Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineScheduler.h"
     16 #include "llvm/ADT/PriorityQueue.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineLoopInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "llvm/CodeGen/RegisterClassInfo.h"
     24 #include "llvm/CodeGen/ScheduleDFS.h"
     25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/GraphWriter.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include <queue>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "misched"
     37 
     38 namespace llvm {
     39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
     40                            cl::desc("Force top-down list scheduling"));
     41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
     42                             cl::desc("Force bottom-up list scheduling"));
     43 }
     44 
     45 #ifndef NDEBUG
     46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
     47   cl::desc("Pop up a window to show MISched dags after they are processed"));
     48 
     49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
     50   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
     51 
     52 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
     53   cl::desc("Only schedule this function"));
     54 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
     55   cl::desc("Only schedule this MBB#"));
     56 #else
     57 static bool ViewMISchedDAGs = false;
     58 #endif // NDEBUG
     59 
     60 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
     61   cl::desc("Enable register pressure scheduling."), cl::init(true));
     62 
     63 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
     64   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
     65 
     66 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
     67   cl::desc("Enable load clustering."), cl::init(true));
     68 
     69 // Experimental heuristics
     70 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
     71   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
     72 
     73 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
     74   cl::desc("Verify machine instrs before and after machine scheduling"));
     75 
     76 // DAG subtrees must have at least this many nodes.
     77 static const unsigned MinSubtreeSize = 8;
     78 
     79 // Pin the vtables to this file.
     80 void MachineSchedStrategy::anchor() {}
     81 void ScheduleDAGMutation::anchor() {}
     82 
     83 //===----------------------------------------------------------------------===//
     84 // Machine Instruction Scheduling Pass and Registry
     85 //===----------------------------------------------------------------------===//
     86 
     87 MachineSchedContext::MachineSchedContext():
     88     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
     89   RegClassInfo = new RegisterClassInfo();
     90 }
     91 
     92 MachineSchedContext::~MachineSchedContext() {
     93   delete RegClassInfo;
     94 }
     95 
     96 namespace {
     97 /// Base class for a machine scheduler class that can run at any point.
     98 class MachineSchedulerBase : public MachineSchedContext,
     99                              public MachineFunctionPass {
    100 public:
    101   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
    102 
    103   void print(raw_ostream &O, const Module* = nullptr) const override;
    104 
    105 protected:
    106   void scheduleRegions(ScheduleDAGInstrs &Scheduler);
    107 };
    108 
    109 /// MachineScheduler runs after coalescing and before register allocation.
    110 class MachineScheduler : public MachineSchedulerBase {
    111 public:
    112   MachineScheduler();
    113 
    114   void getAnalysisUsage(AnalysisUsage &AU) const override;
    115 
    116   bool runOnMachineFunction(MachineFunction&) override;
    117 
    118   static char ID; // Class identification, replacement for typeinfo
    119 
    120 protected:
    121   ScheduleDAGInstrs *createMachineScheduler();
    122 };
    123 
    124 /// PostMachineScheduler runs after shortly before code emission.
    125 class PostMachineScheduler : public MachineSchedulerBase {
    126 public:
    127   PostMachineScheduler();
    128 
    129   void getAnalysisUsage(AnalysisUsage &AU) const override;
    130 
    131   bool runOnMachineFunction(MachineFunction&) override;
    132 
    133   static char ID; // Class identification, replacement for typeinfo
    134 
    135 protected:
    136   ScheduleDAGInstrs *createPostMachineScheduler();
    137 };
    138 } // namespace
    139 
    140 char MachineScheduler::ID = 0;
    141 
    142 char &llvm::MachineSchedulerID = MachineScheduler::ID;
    143 
    144 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
    145                       "Machine Instruction Scheduler", false, false)
    146 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    149 INITIALIZE_PASS_END(MachineScheduler, "misched",
    150                     "Machine Instruction Scheduler", false, false)
    151 
    152 MachineScheduler::MachineScheduler()
    153 : MachineSchedulerBase(ID) {
    154   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    155 }
    156 
    157 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    158   AU.setPreservesCFG();
    159   AU.addRequiredID(MachineDominatorsID);
    160   AU.addRequired<MachineLoopInfo>();
    161   AU.addRequired<AliasAnalysis>();
    162   AU.addRequired<TargetPassConfig>();
    163   AU.addRequired<SlotIndexes>();
    164   AU.addPreserved<SlotIndexes>();
    165   AU.addRequired<LiveIntervals>();
    166   AU.addPreserved<LiveIntervals>();
    167   MachineFunctionPass::getAnalysisUsage(AU);
    168 }
    169 
    170 char PostMachineScheduler::ID = 0;
    171 
    172 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
    173 
    174 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
    175                 "PostRA Machine Instruction Scheduler", false, false)
    176 
    177 PostMachineScheduler::PostMachineScheduler()
    178 : MachineSchedulerBase(ID) {
    179   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
    180 }
    181 
    182 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    183   AU.setPreservesCFG();
    184   AU.addRequiredID(MachineDominatorsID);
    185   AU.addRequired<MachineLoopInfo>();
    186   AU.addRequired<TargetPassConfig>();
    187   MachineFunctionPass::getAnalysisUsage(AU);
    188 }
    189 
    190 MachinePassRegistry MachineSchedRegistry::Registry;
    191 
    192 /// A dummy default scheduler factory indicates whether the scheduler
    193 /// is overridden on the command line.
    194 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
    195   return nullptr;
    196 }
    197 
    198 /// MachineSchedOpt allows command line selection of the scheduler.
    199 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
    200                RegisterPassParser<MachineSchedRegistry> >
    201 MachineSchedOpt("misched",
    202                 cl::init(&useDefaultMachineSched), cl::Hidden,
    203                 cl::desc("Machine instruction scheduler to use"));
    204 
    205 static MachineSchedRegistry
    206 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
    207                      useDefaultMachineSched);
    208 
    209 /// Forward declare the standard machine scheduler. This will be used as the
    210 /// default scheduler if the target does not set a default.
    211 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
    212 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
    213 
    214 /// Decrement this iterator until reaching the top or a non-debug instr.
    215 static MachineBasicBlock::const_iterator
    216 priorNonDebug(MachineBasicBlock::const_iterator I,
    217               MachineBasicBlock::const_iterator Beg) {
    218   assert(I != Beg && "reached the top of the region, cannot decrement");
    219   while (--I != Beg) {
    220     if (!I->isDebugValue())
    221       break;
    222   }
    223   return I;
    224 }
    225 
    226 /// Non-const version.
    227 static MachineBasicBlock::iterator
    228 priorNonDebug(MachineBasicBlock::iterator I,
    229               MachineBasicBlock::const_iterator Beg) {
    230   return const_cast<MachineInstr*>(
    231     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
    232 }
    233 
    234 /// If this iterator is a debug value, increment until reaching the End or a
    235 /// non-debug instruction.
    236 static MachineBasicBlock::const_iterator
    237 nextIfDebug(MachineBasicBlock::const_iterator I,
    238             MachineBasicBlock::const_iterator End) {
    239   for(; I != End; ++I) {
    240     if (!I->isDebugValue())
    241       break;
    242   }
    243   return I;
    244 }
    245 
    246 /// Non-const version.
    247 static MachineBasicBlock::iterator
    248 nextIfDebug(MachineBasicBlock::iterator I,
    249             MachineBasicBlock::const_iterator End) {
    250   // Cast the return value to nonconst MachineInstr, then cast to an
    251   // instr_iterator, which does not check for null, finally return a
    252   // bundle_iterator.
    253   return MachineBasicBlock::instr_iterator(
    254     const_cast<MachineInstr*>(
    255       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
    256 }
    257 
    258 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
    259 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
    260   // Select the scheduler, or set the default.
    261   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
    262   if (Ctor != useDefaultMachineSched)
    263     return Ctor(this);
    264 
    265   // Get the default scheduler set by the target for this function.
    266   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
    267   if (Scheduler)
    268     return Scheduler;
    269 
    270   // Default to GenericScheduler.
    271   return createGenericSchedLive(this);
    272 }
    273 
    274 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
    275 /// the caller. We don't have a command line option to override the postRA
    276 /// scheduler. The Target must configure it.
    277 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
    278   // Get the postRA scheduler set by the target for this function.
    279   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
    280   if (Scheduler)
    281     return Scheduler;
    282 
    283   // Default to GenericScheduler.
    284   return createGenericSchedPostRA(this);
    285 }
    286 
    287 /// Top-level MachineScheduler pass driver.
    288 ///
    289 /// Visit blocks in function order. Divide each block into scheduling regions
    290 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
    291 /// consistent with the DAG builder, which traverses the interior of the
    292 /// scheduling regions bottom-up.
    293 ///
    294 /// This design avoids exposing scheduling boundaries to the DAG builder,
    295 /// simplifying the DAG builder's support for "special" target instructions.
    296 /// At the same time the design allows target schedulers to operate across
    297 /// scheduling boundaries, for example to bundle the boudary instructions
    298 /// without reordering them. This creates complexity, because the target
    299 /// scheduler must update the RegionBegin and RegionEnd positions cached by
    300 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
    301 /// design would be to split blocks at scheduling boundaries, but LLVM has a
    302 /// general bias against block splitting purely for implementation simplicity.
    303 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    304   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
    305 
    306   // Initialize the context of the pass.
    307   MF = &mf;
    308   MLI = &getAnalysis<MachineLoopInfo>();
    309   MDT = &getAnalysis<MachineDominatorTree>();
    310   PassConfig = &getAnalysis<TargetPassConfig>();
    311   AA = &getAnalysis<AliasAnalysis>();
    312 
    313   LIS = &getAnalysis<LiveIntervals>();
    314 
    315   if (VerifyScheduling) {
    316     DEBUG(LIS->dump());
    317     MF->verify(this, "Before machine scheduling.");
    318   }
    319   RegClassInfo->runOnMachineFunction(*MF);
    320 
    321   // Instantiate the selected scheduler for this target, function, and
    322   // optimization level.
    323   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
    324   scheduleRegions(*Scheduler);
    325 
    326   DEBUG(LIS->dump());
    327   if (VerifyScheduling)
    328     MF->verify(this, "After machine scheduling.");
    329   return true;
    330 }
    331 
    332 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    333   if (skipOptnoneFunction(*mf.getFunction()))
    334     return false;
    335 
    336   const TargetSubtargetInfo &ST =
    337     mf.getTarget().getSubtarget<TargetSubtargetInfo>();
    338   if (!ST.enablePostMachineScheduler()) {
    339     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
    340     return false;
    341   }
    342   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
    343 
    344   // Initialize the context of the pass.
    345   MF = &mf;
    346   PassConfig = &getAnalysis<TargetPassConfig>();
    347 
    348   if (VerifyScheduling)
    349     MF->verify(this, "Before post machine scheduling.");
    350 
    351   // Instantiate the selected scheduler for this target, function, and
    352   // optimization level.
    353   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
    354   scheduleRegions(*Scheduler);
    355 
    356   if (VerifyScheduling)
    357     MF->verify(this, "After post machine scheduling.");
    358   return true;
    359 }
    360 
    361 /// Return true of the given instruction should not be included in a scheduling
    362 /// region.
    363 ///
    364 /// MachineScheduler does not currently support scheduling across calls. To
    365 /// handle calls, the DAG builder needs to be modified to create register
    366 /// anti/output dependencies on the registers clobbered by the call's regmask
    367 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
    368 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
    369 /// the boundary, but there would be no benefit to postRA scheduling across
    370 /// calls this late anyway.
    371 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
    372                             MachineBasicBlock *MBB,
    373                             MachineFunction *MF,
    374                             const TargetInstrInfo *TII,
    375                             bool IsPostRA) {
    376   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
    377 }
    378 
    379 /// Main driver for both MachineScheduler and PostMachineScheduler.
    380 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
    381   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    382   bool IsPostRA = Scheduler.isPostRA();
    383 
    384   // Visit all machine basic blocks.
    385   //
    386   // TODO: Visit blocks in global postorder or postorder within the bottom-up
    387   // loop tree. Then we can optionally compute global RegPressure.
    388   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
    389        MBB != MBBEnd; ++MBB) {
    390 
    391     Scheduler.startBlock(MBB);
    392 
    393 #ifndef NDEBUG
    394     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
    395       continue;
    396     if (SchedOnlyBlock.getNumOccurrences()
    397         && (int)SchedOnlyBlock != MBB->getNumber())
    398       continue;
    399 #endif
    400 
    401     // Break the block into scheduling regions [I, RegionEnd), and schedule each
    402     // region as soon as it is discovered. RegionEnd points the scheduling
    403     // boundary at the bottom of the region. The DAG does not include RegionEnd,
    404     // but the region does (i.e. the next RegionEnd is above the previous
    405     // RegionBegin). If the current block has no terminator then RegionEnd ==
    406     // MBB->end() for the bottom region.
    407     //
    408     // The Scheduler may insert instructions during either schedule() or
    409     // exitRegion(), even for empty regions. So the local iterators 'I' and
    410     // 'RegionEnd' are invalid across these calls.
    411     //
    412     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
    413     // as a single instruction.
    414     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
    415     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    416         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
    417 
    418       // Avoid decrementing RegionEnd for blocks with no terminator.
    419       if (RegionEnd != MBB->end() ||
    420           isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
    421         --RegionEnd;
    422         // Count the boundary instruction.
    423         --RemainingInstrs;
    424       }
    425 
    426       // The next region starts above the previous region. Look backward in the
    427       // instruction stream until we find the nearest boundary.
    428       unsigned NumRegionInstrs = 0;
    429       MachineBasicBlock::iterator I = RegionEnd;
    430       for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
    431         if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
    432           break;
    433       }
    434       // Notify the scheduler of the region, even if we may skip scheduling
    435       // it. Perhaps it still needs to be bundled.
    436       Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
    437 
    438       // Skip empty scheduling regions (0 or 1 schedulable instructions).
    439       if (I == RegionEnd || I == std::prev(RegionEnd)) {
    440         // Close the current region. Bundle the terminator if needed.
    441         // This invalidates 'RegionEnd' and 'I'.
    442         Scheduler.exitRegion();
    443         continue;
    444       }
    445       DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
    446             << "MI Scheduling **********\n");
    447       DEBUG(dbgs() << MF->getName()
    448             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
    449             << "\n  From: " << *I << "    To: ";
    450             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
    451             else dbgs() << "End";
    452             dbgs() << " RegionInstrs: " << NumRegionInstrs
    453             << " Remaining: " << RemainingInstrs << "\n");
    454 
    455       // Schedule a region: possibly reorder instructions.
    456       // This invalidates 'RegionEnd' and 'I'.
    457       Scheduler.schedule();
    458 
    459       // Close the current region.
    460       Scheduler.exitRegion();
    461 
    462       // Scheduling has invalidated the current iterator 'I'. Ask the
    463       // scheduler for the top of it's scheduled region.
    464       RegionEnd = Scheduler.begin();
    465     }
    466     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
    467     Scheduler.finishBlock();
    468     if (Scheduler.isPostRA()) {
    469       // FIXME: Ideally, no further passes should rely on kill flags. However,
    470       // thumb2 size reduction is currently an exception.
    471       Scheduler.fixupKills(MBB);
    472     }
    473   }
    474   Scheduler.finalizeSchedule();
    475 }
    476 
    477 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
    478   // unimplemented
    479 }
    480 
    481 LLVM_DUMP_METHOD
    482 void ReadyQueue::dump() {
    483   dbgs() << Name << ": ";
    484   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    485     dbgs() << Queue[i]->NodeNum << " ";
    486   dbgs() << "\n";
    487 }
    488 
    489 //===----------------------------------------------------------------------===//
    490 // ScheduleDAGMI - Basic machine instruction scheduling. This is
    491 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
    492 // virtual registers.
    493 // ===----------------------------------------------------------------------===/
    494 
    495 // Provide a vtable anchor.
    496 ScheduleDAGMI::~ScheduleDAGMI() {
    497 }
    498 
    499 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
    500   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
    501 }
    502 
    503 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
    504   if (SuccSU != &ExitSU) {
    505     // Do not use WillCreateCycle, it assumes SD scheduling.
    506     // If Pred is reachable from Succ, then the edge creates a cycle.
    507     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
    508       return false;
    509     Topo.AddPred(SuccSU, PredDep.getSUnit());
    510   }
    511   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
    512   // Return true regardless of whether a new edge needed to be inserted.
    513   return true;
    514 }
    515 
    516 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
    517 /// NumPredsLeft reaches zero, release the successor node.
    518 ///
    519 /// FIXME: Adjust SuccSU height based on MinLatency.
    520 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
    521   SUnit *SuccSU = SuccEdge->getSUnit();
    522 
    523   if (SuccEdge->isWeak()) {
    524     --SuccSU->WeakPredsLeft;
    525     if (SuccEdge->isCluster())
    526       NextClusterSucc = SuccSU;
    527     return;
    528   }
    529 #ifndef NDEBUG
    530   if (SuccSU->NumPredsLeft == 0) {
    531     dbgs() << "*** Scheduling failed! ***\n";
    532     SuccSU->dump(this);
    533     dbgs() << " has been released too many times!\n";
    534     llvm_unreachable(nullptr);
    535   }
    536 #endif
    537   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
    538   // CurrCycle may have advanced since then.
    539   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
    540     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
    541 
    542   --SuccSU->NumPredsLeft;
    543   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    544     SchedImpl->releaseTopNode(SuccSU);
    545 }
    546 
    547 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
    548 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
    549   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    550        I != E; ++I) {
    551     releaseSucc(SU, &*I);
    552   }
    553 }
    554 
    555 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
    556 /// NumSuccsLeft reaches zero, release the predecessor node.
    557 ///
    558 /// FIXME: Adjust PredSU height based on MinLatency.
    559 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
    560   SUnit *PredSU = PredEdge->getSUnit();
    561 
    562   if (PredEdge->isWeak()) {
    563     --PredSU->WeakSuccsLeft;
    564     if (PredEdge->isCluster())
    565       NextClusterPred = PredSU;
    566     return;
    567   }
    568 #ifndef NDEBUG
    569   if (PredSU->NumSuccsLeft == 0) {
    570     dbgs() << "*** Scheduling failed! ***\n";
    571     PredSU->dump(this);
    572     dbgs() << " has been released too many times!\n";
    573     llvm_unreachable(nullptr);
    574   }
    575 #endif
    576   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
    577   // CurrCycle may have advanced since then.
    578   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
    579     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
    580 
    581   --PredSU->NumSuccsLeft;
    582   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    583     SchedImpl->releaseBottomNode(PredSU);
    584 }
    585 
    586 /// releasePredecessors - Call releasePred on each of SU's predecessors.
    587 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
    588   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    589        I != E; ++I) {
    590     releasePred(SU, &*I);
    591   }
    592 }
    593 
    594 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    595 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    596 /// the region, including the boundary itself and single-instruction regions
    597 /// that don't get scheduled.
    598 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
    599                                      MachineBasicBlock::iterator begin,
    600                                      MachineBasicBlock::iterator end,
    601                                      unsigned regioninstrs)
    602 {
    603   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    604 
    605   SchedImpl->initPolicy(begin, end, regioninstrs);
    606 }
    607 
    608 /// This is normally called from the main scheduler loop but may also be invoked
    609 /// by the scheduling strategy to perform additional code motion.
    610 void ScheduleDAGMI::moveInstruction(
    611   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
    612   // Advance RegionBegin if the first instruction moves down.
    613   if (&*RegionBegin == MI)
    614     ++RegionBegin;
    615 
    616   // Update the instruction stream.
    617   BB->splice(InsertPos, BB, MI);
    618 
    619   // Update LiveIntervals
    620   if (LIS)
    621     LIS->handleMove(MI, /*UpdateFlags=*/true);
    622 
    623   // Recede RegionBegin if an instruction moves above the first.
    624   if (RegionBegin == InsertPos)
    625     RegionBegin = MI;
    626 }
    627 
    628 bool ScheduleDAGMI::checkSchedLimit() {
    629 #ifndef NDEBUG
    630   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    631     CurrentTop = CurrentBottom;
    632     return false;
    633   }
    634   ++NumInstrsScheduled;
    635 #endif
    636   return true;
    637 }
    638 
    639 /// Per-region scheduling driver, called back from
    640 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
    641 /// does not consider liveness or register pressure. It is useful for PostRA
    642 /// scheduling and potentially other custom schedulers.
    643 void ScheduleDAGMI::schedule() {
    644   // Build the DAG.
    645   buildSchedGraph(AA);
    646 
    647   Topo.InitDAGTopologicalSorting();
    648 
    649   postprocessDAG();
    650 
    651   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    652   findRootsAndBiasEdges(TopRoots, BotRoots);
    653 
    654   // Initialize the strategy before modifying the DAG.
    655   // This may initialize a DFSResult to be used for queue priority.
    656   SchedImpl->initialize(this);
    657 
    658   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    659           SUnits[su].dumpAll(this));
    660   if (ViewMISchedDAGs) viewGraph();
    661 
    662   // Initialize ready queues now that the DAG and priority data are finalized.
    663   initQueues(TopRoots, BotRoots);
    664 
    665   bool IsTopNode = false;
    666   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    667     assert(!SU->isScheduled && "Node already scheduled");
    668     if (!checkSchedLimit())
    669       break;
    670 
    671     MachineInstr *MI = SU->getInstr();
    672     if (IsTopNode) {
    673       assert(SU->isTopReady() && "node still has unscheduled dependencies");
    674       if (&*CurrentTop == MI)
    675         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    676       else
    677         moveInstruction(MI, CurrentTop);
    678     }
    679     else {
    680       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    681       MachineBasicBlock::iterator priorII =
    682         priorNonDebug(CurrentBottom, CurrentTop);
    683       if (&*priorII == MI)
    684         CurrentBottom = priorII;
    685       else {
    686         if (&*CurrentTop == MI)
    687           CurrentTop = nextIfDebug(++CurrentTop, priorII);
    688         moveInstruction(MI, CurrentBottom);
    689         CurrentBottom = MI;
    690       }
    691     }
    692     // Notify the scheduling strategy before updating the DAG.
    693     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
    694     // runs, it can then use the accurate ReadyCycle time to determine whether
    695     // newly released nodes can move to the readyQ.
    696     SchedImpl->schedNode(SU, IsTopNode);
    697 
    698     updateQueues(SU, IsTopNode);
    699   }
    700   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    701 
    702   placeDebugValues();
    703 
    704   DEBUG({
    705       unsigned BBNum = begin()->getParent()->getNumber();
    706       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
    707       dumpSchedule();
    708       dbgs() << '\n';
    709     });
    710 }
    711 
    712 /// Apply each ScheduleDAGMutation step in order.
    713 void ScheduleDAGMI::postprocessDAG() {
    714   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    715     Mutations[i]->apply(this);
    716   }
    717 }
    718 
    719 void ScheduleDAGMI::
    720 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    721                       SmallVectorImpl<SUnit*> &BotRoots) {
    722   for (std::vector<SUnit>::iterator
    723          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    724     SUnit *SU = &(*I);
    725     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
    726 
    727     // Order predecessors so DFSResult follows the critical path.
    728     SU->biasCriticalPath();
    729 
    730     // A SUnit is ready to top schedule if it has no predecessors.
    731     if (!I->NumPredsLeft)
    732       TopRoots.push_back(SU);
    733     // A SUnit is ready to bottom schedule if it has no successors.
    734     if (!I->NumSuccsLeft)
    735       BotRoots.push_back(SU);
    736   }
    737   ExitSU.biasCriticalPath();
    738 }
    739 
    740 /// Identify DAG roots and setup scheduler queues.
    741 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
    742                                ArrayRef<SUnit*> BotRoots) {
    743   NextClusterSucc = nullptr;
    744   NextClusterPred = nullptr;
    745 
    746   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
    747   //
    748   // Nodes with unreleased weak edges can still be roots.
    749   // Release top roots in forward order.
    750   for (SmallVectorImpl<SUnit*>::const_iterator
    751          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    752     SchedImpl->releaseTopNode(*I);
    753   }
    754   // Release bottom roots in reverse order so the higher priority nodes appear
    755   // first. This is more natural and slightly more efficient.
    756   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
    757          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    758     SchedImpl->releaseBottomNode(*I);
    759   }
    760 
    761   releaseSuccessors(&EntrySU);
    762   releasePredecessors(&ExitSU);
    763 
    764   SchedImpl->registerRoots();
    765 
    766   // Advance past initial DebugValues.
    767   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
    768   CurrentBottom = RegionEnd;
    769 }
    770 
    771 /// Update scheduler queues after scheduling an instruction.
    772 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
    773   // Release dependent instructions for scheduling.
    774   if (IsTopNode)
    775     releaseSuccessors(SU);
    776   else
    777     releasePredecessors(SU);
    778 
    779   SU->isScheduled = true;
    780 }
    781 
    782 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
    783 void ScheduleDAGMI::placeDebugValues() {
    784   // If first instruction was a DBG_VALUE then put it back.
    785   if (FirstDbgValue) {
    786     BB->splice(RegionBegin, BB, FirstDbgValue);
    787     RegionBegin = FirstDbgValue;
    788   }
    789 
    790   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    791          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    792     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    793     MachineInstr *DbgValue = P.first;
    794     MachineBasicBlock::iterator OrigPrevMI = P.second;
    795     if (&*RegionBegin == DbgValue)
    796       ++RegionBegin;
    797     BB->splice(++OrigPrevMI, BB, DbgValue);
    798     if (OrigPrevMI == std::prev(RegionEnd))
    799       RegionEnd = DbgValue;
    800   }
    801   DbgValues.clear();
    802   FirstDbgValue = nullptr;
    803 }
    804 
    805 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    806 void ScheduleDAGMI::dumpSchedule() const {
    807   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    808     if (SUnit *SU = getSUnit(&(*MI)))
    809       SU->dump(this);
    810     else
    811       dbgs() << "Missing SUnit\n";
    812   }
    813 }
    814 #endif
    815 
    816 //===----------------------------------------------------------------------===//
    817 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
    818 // preservation.
    819 //===----------------------------------------------------------------------===//
    820 
    821 ScheduleDAGMILive::~ScheduleDAGMILive() {
    822   delete DFSResult;
    823 }
    824 
    825 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    826 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    827 /// the region, including the boundary itself and single-instruction regions
    828 /// that don't get scheduled.
    829 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
    830                                 MachineBasicBlock::iterator begin,
    831                                 MachineBasicBlock::iterator end,
    832                                 unsigned regioninstrs)
    833 {
    834   // ScheduleDAGMI initializes SchedImpl's per-region policy.
    835   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
    836 
    837   // For convenience remember the end of the liveness region.
    838   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
    839 
    840   SUPressureDiffs.clear();
    841 
    842   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
    843 }
    844 
    845 // Setup the register pressure trackers for the top scheduled top and bottom
    846 // scheduled regions.
    847 void ScheduleDAGMILive::initRegPressure() {
    848   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
    849   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
    850 
    851   // Close the RPTracker to finalize live ins.
    852   RPTracker.closeRegion();
    853 
    854   DEBUG(RPTracker.dump());
    855 
    856   // Initialize the live ins and live outs.
    857   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
    858   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
    859 
    860   // Close one end of the tracker so we can call
    861   // getMaxUpward/DownwardPressureDelta before advancing across any
    862   // instructions. This converts currently live regs into live ins/outs.
    863   TopRPTracker.closeTop();
    864   BotRPTracker.closeBottom();
    865 
    866   BotRPTracker.initLiveThru(RPTracker);
    867   if (!BotRPTracker.getLiveThru().empty()) {
    868     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
    869     DEBUG(dbgs() << "Live Thru: ";
    870           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
    871   };
    872 
    873   // For each live out vreg reduce the pressure change associated with other
    874   // uses of the same vreg below the live-out reaching def.
    875   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
    876 
    877   // Account for liveness generated by the region boundary.
    878   if (LiveRegionEnd != RegionEnd) {
    879     SmallVector<unsigned, 8> LiveUses;
    880     BotRPTracker.recede(&LiveUses);
    881     updatePressureDiffs(LiveUses);
    882   }
    883 
    884   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
    885 
    886   // Cache the list of excess pressure sets in this region. This will also track
    887   // the max pressure in the scheduled code for these sets.
    888   RegionCriticalPSets.clear();
    889   const std::vector<unsigned> &RegionPressure =
    890     RPTracker.getPressure().MaxSetPressure;
    891   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    892     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
    893     if (RegionPressure[i] > Limit) {
    894       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
    895             << " Limit " << Limit
    896             << " Actual " << RegionPressure[i] << "\n");
    897       RegionCriticalPSets.push_back(PressureChange(i));
    898     }
    899   }
    900   DEBUG(dbgs() << "Excess PSets: ";
    901         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
    902           dbgs() << TRI->getRegPressureSetName(
    903             RegionCriticalPSets[i].getPSet()) << " ";
    904         dbgs() << "\n");
    905 }
    906 
    907 void ScheduleDAGMILive::
    908 updateScheduledPressure(const SUnit *SU,
    909                         const std::vector<unsigned> &NewMaxPressure) {
    910   const PressureDiff &PDiff = getPressureDiff(SU);
    911   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
    912   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
    913        I != E; ++I) {
    914     if (!I->isValid())
    915       break;
    916     unsigned ID = I->getPSet();
    917     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
    918       ++CritIdx;
    919     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
    920       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
    921           && NewMaxPressure[ID] <= INT16_MAX)
    922         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
    923     }
    924     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
    925     if (NewMaxPressure[ID] >= Limit - 2) {
    926       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
    927             << NewMaxPressure[ID] << " > " << Limit << "(+ "
    928             << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
    929     }
    930   }
    931 }
    932 
    933 /// Update the PressureDiff array for liveness after scheduling this
    934 /// instruction.
    935 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
    936   for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
    937     /// FIXME: Currently assuming single-use physregs.
    938     unsigned Reg = LiveUses[LUIdx];
    939     DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
    940     if (!TRI->isVirtualRegister(Reg))
    941       continue;
    942 
    943     // This may be called before CurrentBottom has been initialized. However,
    944     // BotRPTracker must have a valid position. We want the value live into the
    945     // instruction or live out of the block, so ask for the previous
    946     // instruction's live-out.
    947     const LiveInterval &LI = LIS->getInterval(Reg);
    948     VNInfo *VNI;
    949     MachineBasicBlock::const_iterator I =
    950       nextIfDebug(BotRPTracker.getPos(), BB->end());
    951     if (I == BB->end())
    952       VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
    953     else {
    954       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
    955       VNI = LRQ.valueIn();
    956     }
    957     // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
    958     assert(VNI && "No live value at use.");
    959     for (VReg2UseMap::iterator
    960            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
    961       SUnit *SU = UI->SU;
    962       DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
    963             << *SU->getInstr());
    964       // If this use comes before the reaching def, it cannot be a last use, so
    965       // descrease its pressure change.
    966       if (!SU->isScheduled && SU != &ExitSU) {
    967         LiveQueryResult LRQ
    968           = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
    969         if (LRQ.valueIn() == VNI)
    970           getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
    971       }
    972     }
    973   }
    974 }
    975 
    976 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    977 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    978 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    979 ///
    980 /// This is a skeletal driver, with all the functionality pushed into helpers,
    981 /// so that it can be easilly extended by experimental schedulers. Generally,
    982 /// implementing MachineSchedStrategy should be sufficient to implement a new
    983 /// scheduling algorithm. However, if a scheduler further subclasses
    984 /// ScheduleDAGMILive then it will want to override this virtual method in order
    985 /// to update any specialized state.
    986 void ScheduleDAGMILive::schedule() {
    987   buildDAGWithRegPressure();
    988 
    989   Topo.InitDAGTopologicalSorting();
    990 
    991   postprocessDAG();
    992 
    993   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    994   findRootsAndBiasEdges(TopRoots, BotRoots);
    995 
    996   // Initialize the strategy before modifying the DAG.
    997   // This may initialize a DFSResult to be used for queue priority.
    998   SchedImpl->initialize(this);
    999 
   1000   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
   1001           SUnits[su].dumpAll(this));
   1002   if (ViewMISchedDAGs) viewGraph();
   1003 
   1004   // Initialize ready queues now that the DAG and priority data are finalized.
   1005   initQueues(TopRoots, BotRoots);
   1006 
   1007   if (ShouldTrackPressure) {
   1008     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
   1009     TopRPTracker.setPos(CurrentTop);
   1010   }
   1011 
   1012   bool IsTopNode = false;
   1013   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
   1014     assert(!SU->isScheduled && "Node already scheduled");
   1015     if (!checkSchedLimit())
   1016       break;
   1017 
   1018     scheduleMI(SU, IsTopNode);
   1019 
   1020     updateQueues(SU, IsTopNode);
   1021 
   1022     if (DFSResult) {
   1023       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
   1024       if (!ScheduledTrees.test(SubtreeID)) {
   1025         ScheduledTrees.set(SubtreeID);
   1026         DFSResult->scheduleTree(SubtreeID);
   1027         SchedImpl->scheduleTree(SubtreeID);
   1028       }
   1029     }
   1030 
   1031     // Notify the scheduling strategy after updating the DAG.
   1032     SchedImpl->schedNode(SU, IsTopNode);
   1033   }
   1034   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
   1035 
   1036   placeDebugValues();
   1037 
   1038   DEBUG({
   1039       unsigned BBNum = begin()->getParent()->getNumber();
   1040       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
   1041       dumpSchedule();
   1042       dbgs() << '\n';
   1043     });
   1044 }
   1045 
   1046 /// Build the DAG and setup three register pressure trackers.
   1047 void ScheduleDAGMILive::buildDAGWithRegPressure() {
   1048   if (!ShouldTrackPressure) {
   1049     RPTracker.reset();
   1050     RegionCriticalPSets.clear();
   1051     buildSchedGraph(AA);
   1052     return;
   1053   }
   1054 
   1055   // Initialize the register pressure tracker used by buildSchedGraph.
   1056   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
   1057                  /*TrackUntiedDefs=*/true);
   1058 
   1059   // Account for liveness generate by the region boundary.
   1060   if (LiveRegionEnd != RegionEnd)
   1061     RPTracker.recede();
   1062 
   1063   // Build the DAG, and compute current register pressure.
   1064   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
   1065 
   1066   // Initialize top/bottom trackers after computing region pressure.
   1067   initRegPressure();
   1068 }
   1069 
   1070 void ScheduleDAGMILive::computeDFSResult() {
   1071   if (!DFSResult)
   1072     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
   1073   DFSResult->clear();
   1074   ScheduledTrees.clear();
   1075   DFSResult->resize(SUnits.size());
   1076   DFSResult->compute(SUnits);
   1077   ScheduledTrees.resize(DFSResult->getNumSubtrees());
   1078 }
   1079 
   1080 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
   1081 /// only provides the critical path for single block loops. To handle loops that
   1082 /// span blocks, we could use the vreg path latencies provided by
   1083 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
   1084 /// available for use in the scheduler.
   1085 ///
   1086 /// The cyclic path estimation identifies a def-use pair that crosses the back
   1087 /// edge and considers the depth and height of the nodes. For example, consider
   1088 /// the following instruction sequence where each instruction has unit latency
   1089 /// and defines an epomymous virtual register:
   1090 ///
   1091 /// a->b(a,c)->c(b)->d(c)->exit
   1092 ///
   1093 /// The cyclic critical path is a two cycles: b->c->b
   1094 /// The acyclic critical path is four cycles: a->b->c->d->exit
   1095 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
   1096 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
   1097 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
   1098 /// LiveInDepth = depth(b) = len(a->b) = 1
   1099 ///
   1100 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
   1101 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
   1102 /// CyclicCriticalPath = min(2, 2) = 2
   1103 ///
   1104 /// This could be relevant to PostRA scheduling, but is currently implemented
   1105 /// assuming LiveIntervals.
   1106 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
   1107   // This only applies to single block loop.
   1108   if (!BB->isSuccessor(BB))
   1109     return 0;
   1110 
   1111   unsigned MaxCyclicLatency = 0;
   1112   // Visit each live out vreg def to find def/use pairs that cross iterations.
   1113   ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
   1114   for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
   1115        RI != RE; ++RI) {
   1116     unsigned Reg = *RI;
   1117     if (!TRI->isVirtualRegister(Reg))
   1118         continue;
   1119     const LiveInterval &LI = LIS->getInterval(Reg);
   1120     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
   1121     if (!DefVNI)
   1122       continue;
   1123 
   1124     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
   1125     const SUnit *DefSU = getSUnit(DefMI);
   1126     if (!DefSU)
   1127       continue;
   1128 
   1129     unsigned LiveOutHeight = DefSU->getHeight();
   1130     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
   1131     // Visit all local users of the vreg def.
   1132     for (VReg2UseMap::iterator
   1133            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
   1134       if (UI->SU == &ExitSU)
   1135         continue;
   1136 
   1137       // Only consider uses of the phi.
   1138       LiveQueryResult LRQ =
   1139         LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
   1140       if (!LRQ.valueIn()->isPHIDef())
   1141         continue;
   1142 
   1143       // Assume that a path spanning two iterations is a cycle, which could
   1144       // overestimate in strange cases. This allows cyclic latency to be
   1145       // estimated as the minimum slack of the vreg's depth or height.
   1146       unsigned CyclicLatency = 0;
   1147       if (LiveOutDepth > UI->SU->getDepth())
   1148         CyclicLatency = LiveOutDepth - UI->SU->getDepth();
   1149 
   1150       unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
   1151       if (LiveInHeight > LiveOutHeight) {
   1152         if (LiveInHeight - LiveOutHeight < CyclicLatency)
   1153           CyclicLatency = LiveInHeight - LiveOutHeight;
   1154       }
   1155       else
   1156         CyclicLatency = 0;
   1157 
   1158       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
   1159             << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
   1160       if (CyclicLatency > MaxCyclicLatency)
   1161         MaxCyclicLatency = CyclicLatency;
   1162     }
   1163   }
   1164   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
   1165   return MaxCyclicLatency;
   1166 }
   1167 
   1168 /// Move an instruction and update register pressure.
   1169 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
   1170   // Move the instruction to its new location in the instruction stream.
   1171   MachineInstr *MI = SU->getInstr();
   1172 
   1173   if (IsTopNode) {
   1174     assert(SU->isTopReady() && "node still has unscheduled dependencies");
   1175     if (&*CurrentTop == MI)
   1176       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
   1177     else {
   1178       moveInstruction(MI, CurrentTop);
   1179       TopRPTracker.setPos(MI);
   1180     }
   1181 
   1182     if (ShouldTrackPressure) {
   1183       // Update top scheduled pressure.
   1184       TopRPTracker.advance();
   1185       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
   1186       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
   1187     }
   1188   }
   1189   else {
   1190     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
   1191     MachineBasicBlock::iterator priorII =
   1192       priorNonDebug(CurrentBottom, CurrentTop);
   1193     if (&*priorII == MI)
   1194       CurrentBottom = priorII;
   1195     else {
   1196       if (&*CurrentTop == MI) {
   1197         CurrentTop = nextIfDebug(++CurrentTop, priorII);
   1198         TopRPTracker.setPos(CurrentTop);
   1199       }
   1200       moveInstruction(MI, CurrentBottom);
   1201       CurrentBottom = MI;
   1202     }
   1203     if (ShouldTrackPressure) {
   1204       // Update bottom scheduled pressure.
   1205       SmallVector<unsigned, 8> LiveUses;
   1206       BotRPTracker.recede(&LiveUses);
   1207       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
   1208       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
   1209       updatePressureDiffs(LiveUses);
   1210     }
   1211   }
   1212 }
   1213 
   1214 //===----------------------------------------------------------------------===//
   1215 // LoadClusterMutation - DAG post-processing to cluster loads.
   1216 //===----------------------------------------------------------------------===//
   1217 
   1218 namespace {
   1219 /// \brief Post-process the DAG to create cluster edges between neighboring
   1220 /// loads.
   1221 class LoadClusterMutation : public ScheduleDAGMutation {
   1222   struct LoadInfo {
   1223     SUnit *SU;
   1224     unsigned BaseReg;
   1225     unsigned Offset;
   1226     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
   1227       : SU(su), BaseReg(reg), Offset(ofs) {}
   1228 
   1229     bool operator<(const LoadInfo &RHS) const {
   1230       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
   1231     }
   1232   };
   1233 
   1234   const TargetInstrInfo *TII;
   1235   const TargetRegisterInfo *TRI;
   1236 public:
   1237   LoadClusterMutation(const TargetInstrInfo *tii,
   1238                       const TargetRegisterInfo *tri)
   1239     : TII(tii), TRI(tri) {}
   1240 
   1241   void apply(ScheduleDAGMI *DAG) override;
   1242 protected:
   1243   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
   1244 };
   1245 } // anonymous
   1246 
   1247 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
   1248                                                   ScheduleDAGMI *DAG) {
   1249   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
   1250   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
   1251     SUnit *SU = Loads[Idx];
   1252     unsigned BaseReg;
   1253     unsigned Offset;
   1254     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
   1255       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
   1256   }
   1257   if (LoadRecords.size() < 2)
   1258     return;
   1259   std::sort(LoadRecords.begin(), LoadRecords.end());
   1260   unsigned ClusterLength = 1;
   1261   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
   1262     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
   1263       ClusterLength = 1;
   1264       continue;
   1265     }
   1266 
   1267     SUnit *SUa = LoadRecords[Idx].SU;
   1268     SUnit *SUb = LoadRecords[Idx+1].SU;
   1269     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
   1270         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
   1271 
   1272       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
   1273             << SUb->NodeNum << ")\n");
   1274       // Copy successor edges from SUa to SUb. Interleaving computation
   1275       // dependent on SUa can prevent load combining due to register reuse.
   1276       // Predecessor edges do not need to be copied from SUb to SUa since nearby
   1277       // loads should have effectively the same inputs.
   1278       for (SUnit::const_succ_iterator
   1279              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
   1280         if (SI->getSUnit() == SUb)
   1281           continue;
   1282         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
   1283         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
   1284       }
   1285       ++ClusterLength;
   1286     }
   1287     else
   1288       ClusterLength = 1;
   1289   }
   1290 }
   1291 
   1292 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
   1293 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
   1294   // Map DAG NodeNum to store chain ID.
   1295   DenseMap<unsigned, unsigned> StoreChainIDs;
   1296   // Map each store chain to a set of dependent loads.
   1297   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
   1298   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1299     SUnit *SU = &DAG->SUnits[Idx];
   1300     if (!SU->getInstr()->mayLoad())
   1301       continue;
   1302     unsigned ChainPredID = DAG->SUnits.size();
   1303     for (SUnit::const_pred_iterator
   1304            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1305       if (PI->isCtrl()) {
   1306         ChainPredID = PI->getSUnit()->NodeNum;
   1307         break;
   1308       }
   1309     }
   1310     // Check if this chain-like pred has been seen
   1311     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
   1312     unsigned NumChains = StoreChainDependents.size();
   1313     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
   1314       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
   1315     if (Result.second)
   1316       StoreChainDependents.resize(NumChains + 1);
   1317     StoreChainDependents[Result.first->second].push_back(SU);
   1318   }
   1319   // Iterate over the store chains.
   1320   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
   1321     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
   1322 }
   1323 
   1324 //===----------------------------------------------------------------------===//
   1325 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
   1326 //===----------------------------------------------------------------------===//
   1327 
   1328 namespace {
   1329 /// \brief Post-process the DAG to create cluster edges between instructions
   1330 /// that may be fused by the processor into a single operation.
   1331 class MacroFusion : public ScheduleDAGMutation {
   1332   const TargetInstrInfo *TII;
   1333 public:
   1334   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
   1335 
   1336   void apply(ScheduleDAGMI *DAG) override;
   1337 };
   1338 } // anonymous
   1339 
   1340 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
   1341 /// fused operations.
   1342 void MacroFusion::apply(ScheduleDAGMI *DAG) {
   1343   // For now, assume targets can only fuse with the branch.
   1344   MachineInstr *Branch = DAG->ExitSU.getInstr();
   1345   if (!Branch)
   1346     return;
   1347 
   1348   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
   1349     SUnit *SU = &DAG->SUnits[--Idx];
   1350     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
   1351       continue;
   1352 
   1353     // Create a single weak edge from SU to ExitSU. The only effect is to cause
   1354     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
   1355     // need to copy predecessor edges from ExitSU to SU, since top-down
   1356     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
   1357     // of SU, we could create an artificial edge from the deepest root, but it
   1358     // hasn't been needed yet.
   1359     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
   1360     (void)Success;
   1361     assert(Success && "No DAG nodes should be reachable from ExitSU");
   1362 
   1363     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
   1364     break;
   1365   }
   1366 }
   1367 
   1368 //===----------------------------------------------------------------------===//
   1369 // CopyConstrain - DAG post-processing to encourage copy elimination.
   1370 //===----------------------------------------------------------------------===//
   1371 
   1372 namespace {
   1373 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
   1374 /// the one use that defines the copy's source vreg, most likely an induction
   1375 /// variable increment.
   1376 class CopyConstrain : public ScheduleDAGMutation {
   1377   // Transient state.
   1378   SlotIndex RegionBeginIdx;
   1379   // RegionEndIdx is the slot index of the last non-debug instruction in the
   1380   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
   1381   SlotIndex RegionEndIdx;
   1382 public:
   1383   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
   1384 
   1385   void apply(ScheduleDAGMI *DAG) override;
   1386 
   1387 protected:
   1388   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
   1389 };
   1390 } // anonymous
   1391 
   1392 /// constrainLocalCopy handles two possibilities:
   1393 /// 1) Local src:
   1394 /// I0:     = dst
   1395 /// I1: src = ...
   1396 /// I2:     = dst
   1397 /// I3: dst = src (copy)
   1398 /// (create pred->succ edges I0->I1, I2->I1)
   1399 ///
   1400 /// 2) Local copy:
   1401 /// I0: dst = src (copy)
   1402 /// I1:     = dst
   1403 /// I2: src = ...
   1404 /// I3:     = dst
   1405 /// (create pred->succ edges I1->I2, I3->I2)
   1406 ///
   1407 /// Although the MachineScheduler is currently constrained to single blocks,
   1408 /// this algorithm should handle extended blocks. An EBB is a set of
   1409 /// contiguously numbered blocks such that the previous block in the EBB is
   1410 /// always the single predecessor.
   1411 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
   1412   LiveIntervals *LIS = DAG->getLIS();
   1413   MachineInstr *Copy = CopySU->getInstr();
   1414 
   1415   // Check for pure vreg copies.
   1416   unsigned SrcReg = Copy->getOperand(1).getReg();
   1417   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1418     return;
   1419 
   1420   unsigned DstReg = Copy->getOperand(0).getReg();
   1421   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
   1422     return;
   1423 
   1424   // Check if either the dest or source is local. If it's live across a back
   1425   // edge, it's not local. Note that if both vregs are live across the back
   1426   // edge, we cannot successfully contrain the copy without cyclic scheduling.
   1427   unsigned LocalReg = DstReg;
   1428   unsigned GlobalReg = SrcReg;
   1429   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
   1430   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
   1431     LocalReg = SrcReg;
   1432     GlobalReg = DstReg;
   1433     LocalLI = &LIS->getInterval(LocalReg);
   1434     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
   1435       return;
   1436   }
   1437   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
   1438 
   1439   // Find the global segment after the start of the local LI.
   1440   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
   1441   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
   1442   // local live range. We could create edges from other global uses to the local
   1443   // start, but the coalescer should have already eliminated these cases, so
   1444   // don't bother dealing with it.
   1445   if (GlobalSegment == GlobalLI->end())
   1446     return;
   1447 
   1448   // If GlobalSegment is killed at the LocalLI->start, the call to find()
   1449   // returned the next global segment. But if GlobalSegment overlaps with
   1450   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
   1451   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
   1452   if (GlobalSegment->contains(LocalLI->beginIndex()))
   1453     ++GlobalSegment;
   1454 
   1455   if (GlobalSegment == GlobalLI->end())
   1456     return;
   1457 
   1458   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
   1459   if (GlobalSegment != GlobalLI->begin()) {
   1460     // Two address defs have no hole.
   1461     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
   1462                                GlobalSegment->start)) {
   1463       return;
   1464     }
   1465     // If the prior global segment may be defined by the same two-address
   1466     // instruction that also defines LocalLI, then can't make a hole here.
   1467     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
   1468                                LocalLI->beginIndex())) {
   1469       return;
   1470     }
   1471     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
   1472     // it would be a disconnected component in the live range.
   1473     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
   1474            "Disconnected LRG within the scheduling region.");
   1475   }
   1476   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
   1477   if (!GlobalDef)
   1478     return;
   1479 
   1480   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
   1481   if (!GlobalSU)
   1482     return;
   1483 
   1484   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
   1485   // constraining the uses of the last local def to precede GlobalDef.
   1486   SmallVector<SUnit*,8> LocalUses;
   1487   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
   1488   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
   1489   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
   1490   for (SUnit::const_succ_iterator
   1491          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
   1492        I != E; ++I) {
   1493     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
   1494       continue;
   1495     if (I->getSUnit() == GlobalSU)
   1496       continue;
   1497     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
   1498       return;
   1499     LocalUses.push_back(I->getSUnit());
   1500   }
   1501   // Open the top of the GlobalLI hole by constraining any earlier global uses
   1502   // to precede the start of LocalLI.
   1503   SmallVector<SUnit*,8> GlobalUses;
   1504   MachineInstr *FirstLocalDef =
   1505     LIS->getInstructionFromIndex(LocalLI->beginIndex());
   1506   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
   1507   for (SUnit::const_pred_iterator
   1508          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
   1509     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
   1510       continue;
   1511     if (I->getSUnit() == FirstLocalSU)
   1512       continue;
   1513     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
   1514       return;
   1515     GlobalUses.push_back(I->getSUnit());
   1516   }
   1517   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
   1518   // Add the weak edges.
   1519   for (SmallVectorImpl<SUnit*>::const_iterator
   1520          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
   1521     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
   1522           << GlobalSU->NodeNum << ")\n");
   1523     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
   1524   }
   1525   for (SmallVectorImpl<SUnit*>::const_iterator
   1526          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
   1527     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
   1528           << FirstLocalSU->NodeNum << ")\n");
   1529     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
   1530   }
   1531 }
   1532 
   1533 /// \brief Callback from DAG postProcessing to create weak edges to encourage
   1534 /// copy elimination.
   1535 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
   1536   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
   1537 
   1538   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
   1539   if (FirstPos == DAG->end())
   1540     return;
   1541   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
   1542   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
   1543     &*priorNonDebug(DAG->end(), DAG->begin()));
   1544 
   1545   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1546     SUnit *SU = &DAG->SUnits[Idx];
   1547     if (!SU->getInstr()->isCopy())
   1548       continue;
   1549 
   1550     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
   1551   }
   1552 }
   1553 
   1554 //===----------------------------------------------------------------------===//
   1555 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
   1556 // and possibly other custom schedulers.
   1557 //===----------------------------------------------------------------------===//
   1558 
   1559 static const unsigned InvalidCycle = ~0U;
   1560 
   1561 SchedBoundary::~SchedBoundary() { delete HazardRec; }
   1562 
   1563 void SchedBoundary::reset() {
   1564   // A new HazardRec is created for each DAG and owned by SchedBoundary.
   1565   // Destroying and reconstructing it is very expensive though. So keep
   1566   // invalid, placeholder HazardRecs.
   1567   if (HazardRec && HazardRec->isEnabled()) {
   1568     delete HazardRec;
   1569     HazardRec = nullptr;
   1570   }
   1571   Available.clear();
   1572   Pending.clear();
   1573   CheckPending = false;
   1574   NextSUs.clear();
   1575   CurrCycle = 0;
   1576   CurrMOps = 0;
   1577   MinReadyCycle = UINT_MAX;
   1578   ExpectedLatency = 0;
   1579   DependentLatency = 0;
   1580   RetiredMOps = 0;
   1581   MaxExecutedResCount = 0;
   1582   ZoneCritResIdx = 0;
   1583   IsResourceLimited = false;
   1584   ReservedCycles.clear();
   1585 #ifndef NDEBUG
   1586   // Track the maximum number of stall cycles that could arise either from the
   1587   // latency of a DAG edge or the number of cycles that a processor resource is
   1588   // reserved (SchedBoundary::ReservedCycles).
   1589   MaxObservedStall = 0;
   1590 #endif
   1591   // Reserve a zero-count for invalid CritResIdx.
   1592   ExecutedResCounts.resize(1);
   1593   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
   1594 }
   1595 
   1596 void SchedRemainder::
   1597 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
   1598   reset();
   1599   if (!SchedModel->hasInstrSchedModel())
   1600     return;
   1601   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
   1602   for (std::vector<SUnit>::iterator
   1603          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
   1604     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
   1605     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
   1606       * SchedModel->getMicroOpFactor();
   1607     for (TargetSchedModel::ProcResIter
   1608            PI = SchedModel->getWriteProcResBegin(SC),
   1609            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1610       unsigned PIdx = PI->ProcResourceIdx;
   1611       unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1612       RemainingCounts[PIdx] += (Factor * PI->Cycles);
   1613     }
   1614   }
   1615 }
   1616 
   1617 void SchedBoundary::
   1618 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
   1619   reset();
   1620   DAG = dag;
   1621   SchedModel = smodel;
   1622   Rem = rem;
   1623   if (SchedModel->hasInstrSchedModel()) {
   1624     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
   1625     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
   1626   }
   1627 }
   1628 
   1629 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
   1630 /// these "soft stalls" differently than the hard stall cycles based on CPU
   1631 /// resources and computed by checkHazard(). A fully in-order model
   1632 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
   1633 /// available for scheduling until they are ready. However, a weaker in-order
   1634 /// model may use this for heuristics. For example, if a processor has in-order
   1635 /// behavior when reading certain resources, this may come into play.
   1636 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
   1637   if (!SU->isUnbuffered)
   1638     return 0;
   1639 
   1640   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1641   if (ReadyCycle > CurrCycle)
   1642     return ReadyCycle - CurrCycle;
   1643   return 0;
   1644 }
   1645 
   1646 /// Compute the next cycle at which the given processor resource can be
   1647 /// scheduled.
   1648 unsigned SchedBoundary::
   1649 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
   1650   unsigned NextUnreserved = ReservedCycles[PIdx];
   1651   // If this resource has never been used, always return cycle zero.
   1652   if (NextUnreserved == InvalidCycle)
   1653     return 0;
   1654   // For bottom-up scheduling add the cycles needed for the current operation.
   1655   if (!isTop())
   1656     NextUnreserved += Cycles;
   1657   return NextUnreserved;
   1658 }
   1659 
   1660 /// Does this SU have a hazard within the current instruction group.
   1661 ///
   1662 /// The scheduler supports two modes of hazard recognition. The first is the
   1663 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
   1664 /// supports highly complicated in-order reservation tables
   1665 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
   1666 ///
   1667 /// The second is a streamlined mechanism that checks for hazards based on
   1668 /// simple counters that the scheduler itself maintains. It explicitly checks
   1669 /// for instruction dispatch limitations, including the number of micro-ops that
   1670 /// can dispatch per cycle.
   1671 ///
   1672 /// TODO: Also check whether the SU must start a new group.
   1673 bool SchedBoundary::checkHazard(SUnit *SU) {
   1674   if (HazardRec->isEnabled()
   1675       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
   1676     return true;
   1677   }
   1678   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
   1679   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
   1680     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
   1681           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
   1682     return true;
   1683   }
   1684   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
   1685     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1686     for (TargetSchedModel::ProcResIter
   1687            PI = SchedModel->getWriteProcResBegin(SC),
   1688            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1689       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
   1690       if (NRCycle > CurrCycle) {
   1691 #ifndef NDEBUG
   1692         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
   1693 #endif
   1694         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
   1695               << SchedModel->getResourceName(PI->ProcResourceIdx)
   1696               << "=" << NRCycle << "c\n");
   1697         return true;
   1698       }
   1699     }
   1700   }
   1701   return false;
   1702 }
   1703 
   1704 // Find the unscheduled node in ReadySUs with the highest latency.
   1705 unsigned SchedBoundary::
   1706 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
   1707   SUnit *LateSU = nullptr;
   1708   unsigned RemLatency = 0;
   1709   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
   1710        I != E; ++I) {
   1711     unsigned L = getUnscheduledLatency(*I);
   1712     if (L > RemLatency) {
   1713       RemLatency = L;
   1714       LateSU = *I;
   1715     }
   1716   }
   1717   if (LateSU) {
   1718     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
   1719           << LateSU->NodeNum << ") " << RemLatency << "c\n");
   1720   }
   1721   return RemLatency;
   1722 }
   1723 
   1724 // Count resources in this zone and the remaining unscheduled
   1725 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
   1726 // resource index, or zero if the zone is issue limited.
   1727 unsigned SchedBoundary::
   1728 getOtherResourceCount(unsigned &OtherCritIdx) {
   1729   OtherCritIdx = 0;
   1730   if (!SchedModel->hasInstrSchedModel())
   1731     return 0;
   1732 
   1733   unsigned OtherCritCount = Rem->RemIssueCount
   1734     + (RetiredMOps * SchedModel->getMicroOpFactor());
   1735   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
   1736         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
   1737   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
   1738        PIdx != PEnd; ++PIdx) {
   1739     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
   1740     if (OtherCount > OtherCritCount) {
   1741       OtherCritCount = OtherCount;
   1742       OtherCritIdx = PIdx;
   1743     }
   1744   }
   1745   if (OtherCritIdx) {
   1746     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
   1747           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
   1748           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
   1749   }
   1750   return OtherCritCount;
   1751 }
   1752 
   1753 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
   1754   assert(SU->getInstr() && "Scheduled SUnit must have instr");
   1755 
   1756 #ifndef NDEBUG
   1757   // ReadyCycle was been bumped up to the CurrCycle when this node was
   1758   // scheduled, but CurrCycle may have been eagerly advanced immediately after
   1759   // scheduling, so may now be greater than ReadyCycle.
   1760   if (ReadyCycle > CurrCycle)
   1761     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
   1762 #endif
   1763 
   1764   if (ReadyCycle < MinReadyCycle)
   1765     MinReadyCycle = ReadyCycle;
   1766 
   1767   // Check for interlocks first. For the purpose of other heuristics, an
   1768   // instruction that cannot issue appears as if it's not in the ReadyQueue.
   1769   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   1770   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
   1771     Pending.push(SU);
   1772   else
   1773     Available.push(SU);
   1774 
   1775   // Record this node as an immediate dependent of the scheduled node.
   1776   NextSUs.insert(SU);
   1777 }
   1778 
   1779 void SchedBoundary::releaseTopNode(SUnit *SU) {
   1780   if (SU->isScheduled)
   1781     return;
   1782 
   1783   releaseNode(SU, SU->TopReadyCycle);
   1784 }
   1785 
   1786 void SchedBoundary::releaseBottomNode(SUnit *SU) {
   1787   if (SU->isScheduled)
   1788     return;
   1789 
   1790   releaseNode(SU, SU->BotReadyCycle);
   1791 }
   1792 
   1793 /// Move the boundary of scheduled code by one cycle.
   1794 void SchedBoundary::bumpCycle(unsigned NextCycle) {
   1795   if (SchedModel->getMicroOpBufferSize() == 0) {
   1796     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
   1797     if (MinReadyCycle > NextCycle)
   1798       NextCycle = MinReadyCycle;
   1799   }
   1800   // Update the current micro-ops, which will issue in the next cycle.
   1801   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
   1802   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
   1803 
   1804   // Decrement DependentLatency based on the next cycle.
   1805   if ((NextCycle - CurrCycle) > DependentLatency)
   1806     DependentLatency = 0;
   1807   else
   1808     DependentLatency -= (NextCycle - CurrCycle);
   1809 
   1810   if (!HazardRec->isEnabled()) {
   1811     // Bypass HazardRec virtual calls.
   1812     CurrCycle = NextCycle;
   1813   }
   1814   else {
   1815     // Bypass getHazardType calls in case of long latency.
   1816     for (; CurrCycle != NextCycle; ++CurrCycle) {
   1817       if (isTop())
   1818         HazardRec->AdvanceCycle();
   1819       else
   1820         HazardRec->RecedeCycle();
   1821     }
   1822   }
   1823   CheckPending = true;
   1824   unsigned LFactor = SchedModel->getLatencyFactor();
   1825   IsResourceLimited =
   1826     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   1827     > (int)LFactor;
   1828 
   1829   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
   1830 }
   1831 
   1832 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
   1833   ExecutedResCounts[PIdx] += Count;
   1834   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
   1835     MaxExecutedResCount = ExecutedResCounts[PIdx];
   1836 }
   1837 
   1838 /// Add the given processor resource to this scheduled zone.
   1839 ///
   1840 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
   1841 /// during which this resource is consumed.
   1842 ///
   1843 /// \return the next cycle at which the instruction may execute without
   1844 /// oversubscribing resources.
   1845 unsigned SchedBoundary::
   1846 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
   1847   unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1848   unsigned Count = Factor * Cycles;
   1849   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
   1850         << " +" << Cycles << "x" << Factor << "u\n");
   1851 
   1852   // Update Executed resources counts.
   1853   incExecutedResources(PIdx, Count);
   1854   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
   1855   Rem->RemainingCounts[PIdx] -= Count;
   1856 
   1857   // Check if this resource exceeds the current critical resource. If so, it
   1858   // becomes the critical resource.
   1859   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
   1860     ZoneCritResIdx = PIdx;
   1861     DEBUG(dbgs() << "  *** Critical resource "
   1862           << SchedModel->getResourceName(PIdx) << ": "
   1863           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
   1864   }
   1865   // For reserved resources, record the highest cycle using the resource.
   1866   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
   1867   if (NextAvailable > CurrCycle) {
   1868     DEBUG(dbgs() << "  Resource conflict: "
   1869           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
   1870           << NextAvailable << "\n");
   1871   }
   1872   return NextAvailable;
   1873 }
   1874 
   1875 /// Move the boundary of scheduled code by one SUnit.
   1876 void SchedBoundary::bumpNode(SUnit *SU) {
   1877   // Update the reservation table.
   1878   if (HazardRec->isEnabled()) {
   1879     if (!isTop() && SU->isCall) {
   1880       // Calls are scheduled with their preceding instructions. For bottom-up
   1881       // scheduling, clear the pipeline state before emitting.
   1882       HazardRec->Reset();
   1883     }
   1884     HazardRec->EmitInstruction(SU);
   1885   }
   1886   // checkHazard should prevent scheduling multiple instructions per cycle that
   1887   // exceed the issue width.
   1888   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1889   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
   1890   assert(
   1891       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
   1892       "Cannot schedule this instruction's MicroOps in the current cycle.");
   1893 
   1894   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1895   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
   1896 
   1897   unsigned NextCycle = CurrCycle;
   1898   switch (SchedModel->getMicroOpBufferSize()) {
   1899   case 0:
   1900     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
   1901     break;
   1902   case 1:
   1903     if (ReadyCycle > NextCycle) {
   1904       NextCycle = ReadyCycle;
   1905       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
   1906     }
   1907     break;
   1908   default:
   1909     // We don't currently model the OOO reorder buffer, so consider all
   1910     // scheduled MOps to be "retired". We do loosely model in-order resource
   1911     // latency. If this instruction uses an in-order resource, account for any
   1912     // likely stall cycles.
   1913     if (SU->isUnbuffered && ReadyCycle > NextCycle)
   1914       NextCycle = ReadyCycle;
   1915     break;
   1916   }
   1917   RetiredMOps += IncMOps;
   1918 
   1919   // Update resource counts and critical resource.
   1920   if (SchedModel->hasInstrSchedModel()) {
   1921     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
   1922     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
   1923     Rem->RemIssueCount -= DecRemIssue;
   1924     if (ZoneCritResIdx) {
   1925       // Scale scheduled micro-ops for comparing with the critical resource.
   1926       unsigned ScaledMOps =
   1927         RetiredMOps * SchedModel->getMicroOpFactor();
   1928 
   1929       // If scaled micro-ops are now more than the previous critical resource by
   1930       // a full cycle, then micro-ops issue becomes critical.
   1931       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
   1932           >= (int)SchedModel->getLatencyFactor()) {
   1933         ZoneCritResIdx = 0;
   1934         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
   1935               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
   1936       }
   1937     }
   1938     for (TargetSchedModel::ProcResIter
   1939            PI = SchedModel->getWriteProcResBegin(SC),
   1940            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1941       unsigned RCycle =
   1942         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
   1943       if (RCycle > NextCycle)
   1944         NextCycle = RCycle;
   1945     }
   1946     if (SU->hasReservedResource) {
   1947       // For reserved resources, record the highest cycle using the resource.
   1948       // For top-down scheduling, this is the cycle in which we schedule this
   1949       // instruction plus the number of cycles the operations reserves the
   1950       // resource. For bottom-up is it simply the instruction's cycle.
   1951       for (TargetSchedModel::ProcResIter
   1952              PI = SchedModel->getWriteProcResBegin(SC),
   1953              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1954         unsigned PIdx = PI->ProcResourceIdx;
   1955         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
   1956           if (isTop()) {
   1957             ReservedCycles[PIdx] =
   1958               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
   1959           }
   1960           else
   1961             ReservedCycles[PIdx] = NextCycle;
   1962         }
   1963       }
   1964     }
   1965   }
   1966   // Update ExpectedLatency and DependentLatency.
   1967   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
   1968   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
   1969   if (SU->getDepth() > TopLatency) {
   1970     TopLatency = SU->getDepth();
   1971     DEBUG(dbgs() << "  " << Available.getName()
   1972           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
   1973   }
   1974   if (SU->getHeight() > BotLatency) {
   1975     BotLatency = SU->getHeight();
   1976     DEBUG(dbgs() << "  " << Available.getName()
   1977           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
   1978   }
   1979   // If we stall for any reason, bump the cycle.
   1980   if (NextCycle > CurrCycle) {
   1981     bumpCycle(NextCycle);
   1982   }
   1983   else {
   1984     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
   1985     // resource limited. If a stall occurred, bumpCycle does this.
   1986     unsigned LFactor = SchedModel->getLatencyFactor();
   1987     IsResourceLimited =
   1988       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   1989       > (int)LFactor;
   1990   }
   1991   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
   1992   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
   1993   // one cycle.  Since we commonly reach the max MOps here, opportunistically
   1994   // bump the cycle to avoid uselessly checking everything in the readyQ.
   1995   CurrMOps += IncMOps;
   1996   while (CurrMOps >= SchedModel->getIssueWidth()) {
   1997     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
   1998           << " at cycle " << CurrCycle << '\n');
   1999     bumpCycle(++NextCycle);
   2000   }
   2001   DEBUG(dumpScheduledState());
   2002 }
   2003 
   2004 /// Release pending ready nodes in to the available queue. This makes them
   2005 /// visible to heuristics.
   2006 void SchedBoundary::releasePending() {
   2007   // If the available queue is empty, it is safe to reset MinReadyCycle.
   2008   if (Available.empty())
   2009     MinReadyCycle = UINT_MAX;
   2010 
   2011   // Check to see if any of the pending instructions are ready to issue.  If
   2012   // so, add them to the available queue.
   2013   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   2014   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
   2015     SUnit *SU = *(Pending.begin()+i);
   2016     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
   2017 
   2018     if (ReadyCycle < MinReadyCycle)
   2019       MinReadyCycle = ReadyCycle;
   2020 
   2021     if (!IsBuffered && ReadyCycle > CurrCycle)
   2022       continue;
   2023 
   2024     if (checkHazard(SU))
   2025       continue;
   2026 
   2027     Available.push(SU);
   2028     Pending.remove(Pending.begin()+i);
   2029     --i; --e;
   2030   }
   2031   DEBUG(if (!Pending.empty()) Pending.dump());
   2032   CheckPending = false;
   2033 }
   2034 
   2035 /// Remove SU from the ready set for this boundary.
   2036 void SchedBoundary::removeReady(SUnit *SU) {
   2037   if (Available.isInQueue(SU))
   2038     Available.remove(Available.find(SU));
   2039   else {
   2040     assert(Pending.isInQueue(SU) && "bad ready count");
   2041     Pending.remove(Pending.find(SU));
   2042   }
   2043 }
   2044 
   2045 /// If this queue only has one ready candidate, return it. As a side effect,
   2046 /// defer any nodes that now hit a hazard, and advance the cycle until at least
   2047 /// one node is ready. If multiple instructions are ready, return NULL.
   2048 SUnit *SchedBoundary::pickOnlyChoice() {
   2049   if (CheckPending)
   2050     releasePending();
   2051 
   2052   if (CurrMOps > 0) {
   2053     // Defer any ready instrs that now have a hazard.
   2054     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
   2055       if (checkHazard(*I)) {
   2056         Pending.push(*I);
   2057         I = Available.remove(I);
   2058         continue;
   2059       }
   2060       ++I;
   2061     }
   2062   }
   2063   for (unsigned i = 0; Available.empty(); ++i) {
   2064 //  FIXME: Re-enable assert once PR20057 is resolved.
   2065 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
   2066 //           "permanent hazard");
   2067     (void)i;
   2068     bumpCycle(CurrCycle + 1);
   2069     releasePending();
   2070   }
   2071   if (Available.size() == 1)
   2072     return *Available.begin();
   2073   return nullptr;
   2074 }
   2075 
   2076 #ifndef NDEBUG
   2077 // This is useful information to dump after bumpNode.
   2078 // Note that the Queue contents are more useful before pickNodeFromQueue.
   2079 void SchedBoundary::dumpScheduledState() {
   2080   unsigned ResFactor;
   2081   unsigned ResCount;
   2082   if (ZoneCritResIdx) {
   2083     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
   2084     ResCount = getResourceCount(ZoneCritResIdx);
   2085   }
   2086   else {
   2087     ResFactor = SchedModel->getMicroOpFactor();
   2088     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
   2089   }
   2090   unsigned LFactor = SchedModel->getLatencyFactor();
   2091   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
   2092          << "  Retired: " << RetiredMOps;
   2093   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
   2094   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
   2095          << ResCount / ResFactor << " "
   2096          << SchedModel->getResourceName(ZoneCritResIdx)
   2097          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
   2098          << (IsResourceLimited ? "  - Resource" : "  - Latency")
   2099          << " limited.\n";
   2100 }
   2101 #endif
   2102 
   2103 //===----------------------------------------------------------------------===//
   2104 // GenericScheduler - Generic implementation of MachineSchedStrategy.
   2105 //===----------------------------------------------------------------------===//
   2106 
   2107 void GenericSchedulerBase::SchedCandidate::
   2108 initResourceDelta(const ScheduleDAGMI *DAG,
   2109                   const TargetSchedModel *SchedModel) {
   2110   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
   2111     return;
   2112 
   2113   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   2114   for (TargetSchedModel::ProcResIter
   2115          PI = SchedModel->getWriteProcResBegin(SC),
   2116          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2117     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
   2118       ResDelta.CritResources += PI->Cycles;
   2119     if (PI->ProcResourceIdx == Policy.DemandResIdx)
   2120       ResDelta.DemandedResources += PI->Cycles;
   2121   }
   2122 }
   2123 
   2124 /// Set the CandPolicy given a scheduling zone given the current resources and
   2125 /// latencies inside and outside the zone.
   2126 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
   2127                                      bool IsPostRA,
   2128                                      SchedBoundary &CurrZone,
   2129                                      SchedBoundary *OtherZone) {
   2130   // Apply preemptive heuristics based on the the total latency and resources
   2131   // inside and outside this zone. Potential stalls should be considered before
   2132   // following this policy.
   2133 
   2134   // Compute remaining latency. We need this both to determine whether the
   2135   // overall schedule has become latency-limited and whether the instructions
   2136   // outside this zone are resource or latency limited.
   2137   //
   2138   // The "dependent" latency is updated incrementally during scheduling as the
   2139   // max height/depth of scheduled nodes minus the cycles since it was
   2140   // scheduled:
   2141   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
   2142   //
   2143   // The "independent" latency is the max ready queue depth:
   2144   //   ILat = max N.depth for N in Available|Pending
   2145   //
   2146   // RemainingLatency is the greater of independent and dependent latency.
   2147   unsigned RemLatency = CurrZone.getDependentLatency();
   2148   RemLatency = std::max(RemLatency,
   2149                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
   2150   RemLatency = std::max(RemLatency,
   2151                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
   2152 
   2153   // Compute the critical resource outside the zone.
   2154   unsigned OtherCritIdx = 0;
   2155   unsigned OtherCount =
   2156     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
   2157 
   2158   bool OtherResLimited = false;
   2159   if (SchedModel->hasInstrSchedModel()) {
   2160     unsigned LFactor = SchedModel->getLatencyFactor();
   2161     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
   2162   }
   2163   // Schedule aggressively for latency in PostRA mode. We don't check for
   2164   // acyclic latency during PostRA, and highly out-of-order processors will
   2165   // skip PostRA scheduling.
   2166   if (!OtherResLimited) {
   2167     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
   2168       Policy.ReduceLatency |= true;
   2169       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
   2170             << " RemainingLatency " << RemLatency << " + "
   2171             << CurrZone.getCurrCycle() << "c > CritPath "
   2172             << Rem.CriticalPath << "\n");
   2173     }
   2174   }
   2175   // If the same resource is limiting inside and outside the zone, do nothing.
   2176   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
   2177     return;
   2178 
   2179   DEBUG(
   2180     if (CurrZone.isResourceLimited()) {
   2181       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
   2182              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
   2183              << "\n";
   2184     }
   2185     if (OtherResLimited)
   2186       dbgs() << "  RemainingLimit: "
   2187              << SchedModel->getResourceName(OtherCritIdx) << "\n";
   2188     if (!CurrZone.isResourceLimited() && !OtherResLimited)
   2189       dbgs() << "  Latency limited both directions.\n");
   2190 
   2191   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
   2192     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
   2193 
   2194   if (OtherResLimited)
   2195     Policy.DemandResIdx = OtherCritIdx;
   2196 }
   2197 
   2198 #ifndef NDEBUG
   2199 const char *GenericSchedulerBase::getReasonStr(
   2200   GenericSchedulerBase::CandReason Reason) {
   2201   switch (Reason) {
   2202   case NoCand:         return "NOCAND    ";
   2203   case PhysRegCopy:    return "PREG-COPY";
   2204   case RegExcess:      return "REG-EXCESS";
   2205   case RegCritical:    return "REG-CRIT  ";
   2206   case Stall:          return "STALL     ";
   2207   case Cluster:        return "CLUSTER   ";
   2208   case Weak:           return "WEAK      ";
   2209   case RegMax:         return "REG-MAX   ";
   2210   case ResourceReduce: return "RES-REDUCE";
   2211   case ResourceDemand: return "RES-DEMAND";
   2212   case TopDepthReduce: return "TOP-DEPTH ";
   2213   case TopPathReduce:  return "TOP-PATH  ";
   2214   case BotHeightReduce:return "BOT-HEIGHT";
   2215   case BotPathReduce:  return "BOT-PATH  ";
   2216   case NextDefUse:     return "DEF-USE   ";
   2217   case NodeOrder:      return "ORDER     ";
   2218   };
   2219   llvm_unreachable("Unknown reason!");
   2220 }
   2221 
   2222 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
   2223   PressureChange P;
   2224   unsigned ResIdx = 0;
   2225   unsigned Latency = 0;
   2226   switch (Cand.Reason) {
   2227   default:
   2228     break;
   2229   case RegExcess:
   2230     P = Cand.RPDelta.Excess;
   2231     break;
   2232   case RegCritical:
   2233     P = Cand.RPDelta.CriticalMax;
   2234     break;
   2235   case RegMax:
   2236     P = Cand.RPDelta.CurrentMax;
   2237     break;
   2238   case ResourceReduce:
   2239     ResIdx = Cand.Policy.ReduceResIdx;
   2240     break;
   2241   case ResourceDemand:
   2242     ResIdx = Cand.Policy.DemandResIdx;
   2243     break;
   2244   case TopDepthReduce:
   2245     Latency = Cand.SU->getDepth();
   2246     break;
   2247   case TopPathReduce:
   2248     Latency = Cand.SU->getHeight();
   2249     break;
   2250   case BotHeightReduce:
   2251     Latency = Cand.SU->getHeight();
   2252     break;
   2253   case BotPathReduce:
   2254     Latency = Cand.SU->getDepth();
   2255     break;
   2256   }
   2257   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
   2258   if (P.isValid())
   2259     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
   2260            << ":" << P.getUnitInc() << " ";
   2261   else
   2262     dbgs() << "      ";
   2263   if (ResIdx)
   2264     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
   2265   else
   2266     dbgs() << "         ";
   2267   if (Latency)
   2268     dbgs() << " " << Latency << " cycles ";
   2269   else
   2270     dbgs() << "          ";
   2271   dbgs() << '\n';
   2272 }
   2273 #endif
   2274 
   2275 /// Return true if this heuristic determines order.
   2276 static bool tryLess(int TryVal, int CandVal,
   2277                     GenericSchedulerBase::SchedCandidate &TryCand,
   2278                     GenericSchedulerBase::SchedCandidate &Cand,
   2279                     GenericSchedulerBase::CandReason Reason) {
   2280   if (TryVal < CandVal) {
   2281     TryCand.Reason = Reason;
   2282     return true;
   2283   }
   2284   if (TryVal > CandVal) {
   2285     if (Cand.Reason > Reason)
   2286       Cand.Reason = Reason;
   2287     return true;
   2288   }
   2289   Cand.setRepeat(Reason);
   2290   return false;
   2291 }
   2292 
   2293 static bool tryGreater(int TryVal, int CandVal,
   2294                        GenericSchedulerBase::SchedCandidate &TryCand,
   2295                        GenericSchedulerBase::SchedCandidate &Cand,
   2296                        GenericSchedulerBase::CandReason Reason) {
   2297   if (TryVal > CandVal) {
   2298     TryCand.Reason = Reason;
   2299     return true;
   2300   }
   2301   if (TryVal < CandVal) {
   2302     if (Cand.Reason > Reason)
   2303       Cand.Reason = Reason;
   2304     return true;
   2305   }
   2306   Cand.setRepeat(Reason);
   2307   return false;
   2308 }
   2309 
   2310 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
   2311                        GenericSchedulerBase::SchedCandidate &Cand,
   2312                        SchedBoundary &Zone) {
   2313   if (Zone.isTop()) {
   2314     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
   2315       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2316                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
   2317         return true;
   2318     }
   2319     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2320                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
   2321       return true;
   2322   }
   2323   else {
   2324     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
   2325       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2326                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
   2327         return true;
   2328     }
   2329     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2330                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
   2331       return true;
   2332   }
   2333   return false;
   2334 }
   2335 
   2336 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
   2337                       bool IsTop) {
   2338   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
   2339         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
   2340 }
   2341 
   2342 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
   2343   assert(dag->hasVRegLiveness() &&
   2344          "(PreRA)GenericScheduler needs vreg liveness");
   2345   DAG = static_cast<ScheduleDAGMILive*>(dag);
   2346   SchedModel = DAG->getSchedModel();
   2347   TRI = DAG->TRI;
   2348 
   2349   Rem.init(DAG, SchedModel);
   2350   Top.init(DAG, SchedModel, &Rem);
   2351   Bot.init(DAG, SchedModel, &Rem);
   2352 
   2353   // Initialize resource counts.
   2354 
   2355   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
   2356   // are disabled, then these HazardRecs will be disabled.
   2357   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2358   const TargetMachine &TM = DAG->MF.getTarget();
   2359   if (!Top.HazardRec) {
   2360     Top.HazardRec =
   2361       TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
   2362   }
   2363   if (!Bot.HazardRec) {
   2364     Bot.HazardRec =
   2365       TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
   2366   }
   2367 }
   2368 
   2369 /// Initialize the per-region scheduling policy.
   2370 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
   2371                                   MachineBasicBlock::iterator End,
   2372                                   unsigned NumRegionInstrs) {
   2373   const TargetMachine &TM = Context->MF->getTarget();
   2374   const TargetLowering *TLI = TM.getTargetLowering();
   2375 
   2376   // Avoid setting up the register pressure tracker for small regions to save
   2377   // compile time. As a rough heuristic, only track pressure when the number of
   2378   // schedulable instructions exceeds half the integer register file.
   2379   RegionPolicy.ShouldTrackPressure = true;
   2380   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
   2381     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
   2382     if (TLI->isTypeLegal(LegalIntVT)) {
   2383       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
   2384         TLI->getRegClassFor(LegalIntVT));
   2385       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
   2386     }
   2387   }
   2388 
   2389   // For generic targets, we default to bottom-up, because it's simpler and more
   2390   // compile-time optimizations have been implemented in that direction.
   2391   RegionPolicy.OnlyBottomUp = true;
   2392 
   2393   // Allow the subtarget to override default policy.
   2394   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
   2395   ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
   2396 
   2397   // After subtarget overrides, apply command line options.
   2398   if (!EnableRegPressure)
   2399     RegionPolicy.ShouldTrackPressure = false;
   2400 
   2401   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
   2402   // e.g. -misched-bottomup=false allows scheduling in both directions.
   2403   assert((!ForceTopDown || !ForceBottomUp) &&
   2404          "-misched-topdown incompatible with -misched-bottomup");
   2405   if (ForceBottomUp.getNumOccurrences() > 0) {
   2406     RegionPolicy.OnlyBottomUp = ForceBottomUp;
   2407     if (RegionPolicy.OnlyBottomUp)
   2408       RegionPolicy.OnlyTopDown = false;
   2409   }
   2410   if (ForceTopDown.getNumOccurrences() > 0) {
   2411     RegionPolicy.OnlyTopDown = ForceTopDown;
   2412     if (RegionPolicy.OnlyTopDown)
   2413       RegionPolicy.OnlyBottomUp = false;
   2414   }
   2415 }
   2416 
   2417 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
   2418 /// critical path by more cycles than it takes to drain the instruction buffer.
   2419 /// We estimate an upper bounds on in-flight instructions as:
   2420 ///
   2421 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
   2422 /// InFlightIterations = AcyclicPath / CyclesPerIteration
   2423 /// InFlightResources = InFlightIterations * LoopResources
   2424 ///
   2425 /// TODO: Check execution resources in addition to IssueCount.
   2426 void GenericScheduler::checkAcyclicLatency() {
   2427   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
   2428     return;
   2429 
   2430   // Scaled number of cycles per loop iteration.
   2431   unsigned IterCount =
   2432     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
   2433              Rem.RemIssueCount);
   2434   // Scaled acyclic critical path.
   2435   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
   2436   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
   2437   unsigned InFlightCount =
   2438     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
   2439   unsigned BufferLimit =
   2440     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
   2441 
   2442   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
   2443 
   2444   DEBUG(dbgs() << "IssueCycles="
   2445         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
   2446         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
   2447         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
   2448         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
   2449         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
   2450         if (Rem.IsAcyclicLatencyLimited)
   2451           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
   2452 }
   2453 
   2454 void GenericScheduler::registerRoots() {
   2455   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2456 
   2457   // Some roots may not feed into ExitSU. Check all of them in case.
   2458   for (std::vector<SUnit*>::const_iterator
   2459          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
   2460     if ((*I)->getDepth() > Rem.CriticalPath)
   2461       Rem.CriticalPath = (*I)->getDepth();
   2462   }
   2463   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
   2464 
   2465   if (EnableCyclicPath) {
   2466     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
   2467     checkAcyclicLatency();
   2468   }
   2469 }
   2470 
   2471 static bool tryPressure(const PressureChange &TryP,
   2472                         const PressureChange &CandP,
   2473                         GenericSchedulerBase::SchedCandidate &TryCand,
   2474                         GenericSchedulerBase::SchedCandidate &Cand,
   2475                         GenericSchedulerBase::CandReason Reason) {
   2476   int TryRank = TryP.getPSetOrMax();
   2477   int CandRank = CandP.getPSetOrMax();
   2478   // If both candidates affect the same set, go with the smallest increase.
   2479   if (TryRank == CandRank) {
   2480     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
   2481                    Reason);
   2482   }
   2483   // If one candidate decreases and the other increases, go with it.
   2484   // Invalid candidates have UnitInc==0.
   2485   if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
   2486               Reason)) {
   2487     return true;
   2488   }
   2489   // If the candidates are decreasing pressure, reverse priority.
   2490   if (TryP.getUnitInc() < 0)
   2491     std::swap(TryRank, CandRank);
   2492   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
   2493 }
   2494 
   2495 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
   2496   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
   2497 }
   2498 
   2499 /// Minimize physical register live ranges. Regalloc wants them adjacent to
   2500 /// their physreg def/use.
   2501 ///
   2502 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
   2503 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
   2504 /// with the operation that produces or consumes the physreg. We'll do this when
   2505 /// regalloc has support for parallel copies.
   2506 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
   2507   const MachineInstr *MI = SU->getInstr();
   2508   if (!MI->isCopy())
   2509     return 0;
   2510 
   2511   unsigned ScheduledOper = isTop ? 1 : 0;
   2512   unsigned UnscheduledOper = isTop ? 0 : 1;
   2513   // If we have already scheduled the physreg produce/consumer, immediately
   2514   // schedule the copy.
   2515   if (TargetRegisterInfo::isPhysicalRegister(
   2516         MI->getOperand(ScheduledOper).getReg()))
   2517     return 1;
   2518   // If the physreg is at the boundary, defer it. Otherwise schedule it
   2519   // immediately to free the dependent. We can hoist the copy later.
   2520   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
   2521   if (TargetRegisterInfo::isPhysicalRegister(
   2522         MI->getOperand(UnscheduledOper).getReg()))
   2523     return AtBoundary ? -1 : 1;
   2524   return 0;
   2525 }
   2526 
   2527 /// Apply a set of heursitics to a new candidate. Heuristics are currently
   2528 /// hierarchical. This may be more efficient than a graduated cost model because
   2529 /// we don't need to evaluate all aspects of the model for each node in the
   2530 /// queue. But it's really done to make the heuristics easier to debug and
   2531 /// statistically analyze.
   2532 ///
   2533 /// \param Cand provides the policy and current best candidate.
   2534 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2535 /// \param Zone describes the scheduled zone that we are extending.
   2536 /// \param RPTracker describes reg pressure within the scheduled zone.
   2537 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
   2538 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
   2539                                     SchedCandidate &TryCand,
   2540                                     SchedBoundary &Zone,
   2541                                     const RegPressureTracker &RPTracker,
   2542                                     RegPressureTracker &TempTracker) {
   2543 
   2544   if (DAG->isTrackingPressure()) {
   2545     // Always initialize TryCand's RPDelta.
   2546     if (Zone.isTop()) {
   2547       TempTracker.getMaxDownwardPressureDelta(
   2548         TryCand.SU->getInstr(),
   2549         TryCand.RPDelta,
   2550         DAG->getRegionCriticalPSets(),
   2551         DAG->getRegPressure().MaxSetPressure);
   2552     }
   2553     else {
   2554       if (VerifyScheduling) {
   2555         TempTracker.getMaxUpwardPressureDelta(
   2556           TryCand.SU->getInstr(),
   2557           &DAG->getPressureDiff(TryCand.SU),
   2558           TryCand.RPDelta,
   2559           DAG->getRegionCriticalPSets(),
   2560           DAG->getRegPressure().MaxSetPressure);
   2561       }
   2562       else {
   2563         RPTracker.getUpwardPressureDelta(
   2564           TryCand.SU->getInstr(),
   2565           DAG->getPressureDiff(TryCand.SU),
   2566           TryCand.RPDelta,
   2567           DAG->getRegionCriticalPSets(),
   2568           DAG->getRegPressure().MaxSetPressure);
   2569       }
   2570     }
   2571   }
   2572   DEBUG(if (TryCand.RPDelta.Excess.isValid())
   2573           dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
   2574                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
   2575                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
   2576 
   2577   // Initialize the candidate if needed.
   2578   if (!Cand.isValid()) {
   2579     TryCand.Reason = NodeOrder;
   2580     return;
   2581   }
   2582 
   2583   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
   2584                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
   2585                  TryCand, Cand, PhysRegCopy))
   2586     return;
   2587 
   2588   // Avoid exceeding the target's limit. If signed PSetID is negative, it is
   2589   // invalid; convert it to INT_MAX to give it lowest priority.
   2590   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
   2591                                                Cand.RPDelta.Excess,
   2592                                                TryCand, Cand, RegExcess))
   2593     return;
   2594 
   2595   // Avoid increasing the max critical pressure in the scheduled region.
   2596   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
   2597                                                Cand.RPDelta.CriticalMax,
   2598                                                TryCand, Cand, RegCritical))
   2599     return;
   2600 
   2601   // For loops that are acyclic path limited, aggressively schedule for latency.
   2602   // This can result in very long dependence chains scheduled in sequence, so
   2603   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
   2604   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
   2605       && tryLatency(TryCand, Cand, Zone))
   2606     return;
   2607 
   2608   // Prioritize instructions that read unbuffered resources by stall cycles.
   2609   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
   2610               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2611     return;
   2612 
   2613   // Keep clustered nodes together to encourage downstream peephole
   2614   // optimizations which may reduce resource requirements.
   2615   //
   2616   // This is a best effort to set things up for a post-RA pass. Optimizations
   2617   // like generating loads of multiple registers should ideally be done within
   2618   // the scheduler pass by combining the loads during DAG postprocessing.
   2619   const SUnit *NextClusterSU =
   2620     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   2621   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
   2622                  TryCand, Cand, Cluster))
   2623     return;
   2624 
   2625   // Weak edges are for clustering and other constraints.
   2626   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
   2627               getWeakLeft(Cand.SU, Zone.isTop()),
   2628               TryCand, Cand, Weak)) {
   2629     return;
   2630   }
   2631   // Avoid increasing the max pressure of the entire region.
   2632   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
   2633                                                Cand.RPDelta.CurrentMax,
   2634                                                TryCand, Cand, RegMax))
   2635     return;
   2636 
   2637   // Avoid critical resource consumption and balance the schedule.
   2638   TryCand.initResourceDelta(DAG, SchedModel);
   2639   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2640               TryCand, Cand, ResourceReduce))
   2641     return;
   2642   if (tryGreater(TryCand.ResDelta.DemandedResources,
   2643                  Cand.ResDelta.DemandedResources,
   2644                  TryCand, Cand, ResourceDemand))
   2645     return;
   2646 
   2647   // Avoid serializing long latency dependence chains.
   2648   // For acyclic path limited loops, latency was already checked above.
   2649   if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
   2650       && tryLatency(TryCand, Cand, Zone)) {
   2651     return;
   2652   }
   2653 
   2654   // Prefer immediate defs/users of the last scheduled instruction. This is a
   2655   // local pressure avoidance strategy that also makes the machine code
   2656   // readable.
   2657   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
   2658                  TryCand, Cand, NextDefUse))
   2659     return;
   2660 
   2661   // Fall through to original instruction order.
   2662   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2663       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
   2664     TryCand.Reason = NodeOrder;
   2665   }
   2666 }
   2667 
   2668 /// Pick the best candidate from the queue.
   2669 ///
   2670 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
   2671 /// DAG building. To adjust for the current scheduling location we need to
   2672 /// maintain the number of vreg uses remaining to be top-scheduled.
   2673 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
   2674                                          const RegPressureTracker &RPTracker,
   2675                                          SchedCandidate &Cand) {
   2676   ReadyQueue &Q = Zone.Available;
   2677 
   2678   DEBUG(Q.dump());
   2679 
   2680   // getMaxPressureDelta temporarily modifies the tracker.
   2681   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
   2682 
   2683   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2684 
   2685     SchedCandidate TryCand(Cand.Policy);
   2686     TryCand.SU = *I;
   2687     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
   2688     if (TryCand.Reason != NoCand) {
   2689       // Initialize resource delta if needed in case future heuristics query it.
   2690       if (TryCand.ResDelta == SchedResourceDelta())
   2691         TryCand.initResourceDelta(DAG, SchedModel);
   2692       Cand.setBest(TryCand);
   2693       DEBUG(traceCandidate(Cand));
   2694     }
   2695   }
   2696 }
   2697 
   2698 /// Pick the best candidate node from either the top or bottom queue.
   2699 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
   2700   // Schedule as far as possible in the direction of no choice. This is most
   2701   // efficient, but also provides the best heuristics for CriticalPSets.
   2702   if (SUnit *SU = Bot.pickOnlyChoice()) {
   2703     IsTopNode = false;
   2704     DEBUG(dbgs() << "Pick Bot NOCAND\n");
   2705     return SU;
   2706   }
   2707   if (SUnit *SU = Top.pickOnlyChoice()) {
   2708     IsTopNode = true;
   2709     DEBUG(dbgs() << "Pick Top NOCAND\n");
   2710     return SU;
   2711   }
   2712   CandPolicy NoPolicy;
   2713   SchedCandidate BotCand(NoPolicy);
   2714   SchedCandidate TopCand(NoPolicy);
   2715   // Set the bottom-up policy based on the state of the current bottom zone and
   2716   // the instructions outside the zone, including the top zone.
   2717   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
   2718   // Set the top-down policy based on the state of the current top zone and
   2719   // the instructions outside the zone, including the bottom zone.
   2720   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
   2721 
   2722   // Prefer bottom scheduling when heuristics are silent.
   2723   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2724   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   2725 
   2726   // If either Q has a single candidate that provides the least increase in
   2727   // Excess pressure, we can immediately schedule from that Q.
   2728   //
   2729   // RegionCriticalPSets summarizes the pressure within the scheduled region and
   2730   // affects picking from either Q. If scheduling in one direction must
   2731   // increase pressure for one of the excess PSets, then schedule in that
   2732   // direction first to provide more freedom in the other direction.
   2733   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
   2734       || (BotCand.Reason == RegCritical
   2735           && !BotCand.isRepeat(RegCritical)))
   2736   {
   2737     IsTopNode = false;
   2738     tracePick(BotCand, IsTopNode);
   2739     return BotCand.SU;
   2740   }
   2741   // Check if the top Q has a better candidate.
   2742   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2743   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2744 
   2745   // Choose the queue with the most important (lowest enum) reason.
   2746   if (TopCand.Reason < BotCand.Reason) {
   2747     IsTopNode = true;
   2748     tracePick(TopCand, IsTopNode);
   2749     return TopCand.SU;
   2750   }
   2751   // Otherwise prefer the bottom candidate, in node order if all else failed.
   2752   IsTopNode = false;
   2753   tracePick(BotCand, IsTopNode);
   2754   return BotCand.SU;
   2755 }
   2756 
   2757 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
   2758 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
   2759   if (DAG->top() == DAG->bottom()) {
   2760     assert(Top.Available.empty() && Top.Pending.empty() &&
   2761            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
   2762     return nullptr;
   2763   }
   2764   SUnit *SU;
   2765   do {
   2766     if (RegionPolicy.OnlyTopDown) {
   2767       SU = Top.pickOnlyChoice();
   2768       if (!SU) {
   2769         CandPolicy NoPolicy;
   2770         SchedCandidate TopCand(NoPolicy);
   2771         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2772         assert(TopCand.Reason != NoCand && "failed to find a candidate");
   2773         tracePick(TopCand, true);
   2774         SU = TopCand.SU;
   2775       }
   2776       IsTopNode = true;
   2777     }
   2778     else if (RegionPolicy.OnlyBottomUp) {
   2779       SU = Bot.pickOnlyChoice();
   2780       if (!SU) {
   2781         CandPolicy NoPolicy;
   2782         SchedCandidate BotCand(NoPolicy);
   2783         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2784         assert(BotCand.Reason != NoCand && "failed to find a candidate");
   2785         tracePick(BotCand, false);
   2786         SU = BotCand.SU;
   2787       }
   2788       IsTopNode = false;
   2789     }
   2790     else {
   2791       SU = pickNodeBidirectional(IsTopNode);
   2792     }
   2793   } while (SU->isScheduled);
   2794 
   2795   if (SU->isTopReady())
   2796     Top.removeReady(SU);
   2797   if (SU->isBottomReady())
   2798     Bot.removeReady(SU);
   2799 
   2800   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   2801   return SU;
   2802 }
   2803 
   2804 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
   2805 
   2806   MachineBasicBlock::iterator InsertPos = SU->getInstr();
   2807   if (!isTop)
   2808     ++InsertPos;
   2809   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
   2810 
   2811   // Find already scheduled copies with a single physreg dependence and move
   2812   // them just above the scheduled instruction.
   2813   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
   2814        I != E; ++I) {
   2815     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
   2816       continue;
   2817     SUnit *DepSU = I->getSUnit();
   2818     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
   2819       continue;
   2820     MachineInstr *Copy = DepSU->getInstr();
   2821     if (!Copy->isCopy())
   2822       continue;
   2823     DEBUG(dbgs() << "  Rescheduling physreg copy ";
   2824           I->getSUnit()->dump(DAG));
   2825     DAG->moveInstruction(Copy, InsertPos);
   2826   }
   2827 }
   2828 
   2829 /// Update the scheduler's state after scheduling a node. This is the same node
   2830 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
   2831 /// update it's state based on the current cycle before MachineSchedStrategy
   2832 /// does.
   2833 ///
   2834 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
   2835 /// them here. See comments in biasPhysRegCopy.
   2836 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   2837   if (IsTopNode) {
   2838     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   2839     Top.bumpNode(SU);
   2840     if (SU->hasPhysRegUses)
   2841       reschedulePhysRegCopies(SU, true);
   2842   }
   2843   else {
   2844     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
   2845     Bot.bumpNode(SU);
   2846     if (SU->hasPhysRegDefs)
   2847       reschedulePhysRegCopies(SU, false);
   2848   }
   2849 }
   2850 
   2851 /// Create the standard converging machine scheduler. This will be used as the
   2852 /// default scheduler if the target does not set a default.
   2853 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
   2854   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
   2855   // Register DAG post-processors.
   2856   //
   2857   // FIXME: extend the mutation API to allow earlier mutations to instantiate
   2858   // data and pass it to later mutations. Have a single mutation that gathers
   2859   // the interesting nodes in one pass.
   2860   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
   2861   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
   2862     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
   2863   if (EnableMacroFusion)
   2864     DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
   2865   return DAG;
   2866 }
   2867 
   2868 static MachineSchedRegistry
   2869 GenericSchedRegistry("converge", "Standard converging scheduler.",
   2870                      createGenericSchedLive);
   2871 
   2872 //===----------------------------------------------------------------------===//
   2873 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
   2874 //===----------------------------------------------------------------------===//
   2875 
   2876 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
   2877   DAG = Dag;
   2878   SchedModel = DAG->getSchedModel();
   2879   TRI = DAG->TRI;
   2880 
   2881   Rem.init(DAG, SchedModel);
   2882   Top.init(DAG, SchedModel, &Rem);
   2883   BotRoots.clear();
   2884 
   2885   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
   2886   // or are disabled, then these HazardRecs will be disabled.
   2887   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2888   const TargetMachine &TM = DAG->MF.getTarget();
   2889   if (!Top.HazardRec) {
   2890     Top.HazardRec =
   2891       TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
   2892   }
   2893 }
   2894 
   2895 
   2896 void PostGenericScheduler::registerRoots() {
   2897   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2898 
   2899   // Some roots may not feed into ExitSU. Check all of them in case.
   2900   for (SmallVectorImpl<SUnit*>::const_iterator
   2901          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
   2902     if ((*I)->getDepth() > Rem.CriticalPath)
   2903       Rem.CriticalPath = (*I)->getDepth();
   2904   }
   2905   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
   2906 }
   2907 
   2908 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
   2909 ///
   2910 /// \param Cand provides the policy and current best candidate.
   2911 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2912 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
   2913                                         SchedCandidate &TryCand) {
   2914 
   2915   // Initialize the candidate if needed.
   2916   if (!Cand.isValid()) {
   2917     TryCand.Reason = NodeOrder;
   2918     return;
   2919   }
   2920 
   2921   // Prioritize instructions that read unbuffered resources by stall cycles.
   2922   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
   2923               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2924     return;
   2925 
   2926   // Avoid critical resource consumption and balance the schedule.
   2927   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2928               TryCand, Cand, ResourceReduce))
   2929     return;
   2930   if (tryGreater(TryCand.ResDelta.DemandedResources,
   2931                  Cand.ResDelta.DemandedResources,
   2932                  TryCand, Cand, ResourceDemand))
   2933     return;
   2934 
   2935   // Avoid serializing long latency dependence chains.
   2936   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
   2937     return;
   2938   }
   2939 
   2940   // Fall through to original instruction order.
   2941   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2942     TryCand.Reason = NodeOrder;
   2943 }
   2944 
   2945 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
   2946   ReadyQueue &Q = Top.Available;
   2947 
   2948   DEBUG(Q.dump());
   2949 
   2950   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2951     SchedCandidate TryCand(Cand.Policy);
   2952     TryCand.SU = *I;
   2953     TryCand.initResourceDelta(DAG, SchedModel);
   2954     tryCandidate(Cand, TryCand);
   2955     if (TryCand.Reason != NoCand) {
   2956       Cand.setBest(TryCand);
   2957       DEBUG(traceCandidate(Cand));
   2958     }
   2959   }
   2960 }
   2961 
   2962 /// Pick the next node to schedule.
   2963 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
   2964   if (DAG->top() == DAG->bottom()) {
   2965     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
   2966     return nullptr;
   2967   }
   2968   SUnit *SU;
   2969   do {
   2970     SU = Top.pickOnlyChoice();
   2971     if (!SU) {
   2972       CandPolicy NoPolicy;
   2973       SchedCandidate TopCand(NoPolicy);
   2974       // Set the top-down policy based on the state of the current top zone and
   2975       // the instructions outside the zone, including the bottom zone.
   2976       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
   2977       pickNodeFromQueue(TopCand);
   2978       assert(TopCand.Reason != NoCand && "failed to find a candidate");
   2979       tracePick(TopCand, true);
   2980       SU = TopCand.SU;
   2981     }
   2982   } while (SU->isScheduled);
   2983 
   2984   IsTopNode = true;
   2985   Top.removeReady(SU);
   2986 
   2987   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   2988   return SU;
   2989 }
   2990 
   2991 /// Called after ScheduleDAGMI has scheduled an instruction and updated
   2992 /// scheduled/remaining flags in the DAG nodes.
   2993 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   2994   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   2995   Top.bumpNode(SU);
   2996 }
   2997 
   2998 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
   2999 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
   3000   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
   3001 }
   3002 
   3003 //===----------------------------------------------------------------------===//
   3004 // ILP Scheduler. Currently for experimental analysis of heuristics.
   3005 //===----------------------------------------------------------------------===//
   3006 
   3007 namespace {
   3008 /// \brief Order nodes by the ILP metric.
   3009 struct ILPOrder {
   3010   const SchedDFSResult *DFSResult;
   3011   const BitVector *ScheduledTrees;
   3012   bool MaximizeILP;
   3013 
   3014   ILPOrder(bool MaxILP)
   3015     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
   3016 
   3017   /// \brief Apply a less-than relation on node priority.
   3018   ///
   3019   /// (Return true if A comes after B in the Q.)
   3020   bool operator()(const SUnit *A, const SUnit *B) const {
   3021     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
   3022     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
   3023     if (SchedTreeA != SchedTreeB) {
   3024       // Unscheduled trees have lower priority.
   3025       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
   3026         return ScheduledTrees->test(SchedTreeB);
   3027 
   3028       // Trees with shallower connections have have lower priority.
   3029       if (DFSResult->getSubtreeLevel(SchedTreeA)
   3030           != DFSResult->getSubtreeLevel(SchedTreeB)) {
   3031         return DFSResult->getSubtreeLevel(SchedTreeA)
   3032           < DFSResult->getSubtreeLevel(SchedTreeB);
   3033       }
   3034     }
   3035     if (MaximizeILP)
   3036       return DFSResult->getILP(A) < DFSResult->getILP(B);
   3037     else
   3038       return DFSResult->getILP(A) > DFSResult->getILP(B);
   3039   }
   3040 };
   3041 
   3042 /// \brief Schedule based on the ILP metric.
   3043 class ILPScheduler : public MachineSchedStrategy {
   3044   ScheduleDAGMILive *DAG;
   3045   ILPOrder Cmp;
   3046 
   3047   std::vector<SUnit*> ReadyQ;
   3048 public:
   3049   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
   3050 
   3051   void initialize(ScheduleDAGMI *dag) override {
   3052     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
   3053     DAG = static_cast<ScheduleDAGMILive*>(dag);
   3054     DAG->computeDFSResult();
   3055     Cmp.DFSResult = DAG->getDFSResult();
   3056     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
   3057     ReadyQ.clear();
   3058   }
   3059 
   3060   void registerRoots() override {
   3061     // Restore the heap in ReadyQ with the updated DFS results.
   3062     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3063   }
   3064 
   3065   /// Implement MachineSchedStrategy interface.
   3066   /// -----------------------------------------
   3067 
   3068   /// Callback to select the highest priority node from the ready Q.
   3069   SUnit *pickNode(bool &IsTopNode) override {
   3070     if (ReadyQ.empty()) return nullptr;
   3071     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3072     SUnit *SU = ReadyQ.back();
   3073     ReadyQ.pop_back();
   3074     IsTopNode = false;
   3075     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
   3076           << " ILP: " << DAG->getDFSResult()->getILP(SU)
   3077           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
   3078           << DAG->getDFSResult()->getSubtreeLevel(
   3079             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
   3080           << "Scheduling " << *SU->getInstr());
   3081     return SU;
   3082   }
   3083 
   3084   /// \brief Scheduler callback to notify that a new subtree is scheduled.
   3085   void scheduleTree(unsigned SubtreeID) override {
   3086     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3087   }
   3088 
   3089   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
   3090   /// DFSResults, and resort the priority Q.
   3091   void schedNode(SUnit *SU, bool IsTopNode) override {
   3092     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
   3093   }
   3094 
   3095   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
   3096 
   3097   void releaseBottomNode(SUnit *SU) override {
   3098     ReadyQ.push_back(SU);
   3099     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3100   }
   3101 };
   3102 } // namespace
   3103 
   3104 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
   3105   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
   3106 }
   3107 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
   3108   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
   3109 }
   3110 static MachineSchedRegistry ILPMaxRegistry(
   3111   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
   3112 static MachineSchedRegistry ILPMinRegistry(
   3113   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
   3114 
   3115 //===----------------------------------------------------------------------===//
   3116 // Machine Instruction Shuffler for Correctness Testing
   3117 //===----------------------------------------------------------------------===//
   3118 
   3119 #ifndef NDEBUG
   3120 namespace {
   3121 /// Apply a less-than relation on the node order, which corresponds to the
   3122 /// instruction order prior to scheduling. IsReverse implements greater-than.
   3123 template<bool IsReverse>
   3124 struct SUnitOrder {
   3125   bool operator()(SUnit *A, SUnit *B) const {
   3126     if (IsReverse)
   3127       return A->NodeNum > B->NodeNum;
   3128     else
   3129       return A->NodeNum < B->NodeNum;
   3130   }
   3131 };
   3132 
   3133 /// Reorder instructions as much as possible.
   3134 class InstructionShuffler : public MachineSchedStrategy {
   3135   bool IsAlternating;
   3136   bool IsTopDown;
   3137 
   3138   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
   3139   // gives nodes with a higher number higher priority causing the latest
   3140   // instructions to be scheduled first.
   3141   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
   3142     TopQ;
   3143   // When scheduling bottom-up, use greater-than as the queue priority.
   3144   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
   3145     BottomQ;
   3146 public:
   3147   InstructionShuffler(bool alternate, bool topdown)
   3148     : IsAlternating(alternate), IsTopDown(topdown) {}
   3149 
   3150   void initialize(ScheduleDAGMI*) override {
   3151     TopQ.clear();
   3152     BottomQ.clear();
   3153   }
   3154 
   3155   /// Implement MachineSchedStrategy interface.
   3156   /// -----------------------------------------
   3157 
   3158   SUnit *pickNode(bool &IsTopNode) override {
   3159     SUnit *SU;
   3160     if (IsTopDown) {
   3161       do {
   3162         if (TopQ.empty()) return nullptr;
   3163         SU = TopQ.top();
   3164         TopQ.pop();
   3165       } while (SU->isScheduled);
   3166       IsTopNode = true;
   3167     }
   3168     else {
   3169       do {
   3170         if (BottomQ.empty()) return nullptr;
   3171         SU = BottomQ.top();
   3172         BottomQ.pop();
   3173       } while (SU->isScheduled);
   3174       IsTopNode = false;
   3175     }
   3176     if (IsAlternating)
   3177       IsTopDown = !IsTopDown;
   3178     return SU;
   3179   }
   3180 
   3181   void schedNode(SUnit *SU, bool IsTopNode) override {}
   3182 
   3183   void releaseTopNode(SUnit *SU) override {
   3184     TopQ.push(SU);
   3185   }
   3186   void releaseBottomNode(SUnit *SU) override {
   3187     BottomQ.push(SU);
   3188   }
   3189 };
   3190 } // namespace
   3191 
   3192 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   3193   bool Alternate = !ForceTopDown && !ForceBottomUp;
   3194   bool TopDown = !ForceBottomUp;
   3195   assert((TopDown || !ForceTopDown) &&
   3196          "-misched-topdown incompatible with -misched-bottomup");
   3197   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
   3198 }
   3199 static MachineSchedRegistry ShufflerRegistry(
   3200   "shuffle", "Shuffle machine instructions alternating directions",
   3201   createInstructionShuffler);
   3202 #endif // !NDEBUG
   3203 
   3204 //===----------------------------------------------------------------------===//
   3205 // GraphWriter support for ScheduleDAGMILive.
   3206 //===----------------------------------------------------------------------===//
   3207 
   3208 #ifndef NDEBUG
   3209 namespace llvm {
   3210 
   3211 template<> struct GraphTraits<
   3212   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
   3213 
   3214 template<>
   3215 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
   3216 
   3217   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   3218 
   3219   static std::string getGraphName(const ScheduleDAG *G) {
   3220     return G->MF.getName();
   3221   }
   3222 
   3223   static bool renderGraphFromBottomUp() {
   3224     return true;
   3225   }
   3226 
   3227   static bool isNodeHidden(const SUnit *Node) {
   3228     return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
   3229   }
   3230 
   3231   static bool hasNodeAddressLabel(const SUnit *Node,
   3232                                   const ScheduleDAG *Graph) {
   3233     return false;
   3234   }
   3235 
   3236   /// If you want to override the dot attributes printed for a particular
   3237   /// edge, override this method.
   3238   static std::string getEdgeAttributes(const SUnit *Node,
   3239                                        SUnitIterator EI,
   3240                                        const ScheduleDAG *Graph) {
   3241     if (EI.isArtificialDep())
   3242       return "color=cyan,style=dashed";
   3243     if (EI.isCtrlDep())
   3244       return "color=blue,style=dashed";
   3245     return "";
   3246   }
   3247 
   3248   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
   3249     std::string Str;
   3250     raw_string_ostream SS(Str);
   3251     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3252     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3253       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3254     SS << "SU:" << SU->NodeNum;
   3255     if (DFS)
   3256       SS << " I:" << DFS->getNumInstrs(SU);
   3257     return SS.str();
   3258   }
   3259   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
   3260     return G->getGraphNodeLabel(SU);
   3261   }
   3262 
   3263   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
   3264     std::string Str("shape=Mrecord");
   3265     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3266     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3267       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3268     if (DFS) {
   3269       Str += ",style=filled,fillcolor=\"#";
   3270       Str += DOT::getColorString(DFS->getSubtreeID(N));
   3271       Str += '"';
   3272     }
   3273     return Str;
   3274   }
   3275 };
   3276 } // namespace llvm
   3277 #endif // NDEBUG
   3278 
   3279 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
   3280 /// rendered using 'dot'.
   3281 ///
   3282 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
   3283 #ifndef NDEBUG
   3284   ViewGraph(this, Name, false, Title);
   3285 #else
   3286   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
   3287          << "systems with Graphviz or gv!\n";
   3288 #endif  // NDEBUG
   3289 }
   3290 
   3291 /// Out-of-line implementation with no arguments is handy for gdb.
   3292 void ScheduleDAGMI::viewGraph() {
   3293   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
   3294 }
   3295