    622   BlockFrequency BestExitEdgeFreq;
    623   unsigned BestExitLoopDepth = 0;
    624   MachineBasicBlock *ExitingBB = nullptr;
    625   // If there are exits to outer loops, loop rotation can severely limit
    626   // fallthrough opportunites unless it selects such an exit. Keep a set of
    627   // blocks where rotating to exit with that block will reach an outer loop.
    628   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
    629 
    630   DEBUG(dbgs() << "Finding best loop exit for: "
    631                << getBlockName(L.getHeader()) << "\n");
    632   for (MachineLoop::block_iterator I = L.block_begin(),
    633                                    E = L.block_end();
    634        I != E; ++I) {
    635     BlockChain &Chain = *BlockToChain[*I];
    636     // Ensure that this block is at the end of a chain; otherwise it could be
    637     // mid-way through an inner loop or a successor of an analyzable branch.
    638     if (*I != *std::prev(Chain.end()))
    639       continue;
    640 
    641     // Now walk the successors. We need to establish whether this has a viable
    642     // exiting successor and whether it has a viable non-exiting successor.
    643     // We store the old exiting state and restore it if a viable looping
    644     // successor isn't found.
    645     MachineBasicBlock *OldExitingBB = ExitingBB;
    646     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    647     bool HasLoopingSucc = false;
    648     // FIXME: Due to the performance of the probability and weight routines in
    649     // the MBPI analysis, we use the internal weights and manually compute the
    650     // probabilities to avoid quadratic behavior.
    651     uint32_t WeightScale = 0;
    652     uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
    653     for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
    654                                           SE = (*I)->succ_end();
    655          SI != SE; ++SI) {
    656       if ((*SI)->isLandingPad())
    657         continue;
    658       if (*SI == *I)
    659         continue;
    660       BlockChain &SuccChain = *BlockToChain[*SI];
    661       // Don't split chains, either this chain or the successor's chain.
    662       if (&Chain == &SuccChain) {
    663         DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
    664                      << getBlockName(*SI) << " (chain conflict)\n");
    665         continue;
    666       }
    667 
    668       uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
    669       if (LoopBlockSet.count(*SI)) {
    670         DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
    671                      << getBlockName(*SI) << " (" << SuccWeight << ")\n");
    672         HasLoopingSucc = true;
    673         continue;
    674       }
    675 
    676       unsigned SuccLoopDepth = 0;
    677       if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
    678         SuccLoopDepth = ExitLoop->getLoopDepth();
    679         if (ExitLoop->contains(&L))
    680           BlocksExitingToOuterLoop.insert(*I);
    681       }
    682 
    683       BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
    684       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
    685       DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
    686                    << getBlockName(*SI) << " [L:" << SuccLoopDepth
    687                    << "] (";
    688                    MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
    689       // Note that we bias this toward an existing layout successor to retain
    690       // incoming order in the absence of better information. The exit must have
    691       // a frequency higher than the current exit before we consider breaking
    692       // the layout.
    693       BranchProbability Bias(100 - ExitBlockBias, 100);
    694       if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
    695           ExitEdgeFreq > BestExitEdgeFreq ||
    696           ((*I)->isLayoutSuccessor(*SI) &&
    697            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
    698         BestExitEdgeFreq = ExitEdgeFreq;
    699         ExitingBB = *I;
    700       }
    701     }
    702 
    703     // Restore the old exiting state, no viable looping successor was found.
    704     if (!HasLoopingSucc) {
    705       ExitingBB = OldExitingBB;
    706       BestExitEdgeFreq = OldBestExitEdgeFreq;
    707       continue;
    708     }
    709   }
    710   // Without a candidate exiting block or with only a single block in the
    711   // loop, just use the loop header to layout the loop.
    712   if (!ExitingBB || L.getNumBlocks() == 1)
    713     return nullptr;
    714 
    715   // Also, if we have exit blocks which lead to outer loops but didn't select
    716   // one of them as the exiting block we are rotating toward, disable loop
    717   // rotation altogether.
    718   if (!BlocksExitingToOuterLoop.empty() &&
    719       !BlocksExitingToOuterLoop.count(ExitingBB))
    720     return nullptr;
    721 
    722   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
    723   return ExitingBB;
    724 }
    725 
    726 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
    727 ///
    728 /// Once we have built a chain, try to rotate it to line up the hot exit block
    729 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
    730 /// branches. For example, if the loop has fallthrough into its header and out
    731 /// of its bottom already, don't rotate it.
    732 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
    733                                        MachineBasicBlock *ExitingBB,
    734                                        const BlockFilterSet &LoopBlockSet) {
    735   if (!ExitingBB)
    736     return;
    737 
    738   MachineBasicBlock *Top = *LoopChain.begin();
    739   bool ViableTopFallthrough = false;
    740   for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
    741                                         PE = Top->pred_end();
    742        PI != PE; ++PI) {
    743     BlockChain *PredChain = BlockToChain[*PI];
    744     if (!LoopBlockSet.count(*PI) &&
    745         (!PredChain || *PI == *std::prev(PredChain->end()))) {
    746       ViableTopFallthrough = true;
    747       break;
    748     }
    749   }
    750 
    751   // If the header has viable fallthrough, check whether the current loop
    752   // bottom is a viable exiting block. If so, bail out as rotating will
    753   // introduce an unnecessary branch.
    754   if (ViableTopFallthrough) {
    755     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
    756     for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
    757                                           SE = Bottom->succ_end();
    758          SI != SE; ++SI) {
    759       BlockChain *SuccChain = BlockToChain[*SI];
    760       if (!LoopBlockSet.count(*SI) &&
    761           (!SuccChain || *SI == *SuccChain->begin()))
    762         return;
    763     }
    764   }
    765 
    766   BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
    767                                           ExitingBB);
    768   if (ExitIt == LoopChain.end())
    769     return;
    770 
    771   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
    772 }
    773 
    774 /// \brief Forms basic block chains from the natural loop structures.
    775 ///
    776 /// These chains are designed to preserve the existing *structure* of the code
    777 /// as much as possible. We can then stitch the chains together in a way which
    778 /// both preserves the topological structure and minimizes taken conditional
    779 /// branches.
    780 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
    781                                             MachineLoop &L) {
    782   // First recurse through any nested loops, building chains for those inner
    783   // loops.
    784   for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
    785     buildLoopChains(F, **LI);
    786 
    787   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
    788   BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
    789 
    790   // First check to see if there is an obviously preferable top block for the
    791   // loop. This will default to the header, but may end up as one of the
    792   // predecessors to the header if there is one which will result in strictly
    793   // fewer branches in the loop body.
    794   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
    795 
    796   // If we selected just the header for the loop top, look for a potentially
    797   // profitable exit block in the event that rotating the loop can eliminate
    798   // branches by placing an exit edge at the bottom.
    799   MachineBasicBlock *ExitingBB = nullptr;
    800   if (LoopTop == L.getHeader())
    801     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
    802 
    803   BlockChain &LoopChain = *BlockToChain[LoopTop];
    804 
    805   // FIXME: This is a really lame way of walking the chains in the loop: we
    806   // walk the blocks, and use a set to prevent visiting a particular chain
    807   // twice.
    808   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
    809   assert(LoopChain.LoopPredecessors == 0);
    810   UpdatedPreds.insert(&LoopChain);
    811   for (MachineLoop::block_iterator BI = L.block_begin(),
    812                                    BE = L.block_end();
    813        BI != BE; ++BI) {
    814     BlockChain &Chain = *BlockToChain[*BI];
    815     if (!UpdatedPreds.insert(&Chain))
    816       continue;
    817 
    818     assert(Chain.LoopPredecessors == 0);
    819     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
    820          BCI != BCE; ++BCI) {
    821       assert(BlockToChain[*BCI] == &Chain);
    822       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
    823                                             PE = (*BCI)->pred_end();
    824            PI != PE; ++PI) {
    825         if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
    826           continue;
    827         ++Chain.LoopPredecessors;
    828       }
    829     }
    830 
    831     if (Chain.LoopPredecessors == 0)
    832       BlockWorkList.push_back(*Chain.begin());
    833   }
    834 
    835   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
    836   rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
    837 
    838   DEBUG({
    839     // Crash at the end so we get all of the debugging output first.
    840     bool BadLoop = false;
    841     if (LoopChain.LoopPredecessors) {
    842       BadLoop = true;
    843       dbgs() << "Loop chain contains a block without its preds placed!\n"
    844              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    845              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
    846     }
    847     for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
    848          BCI != BCE; ++BCI) {
    849       dbgs() << "          ... " << getBlockName(*BCI) << "\n";
    850       if (!LoopBlockSet.erase(*BCI)) {
    851         // We don't mark the loop as bad here because there are real situations
    852         // where this can occur. For example, with an unanalyzable fallthrough
    853         // from a loop block to a non-loop block or vice versa.
    854         dbgs() << "Loop chain contains a block not contained by the loop!\n"
    855                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    856                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
    857                << "  Bad block:    " << getBlockName(*BCI) << "\n";
    858       }
    859     }
    860 
    861     if (!LoopBlockSet.empty()) {
    862       BadLoop = true;
    863       for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
    864                                     LBE = LoopBlockSet.end();
    865            LBI != LBE; ++LBI)
    866         dbgs() << "Loop contains blocks never placed into a chain!\n"
    867                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
    868                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
    869                << "  Bad block:    " << getBlockName(*LBI) << "\n";
    870     }
    871     assert(!BadLoop && "Detected problems with the placement of this loop.");
    872   });
    873 }
    874 
    875 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
    876   // Ensure that every BB in the function has an associated chain to simplify
    877   // the assumptions of the remaining algorithm.
    878   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
    879   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
    880     MachineBasicBlock *BB = FI;
    881     BlockChain *Chain
    882       = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
    883     // Also, merge any blocks which we cannot reason about and must preserve
    884     // the exact fallthrough behavior for.
    885     for (;;) {
    886       Cond.clear();
    887       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
    888       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
    889         break;
    890 
    891       MachineFunction::iterator NextFI(std::next(FI));
    892       MachineBasicBlock *NextBB = NextFI;
    893       // Ensure that the layout successor is a viable block, as we know that
    894       // fallthrough is a possibility.
    895       assert(NextFI != FE && "Can't fallthrough past the last block.");
    896       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
    897                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
    898                    << "\n");
    899       Chain->merge(NextBB, nullptr);
    900       FI = NextFI;
    901       BB = NextBB;
    902     }
    903   }
    904 
    905   // Build any loop-based chains.
    906   for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
    907        ++LI)
    908     buildLoopChains(F, **LI);
    909 
    910   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
    911 
    912   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
    913   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
    914     MachineBasicBlock *BB = &*FI;
    915     BlockChain &Chain = *BlockToChain[BB];
    916     if (!UpdatedPreds.insert(&Chain))
    917       continue;
    918 
    919     assert(Chain.LoopPredecessors == 0);
    920     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
    921          BCI != BCE; ++BCI) {
    922       assert(BlockToChain[*BCI] == &Chain);
    923       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
    924                                             PE = (*BCI)->pred_end();
    925            PI != PE; ++PI) {
    926         if (BlockToChain[*PI] == &Chain)
    927           continue;
    928         ++Chain.LoopPredecessors;
    929       }
    930     }
    931 
    932     if (Chain.LoopPredecessors == 0)
    933       BlockWorkList.push_back(*Chain.begin());
    934   }
    935 
    936   BlockChain &FunctionChain = *BlockToChain[&F.front()];
    937   buildChain(&F.front(), FunctionChain, BlockWorkList);
    938 
    939 #ifndef NDEBUG
    940   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
    941 #endif
    942   DEBUG({
    943     // Crash at the end so we get all of the debugging output first.
    944     bool BadFunc = false;
    945     FunctionBlockSetType FunctionBlockSet;
    946     for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
    947       FunctionBlockSet.insert(FI);
    948 
    949     for (BlockChain::iterator BCI = FunctionChain.begin(),
    950                               BCE = FunctionChain.end();
    951          BCI != BCE; ++BCI)
    952       if (!FunctionBlockSet.erase(*BCI)) {
    953         BadFunc = true;
    954         dbgs() << "Function chain contains a block not in the function!\n"
    955                << "  Bad block:    " << getBlockName(*BCI) << "\n";
    956       }
    957 
    958     if (!FunctionBlockSet.empty()) {
    959       BadFunc = true;
    960       for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
    961                                           FBE = FunctionBlockSet.end();
    962            FBI != FBE; ++FBI)
    963         dbgs() << "Function contains blocks never placed into a chain!\n"
    964                << "  Bad block:    " << getBlockName(*FBI) << "\n";
    965     }
    966     assert(!BadFunc && "Detected problems with the block placement.");
    967   });
    968 
    969   // Splice the blocks into place.
    970   MachineFunction::iterator InsertPos = F.begin();
    971   for (BlockChain::iterator BI = FunctionChain.begin(),
    972                             BE = FunctionChain.end();
    973        BI != BE; ++BI) {
    974     DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
    975                                                   : "          ... ")
    976           << getBlockName(*BI) << "\n");
    977     if (InsertPos != MachineFunction::iterator(*BI))
    978       F.splice(InsertPos, *BI);
    979     else
    980       ++InsertPos;
    981 
    982     // Update the terminator of the previous block.
    983     if (BI == FunctionChain.begin())
    984       continue;
    985     MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI));
    986 
    987     // FIXME: It would be awesome of updateTerminator would just return rather
    988     // than assert when the branch cannot be analyzed in order to remove this
    989     // boiler plate.
    990     Cond.clear();
    991     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
    992     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
    993       // The "PrevBB" is not yet updated to reflect current code layout, so,
    994       //   o. it may fall-through to a block without explict "goto" instruction
    995       //      before layout, and no longer fall-through it after layout; or
    996       //   o. just opposite.
    997       //
    998       // AnalyzeBranch() may return erroneous value for FBB when these two
    999       // situations take place. For the first scenario FBB is mistakenly set
   1000       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
   1001       // is mistakenly pointing to "*BI".
   1002       //
   1003       bool needUpdateBr = true;
   1004       if (!Cond.empty() && (!FBB || FBB == *BI)) {
   1005         PrevBB->updateTerminator();
   1006         needUpdateBr = false;
   1007         Cond.clear();
   1008         TBB = FBB = nullptr;
   1009         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
   1010           // FIXME: This should never take place.
   1011           TBB = FBB = nullptr;
   1012         }
   1013       }
   1014 
   1015       // If PrevBB has a two-way branch, try to re-order the branches
   1016       // such that we branch to the successor with higher weight first.
   1017       if (TBB && !Cond.empty() && FBB &&
   1018           MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
   1019           !TII->ReverseBranchCondition(Cond)) {
   1020         DEBUG(dbgs() << "Reverse order of the two branches: "
   1021                      << getBlockName(PrevBB) << "\n");
   1022         DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
   1023                      << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
   1024         DebugLoc dl;  // FIXME: this is nowhere
   1025         TII->RemoveBranch(*PrevBB);
   1026         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
   1027         needUpdateBr = true;
   1028       }
   1029       if (needUpdateBr)
   1030         PrevBB->updateTerminator();
   1031     }
   1032   }
   1033 
   1034   // Fixup the last block.
   1035   Cond.clear();
   1036   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   1037   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
   1038     F.back().updateTerminator();
   1039 
   1040   // Walk through the backedges of the function now that we have fully laid out
   1041   // the basic blocks and align the destination of each backedge. We don't rely
   1042   // exclusively on the loop info here so that we can align backedges in
   1043   // unnatural CFGs and backedges that were introduced purely because of the
   1044   // loop rotations done during this layout pass.
   1045   if (F.getFunction()->getAttributes().
   1046         hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
   1047     return;
   1048   unsigned Align = TLI->getPrefLoopAlignment();
   1049   if (!Align)
   1050     return;  // Don't care about loop alignment.
   1051   if (FunctionChain.begin() == FunctionChain.end())
   1052     return;  // Empty chain.
   1053 
   1054   const BranchProbability ColdProb(1, 5); // 20%
   1055   BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
   1056   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
   1057   for (BlockChain::iterator BI = std::next(FunctionChain.begin()),
   1058                             BE = FunctionChain.end();
   1059        BI != BE; ++BI) {
   1060     // Don't align non-looping basic blocks. These are unlikely to execute
   1061     // enough times to matter in practice. Note that we'll still handle
   1062     // unnatural CFGs inside of a natural outer loop (the common case) and
   1063     // rotated loops.
   1064     MachineLoop *L = MLI->getLoopFor(*BI);
   1065     if (!L)
   1066       continue;
   1067 
   1068     // If the block is cold relative to the function entry don't waste space
   1069     // aligning it.
   1070     BlockFrequency Freq = MBFI->getBlockFreq(*BI);
   1071     if (Freq < WeightedEntryFreq)
   1072       continue;
   1073 
   1074     // If the block is cold relative to its loop header, don't align it
   1075     // regardless of what edges into the block exist.
   1076     MachineBasicBlock *LoopHeader = L->getHeader();
   1077     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
   1078     if (Freq < (LoopHeaderFreq * ColdProb))
   1079       continue;
   1080 
   1081     // Check for the existence of a non-layout predecessor which would benefit
   1082     // from aligning this block.
   1083     MachineBasicBlock *LayoutPred = *std::prev(BI);
   1084 
   1085     // Force alignment if all the predecessors are jumps. We already checked
   1086     // that the block isn't cold above.
   1087     if (!LayoutPred->isSuccessor(*BI)) {
   1088       (*BI)->setAlignment(Align);
   1089       continue;
   1090     }
   1091 
   1092     // Align this block if the layout predecessor's edge into this block is
   1093     // cold relative to the block. When this is true, other predecessors make up
   1094     // all of the hot entries into the block and thus alignment is likely to be
   1095     // important.
   1096     BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
   1097     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
   1098     if (LayoutEdgeFreq <= (Freq * ColdProb))
   1099       (*BI)->setAlignment(Align);
   1100   }
   1101 }
   1102 
   1103 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
   1104   // Check for single-block functions and skip them.
   1105   if (std::next(F.begin()) == F.end())
   1106     return false;
   1107 
   1108   if (skipOptnoneFunction(*F.getFunction()))
   1109     return false;
   1110 
   1111   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1112   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1113   MLI = &getAnalysis<MachineLoopInfo>();
   1114   TII = F.getTarget().getInstrInfo();
   1115   TLI = F.getTarget().getTargetLowering();
   1116   assert(BlockToChain.empty());
   1117 
   1118   buildCFGChains(F);
   1119 
   1120   BlockToChain.clear();
   1121   ChainAllocator.DestroyAll();
   1122 
   1123   if (AlignAllBlock)
   1124     // Align all of the blocks in the function to a specific alignment.
   1125     for (MachineFunction::iterator FI = F.begin(), FE = F.end();
   1126          FI != FE; ++FI)
   1127       FI->setAlignment(AlignAllBlock);
   1128 
   1129   // We always return true as we have no way to track whether the final order
   1130   // differs from the original order.
   1131   return true;
   1132 }
   1133 
   1134 namespace {
   1135 /// \brief A pass to compute block placement statistics.
   1136 ///
   1137 /// A separate pass to compute interesting statistics for evaluating block
   1138 /// placement. This is separate from the actual placement pass so that they can
   1139 /// be computed in the absence of any placement transformations or when using
   1140 /// alternative placement strategies.
   1141 class MachineBlockPlacementStats : public MachineFunctionPass {
   1142   /// \brief A handle to the branch probability pass.
   1143   const MachineBranchProbabilityInfo *MBPI;
   1144 
   1145   /// \brief A handle to the function-wide block frequency pass.
   1146   const MachineBlockFrequencyInfo *MBFI;
   1147 
   1148 public:
   1149   static char ID; // Pass identification, replacement for typeid
   1150   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
   1151     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
   1152   }
   1153 
   1154   bool runOnMachineFunction(MachineFunction &F) override;
   1155 
   1156   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1157     AU.addRequired<MachineBranchProbabilityInfo>();
   1158     AU.addRequired<MachineBlockFrequencyInfo>();
   1159     AU.setPreservesAll();
   1160     MachineFunctionPass::getAnalysisUsage(AU);
   1161   }
   1162 };
   1163 }
   1164 
   1165 char MachineBlockPlacementStats::ID = 0;
   1166 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
   1167 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
   1168                       "Basic Block Placement Stats", false, false)
   1169 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
   1170 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
   1171 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
   1172                     "Basic Block Placement Stats", false, false)
   1173 
   1174 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
   1175   // Check for single-block functions and skip them.
   1176   if (std::next(F.begin()) == F.end())
   1177     return false;
   1178 
   1179   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1180   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1181 
   1182   for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
   1183     BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
   1184     Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
   1185                                                   : NumUncondBranches;
   1186     Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
   1187                                                       : UncondBranchTakenFreq;
   1188     for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
   1189                                           SE = I->succ_end();
   1190          SI != SE; ++SI) {
   1191       // Skip if this successor is a fallthrough.
   1192       if (I->isLayoutSuccessor(*SI))
   1193         continue;
   1194 
   1195       BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
   1196       ++NumBranches;
   1197       BranchTakenFreq += EdgeFreq.getFrequency();
   1198     }
   1199   }
   1200 
   1201   return false;
   1202 }
   1203 
   1204