Home | History | Annotate | Download | only in output
      1 // Copyright 2010 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/output/gl_renderer.h"
      6 
      7 #include <algorithm>
      8 #include <limits>
      9 #include <set>
     10 #include <string>
     11 #include <vector>
     12 
     13 #include "base/debug/trace_event.h"
     14 #include "base/logging.h"
     15 #include "cc/base/math_util.h"
     16 #include "cc/layers/video_layer_impl.h"
     17 #include "cc/output/compositor_frame.h"
     18 #include "cc/output/compositor_frame_metadata.h"
     19 #include "cc/output/context_provider.h"
     20 #include "cc/output/copy_output_request.h"
     21 #include "cc/output/geometry_binding.h"
     22 #include "cc/output/gl_frame_data.h"
     23 #include "cc/output/output_surface.h"
     24 #include "cc/output/render_surface_filters.h"
     25 #include "cc/quads/picture_draw_quad.h"
     26 #include "cc/quads/render_pass.h"
     27 #include "cc/quads/stream_video_draw_quad.h"
     28 #include "cc/quads/texture_draw_quad.h"
     29 #include "cc/resources/layer_quad.h"
     30 #include "cc/resources/scoped_resource.h"
     31 #include "cc/resources/texture_mailbox_deleter.h"
     32 #include "gpu/GLES2/gl2extchromium.h"
     33 #include "gpu/command_buffer/client/context_support.h"
     34 #include "gpu/command_buffer/client/gles2_interface.h"
     35 #include "gpu/command_buffer/common/gpu_memory_allocation.h"
     36 #include "third_party/skia/include/core/SkBitmap.h"
     37 #include "third_party/skia/include/core/SkColor.h"
     38 #include "third_party/skia/include/core/SkColorFilter.h"
     39 #include "third_party/skia/include/core/SkImage.h"
     40 #include "third_party/skia/include/core/SkSurface.h"
     41 #include "third_party/skia/include/gpu/GrContext.h"
     42 #include "third_party/skia/include/gpu/GrTexture.h"
     43 #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h"
     44 #include "third_party/skia/include/gpu/gl/GrGLInterface.h"
     45 #include "ui/gfx/geometry/quad_f.h"
     46 #include "ui/gfx/geometry/rect_conversions.h"
     47 
     48 using gpu::gles2::GLES2Interface;
     49 
     50 namespace cc {
     51 namespace {
     52 
     53 class FallbackFence : public ResourceProvider::Fence {
     54  public:
     55   explicit FallbackFence(gpu::gles2::GLES2Interface* gl)
     56       : gl_(gl), has_passed_(true) {}
     57 
     58   // Overridden from ResourceProvider::Fence:
     59   virtual void Set() OVERRIDE { has_passed_ = false; }
     60   virtual bool HasPassed() OVERRIDE {
     61     if (!has_passed_) {
     62       has_passed_ = true;
     63       Synchronize();
     64     }
     65     return true;
     66   }
     67 
     68  private:
     69   virtual ~FallbackFence() {}
     70 
     71   void Synchronize() {
     72     TRACE_EVENT0("cc", "FallbackFence::Synchronize");
     73     gl_->Finish();
     74   }
     75 
     76   gpu::gles2::GLES2Interface* gl_;
     77   bool has_passed_;
     78 
     79   DISALLOW_COPY_AND_ASSIGN(FallbackFence);
     80 };
     81 
     82 bool NeedsIOSurfaceReadbackWorkaround() {
     83 #if defined(OS_MACOSX)
     84   // This isn't strictly required in DumpRenderTree-mode when Mesa is used,
     85   // but it doesn't seem to hurt.
     86   return true;
     87 #else
     88   return false;
     89 #endif
     90 }
     91 
     92 Float4 UVTransform(const TextureDrawQuad* quad) {
     93   gfx::PointF uv0 = quad->uv_top_left;
     94   gfx::PointF uv1 = quad->uv_bottom_right;
     95   Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
     96   if (quad->flipped) {
     97     xform.data[1] = 1.0f - xform.data[1];
     98     xform.data[3] = -xform.data[3];
     99   }
    100   return xform;
    101 }
    102 
    103 Float4 PremultipliedColor(SkColor color) {
    104   const float factor = 1.0f / 255.0f;
    105   const float alpha = SkColorGetA(color) * factor;
    106 
    107   Float4 result = {
    108       {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
    109        SkColorGetB(color) * factor * alpha, alpha}};
    110   return result;
    111 }
    112 
    113 SamplerType SamplerTypeFromTextureTarget(GLenum target) {
    114   switch (target) {
    115     case GL_TEXTURE_2D:
    116       return SamplerType2D;
    117     case GL_TEXTURE_RECTANGLE_ARB:
    118       return SamplerType2DRect;
    119     case GL_TEXTURE_EXTERNAL_OES:
    120       return SamplerTypeExternalOES;
    121     default:
    122       NOTREACHED();
    123       return SamplerType2D;
    124   }
    125 }
    126 
    127 // Smallest unit that impact anti-aliasing output. We use this to
    128 // determine when anti-aliasing is unnecessary.
    129 const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
    130 
    131 // Block or crash if the number of pending sync queries reach this high as
    132 // something is seriously wrong on the service side if this happens.
    133 const size_t kMaxPendingSyncQueries = 16;
    134 
    135 }  // anonymous namespace
    136 
    137 static GLint GetActiveTextureUnit(GLES2Interface* gl) {
    138   GLint active_unit = 0;
    139   gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit);
    140   return active_unit;
    141 }
    142 
    143 class GLRenderer::ScopedUseGrContext {
    144  public:
    145   static scoped_ptr<ScopedUseGrContext> Create(GLRenderer* renderer,
    146                                                DrawingFrame* frame) {
    147     if (!renderer->output_surface_->context_provider()->GrContext())
    148       return scoped_ptr<ScopedUseGrContext>();
    149     return make_scoped_ptr(new ScopedUseGrContext(renderer, frame));
    150   }
    151 
    152   ~ScopedUseGrContext() { PassControlToGLRenderer(); }
    153 
    154   GrContext* context() const {
    155     return renderer_->output_surface_->context_provider()->GrContext();
    156   }
    157 
    158  private:
    159   ScopedUseGrContext(GLRenderer* renderer, DrawingFrame* frame)
    160       : renderer_(renderer), frame_(frame) {
    161     PassControlToSkia();
    162   }
    163 
    164   void PassControlToSkia() { context()->resetContext(); }
    165 
    166   void PassControlToGLRenderer() {
    167     renderer_->RestoreGLState();
    168     renderer_->RestoreFramebuffer(frame_);
    169   }
    170 
    171   GLRenderer* renderer_;
    172   DrawingFrame* frame_;
    173 
    174   DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext);
    175 };
    176 
    177 struct GLRenderer::PendingAsyncReadPixels {
    178   PendingAsyncReadPixels() : buffer(0) {}
    179 
    180   scoped_ptr<CopyOutputRequest> copy_request;
    181   base::CancelableClosure finished_read_pixels_callback;
    182   unsigned buffer;
    183 
    184  private:
    185   DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
    186 };
    187 
    188 class GLRenderer::SyncQuery {
    189  public:
    190   explicit SyncQuery(gpu::gles2::GLES2Interface* gl)
    191       : gl_(gl), query_id_(0u), is_pending_(false), weak_ptr_factory_(this) {
    192     gl_->GenQueriesEXT(1, &query_id_);
    193   }
    194   virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); }
    195 
    196   scoped_refptr<ResourceProvider::Fence> Begin() {
    197     DCHECK(!IsPending());
    198     // Invalidate weak pointer held by old fence.
    199     weak_ptr_factory_.InvalidateWeakPtrs();
    200     // Note: In case the set of drawing commands issued before End() do not
    201     // depend on the query, defer BeginQueryEXT call until Set() is called and
    202     // query is required.
    203     return make_scoped_refptr<ResourceProvider::Fence>(
    204         new Fence(weak_ptr_factory_.GetWeakPtr()));
    205   }
    206 
    207   void Set() {
    208     if (is_pending_)
    209       return;
    210 
    211     // Note: BeginQueryEXT on GL_COMMANDS_COMPLETED_CHROMIUM is effectively a
    212     // noop relative to GL, so it doesn't matter where it happens but we still
    213     // make sure to issue this command when Set() is called (prior to issuing
    214     // any drawing commands that depend on query), in case some future extension
    215     // can take advantage of this.
    216     gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_);
    217     is_pending_ = true;
    218   }
    219 
    220   void End() {
    221     if (!is_pending_)
    222       return;
    223 
    224     gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM);
    225   }
    226 
    227   bool IsPending() {
    228     if (!is_pending_)
    229       return false;
    230 
    231     unsigned result_available = 1;
    232     gl_->GetQueryObjectuivEXT(
    233         query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &result_available);
    234     is_pending_ = !result_available;
    235     return is_pending_;
    236   }
    237 
    238   void Wait() {
    239     if (!is_pending_)
    240       return;
    241 
    242     unsigned result = 0;
    243     gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result);
    244     is_pending_ = false;
    245   }
    246 
    247  private:
    248   class Fence : public ResourceProvider::Fence {
    249    public:
    250     explicit Fence(base::WeakPtr<GLRenderer::SyncQuery> query)
    251         : query_(query) {}
    252 
    253     // Overridden from ResourceProvider::Fence:
    254     virtual void Set() OVERRIDE {
    255       DCHECK(query_);
    256       query_->Set();
    257     }
    258     virtual bool HasPassed() OVERRIDE {
    259       return !query_ || !query_->IsPending();
    260     }
    261 
    262    private:
    263     virtual ~Fence() {}
    264 
    265     base::WeakPtr<SyncQuery> query_;
    266 
    267     DISALLOW_COPY_AND_ASSIGN(Fence);
    268   };
    269 
    270   gpu::gles2::GLES2Interface* gl_;
    271   unsigned query_id_;
    272   bool is_pending_;
    273   base::WeakPtrFactory<SyncQuery> weak_ptr_factory_;
    274 
    275   DISALLOW_COPY_AND_ASSIGN(SyncQuery);
    276 };
    277 
    278 scoped_ptr<GLRenderer> GLRenderer::Create(
    279     RendererClient* client,
    280     const LayerTreeSettings* settings,
    281     OutputSurface* output_surface,
    282     ResourceProvider* resource_provider,
    283     TextureMailboxDeleter* texture_mailbox_deleter,
    284     int highp_threshold_min) {
    285   return make_scoped_ptr(new GLRenderer(client,
    286                                         settings,
    287                                         output_surface,
    288                                         resource_provider,
    289                                         texture_mailbox_deleter,
    290                                         highp_threshold_min));
    291 }
    292 
    293 GLRenderer::GLRenderer(RendererClient* client,
    294                        const LayerTreeSettings* settings,
    295                        OutputSurface* output_surface,
    296                        ResourceProvider* resource_provider,
    297                        TextureMailboxDeleter* texture_mailbox_deleter,
    298                        int highp_threshold_min)
    299     : DirectRenderer(client, settings, output_surface, resource_provider),
    300       offscreen_framebuffer_id_(0),
    301       shared_geometry_quad_(QuadVertexRect()),
    302       gl_(output_surface->context_provider()->ContextGL()),
    303       context_support_(output_surface->context_provider()->ContextSupport()),
    304       texture_mailbox_deleter_(texture_mailbox_deleter),
    305       is_backbuffer_discarded_(false),
    306       is_scissor_enabled_(false),
    307       scissor_rect_needs_reset_(true),
    308       stencil_shadow_(false),
    309       blend_shadow_(false),
    310       highp_threshold_min_(highp_threshold_min),
    311       highp_threshold_cache_(0),
    312       use_sync_query_(false),
    313       on_demand_tile_raster_resource_id_(0) {
    314   DCHECK(gl_);
    315   DCHECK(context_support_);
    316 
    317   ContextProvider::Capabilities context_caps =
    318       output_surface_->context_provider()->ContextCapabilities();
    319 
    320   capabilities_.using_partial_swap =
    321       settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer;
    322 
    323   DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle);
    324 
    325   capabilities_.using_egl_image = context_caps.gpu.egl_image_external;
    326 
    327   capabilities_.max_texture_size = resource_provider_->max_texture_size();
    328   capabilities_.best_texture_format = resource_provider_->best_texture_format();
    329 
    330   // The updater can access textures while the GLRenderer is using them.
    331   capabilities_.allow_partial_texture_updates = true;
    332 
    333   capabilities_.using_map_image = context_caps.gpu.map_image;
    334 
    335   capabilities_.using_discard_framebuffer =
    336       context_caps.gpu.discard_framebuffer;
    337 
    338   capabilities_.allow_rasterize_on_demand = true;
    339 
    340   use_sync_query_ = context_caps.gpu.sync_query;
    341 
    342   InitializeSharedObjects();
    343 }
    344 
    345 GLRenderer::~GLRenderer() {
    346   while (!pending_async_read_pixels_.empty()) {
    347     PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back();
    348     pending_read->finished_read_pixels_callback.Cancel();
    349     pending_async_read_pixels_.pop_back();
    350   }
    351 
    352   in_use_overlay_resources_.clear();
    353 
    354   CleanupSharedObjects();
    355 }
    356 
    357 const RendererCapabilitiesImpl& GLRenderer::Capabilities() const {
    358   return capabilities_;
    359 }
    360 
    361 void GLRenderer::DebugGLCall(GLES2Interface* gl,
    362                              const char* command,
    363                              const char* file,
    364                              int line) {
    365   GLuint error = gl->GetError();
    366   if (error != GL_NO_ERROR)
    367     LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line
    368                << "\n\tcommand: " << command << ", error "
    369                << static_cast<int>(error) << "\n";
    370 }
    371 
    372 void GLRenderer::DidChangeVisibility() {
    373   EnforceMemoryPolicy();
    374 
    375   context_support_->SetSurfaceVisible(visible());
    376 }
    377 
    378 void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
    379 
    380 void GLRenderer::DiscardPixels(bool has_external_stencil_test,
    381                                bool draw_rect_covers_full_surface) {
    382   if (has_external_stencil_test || !draw_rect_covers_full_surface ||
    383       !capabilities_.using_discard_framebuffer)
    384     return;
    385   bool using_default_framebuffer =
    386       !current_framebuffer_lock_ &&
    387       output_surface_->capabilities().uses_default_gl_framebuffer;
    388   GLenum attachments[] = {static_cast<GLenum>(
    389       using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
    390   gl_->DiscardFramebufferEXT(
    391       GL_FRAMEBUFFER, arraysize(attachments), attachments);
    392 }
    393 
    394 void GLRenderer::ClearFramebuffer(DrawingFrame* frame,
    395                                   bool has_external_stencil_test) {
    396   // It's unsafe to clear when we have a stencil test because glClear ignores
    397   // stencil.
    398   if (has_external_stencil_test) {
    399     DCHECK(!frame->current_render_pass->has_transparent_background);
    400     return;
    401   }
    402 
    403   // On DEBUG builds, opaque render passes are cleared to blue to easily see
    404   // regions that were not drawn on the screen.
    405   if (frame->current_render_pass->has_transparent_background)
    406     GLC(gl_, gl_->ClearColor(0, 0, 0, 0));
    407   else
    408     GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
    409 
    410   bool always_clear = false;
    411 #ifndef NDEBUG
    412   always_clear = true;
    413 #endif
    414   if (always_clear || frame->current_render_pass->has_transparent_background) {
    415     GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
    416     if (always_clear)
    417       clear_bits |= GL_STENCIL_BUFFER_BIT;
    418     gl_->Clear(clear_bits);
    419   }
    420 }
    421 
    422 static ResourceProvider::ResourceId WaitOnResourceSyncPoints(
    423     ResourceProvider* resource_provider,
    424     ResourceProvider::ResourceId resource_id) {
    425   resource_provider->WaitSyncPointIfNeeded(resource_id);
    426   return resource_id;
    427 }
    428 
    429 void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
    430   if (frame->device_viewport_rect.IsEmpty())
    431     return;
    432 
    433   TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
    434 
    435   scoped_refptr<ResourceProvider::Fence> read_lock_fence;
    436   if (use_sync_query_) {
    437     // Block until oldest sync query has passed if the number of pending queries
    438     // ever reach kMaxPendingSyncQueries.
    439     if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) {
    440       LOG(ERROR) << "Reached limit of pending sync queries.";
    441 
    442       pending_sync_queries_.front()->Wait();
    443       DCHECK(!pending_sync_queries_.front()->IsPending());
    444     }
    445 
    446     while (!pending_sync_queries_.empty()) {
    447       if (pending_sync_queries_.front()->IsPending())
    448         break;
    449 
    450       available_sync_queries_.push_back(pending_sync_queries_.take_front());
    451     }
    452 
    453     current_sync_query_ = available_sync_queries_.empty()
    454                               ? make_scoped_ptr(new SyncQuery(gl_))
    455                               : available_sync_queries_.take_front();
    456 
    457     read_lock_fence = current_sync_query_->Begin();
    458   } else {
    459     read_lock_fence = make_scoped_refptr(new FallbackFence(gl_));
    460   }
    461   resource_provider_->SetReadLockFence(read_lock_fence.get());
    462 
    463   // Insert WaitSyncPointCHROMIUM on quad resources prior to drawing the frame,
    464   // so that drawing can proceed without GL context switching interruptions.
    465   DrawQuad::ResourceIteratorCallback wait_on_resource_syncpoints_callback =
    466       base::Bind(&WaitOnResourceSyncPoints, resource_provider_);
    467 
    468   for (size_t i = 0; i < frame->render_passes_in_draw_order->size(); ++i) {
    469     RenderPass* pass = frame->render_passes_in_draw_order->at(i);
    470     for (QuadList::Iterator iter = pass->quad_list.begin();
    471          iter != pass->quad_list.end();
    472          ++iter) {
    473       iter->IterateResources(wait_on_resource_syncpoints_callback);
    474     }
    475   }
    476 
    477   // TODO(enne): Do we need to reinitialize all of this state per frame?
    478   ReinitializeGLState();
    479 }
    480 
    481 void GLRenderer::DoNoOp() {
    482   GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
    483   GLC(gl_, gl_->Flush());
    484 }
    485 
    486 void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) {
    487   DCHECK(quad->rect.Contains(quad->visible_rect));
    488   if (quad->material != DrawQuad::TEXTURE_CONTENT) {
    489     FlushTextureQuadCache();
    490   }
    491 
    492   switch (quad->material) {
    493     case DrawQuad::INVALID:
    494       NOTREACHED();
    495       break;
    496     case DrawQuad::CHECKERBOARD:
    497       DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad));
    498       break;
    499     case DrawQuad::DEBUG_BORDER:
    500       DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
    501       break;
    502     case DrawQuad::IO_SURFACE_CONTENT:
    503       DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad));
    504       break;
    505     case DrawQuad::PICTURE_CONTENT:
    506       DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad));
    507       break;
    508     case DrawQuad::RENDER_PASS:
    509       DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad));
    510       break;
    511     case DrawQuad::SOLID_COLOR:
    512       DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad));
    513       break;
    514     case DrawQuad::STREAM_VIDEO_CONTENT:
    515       DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad));
    516       break;
    517     case DrawQuad::SURFACE_CONTENT:
    518       // Surface content should be fully resolved to other quad types before
    519       // reaching a direct renderer.
    520       NOTREACHED();
    521       break;
    522     case DrawQuad::TEXTURE_CONTENT:
    523       EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad));
    524       break;
    525     case DrawQuad::TILED_CONTENT:
    526       DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad));
    527       break;
    528     case DrawQuad::YUV_VIDEO_CONTENT:
    529       DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad));
    530       break;
    531   }
    532 }
    533 
    534 void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame,
    535                                       const CheckerboardDrawQuad* quad) {
    536   SetBlendEnabled(quad->ShouldDrawWithBlending());
    537 
    538   const TileCheckerboardProgram* program = GetTileCheckerboardProgram();
    539   DCHECK(program && (program->initialized() || IsContextLost()));
    540   SetUseProgram(program->program());
    541 
    542   SkColor color = quad->color;
    543   GLC(gl_,
    544       gl_->Uniform4f(program->fragment_shader().color_location(),
    545                      SkColorGetR(color) * (1.0f / 255.0f),
    546                      SkColorGetG(color) * (1.0f / 255.0f),
    547                      SkColorGetB(color) * (1.0f / 255.0f),
    548                      1));
    549 
    550   const int checkerboard_width = 16;
    551   float frequency = 1.0f / checkerboard_width;
    552 
    553   gfx::Rect tile_rect = quad->rect;
    554   float tex_offset_x = tile_rect.x() % checkerboard_width;
    555   float tex_offset_y = tile_rect.y() % checkerboard_width;
    556   float tex_scale_x = tile_rect.width();
    557   float tex_scale_y = tile_rect.height();
    558   GLC(gl_,
    559       gl_->Uniform4f(program->fragment_shader().tex_transform_location(),
    560                      tex_offset_x,
    561                      tex_offset_y,
    562                      tex_scale_x,
    563                      tex_scale_y));
    564 
    565   GLC(gl_,
    566       gl_->Uniform1f(program->fragment_shader().frequency_location(),
    567                      frequency));
    568 
    569   SetShaderOpacity(quad->opacity(),
    570                    program->fragment_shader().alpha_location());
    571   DrawQuadGeometry(frame,
    572                    quad->quadTransform(),
    573                    quad->rect,
    574                    program->vertex_shader().matrix_location());
    575 }
    576 
    577 void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
    578                                      const DebugBorderDrawQuad* quad) {
    579   SetBlendEnabled(quad->ShouldDrawWithBlending());
    580 
    581   static float gl_matrix[16];
    582   const DebugBorderProgram* program = GetDebugBorderProgram();
    583   DCHECK(program && (program->initialized() || IsContextLost()));
    584   SetUseProgram(program->program());
    585 
    586   // Use the full quad_rect for debug quads to not move the edges based on
    587   // partial swaps.
    588   gfx::Rect layer_rect = quad->rect;
    589   gfx::Transform render_matrix;
    590   QuadRectTransform(&render_matrix, quad->quadTransform(), layer_rect);
    591   GLRenderer::ToGLMatrix(&gl_matrix[0],
    592                          frame->projection_matrix * render_matrix);
    593   GLC(gl_,
    594       gl_->UniformMatrix4fv(
    595           program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]));
    596 
    597   SkColor color = quad->color;
    598   float alpha = SkColorGetA(color) * (1.0f / 255.0f);
    599 
    600   GLC(gl_,
    601       gl_->Uniform4f(program->fragment_shader().color_location(),
    602                      (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
    603                      (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
    604                      (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
    605                      alpha));
    606 
    607   GLC(gl_, gl_->LineWidth(quad->width));
    608 
    609   // The indices for the line are stored in the same array as the triangle
    610   // indices.
    611   GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0));
    612 }
    613 
    614 static skia::RefPtr<SkImage> ApplyImageFilter(
    615     scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
    616     ResourceProvider* resource_provider,
    617     const gfx::Point& origin,
    618     const gfx::Vector2dF& scale,
    619     SkImageFilter* filter,
    620     ScopedResource* source_texture_resource) {
    621   if (!filter)
    622     return skia::RefPtr<SkImage>();
    623 
    624   if (!use_gr_context)
    625     return skia::RefPtr<SkImage>();
    626 
    627   ResourceProvider::ScopedReadLockGL lock(resource_provider,
    628                                           source_texture_resource->id());
    629 
    630   // Wrap the source texture in a Ganesh platform texture.
    631   GrBackendTextureDesc backend_texture_description;
    632   backend_texture_description.fWidth = source_texture_resource->size().width();
    633   backend_texture_description.fHeight =
    634       source_texture_resource->size().height();
    635   backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
    636   backend_texture_description.fTextureHandle = lock.texture_id();
    637   backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
    638   skia::RefPtr<GrTexture> texture =
    639       skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
    640           backend_texture_description));
    641   if (!texture) {
    642     TRACE_EVENT_INSTANT0("cc",
    643                          "ApplyImageFilter wrap background texture failed",
    644                          TRACE_EVENT_SCOPE_THREAD);
    645     return skia::RefPtr<SkImage>();
    646   }
    647 
    648   SkImageInfo info =
    649       SkImageInfo::MakeN32Premul(source_texture_resource->size().width(),
    650                                  source_texture_resource->size().height());
    651   // Place the platform texture inside an SkBitmap.
    652   SkBitmap source;
    653   source.setInfo(info);
    654   skia::RefPtr<SkGrPixelRef> pixel_ref =
    655       skia::AdoptRef(new SkGrPixelRef(info, texture.get()));
    656   source.setPixelRef(pixel_ref.get());
    657 
    658   // Create a scratch texture for backing store.
    659   GrTextureDesc desc;
    660   desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
    661   desc.fSampleCnt = 0;
    662   desc.fWidth = source.width();
    663   desc.fHeight = source.height();
    664   desc.fConfig = kSkia8888_GrPixelConfig;
    665   desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
    666   GrAutoScratchTexture scratch_texture(
    667       use_gr_context->context(), desc, GrContext::kExact_ScratchTexMatch);
    668   skia::RefPtr<GrTexture> backing_store =
    669       skia::AdoptRef(scratch_texture.detach());
    670   if (!backing_store) {
    671     TRACE_EVENT_INSTANT0("cc",
    672                          "ApplyImageFilter scratch texture allocation failed",
    673                          TRACE_EVENT_SCOPE_THREAD);
    674     return skia::RefPtr<SkImage>();
    675   }
    676 
    677   // Create surface to draw into.
    678   skia::RefPtr<SkSurface> surface = skia::AdoptRef(
    679       SkSurface::NewRenderTargetDirect(backing_store->asRenderTarget()));
    680   skia::RefPtr<SkCanvas> canvas = skia::SharePtr(surface->getCanvas());
    681 
    682   // Draw the source bitmap through the filter to the canvas.
    683   SkPaint paint;
    684   paint.setImageFilter(filter);
    685   canvas->clear(SK_ColorTRANSPARENT);
    686 
    687   canvas->translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y()));
    688   canvas->scale(scale.x(), scale.y());
    689   canvas->drawSprite(source, 0, 0, &paint);
    690 
    691   skia::RefPtr<SkImage> image = skia::AdoptRef(surface->newImageSnapshot());
    692   if (!image || !image->getTexture()) {
    693     return skia::RefPtr<SkImage>();
    694   }
    695 
    696   // Flush the GrContext to ensure all buffered GL calls are drawn to the
    697   // backing store before we access and return it, and have cc begin using the
    698   // GL context again.
    699   canvas->flush();
    700 
    701   return image;
    702 }
    703 
    704 static skia::RefPtr<SkImage> ApplyBlendModeWithBackdrop(
    705     scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
    706     ResourceProvider* resource_provider,
    707     skia::RefPtr<SkImage> source_bitmap_with_filters,
    708     ScopedResource* source_texture_resource,
    709     ScopedResource* background_texture_resource,
    710     SkXfermode::Mode blend_mode) {
    711   if (!use_gr_context)
    712     return source_bitmap_with_filters;
    713 
    714   DCHECK(background_texture_resource);
    715   DCHECK(source_texture_resource);
    716 
    717   gfx::Size source_size = source_texture_resource->size();
    718   gfx::Size background_size = background_texture_resource->size();
    719 
    720   DCHECK_LE(background_size.width(), source_size.width());
    721   DCHECK_LE(background_size.height(), source_size.height());
    722 
    723   int source_texture_with_filters_id;
    724   scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
    725   if (source_bitmap_with_filters) {
    726     DCHECK_EQ(source_size.width(), source_bitmap_with_filters->width());
    727     DCHECK_EQ(source_size.height(), source_bitmap_with_filters->height());
    728     GrTexture* texture =
    729         reinterpret_cast<GrTexture*>(source_bitmap_with_filters->getTexture());
    730     source_texture_with_filters_id = texture->getTextureHandle();
    731   } else {
    732     lock.reset(new ResourceProvider::ScopedReadLockGL(
    733         resource_provider, source_texture_resource->id()));
    734     source_texture_with_filters_id = lock->texture_id();
    735   }
    736 
    737   ResourceProvider::ScopedReadLockGL lock_background(
    738       resource_provider, background_texture_resource->id());
    739 
    740   // Wrap the source texture in a Ganesh platform texture.
    741   GrBackendTextureDesc backend_texture_description;
    742   backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
    743   backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
    744 
    745   backend_texture_description.fWidth = source_size.width();
    746   backend_texture_description.fHeight = source_size.height();
    747   backend_texture_description.fTextureHandle = source_texture_with_filters_id;
    748   skia::RefPtr<GrTexture> source_texture =
    749       skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
    750           backend_texture_description));
    751   if (!source_texture) {
    752     TRACE_EVENT_INSTANT0(
    753         "cc",
    754         "ApplyBlendModeWithBackdrop wrap source texture failed",
    755         TRACE_EVENT_SCOPE_THREAD);
    756     return skia::RefPtr<SkImage>();
    757   }
    758 
    759   backend_texture_description.fWidth = background_size.width();
    760   backend_texture_description.fHeight = background_size.height();
    761   backend_texture_description.fTextureHandle = lock_background.texture_id();
    762   skia::RefPtr<GrTexture> background_texture =
    763       skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
    764           backend_texture_description));
    765   if (!background_texture) {
    766     TRACE_EVENT_INSTANT0(
    767         "cc",
    768         "ApplyBlendModeWithBackdrop wrap background texture failed",
    769         TRACE_EVENT_SCOPE_THREAD);
    770     return skia::RefPtr<SkImage>();
    771   }
    772 
    773   SkImageInfo source_info =
    774       SkImageInfo::MakeN32Premul(source_size.width(), source_size.height());
    775   // Place the platform texture inside an SkBitmap.
    776   SkBitmap source;
    777   source.setInfo(source_info);
    778   skia::RefPtr<SkGrPixelRef> source_pixel_ref =
    779       skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get()));
    780   source.setPixelRef(source_pixel_ref.get());
    781 
    782   SkImageInfo background_info = SkImageInfo::MakeN32Premul(
    783       background_size.width(), background_size.height());
    784 
    785   SkBitmap background;
    786   background.setInfo(background_info);
    787   skia::RefPtr<SkGrPixelRef> background_pixel_ref =
    788       skia::AdoptRef(new SkGrPixelRef(
    789           background_info, background_texture.get()));
    790   background.setPixelRef(background_pixel_ref.get());
    791 
    792   // Create a scratch texture for backing store.
    793   GrTextureDesc desc;
    794   desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
    795   desc.fSampleCnt = 0;
    796   desc.fWidth = source.width();
    797   desc.fHeight = source.height();
    798   desc.fConfig = kSkia8888_GrPixelConfig;
    799   desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
    800   GrAutoScratchTexture scratch_texture(
    801       use_gr_context->context(), desc, GrContext::kExact_ScratchTexMatch);
    802   skia::RefPtr<GrTexture> backing_store =
    803       skia::AdoptRef(scratch_texture.detach());
    804   if (!backing_store) {
    805     TRACE_EVENT_INSTANT0(
    806         "cc",
    807         "ApplyBlendModeWithBackdrop scratch texture allocation failed",
    808         TRACE_EVENT_SCOPE_THREAD);
    809     return source_bitmap_with_filters;
    810   }
    811 
    812   // Create a device and canvas using that backing store.
    813   skia::RefPtr<SkSurface> surface = skia::AdoptRef(
    814       SkSurface::NewRenderTargetDirect(backing_store->asRenderTarget()));
    815   if (!surface)
    816     return skia::RefPtr<SkImage>();
    817   skia::RefPtr<SkCanvas> canvas = skia::SharePtr(surface->getCanvas());
    818 
    819   // Draw the source bitmap through the filter to the canvas.
    820   canvas->clear(SK_ColorTRANSPARENT);
    821   canvas->drawSprite(background, 0, 0);
    822   SkPaint paint;
    823   paint.setXfermodeMode(blend_mode);
    824   canvas->drawSprite(source, 0, 0, &paint);
    825 
    826   skia::RefPtr<SkImage> image = skia::AdoptRef(surface->newImageSnapshot());
    827   if (!image || !image->getTexture()) {
    828     return skia::RefPtr<SkImage>();
    829   }
    830 
    831   // Flush the GrContext to ensure all buffered GL calls are drawn to the
    832   // backing store before we access and return it, and have cc begin using the
    833   // GL context again.
    834   canvas->flush();
    835 
    836   return image;
    837 }
    838 
    839 scoped_ptr<ScopedResource> GLRenderer::GetBackgroundWithFilters(
    840     DrawingFrame* frame,
    841     const RenderPassDrawQuad* quad,
    842     const gfx::Transform& contents_device_transform,
    843     const gfx::Transform& contents_device_transform_inverse,
    844     bool* background_changed) {
    845   // This method draws a background filter, which applies a filter to any pixels
    846   // behind the quad and seen through its background.  The algorithm works as
    847   // follows:
    848   // 1. Compute a bounding box around the pixels that will be visible through
    849   // the quad.
    850   // 2. Read the pixels in the bounding box into a buffer R.
    851   // 3. Apply the background filter to R, so that it is applied in the pixels'
    852   // coordinate space.
    853   // 4. Apply the quad's inverse transform to map the pixels in R into the
    854   // quad's content space. This implicitly clips R by the content bounds of the
    855   // quad since the destination texture has bounds matching the quad's content.
    856   // 5. Draw the background texture for the contents using the same transform as
    857   // used to draw the contents itself. This is done without blending to replace
    858   // the current background pixels with the new filtered background.
    859   // 6. Draw the contents of the quad over drop of the new background with
    860   // blending, as per usual. The filtered background pixels will show through
    861   // any non-opaque pixels in this draws.
    862   //
    863   // Pixel copies in this algorithm occur at steps 2, 3, 4, and 5.
    864 
    865   // TODO(danakj): When this algorithm changes, update
    866   // LayerTreeHost::PrioritizeTextures() accordingly.
    867 
    868   // TODO(danakj): We only allow background filters on an opaque render surface
    869   // because other surfaces may contain translucent pixels, and the contents
    870   // behind those translucent pixels wouldn't have the filter applied.
    871   bool apply_background_filters =
    872       !frame->current_render_pass->has_transparent_background;
    873   DCHECK(!frame->current_texture);
    874 
    875   // TODO(ajuma): Add support for reference filters once
    876   // FilterOperations::GetOutsets supports reference filters.
    877   if (apply_background_filters && quad->background_filters.HasReferenceFilter())
    878     apply_background_filters = false;
    879 
    880   // TODO(danakj): Do a single readback for both the surface and replica and
    881   // cache the filtered results (once filter textures are not reused).
    882   gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
    883       contents_device_transform, SharedGeometryQuad().BoundingBox()));
    884 
    885   int top, right, bottom, left;
    886   quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
    887   window_rect.Inset(-left, -top, -right, -bottom);
    888 
    889   window_rect.Intersect(
    890       MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect));
    891 
    892   scoped_ptr<ScopedResource> device_background_texture =
    893       ScopedResource::Create(resource_provider_);
    894   // CopyTexImage2D fails when called on a texture having immutable storage.
    895   device_background_texture->Allocate(
    896       window_rect.size(), ResourceProvider::TextureHintDefault, RGBA_8888);
    897   {
    898     ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
    899                                              device_background_texture->id());
    900     GetFramebufferTexture(
    901         lock.texture_id(), device_background_texture->format(), window_rect);
    902   }
    903 
    904   skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
    905       quad->background_filters, device_background_texture->size());
    906 
    907   skia::RefPtr<SkImage> filtered_device_background;
    908   if (apply_background_filters) {
    909     filtered_device_background =
    910         ApplyImageFilter(ScopedUseGrContext::Create(this, frame),
    911                          resource_provider_,
    912                          quad->rect.origin(),
    913                          quad->filters_scale,
    914                          filter.get(),
    915                          device_background_texture.get());
    916   }
    917   *background_changed = (filtered_device_background != NULL);
    918 
    919   int filtered_device_background_texture_id = 0;
    920   scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
    921   if (filtered_device_background) {
    922     GrTexture* texture = filtered_device_background->getTexture();
    923     filtered_device_background_texture_id = texture->getTextureHandle();
    924   } else {
    925     lock.reset(new ResourceProvider::ScopedReadLockGL(
    926         resource_provider_, device_background_texture->id()));
    927     filtered_device_background_texture_id = lock->texture_id();
    928   }
    929 
    930   scoped_ptr<ScopedResource> background_texture =
    931       ScopedResource::Create(resource_provider_);
    932   background_texture->Allocate(
    933       quad->rect.size(),
    934       ResourceProvider::TextureHintImmutableFramebuffer,
    935       RGBA_8888);
    936 
    937   const RenderPass* target_render_pass = frame->current_render_pass;
    938   bool using_background_texture =
    939       UseScopedTexture(frame, background_texture.get(), quad->rect);
    940 
    941   if (using_background_texture) {
    942     // Copy the readback pixels from device to the background texture for the
    943     // surface.
    944     gfx::Transform device_to_framebuffer_transform;
    945     QuadRectTransform(
    946         &device_to_framebuffer_transform, gfx::Transform(), quad->rect);
    947     device_to_framebuffer_transform.PreconcatTransform(
    948         contents_device_transform_inverse);
    949 
    950 #ifndef NDEBUG
    951     GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
    952     gl_->Clear(GL_COLOR_BUFFER_BIT);
    953 #endif
    954 
    955     // The filtered_deveice_background_texture is oriented the same as the frame
    956     // buffer. The transform we are copying with has a vertical flip, as well as
    957     // the |device_to_framebuffer_transform|, which cancel each other out. So do
    958     // not flip the contents in the shader to maintain orientation.
    959     bool flip_vertically = false;
    960 
    961     CopyTextureToFramebuffer(frame,
    962                              filtered_device_background_texture_id,
    963                              window_rect,
    964                              device_to_framebuffer_transform,
    965                              flip_vertically);
    966   }
    967 
    968   UseRenderPass(frame, target_render_pass);
    969 
    970   if (!using_background_texture)
    971     return scoped_ptr<ScopedResource>();
    972   return background_texture.Pass();
    973 }
    974 
    975 void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
    976                                     const RenderPassDrawQuad* quad) {
    977   SetBlendEnabled(quad->ShouldDrawWithBlending());
    978 
    979   ScopedResource* contents_texture =
    980       render_pass_textures_.get(quad->render_pass_id);
    981   if (!contents_texture || !contents_texture->id())
    982     return;
    983 
    984   gfx::Transform quad_rect_matrix;
    985   QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
    986   gfx::Transform contents_device_transform =
    987       frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
    988   contents_device_transform.FlattenTo2d();
    989 
    990   // Can only draw surface if device matrix is invertible.
    991   gfx::Transform contents_device_transform_inverse(
    992       gfx::Transform::kSkipInitialization);
    993   if (!contents_device_transform.GetInverse(&contents_device_transform_inverse))
    994     return;
    995 
    996   bool need_background_texture =
    997       quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode ||
    998       !quad->background_filters.IsEmpty();
    999   bool background_changed = false;
   1000   scoped_ptr<ScopedResource> background_texture;
   1001   if (need_background_texture) {
   1002     // The pixels from the filtered background should completely replace the
   1003     // current pixel values.
   1004     bool disable_blending = blend_enabled();
   1005     if (disable_blending)
   1006       SetBlendEnabled(false);
   1007 
   1008     background_texture =
   1009         GetBackgroundWithFilters(frame,
   1010                                  quad,
   1011                                  contents_device_transform,
   1012                                  contents_device_transform_inverse,
   1013                                  &background_changed);
   1014 
   1015     if (disable_blending)
   1016       SetBlendEnabled(true);
   1017   }
   1018 
   1019   // TODO(senorblanco): Cache this value so that we don't have to do it for both
   1020   // the surface and its replica.  Apply filters to the contents texture.
   1021   skia::RefPtr<SkImage> filter_bitmap;
   1022   SkScalar color_matrix[20];
   1023   bool use_color_matrix = false;
   1024   if (!quad->filters.IsEmpty()) {
   1025     skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
   1026         quad->filters, contents_texture->size());
   1027     if (filter) {
   1028       skia::RefPtr<SkColorFilter> cf;
   1029 
   1030       {
   1031         SkColorFilter* colorfilter_rawptr = NULL;
   1032         filter->asColorFilter(&colorfilter_rawptr);
   1033         cf = skia::AdoptRef(colorfilter_rawptr);
   1034       }
   1035 
   1036       if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
   1037         // We have a single color matrix as a filter; apply it locally
   1038         // in the compositor.
   1039         use_color_matrix = true;
   1040       } else {
   1041         filter_bitmap =
   1042             ApplyImageFilter(ScopedUseGrContext::Create(this, frame),
   1043                              resource_provider_,
   1044                              quad->rect.origin(),
   1045                              quad->filters_scale,
   1046                              filter.get(),
   1047                              contents_texture);
   1048       }
   1049     }
   1050   }
   1051 
   1052   if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode &&
   1053       background_texture) {
   1054     filter_bitmap =
   1055         ApplyBlendModeWithBackdrop(ScopedUseGrContext::Create(this, frame),
   1056                                    resource_provider_,
   1057                                    filter_bitmap,
   1058                                    contents_texture,
   1059                                    background_texture.get(),
   1060                                    quad->shared_quad_state->blend_mode);
   1061   }
   1062 
   1063   // Draw the background texture if it has some filters applied.
   1064   if (background_texture && background_changed) {
   1065     DCHECK(background_texture->size() == quad->rect.size());
   1066     ResourceProvider::ScopedReadLockGL lock(resource_provider_,
   1067                                             background_texture->id());
   1068 
   1069     // The background_texture is oriented the same as the frame buffer. The
   1070     // transform we are copying with has a vertical flip, so flip the contents
   1071     // in the shader to maintain orientation
   1072     bool flip_vertically = true;
   1073 
   1074     CopyTextureToFramebuffer(frame,
   1075                              lock.texture_id(),
   1076                              quad->rect,
   1077                              quad->quadTransform(),
   1078                              flip_vertically);
   1079   }
   1080 
   1081   bool clipped = false;
   1082   gfx::QuadF device_quad = MathUtil::MapQuad(
   1083       contents_device_transform, SharedGeometryQuad(), &clipped);
   1084   LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox()));
   1085   LayerQuad device_layer_edges(device_quad);
   1086 
   1087   // Use anti-aliasing programs only when necessary.
   1088   bool use_aa =
   1089       !clipped && (!device_quad.IsRectilinear() ||
   1090                    !gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(),
   1091                                                      kAntiAliasingEpsilon));
   1092   if (use_aa) {
   1093     device_layer_bounds.InflateAntiAliasingDistance();
   1094     device_layer_edges.InflateAntiAliasingDistance();
   1095   }
   1096 
   1097   scoped_ptr<ResourceProvider::ScopedReadLockGL> mask_resource_lock;
   1098   unsigned mask_texture_id = 0;
   1099   if (quad->mask_resource_id) {
   1100     mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL(
   1101         resource_provider_, quad->mask_resource_id));
   1102     mask_texture_id = mask_resource_lock->texture_id();
   1103   }
   1104 
   1105   // TODO(danakj): use the background_texture and blend the background in with
   1106   // this draw instead of having a separate copy of the background texture.
   1107 
   1108   scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
   1109   if (filter_bitmap) {
   1110     GrTexture* texture = filter_bitmap->getTexture();
   1111     DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
   1112     gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle());
   1113   } else {
   1114     contents_resource_lock =
   1115         make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
   1116             resource_provider_, contents_texture->id(), GL_LINEAR));
   1117     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
   1118               contents_resource_lock->target());
   1119   }
   1120 
   1121   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1122       gl_,
   1123       &highp_threshold_cache_,
   1124       highp_threshold_min_,
   1125       quad->shared_quad_state->visible_content_rect.bottom_right());
   1126 
   1127   int shader_quad_location = -1;
   1128   int shader_edge_location = -1;
   1129   int shader_viewport_location = -1;
   1130   int shader_mask_sampler_location = -1;
   1131   int shader_mask_tex_coord_scale_location = -1;
   1132   int shader_mask_tex_coord_offset_location = -1;
   1133   int shader_matrix_location = -1;
   1134   int shader_alpha_location = -1;
   1135   int shader_color_matrix_location = -1;
   1136   int shader_color_offset_location = -1;
   1137   int shader_tex_transform_location = -1;
   1138 
   1139   if (use_aa && mask_texture_id && !use_color_matrix) {
   1140     const RenderPassMaskProgramAA* program =
   1141         GetRenderPassMaskProgramAA(tex_coord_precision);
   1142     SetUseProgram(program->program());
   1143     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1144 
   1145     shader_quad_location = program->vertex_shader().quad_location();
   1146     shader_edge_location = program->vertex_shader().edge_location();
   1147     shader_viewport_location = program->vertex_shader().viewport_location();
   1148     shader_mask_sampler_location =
   1149         program->fragment_shader().mask_sampler_location();
   1150     shader_mask_tex_coord_scale_location =
   1151         program->fragment_shader().mask_tex_coord_scale_location();
   1152     shader_mask_tex_coord_offset_location =
   1153         program->fragment_shader().mask_tex_coord_offset_location();
   1154     shader_matrix_location = program->vertex_shader().matrix_location();
   1155     shader_alpha_location = program->fragment_shader().alpha_location();
   1156     shader_tex_transform_location =
   1157         program->vertex_shader().tex_transform_location();
   1158   } else if (!use_aa && mask_texture_id && !use_color_matrix) {
   1159     const RenderPassMaskProgram* program =
   1160         GetRenderPassMaskProgram(tex_coord_precision);
   1161     SetUseProgram(program->program());
   1162     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1163 
   1164     shader_mask_sampler_location =
   1165         program->fragment_shader().mask_sampler_location();
   1166     shader_mask_tex_coord_scale_location =
   1167         program->fragment_shader().mask_tex_coord_scale_location();
   1168     shader_mask_tex_coord_offset_location =
   1169         program->fragment_shader().mask_tex_coord_offset_location();
   1170     shader_matrix_location = program->vertex_shader().matrix_location();
   1171     shader_alpha_location = program->fragment_shader().alpha_location();
   1172     shader_tex_transform_location =
   1173         program->vertex_shader().tex_transform_location();
   1174   } else if (use_aa && !mask_texture_id && !use_color_matrix) {
   1175     const RenderPassProgramAA* program =
   1176         GetRenderPassProgramAA(tex_coord_precision);
   1177     SetUseProgram(program->program());
   1178     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1179 
   1180     shader_quad_location = program->vertex_shader().quad_location();
   1181     shader_edge_location = program->vertex_shader().edge_location();
   1182     shader_viewport_location = program->vertex_shader().viewport_location();
   1183     shader_matrix_location = program->vertex_shader().matrix_location();
   1184     shader_alpha_location = program->fragment_shader().alpha_location();
   1185     shader_tex_transform_location =
   1186         program->vertex_shader().tex_transform_location();
   1187   } else if (use_aa && mask_texture_id && use_color_matrix) {
   1188     const RenderPassMaskColorMatrixProgramAA* program =
   1189         GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision);
   1190     SetUseProgram(program->program());
   1191     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1192 
   1193     shader_matrix_location = program->vertex_shader().matrix_location();
   1194     shader_quad_location = program->vertex_shader().quad_location();
   1195     shader_tex_transform_location =
   1196         program->vertex_shader().tex_transform_location();
   1197     shader_edge_location = program->vertex_shader().edge_location();
   1198     shader_viewport_location = program->vertex_shader().viewport_location();
   1199     shader_alpha_location = program->fragment_shader().alpha_location();
   1200     shader_mask_sampler_location =
   1201         program->fragment_shader().mask_sampler_location();
   1202     shader_mask_tex_coord_scale_location =
   1203         program->fragment_shader().mask_tex_coord_scale_location();
   1204     shader_mask_tex_coord_offset_location =
   1205         program->fragment_shader().mask_tex_coord_offset_location();
   1206     shader_color_matrix_location =
   1207         program->fragment_shader().color_matrix_location();
   1208     shader_color_offset_location =
   1209         program->fragment_shader().color_offset_location();
   1210   } else if (use_aa && !mask_texture_id && use_color_matrix) {
   1211     const RenderPassColorMatrixProgramAA* program =
   1212         GetRenderPassColorMatrixProgramAA(tex_coord_precision);
   1213     SetUseProgram(program->program());
   1214     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1215 
   1216     shader_matrix_location = program->vertex_shader().matrix_location();
   1217     shader_quad_location = program->vertex_shader().quad_location();
   1218     shader_tex_transform_location =
   1219         program->vertex_shader().tex_transform_location();
   1220     shader_edge_location = program->vertex_shader().edge_location();
   1221     shader_viewport_location = program->vertex_shader().viewport_location();
   1222     shader_alpha_location = program->fragment_shader().alpha_location();
   1223     shader_color_matrix_location =
   1224         program->fragment_shader().color_matrix_location();
   1225     shader_color_offset_location =
   1226         program->fragment_shader().color_offset_location();
   1227   } else if (!use_aa && mask_texture_id && use_color_matrix) {
   1228     const RenderPassMaskColorMatrixProgram* program =
   1229         GetRenderPassMaskColorMatrixProgram(tex_coord_precision);
   1230     SetUseProgram(program->program());
   1231     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1232 
   1233     shader_matrix_location = program->vertex_shader().matrix_location();
   1234     shader_tex_transform_location =
   1235         program->vertex_shader().tex_transform_location();
   1236     shader_mask_sampler_location =
   1237         program->fragment_shader().mask_sampler_location();
   1238     shader_mask_tex_coord_scale_location =
   1239         program->fragment_shader().mask_tex_coord_scale_location();
   1240     shader_mask_tex_coord_offset_location =
   1241         program->fragment_shader().mask_tex_coord_offset_location();
   1242     shader_alpha_location = program->fragment_shader().alpha_location();
   1243     shader_color_matrix_location =
   1244         program->fragment_shader().color_matrix_location();
   1245     shader_color_offset_location =
   1246         program->fragment_shader().color_offset_location();
   1247   } else if (!use_aa && !mask_texture_id && use_color_matrix) {
   1248     const RenderPassColorMatrixProgram* program =
   1249         GetRenderPassColorMatrixProgram(tex_coord_precision);
   1250     SetUseProgram(program->program());
   1251     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1252 
   1253     shader_matrix_location = program->vertex_shader().matrix_location();
   1254     shader_tex_transform_location =
   1255         program->vertex_shader().tex_transform_location();
   1256     shader_alpha_location = program->fragment_shader().alpha_location();
   1257     shader_color_matrix_location =
   1258         program->fragment_shader().color_matrix_location();
   1259     shader_color_offset_location =
   1260         program->fragment_shader().color_offset_location();
   1261   } else {
   1262     const RenderPassProgram* program =
   1263         GetRenderPassProgram(tex_coord_precision);
   1264     SetUseProgram(program->program());
   1265     GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1266 
   1267     shader_matrix_location = program->vertex_shader().matrix_location();
   1268     shader_alpha_location = program->fragment_shader().alpha_location();
   1269     shader_tex_transform_location =
   1270         program->vertex_shader().tex_transform_location();
   1271   }
   1272   float tex_scale_x =
   1273       quad->rect.width() / static_cast<float>(contents_texture->size().width());
   1274   float tex_scale_y = quad->rect.height() /
   1275                       static_cast<float>(contents_texture->size().height());
   1276   DCHECK_LE(tex_scale_x, 1.0f);
   1277   DCHECK_LE(tex_scale_y, 1.0f);
   1278 
   1279   DCHECK(shader_tex_transform_location != -1 || IsContextLost());
   1280   // Flip the content vertically in the shader, as the RenderPass input
   1281   // texture is already oriented the same way as the framebuffer, but the
   1282   // projection transform does a flip.
   1283   GLC(gl_,
   1284       gl_->Uniform4f(shader_tex_transform_location,
   1285                      0.0f,
   1286                      tex_scale_y,
   1287                      tex_scale_x,
   1288                      -tex_scale_y));
   1289 
   1290   scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_mask_sampler_lock;
   1291   if (shader_mask_sampler_location != -1) {
   1292     DCHECK_NE(shader_mask_tex_coord_scale_location, 1);
   1293     DCHECK_NE(shader_mask_tex_coord_offset_location, 1);
   1294     GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1));
   1295 
   1296     float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x;
   1297     float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y;
   1298 
   1299     // Mask textures are oriented vertically flipped relative to the framebuffer
   1300     // and the RenderPass contents texture, so we flip the tex coords from the
   1301     // RenderPass texture to find the mask texture coords.
   1302     GLC(gl_,
   1303         gl_->Uniform2f(shader_mask_tex_coord_offset_location,
   1304                        quad->mask_uv_rect.x(),
   1305                        quad->mask_uv_rect.y() + quad->mask_uv_rect.height()));
   1306     GLC(gl_,
   1307         gl_->Uniform2f(shader_mask_tex_coord_scale_location,
   1308                        mask_tex_scale_x,
   1309                        -mask_tex_scale_y));
   1310     shader_mask_sampler_lock = make_scoped_ptr(
   1311         new ResourceProvider::ScopedSamplerGL(resource_provider_,
   1312                                               quad->mask_resource_id,
   1313                                               GL_TEXTURE1,
   1314                                               GL_LINEAR));
   1315     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
   1316               shader_mask_sampler_lock->target());
   1317   }
   1318 
   1319   if (shader_edge_location != -1) {
   1320     float edge[24];
   1321     device_layer_edges.ToFloatArray(edge);
   1322     device_layer_bounds.ToFloatArray(&edge[12]);
   1323     GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge));
   1324   }
   1325 
   1326   if (shader_viewport_location != -1) {
   1327     float viewport[4] = {static_cast<float>(viewport_.x()),
   1328                          static_cast<float>(viewport_.y()),
   1329                          static_cast<float>(viewport_.width()),
   1330                          static_cast<float>(viewport_.height()), };
   1331     GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport));
   1332   }
   1333 
   1334   if (shader_color_matrix_location != -1) {
   1335     float matrix[16];
   1336     for (int i = 0; i < 4; ++i) {
   1337       for (int j = 0; j < 4; ++j)
   1338         matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
   1339     }
   1340     GLC(gl_,
   1341         gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix));
   1342   }
   1343   static const float kScale = 1.0f / 255.0f;
   1344   if (shader_color_offset_location != -1) {
   1345     float offset[4];
   1346     for (int i = 0; i < 4; ++i)
   1347       offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
   1348 
   1349     GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset));
   1350   }
   1351 
   1352   // Map device space quad to surface space. contents_device_transform has no 3d
   1353   // component since it was flattened, so we don't need to project.
   1354   gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse,
   1355                                               device_layer_edges.ToQuadF(),
   1356                                               &clipped);
   1357 
   1358   SetShaderOpacity(quad->opacity(), shader_alpha_location);
   1359   SetShaderQuadF(surface_quad, shader_quad_location);
   1360   DrawQuadGeometry(
   1361       frame, quad->quadTransform(), quad->rect, shader_matrix_location);
   1362 
   1363   // Flush the compositor context before the filter bitmap goes out of
   1364   // scope, so the draw gets processed before the filter texture gets deleted.
   1365   if (filter_bitmap)
   1366     GLC(gl_, gl_->Flush());
   1367 }
   1368 
   1369 struct SolidColorProgramUniforms {
   1370   unsigned program;
   1371   unsigned matrix_location;
   1372   unsigned viewport_location;
   1373   unsigned quad_location;
   1374   unsigned edge_location;
   1375   unsigned color_location;
   1376 };
   1377 
   1378 template <class T>
   1379 static void SolidColorUniformLocation(T program,
   1380                                       SolidColorProgramUniforms* uniforms) {
   1381   uniforms->program = program->program();
   1382   uniforms->matrix_location = program->vertex_shader().matrix_location();
   1383   uniforms->viewport_location = program->vertex_shader().viewport_location();
   1384   uniforms->quad_location = program->vertex_shader().quad_location();
   1385   uniforms->edge_location = program->vertex_shader().edge_location();
   1386   uniforms->color_location = program->fragment_shader().color_location();
   1387 }
   1388 
   1389 // static
   1390 bool GLRenderer::SetupQuadForAntialiasing(
   1391     const gfx::Transform& device_transform,
   1392     const DrawQuad* quad,
   1393     gfx::QuadF* local_quad,
   1394     float edge[24]) {
   1395   gfx::Rect tile_rect = quad->visible_rect;
   1396 
   1397   bool clipped = false;
   1398   gfx::QuadF device_layer_quad = MathUtil::MapQuad(
   1399       device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped);
   1400 
   1401   bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
   1402   bool is_nearest_rect_within_epsilon =
   1403       is_axis_aligned_in_target &&
   1404       gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
   1405                                        kAntiAliasingEpsilon);
   1406   // AAing clipped quads is not supported by the code yet.
   1407   bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge();
   1408   if (!use_aa)
   1409     return false;
   1410 
   1411   LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox()));
   1412   device_layer_bounds.InflateAntiAliasingDistance();
   1413 
   1414   LayerQuad device_layer_edges(device_layer_quad);
   1415   device_layer_edges.InflateAntiAliasingDistance();
   1416 
   1417   device_layer_edges.ToFloatArray(edge);
   1418   device_layer_bounds.ToFloatArray(&edge[12]);
   1419 
   1420   gfx::PointF bottom_right = tile_rect.bottom_right();
   1421   gfx::PointF bottom_left = tile_rect.bottom_left();
   1422   gfx::PointF top_left = tile_rect.origin();
   1423   gfx::PointF top_right = tile_rect.top_right();
   1424 
   1425   // Map points to device space.
   1426   bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
   1427   DCHECK(!clipped);
   1428   bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
   1429   DCHECK(!clipped);
   1430   top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
   1431   DCHECK(!clipped);
   1432   top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
   1433   DCHECK(!clipped);
   1434 
   1435   LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
   1436   LayerQuad::Edge left_edge(bottom_left, top_left);
   1437   LayerQuad::Edge top_edge(top_left, top_right);
   1438   LayerQuad::Edge right_edge(top_right, bottom_right);
   1439 
   1440   // Only apply anti-aliasing to edges not clipped by culling or scissoring.
   1441   if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y())
   1442     top_edge = device_layer_edges.top();
   1443   if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x())
   1444     left_edge = device_layer_edges.left();
   1445   if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right())
   1446     right_edge = device_layer_edges.right();
   1447   if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom())
   1448     bottom_edge = device_layer_edges.bottom();
   1449 
   1450   float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1;
   1451   bottom_edge.scale(sign);
   1452   left_edge.scale(sign);
   1453   top_edge.scale(sign);
   1454   right_edge.scale(sign);
   1455 
   1456   // Create device space quad.
   1457   LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge);
   1458 
   1459   // Map device space quad to local space. device_transform has no 3d
   1460   // component since it was flattened, so we don't need to project.  We should
   1461   // have already checked that the transform was uninvertible above.
   1462   gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
   1463   bool did_invert = device_transform.GetInverse(&inverse_device_transform);
   1464   DCHECK(did_invert);
   1465   *local_quad = MathUtil::MapQuad(
   1466       inverse_device_transform, device_quad.ToQuadF(), &clipped);
   1467   // We should not DCHECK(!clipped) here, because anti-aliasing inflation may
   1468   // cause device_quad to become clipped. To our knowledge this scenario does
   1469   // not need to be handled differently than the unclipped case.
   1470 
   1471   return true;
   1472 }
   1473 
   1474 void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
   1475                                     const SolidColorDrawQuad* quad) {
   1476   gfx::Rect tile_rect = quad->visible_rect;
   1477 
   1478   SkColor color = quad->color;
   1479   float opacity = quad->opacity();
   1480   float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
   1481 
   1482   // Early out if alpha is small enough that quad doesn't contribute to output.
   1483   if (alpha < std::numeric_limits<float>::epsilon() &&
   1484       quad->ShouldDrawWithBlending())
   1485     return;
   1486 
   1487   gfx::Transform device_transform =
   1488       frame->window_matrix * frame->projection_matrix * quad->quadTransform();
   1489   device_transform.FlattenTo2d();
   1490   if (!device_transform.IsInvertible())
   1491     return;
   1492 
   1493   gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
   1494   float edge[24];
   1495   bool use_aa =
   1496       settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
   1497       SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
   1498 
   1499   SolidColorProgramUniforms uniforms;
   1500   if (use_aa)
   1501     SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
   1502   else
   1503     SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
   1504   SetUseProgram(uniforms.program);
   1505 
   1506   GLC(gl_,
   1507       gl_->Uniform4f(uniforms.color_location,
   1508                      (SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
   1509                      (SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
   1510                      (SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
   1511                      alpha));
   1512   if (use_aa) {
   1513     float viewport[4] = {static_cast<float>(viewport_.x()),
   1514                          static_cast<float>(viewport_.y()),
   1515                          static_cast<float>(viewport_.width()),
   1516                          static_cast<float>(viewport_.height()), };
   1517     GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
   1518     GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
   1519   }
   1520 
   1521   // Enable blending when the quad properties require it or if we decided
   1522   // to use antialiasing.
   1523   SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
   1524 
   1525   // Normalize to tile_rect.
   1526   local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
   1527 
   1528   SetShaderQuadF(local_quad, uniforms.quad_location);
   1529 
   1530   // The transform and vertex data are used to figure out the extents that the
   1531   // un-antialiased quad should have and which vertex this is and the float
   1532   // quad passed in via uniform is the actual geometry that gets used to draw
   1533   // it. This is why this centered rect is used and not the original quad_rect.
   1534   gfx::RectF centered_rect(
   1535       gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
   1536       tile_rect.size());
   1537   DrawQuadGeometry(
   1538       frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
   1539 }
   1540 
   1541 struct TileProgramUniforms {
   1542   unsigned program;
   1543   unsigned matrix_location;
   1544   unsigned viewport_location;
   1545   unsigned quad_location;
   1546   unsigned edge_location;
   1547   unsigned vertex_tex_transform_location;
   1548   unsigned sampler_location;
   1549   unsigned fragment_tex_transform_location;
   1550   unsigned alpha_location;
   1551 };
   1552 
   1553 template <class T>
   1554 static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
   1555   uniforms->program = program->program();
   1556   uniforms->matrix_location = program->vertex_shader().matrix_location();
   1557   uniforms->viewport_location = program->vertex_shader().viewport_location();
   1558   uniforms->quad_location = program->vertex_shader().quad_location();
   1559   uniforms->edge_location = program->vertex_shader().edge_location();
   1560   uniforms->vertex_tex_transform_location =
   1561       program->vertex_shader().vertex_tex_transform_location();
   1562 
   1563   uniforms->sampler_location = program->fragment_shader().sampler_location();
   1564   uniforms->alpha_location = program->fragment_shader().alpha_location();
   1565   uniforms->fragment_tex_transform_location =
   1566       program->fragment_shader().fragment_tex_transform_location();
   1567 }
   1568 
   1569 void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
   1570                               const TileDrawQuad* quad) {
   1571   DrawContentQuad(frame, quad, quad->resource_id);
   1572 }
   1573 
   1574 void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
   1575                                  const ContentDrawQuadBase* quad,
   1576                                  ResourceProvider::ResourceId resource_id) {
   1577   gfx::Rect tile_rect = quad->visible_rect;
   1578 
   1579   gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
   1580       quad->tex_coord_rect, quad->rect, tile_rect);
   1581   float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
   1582   float tex_to_geom_scale_y =
   1583       quad->rect.height() / quad->tex_coord_rect.height();
   1584 
   1585   gfx::RectF clamp_geom_rect(tile_rect);
   1586   gfx::RectF clamp_tex_rect(tex_coord_rect);
   1587   // Clamp texture coordinates to avoid sampling outside the layer
   1588   // by deflating the tile region half a texel or half a texel
   1589   // minus epsilon for one pixel layers. The resulting clamp region
   1590   // is mapped to the unit square by the vertex shader and mapped
   1591   // back to normalized texture coordinates by the fragment shader
   1592   // after being clamped to 0-1 range.
   1593   float tex_clamp_x =
   1594       std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
   1595   float tex_clamp_y =
   1596       std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
   1597   float geom_clamp_x =
   1598       std::min(tex_clamp_x * tex_to_geom_scale_x,
   1599                0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
   1600   float geom_clamp_y =
   1601       std::min(tex_clamp_y * tex_to_geom_scale_y,
   1602                0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
   1603   clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
   1604   clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
   1605 
   1606   // Map clamping rectangle to unit square.
   1607   float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
   1608   float vertex_tex_translate_y =
   1609       -clamp_geom_rect.y() / clamp_geom_rect.height();
   1610   float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
   1611   float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
   1612 
   1613   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1614       gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
   1615 
   1616   gfx::Transform device_transform =
   1617       frame->window_matrix * frame->projection_matrix * quad->quadTransform();
   1618   device_transform.FlattenTo2d();
   1619   if (!device_transform.IsInvertible())
   1620     return;
   1621 
   1622   gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
   1623   float edge[24];
   1624   bool use_aa =
   1625       settings_->allow_antialiasing &&
   1626       SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
   1627 
   1628   bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
   1629   GLenum filter = (use_aa || scaled ||
   1630                    !quad->quadTransform().IsIdentityOrIntegerTranslation())
   1631                       ? GL_LINEAR
   1632                       : GL_NEAREST;
   1633   ResourceProvider::ScopedSamplerGL quad_resource_lock(
   1634       resource_provider_, resource_id, filter);
   1635   SamplerType sampler =
   1636       SamplerTypeFromTextureTarget(quad_resource_lock.target());
   1637 
   1638   float fragment_tex_translate_x = clamp_tex_rect.x();
   1639   float fragment_tex_translate_y = clamp_tex_rect.y();
   1640   float fragment_tex_scale_x = clamp_tex_rect.width();
   1641   float fragment_tex_scale_y = clamp_tex_rect.height();
   1642 
   1643   // Map to normalized texture coordinates.
   1644   if (sampler != SamplerType2DRect) {
   1645     gfx::Size texture_size = quad->texture_size;
   1646     DCHECK(!texture_size.IsEmpty());
   1647     fragment_tex_translate_x /= texture_size.width();
   1648     fragment_tex_translate_y /= texture_size.height();
   1649     fragment_tex_scale_x /= texture_size.width();
   1650     fragment_tex_scale_y /= texture_size.height();
   1651   }
   1652 
   1653   TileProgramUniforms uniforms;
   1654   if (use_aa) {
   1655     if (quad->swizzle_contents) {
   1656       TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
   1657                           &uniforms);
   1658     } else {
   1659       TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
   1660                           &uniforms);
   1661     }
   1662   } else {
   1663     if (quad->ShouldDrawWithBlending()) {
   1664       if (quad->swizzle_contents) {
   1665         TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
   1666                             &uniforms);
   1667       } else {
   1668         TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
   1669                             &uniforms);
   1670       }
   1671     } else {
   1672       if (quad->swizzle_contents) {
   1673         TileUniformLocation(
   1674             GetTileProgramSwizzleOpaque(tex_coord_precision, sampler),
   1675             &uniforms);
   1676       } else {
   1677         TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
   1678                             &uniforms);
   1679       }
   1680     }
   1681   }
   1682 
   1683   SetUseProgram(uniforms.program);
   1684   GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0));
   1685 
   1686   if (use_aa) {
   1687     float viewport[4] = {static_cast<float>(viewport_.x()),
   1688                          static_cast<float>(viewport_.y()),
   1689                          static_cast<float>(viewport_.width()),
   1690                          static_cast<float>(viewport_.height()), };
   1691     GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
   1692     GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
   1693 
   1694     GLC(gl_,
   1695         gl_->Uniform4f(uniforms.vertex_tex_transform_location,
   1696                        vertex_tex_translate_x,
   1697                        vertex_tex_translate_y,
   1698                        vertex_tex_scale_x,
   1699                        vertex_tex_scale_y));
   1700     GLC(gl_,
   1701         gl_->Uniform4f(uniforms.fragment_tex_transform_location,
   1702                        fragment_tex_translate_x,
   1703                        fragment_tex_translate_y,
   1704                        fragment_tex_scale_x,
   1705                        fragment_tex_scale_y));
   1706   } else {
   1707     // Move fragment shader transform to vertex shader. We can do this while
   1708     // still producing correct results as fragment_tex_transform_location
   1709     // should always be non-negative when tiles are transformed in a way
   1710     // that could result in sampling outside the layer.
   1711     vertex_tex_scale_x *= fragment_tex_scale_x;
   1712     vertex_tex_scale_y *= fragment_tex_scale_y;
   1713     vertex_tex_translate_x *= fragment_tex_scale_x;
   1714     vertex_tex_translate_y *= fragment_tex_scale_y;
   1715     vertex_tex_translate_x += fragment_tex_translate_x;
   1716     vertex_tex_translate_y += fragment_tex_translate_y;
   1717 
   1718     GLC(gl_,
   1719         gl_->Uniform4f(uniforms.vertex_tex_transform_location,
   1720                        vertex_tex_translate_x,
   1721                        vertex_tex_translate_y,
   1722                        vertex_tex_scale_x,
   1723                        vertex_tex_scale_y));
   1724   }
   1725 
   1726   // Enable blending when the quad properties require it or if we decided
   1727   // to use antialiasing.
   1728   SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
   1729 
   1730   // Normalize to tile_rect.
   1731   local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
   1732 
   1733   SetShaderOpacity(quad->opacity(), uniforms.alpha_location);
   1734   SetShaderQuadF(local_quad, uniforms.quad_location);
   1735 
   1736   // The transform and vertex data are used to figure out the extents that the
   1737   // un-antialiased quad should have and which vertex this is and the float
   1738   // quad passed in via uniform is the actual geometry that gets used to draw
   1739   // it. This is why this centered rect is used and not the original quad_rect.
   1740   gfx::RectF centered_rect(
   1741       gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
   1742       tile_rect.size());
   1743   DrawQuadGeometry(
   1744       frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
   1745 }
   1746 
   1747 void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
   1748                                   const YUVVideoDrawQuad* quad) {
   1749   SetBlendEnabled(quad->ShouldDrawWithBlending());
   1750 
   1751   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1752       gl_,
   1753       &highp_threshold_cache_,
   1754       highp_threshold_min_,
   1755       quad->shared_quad_state->visible_content_rect.bottom_right());
   1756 
   1757   bool use_alpha_plane = quad->a_plane_resource_id != 0;
   1758 
   1759   ResourceProvider::ScopedSamplerGL y_plane_lock(
   1760       resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR);
   1761   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target());
   1762   ResourceProvider::ScopedSamplerGL u_plane_lock(
   1763       resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR);
   1764   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target());
   1765   ResourceProvider::ScopedSamplerGL v_plane_lock(
   1766       resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR);
   1767   DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target());
   1768   scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
   1769   if (use_alpha_plane) {
   1770     a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
   1771         resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR));
   1772     DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target());
   1773   }
   1774 
   1775   int matrix_location = -1;
   1776   int tex_scale_location = -1;
   1777   int tex_offset_location = -1;
   1778   int y_texture_location = -1;
   1779   int u_texture_location = -1;
   1780   int v_texture_location = -1;
   1781   int a_texture_location = -1;
   1782   int yuv_matrix_location = -1;
   1783   int yuv_adj_location = -1;
   1784   int alpha_location = -1;
   1785   if (use_alpha_plane) {
   1786     const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision);
   1787     DCHECK(program && (program->initialized() || IsContextLost()));
   1788     SetUseProgram(program->program());
   1789     matrix_location = program->vertex_shader().matrix_location();
   1790     tex_scale_location = program->vertex_shader().tex_scale_location();
   1791     tex_offset_location = program->vertex_shader().tex_offset_location();
   1792     y_texture_location = program->fragment_shader().y_texture_location();
   1793     u_texture_location = program->fragment_shader().u_texture_location();
   1794     v_texture_location = program->fragment_shader().v_texture_location();
   1795     a_texture_location = program->fragment_shader().a_texture_location();
   1796     yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
   1797     yuv_adj_location = program->fragment_shader().yuv_adj_location();
   1798     alpha_location = program->fragment_shader().alpha_location();
   1799   } else {
   1800     const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision);
   1801     DCHECK(program && (program->initialized() || IsContextLost()));
   1802     SetUseProgram(program->program());
   1803     matrix_location = program->vertex_shader().matrix_location();
   1804     tex_scale_location = program->vertex_shader().tex_scale_location();
   1805     tex_offset_location = program->vertex_shader().tex_offset_location();
   1806     y_texture_location = program->fragment_shader().y_texture_location();
   1807     u_texture_location = program->fragment_shader().u_texture_location();
   1808     v_texture_location = program->fragment_shader().v_texture_location();
   1809     yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
   1810     yuv_adj_location = program->fragment_shader().yuv_adj_location();
   1811     alpha_location = program->fragment_shader().alpha_location();
   1812   }
   1813 
   1814   GLC(gl_,
   1815       gl_->Uniform2f(tex_scale_location,
   1816                      quad->tex_coord_rect.width(),
   1817                      quad->tex_coord_rect.height()));
   1818   GLC(gl_,
   1819       gl_->Uniform2f(tex_offset_location,
   1820                      quad->tex_coord_rect.x(),
   1821                      quad->tex_coord_rect.y()));
   1822   GLC(gl_, gl_->Uniform1i(y_texture_location, 1));
   1823   GLC(gl_, gl_->Uniform1i(u_texture_location, 2));
   1824   GLC(gl_, gl_->Uniform1i(v_texture_location, 3));
   1825   if (use_alpha_plane)
   1826     GLC(gl_, gl_->Uniform1i(a_texture_location, 4));
   1827 
   1828   // These values are magic numbers that are used in the transformation from YUV
   1829   // to RGB color values.  They are taken from the following webpage:
   1830   // http://www.fourcc.org/fccyvrgb.php
   1831   float yuv_to_rgb_rec601[9] = {
   1832       1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f,
   1833   };
   1834   float yuv_to_rgb_rec601_jpeg[9] = {
   1835       1.f, 1.f, 1.f, 0.0f, -.34414f, 1.772f, 1.402f, -.71414f, 0.0f,
   1836   };
   1837 
   1838   // These values map to 16, 128, and 128 respectively, and are computed
   1839   // as a fraction over 256 (e.g. 16 / 256 = 0.0625).
   1840   // They are used in the YUV to RGBA conversion formula:
   1841   //   Y - 16   : Gives 16 values of head and footroom for overshooting
   1842   //   U - 128  : Turns unsigned U into signed U [-128,127]
   1843   //   V - 128  : Turns unsigned V into signed V [-128,127]
   1844   float yuv_adjust_rec601[3] = {
   1845       -0.0625f, -0.5f, -0.5f,
   1846   };
   1847 
   1848   // Same as above, but without the head and footroom.
   1849   float yuv_adjust_rec601_jpeg[3] = {
   1850       0.0f, -0.5f, -0.5f,
   1851   };
   1852 
   1853   float* yuv_to_rgb = NULL;
   1854   float* yuv_adjust = NULL;
   1855 
   1856   switch (quad->color_space) {
   1857     case YUVVideoDrawQuad::REC_601:
   1858       yuv_to_rgb = yuv_to_rgb_rec601;
   1859       yuv_adjust = yuv_adjust_rec601;
   1860       break;
   1861     case YUVVideoDrawQuad::REC_601_JPEG:
   1862       yuv_to_rgb = yuv_to_rgb_rec601_jpeg;
   1863       yuv_adjust = yuv_adjust_rec601_jpeg;
   1864       break;
   1865   }
   1866 
   1867   GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb));
   1868   GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust));
   1869 
   1870   SetShaderOpacity(quad->opacity(), alpha_location);
   1871   DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location);
   1872 }
   1873 
   1874 void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
   1875                                      const StreamVideoDrawQuad* quad) {
   1876   SetBlendEnabled(quad->ShouldDrawWithBlending());
   1877 
   1878   static float gl_matrix[16];
   1879 
   1880   DCHECK(capabilities_.using_egl_image);
   1881 
   1882   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   1883       gl_,
   1884       &highp_threshold_cache_,
   1885       highp_threshold_min_,
   1886       quad->shared_quad_state->visible_content_rect.bottom_right());
   1887 
   1888   const VideoStreamTextureProgram* program =
   1889       GetVideoStreamTextureProgram(tex_coord_precision);
   1890   SetUseProgram(program->program());
   1891 
   1892   ToGLMatrix(&gl_matrix[0], quad->matrix);
   1893   GLC(gl_,
   1894       gl_->UniformMatrix4fv(
   1895           program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix));
   1896 
   1897   ResourceProvider::ScopedReadLockGL lock(resource_provider_,
   1898                                           quad->resource_id);
   1899   DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
   1900   GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()));
   1901 
   1902   GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   1903 
   1904   SetShaderOpacity(quad->opacity(),
   1905                    program->fragment_shader().alpha_location());
   1906   DrawQuadGeometry(frame,
   1907                    quad->quadTransform(),
   1908                    quad->rect,
   1909                    program->vertex_shader().matrix_location());
   1910 }
   1911 
   1912 void GLRenderer::DrawPictureQuad(const DrawingFrame* frame,
   1913                                  const PictureDrawQuad* quad) {
   1914   if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() ||
   1915       on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) {
   1916     on_demand_tile_raster_bitmap_.allocN32Pixels(quad->texture_size.width(),
   1917                                                  quad->texture_size.height());
   1918 
   1919     if (on_demand_tile_raster_resource_id_)
   1920       resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
   1921 
   1922     on_demand_tile_raster_resource_id_ = resource_provider_->CreateGLTexture(
   1923         quad->texture_size,
   1924         GL_TEXTURE_2D,
   1925         GL_TEXTURE_POOL_UNMANAGED_CHROMIUM,
   1926         GL_CLAMP_TO_EDGE,
   1927         ResourceProvider::TextureHintImmutable,
   1928         quad->texture_format);
   1929   }
   1930 
   1931   SkCanvas canvas(on_demand_tile_raster_bitmap_);
   1932   quad->picture_pile->RasterToBitmap(
   1933       &canvas, quad->content_rect, quad->contents_scale, NULL);
   1934 
   1935   uint8_t* bitmap_pixels = NULL;
   1936   SkBitmap on_demand_tile_raster_bitmap_dest;
   1937   SkColorType colorType = ResourceFormatToSkColorType(quad->texture_format);
   1938   if (on_demand_tile_raster_bitmap_.colorType() != colorType) {
   1939     on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest,
   1940                                          colorType);
   1941     // TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the
   1942     // bitmap data. This check will be removed once crbug.com/293728 is fixed.
   1943     CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4);
   1944     bitmap_pixels = reinterpret_cast<uint8_t*>(
   1945         on_demand_tile_raster_bitmap_dest.getPixels());
   1946   } else {
   1947     bitmap_pixels =
   1948         reinterpret_cast<uint8_t*>(on_demand_tile_raster_bitmap_.getPixels());
   1949   }
   1950 
   1951   resource_provider_->SetPixels(on_demand_tile_raster_resource_id_,
   1952                                 bitmap_pixels,
   1953                                 gfx::Rect(quad->texture_size),
   1954                                 gfx::Rect(quad->texture_size),
   1955                                 gfx::Vector2d());
   1956 
   1957   DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_);
   1958 }
   1959 
   1960 struct TextureProgramBinding {
   1961   template <class Program>
   1962   void Set(Program* program) {
   1963     DCHECK(program);
   1964     program_id = program->program();
   1965     sampler_location = program->fragment_shader().sampler_location();
   1966     matrix_location = program->vertex_shader().matrix_location();
   1967     background_color_location =
   1968         program->fragment_shader().background_color_location();
   1969   }
   1970   int program_id;
   1971   int sampler_location;
   1972   int matrix_location;
   1973   int background_color_location;
   1974 };
   1975 
   1976 struct TexTransformTextureProgramBinding : TextureProgramBinding {
   1977   template <class Program>
   1978   void Set(Program* program) {
   1979     TextureProgramBinding::Set(program);
   1980     tex_transform_location = program->vertex_shader().tex_transform_location();
   1981     vertex_opacity_location =
   1982         program->vertex_shader().vertex_opacity_location();
   1983   }
   1984   int tex_transform_location;
   1985   int vertex_opacity_location;
   1986 };
   1987 
   1988 void GLRenderer::FlushTextureQuadCache() {
   1989   // Check to see if we have anything to draw.
   1990   if (draw_cache_.program_id == 0)
   1991     return;
   1992 
   1993   // Set the correct blending mode.
   1994   SetBlendEnabled(draw_cache_.needs_blending);
   1995 
   1996   // Bind the program to the GL state.
   1997   SetUseProgram(draw_cache_.program_id);
   1998 
   1999   // Bind the correct texture sampler location.
   2000   GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0));
   2001 
   2002   // Assume the current active textures is 0.
   2003   ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_,
   2004                                                  draw_cache_.resource_id);
   2005   DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
   2006   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id()));
   2007 
   2008   COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float), struct_is_densely_packed);
   2009   COMPILE_ASSERT(sizeof(Float16) == 16 * sizeof(float),
   2010                  struct_is_densely_packed);
   2011 
   2012   // Upload the tranforms for both points and uvs.
   2013   GLC(gl_,
   2014       gl_->UniformMatrix4fv(
   2015           static_cast<int>(draw_cache_.matrix_location),
   2016           static_cast<int>(draw_cache_.matrix_data.size()),
   2017           false,
   2018           reinterpret_cast<float*>(&draw_cache_.matrix_data.front())));
   2019   GLC(gl_,
   2020       gl_->Uniform4fv(
   2021           static_cast<int>(draw_cache_.uv_xform_location),
   2022           static_cast<int>(draw_cache_.uv_xform_data.size()),
   2023           reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front())));
   2024 
   2025   if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
   2026     Float4 background_color = PremultipliedColor(draw_cache_.background_color);
   2027     GLC(gl_,
   2028         gl_->Uniform4fv(
   2029             draw_cache_.background_color_location, 1, background_color.data));
   2030   }
   2031 
   2032   GLC(gl_,
   2033       gl_->Uniform1fv(
   2034           static_cast<int>(draw_cache_.vertex_opacity_location),
   2035           static_cast<int>(draw_cache_.vertex_opacity_data.size()),
   2036           static_cast<float*>(&draw_cache_.vertex_opacity_data.front())));
   2037 
   2038   // Draw the quads!
   2039   GLC(gl_,
   2040       gl_->DrawElements(GL_TRIANGLES,
   2041                         6 * draw_cache_.matrix_data.size(),
   2042                         GL_UNSIGNED_SHORT,
   2043                         0));
   2044 
   2045   // Clear the cache.
   2046   draw_cache_.program_id = 0;
   2047   draw_cache_.uv_xform_data.resize(0);
   2048   draw_cache_.vertex_opacity_data.resize(0);
   2049   draw_cache_.matrix_data.resize(0);
   2050 }
   2051 
   2052 void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
   2053                                     const TextureDrawQuad* quad) {
   2054   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   2055       gl_,
   2056       &highp_threshold_cache_,
   2057       highp_threshold_min_,
   2058       quad->shared_quad_state->visible_content_rect.bottom_right());
   2059 
   2060   // Choose the correct texture program binding
   2061   TexTransformTextureProgramBinding binding;
   2062   if (quad->premultiplied_alpha) {
   2063     if (quad->background_color == SK_ColorTRANSPARENT) {
   2064       binding.Set(GetTextureProgram(tex_coord_precision));
   2065     } else {
   2066       binding.Set(GetTextureBackgroundProgram(tex_coord_precision));
   2067     }
   2068   } else {
   2069     if (quad->background_color == SK_ColorTRANSPARENT) {
   2070       binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision));
   2071     } else {
   2072       binding.Set(
   2073           GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision));
   2074     }
   2075   }
   2076 
   2077   int resource_id = quad->resource_id;
   2078 
   2079   if (draw_cache_.program_id != binding.program_id ||
   2080       draw_cache_.resource_id != resource_id ||
   2081       draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
   2082       draw_cache_.background_color != quad->background_color ||
   2083       draw_cache_.matrix_data.size() >= 8) {
   2084     FlushTextureQuadCache();
   2085     draw_cache_.program_id = binding.program_id;
   2086     draw_cache_.resource_id = resource_id;
   2087     draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
   2088     draw_cache_.background_color = quad->background_color;
   2089 
   2090     draw_cache_.uv_xform_location = binding.tex_transform_location;
   2091     draw_cache_.background_color_location = binding.background_color_location;
   2092     draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
   2093     draw_cache_.matrix_location = binding.matrix_location;
   2094     draw_cache_.sampler_location = binding.sampler_location;
   2095   }
   2096 
   2097   // Generate the uv-transform
   2098   draw_cache_.uv_xform_data.push_back(UVTransform(quad));
   2099 
   2100   // Generate the vertex opacity
   2101   const float opacity = quad->opacity();
   2102   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
   2103   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
   2104   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
   2105   draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
   2106 
   2107   // Generate the transform matrix
   2108   gfx::Transform quad_rect_matrix;
   2109   QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
   2110   quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
   2111 
   2112   Float16 m;
   2113   quad_rect_matrix.matrix().asColMajorf(m.data);
   2114   draw_cache_.matrix_data.push_back(m);
   2115 }
   2116 
   2117 void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
   2118                                    const IOSurfaceDrawQuad* quad) {
   2119   SetBlendEnabled(quad->ShouldDrawWithBlending());
   2120 
   2121   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   2122       gl_,
   2123       &highp_threshold_cache_,
   2124       highp_threshold_min_,
   2125       quad->shared_quad_state->visible_content_rect.bottom_right());
   2126 
   2127   TexTransformTextureProgramBinding binding;
   2128   binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
   2129 
   2130   SetUseProgram(binding.program_id);
   2131   GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0));
   2132   if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
   2133     GLC(gl_,
   2134         gl_->Uniform4f(binding.tex_transform_location,
   2135                        0,
   2136                        quad->io_surface_size.height(),
   2137                        quad->io_surface_size.width(),
   2138                        quad->io_surface_size.height() * -1.0f));
   2139   } else {
   2140     GLC(gl_,
   2141         gl_->Uniform4f(binding.tex_transform_location,
   2142                        0,
   2143                        0,
   2144                        quad->io_surface_size.width(),
   2145                        quad->io_surface_size.height()));
   2146   }
   2147 
   2148   const float vertex_opacity[] = {quad->opacity(), quad->opacity(),
   2149                                   quad->opacity(), quad->opacity()};
   2150   GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity));
   2151 
   2152   ResourceProvider::ScopedReadLockGL lock(resource_provider_,
   2153                                           quad->io_surface_resource_id);
   2154   DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
   2155   GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()));
   2156 
   2157   DrawQuadGeometry(
   2158       frame, quad->quadTransform(), quad->rect, binding.matrix_location);
   2159 
   2160   GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0));
   2161 }
   2162 
   2163 void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
   2164   if (use_sync_query_) {
   2165     DCHECK(current_sync_query_);
   2166     current_sync_query_->End();
   2167     pending_sync_queries_.push_back(current_sync_query_.Pass());
   2168   }
   2169 
   2170   current_framebuffer_lock_.reset();
   2171   swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect));
   2172 
   2173   GLC(gl_, gl_->Disable(GL_BLEND));
   2174   blend_shadow_ = false;
   2175 
   2176   ScheduleOverlays(frame);
   2177 }
   2178 
   2179 void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); }
   2180 
   2181 bool GLRenderer::FlippedFramebuffer() const { return true; }
   2182 
   2183 void GLRenderer::EnsureScissorTestEnabled() {
   2184   if (is_scissor_enabled_)
   2185     return;
   2186 
   2187   FlushTextureQuadCache();
   2188   GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
   2189   is_scissor_enabled_ = true;
   2190 }
   2191 
   2192 void GLRenderer::EnsureScissorTestDisabled() {
   2193   if (!is_scissor_enabled_)
   2194     return;
   2195 
   2196   FlushTextureQuadCache();
   2197   GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
   2198   is_scissor_enabled_ = false;
   2199 }
   2200 
   2201 void GLRenderer::CopyCurrentRenderPassToBitmap(
   2202     DrawingFrame* frame,
   2203     scoped_ptr<CopyOutputRequest> request) {
   2204   TRACE_EVENT0("cc", "GLRenderer::CopyCurrentRenderPassToBitmap");
   2205   gfx::Rect copy_rect = frame->current_render_pass->output_rect;
   2206   if (request->has_area())
   2207     copy_rect.Intersect(request->area());
   2208   GetFramebufferPixelsAsync(copy_rect, request.Pass());
   2209 }
   2210 
   2211 void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
   2212   transform.matrix().asColMajorf(gl_matrix);
   2213 }
   2214 
   2215 void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
   2216   if (quad_location == -1)
   2217     return;
   2218 
   2219   float gl_quad[8];
   2220   gl_quad[0] = quad.p1().x();
   2221   gl_quad[1] = quad.p1().y();
   2222   gl_quad[2] = quad.p2().x();
   2223   gl_quad[3] = quad.p2().y();
   2224   gl_quad[4] = quad.p3().x();
   2225   gl_quad[5] = quad.p3().y();
   2226   gl_quad[6] = quad.p4().x();
   2227   gl_quad[7] = quad.p4().y();
   2228   GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad));
   2229 }
   2230 
   2231 void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) {
   2232   if (alpha_location != -1)
   2233     GLC(gl_, gl_->Uniform1f(alpha_location, opacity));
   2234 }
   2235 
   2236 void GLRenderer::SetStencilEnabled(bool enabled) {
   2237   if (enabled == stencil_shadow_)
   2238     return;
   2239 
   2240   if (enabled)
   2241     GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
   2242   else
   2243     GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
   2244   stencil_shadow_ = enabled;
   2245 }
   2246 
   2247 void GLRenderer::SetBlendEnabled(bool enabled) {
   2248   if (enabled == blend_shadow_)
   2249     return;
   2250 
   2251   if (enabled)
   2252     GLC(gl_, gl_->Enable(GL_BLEND));
   2253   else
   2254     GLC(gl_, gl_->Disable(GL_BLEND));
   2255   blend_shadow_ = enabled;
   2256 }
   2257 
   2258 void GLRenderer::SetUseProgram(unsigned program) {
   2259   if (program == program_shadow_)
   2260     return;
   2261   gl_->UseProgram(program);
   2262   program_shadow_ = program;
   2263 }
   2264 
   2265 void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame,
   2266                                   const gfx::Transform& draw_transform,
   2267                                   const gfx::RectF& quad_rect,
   2268                                   int matrix_location) {
   2269   gfx::Transform quad_rect_matrix;
   2270   QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
   2271   static float gl_matrix[16];
   2272   ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix);
   2273   GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]));
   2274 
   2275   GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0));
   2276 }
   2277 
   2278 void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame,
   2279                                           int texture_id,
   2280                                           const gfx::Rect& rect,
   2281                                           const gfx::Transform& draw_matrix,
   2282                                           bool flip_vertically) {
   2283   TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
   2284       gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right());
   2285 
   2286   const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision);
   2287   SetUseProgram(program->program());
   2288 
   2289   GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
   2290 
   2291   if (flip_vertically) {
   2292     GLC(gl_,
   2293         gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
   2294                        0.f,
   2295                        1.f,
   2296                        1.f,
   2297                        -1.f));
   2298   } else {
   2299     GLC(gl_,
   2300         gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
   2301                        0.f,
   2302                        0.f,
   2303                        1.f,
   2304                        1.f));
   2305   }
   2306 
   2307   SetShaderOpacity(1.f, program->fragment_shader().alpha_location());
   2308   DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
   2309   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2310   DrawQuadGeometry(
   2311       frame, draw_matrix, rect, program->vertex_shader().matrix_location());
   2312 }
   2313 
   2314 void GLRenderer::Finish() {
   2315   TRACE_EVENT0("cc", "GLRenderer::Finish");
   2316   GLC(gl_, gl_->Finish());
   2317 }
   2318 
   2319 void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) {
   2320   DCHECK(!is_backbuffer_discarded_);
   2321 
   2322   TRACE_EVENT0("cc,benchmark", "GLRenderer::SwapBuffers");
   2323   // We're done! Time to swapbuffers!
   2324 
   2325   gfx::Size surface_size = output_surface_->SurfaceSize();
   2326 
   2327   CompositorFrame compositor_frame;
   2328   compositor_frame.metadata = metadata;
   2329   compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData);
   2330   compositor_frame.gl_frame_data->size = surface_size;
   2331   if (capabilities_.using_partial_swap) {
   2332     // If supported, we can save significant bandwidth by only swapping the
   2333     // damaged/scissored region (clamped to the viewport).
   2334     swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
   2335     int flipped_y_pos_of_rect_bottom = surface_size.height() -
   2336                                        swap_buffer_rect_.y() -
   2337                                        swap_buffer_rect_.height();
   2338     compositor_frame.gl_frame_data->sub_buffer_rect =
   2339         gfx::Rect(swap_buffer_rect_.x(),
   2340                   flipped_y_pos_of_rect_bottom,
   2341                   swap_buffer_rect_.width(),
   2342                   swap_buffer_rect_.height());
   2343   } else {
   2344     compositor_frame.gl_frame_data->sub_buffer_rect =
   2345         gfx::Rect(output_surface_->SurfaceSize());
   2346   }
   2347   output_surface_->SwapBuffers(&compositor_frame);
   2348 
   2349   // Release previously used overlay resources and hold onto the pending ones
   2350   // until the next swap buffers.
   2351   in_use_overlay_resources_.clear();
   2352   in_use_overlay_resources_.swap(pending_overlay_resources_);
   2353 
   2354   swap_buffer_rect_ = gfx::Rect();
   2355 }
   2356 
   2357 void GLRenderer::EnforceMemoryPolicy() {
   2358   if (!visible()) {
   2359     TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources");
   2360     ReleaseRenderPassTextures();
   2361     DiscardBackbuffer();
   2362     resource_provider_->ReleaseCachedData();
   2363     output_surface_->context_provider()->DeleteCachedResources();
   2364     GLC(gl_, gl_->Flush());
   2365   }
   2366 }
   2367 
   2368 void GLRenderer::DiscardBackbuffer() {
   2369   if (is_backbuffer_discarded_)
   2370     return;
   2371 
   2372   output_surface_->DiscardBackbuffer();
   2373 
   2374   is_backbuffer_discarded_ = true;
   2375 
   2376   // Damage tracker needs a full reset every time framebuffer is discarded.
   2377   client_->SetFullRootLayerDamage();
   2378 }
   2379 
   2380 void GLRenderer::EnsureBackbuffer() {
   2381   if (!is_backbuffer_discarded_)
   2382     return;
   2383 
   2384   output_surface_->EnsureBackbuffer();
   2385   is_backbuffer_discarded_ = false;
   2386 }
   2387 
   2388 void GLRenderer::GetFramebufferPixelsAsync(
   2389     const gfx::Rect& rect,
   2390     scoped_ptr<CopyOutputRequest> request) {
   2391   DCHECK(!request->IsEmpty());
   2392   if (request->IsEmpty())
   2393     return;
   2394   if (rect.IsEmpty())
   2395     return;
   2396 
   2397   gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
   2398   DCHECK_GE(window_rect.x(), 0);
   2399   DCHECK_GE(window_rect.y(), 0);
   2400   DCHECK_LE(window_rect.right(), current_surface_size_.width());
   2401   DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
   2402 
   2403   if (!request->force_bitmap_result()) {
   2404     bool own_mailbox = !request->has_texture_mailbox();
   2405 
   2406     GLuint texture_id = 0;
   2407     gpu::Mailbox mailbox;
   2408     if (own_mailbox) {
   2409       GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name));
   2410       gl_->GenTextures(1, &texture_id);
   2411       GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2412 
   2413       GLC(gl_,
   2414           gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
   2415       GLC(gl_,
   2416           gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
   2417       GLC(gl_,
   2418           gl_->TexParameteri(
   2419               GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
   2420       GLC(gl_,
   2421           gl_->TexParameteri(
   2422               GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
   2423       GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
   2424     } else {
   2425       mailbox = request->texture_mailbox().mailbox();
   2426       DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D),
   2427                 request->texture_mailbox().target());
   2428       DCHECK(!mailbox.IsZero());
   2429       unsigned incoming_sync_point = request->texture_mailbox().sync_point();
   2430       if (incoming_sync_point)
   2431         GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point));
   2432 
   2433       texture_id = GLC(
   2434           gl_,
   2435           gl_->CreateAndConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
   2436     }
   2437     GetFramebufferTexture(texture_id, RGBA_8888, window_rect);
   2438 
   2439     unsigned sync_point = gl_->InsertSyncPointCHROMIUM();
   2440     TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point);
   2441 
   2442     scoped_ptr<SingleReleaseCallback> release_callback;
   2443     if (own_mailbox) {
   2444       GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2445       release_callback = texture_mailbox_deleter_->GetReleaseCallback(
   2446           output_surface_->context_provider(), texture_id);
   2447     } else {
   2448       gl_->DeleteTextures(1, &texture_id);
   2449     }
   2450 
   2451     request->SendTextureResult(
   2452         window_rect.size(), texture_mailbox, release_callback.Pass());
   2453     return;
   2454   }
   2455 
   2456   DCHECK(request->force_bitmap_result());
   2457 
   2458   scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
   2459   pending_read->copy_request = request.Pass();
   2460   pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
   2461                                     pending_read.Pass());
   2462 
   2463   bool do_workaround = NeedsIOSurfaceReadbackWorkaround();
   2464 
   2465   unsigned temporary_texture = 0;
   2466   unsigned temporary_fbo = 0;
   2467 
   2468   if (do_workaround) {
   2469     // On Mac OS X, calling glReadPixels() against an FBO whose color attachment
   2470     // is an IOSurface-backed texture causes corruption of future glReadPixels()
   2471     // calls, even those on different OpenGL contexts. It is believed that this
   2472     // is the root cause of top crasher
   2473     // http://crbug.com/99393. <rdar://problem/10949687>
   2474 
   2475     gl_->GenTextures(1, &temporary_texture);
   2476     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture));
   2477     GLC(gl_,
   2478         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
   2479     GLC(gl_,
   2480         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
   2481     GLC(gl_,
   2482         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
   2483     GLC(gl_,
   2484         gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
   2485     // Copy the contents of the current (IOSurface-backed) framebuffer into a
   2486     // temporary texture.
   2487     GetFramebufferTexture(
   2488         temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_));
   2489     gl_->GenFramebuffers(1, &temporary_fbo);
   2490     // Attach this texture to an FBO, and perform the readback from that FBO.
   2491     GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo));
   2492     GLC(gl_,
   2493         gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
   2494                                   GL_COLOR_ATTACHMENT0,
   2495                                   GL_TEXTURE_2D,
   2496                                   temporary_texture,
   2497                                   0));
   2498 
   2499     DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE),
   2500               gl_->CheckFramebufferStatus(GL_FRAMEBUFFER));
   2501   }
   2502 
   2503   GLuint buffer = 0;
   2504   gl_->GenBuffers(1, &buffer);
   2505   GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer));
   2506   GLC(gl_,
   2507       gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM,
   2508                       4 * window_rect.size().GetArea(),
   2509                       NULL,
   2510                       GL_STREAM_READ));
   2511 
   2512   GLuint query = 0;
   2513   gl_->GenQueriesEXT(1, &query);
   2514   GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query));
   2515 
   2516   GLC(gl_,
   2517       gl_->ReadPixels(window_rect.x(),
   2518                       window_rect.y(),
   2519                       window_rect.width(),
   2520                       window_rect.height(),
   2521                       GL_RGBA,
   2522                       GL_UNSIGNED_BYTE,
   2523                       NULL));
   2524 
   2525   GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
   2526 
   2527   if (do_workaround) {
   2528     // Clean up.
   2529     GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
   2530     GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2531     GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo));
   2532     GLC(gl_, gl_->DeleteTextures(1, &temporary_texture));
   2533   }
   2534 
   2535   base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback,
   2536                                                base::Unretained(this),
   2537                                                buffer,
   2538                                                query,
   2539                                                window_rect.size());
   2540   // Save the finished_callback so it can be cancelled.
   2541   pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset(
   2542       finished_callback);
   2543   base::Closure cancelable_callback =
   2544       pending_async_read_pixels_.front()->
   2545           finished_read_pixels_callback.callback();
   2546 
   2547   // Save the buffer to verify the callbacks happen in the expected order.
   2548   pending_async_read_pixels_.front()->buffer = buffer;
   2549 
   2550   GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM));
   2551   context_support_->SignalQuery(query, cancelable_callback);
   2552 
   2553   EnforceMemoryPolicy();
   2554 }
   2555 
   2556 void GLRenderer::FinishedReadback(unsigned source_buffer,
   2557                                   unsigned query,
   2558                                   const gfx::Size& size) {
   2559   DCHECK(!pending_async_read_pixels_.empty());
   2560 
   2561   if (query != 0) {
   2562     GLC(gl_, gl_->DeleteQueriesEXT(1, &query));
   2563   }
   2564 
   2565   PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back();
   2566   // Make sure we service the readbacks in order.
   2567   DCHECK_EQ(source_buffer, current_read->buffer);
   2568 
   2569   uint8* src_pixels = NULL;
   2570   scoped_ptr<SkBitmap> bitmap;
   2571 
   2572   if (source_buffer != 0) {
   2573     GLC(gl_,
   2574         gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer));
   2575     src_pixels = static_cast<uint8*>(gl_->MapBufferCHROMIUM(
   2576         GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY));
   2577 
   2578     if (src_pixels) {
   2579       bitmap.reset(new SkBitmap);
   2580       bitmap->allocN32Pixels(size.width(), size.height());
   2581       scoped_ptr<SkAutoLockPixels> lock(new SkAutoLockPixels(*bitmap));
   2582       uint8* dest_pixels = static_cast<uint8*>(bitmap->getPixels());
   2583 
   2584       size_t row_bytes = size.width() * 4;
   2585       int num_rows = size.height();
   2586       size_t total_bytes = num_rows * row_bytes;
   2587       for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) {
   2588         // Flip Y axis.
   2589         size_t src_y = total_bytes - dest_y - row_bytes;
   2590         // Swizzle OpenGL -> Skia byte order.
   2591         for (size_t x = 0; x < row_bytes; x += 4) {
   2592           dest_pixels[dest_y + x + SK_R32_SHIFT / 8] =
   2593               src_pixels[src_y + x + 0];
   2594           dest_pixels[dest_y + x + SK_G32_SHIFT / 8] =
   2595               src_pixels[src_y + x + 1];
   2596           dest_pixels[dest_y + x + SK_B32_SHIFT / 8] =
   2597               src_pixels[src_y + x + 2];
   2598           dest_pixels[dest_y + x + SK_A32_SHIFT / 8] =
   2599               src_pixels[src_y + x + 3];
   2600         }
   2601       }
   2602 
   2603       GLC(gl_,
   2604           gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM));
   2605     }
   2606     GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
   2607     GLC(gl_, gl_->DeleteBuffers(1, &source_buffer));
   2608   }
   2609 
   2610   if (bitmap)
   2611     current_read->copy_request->SendBitmapResult(bitmap.Pass());
   2612   pending_async_read_pixels_.pop_back();
   2613 }
   2614 
   2615 void GLRenderer::GetFramebufferTexture(unsigned texture_id,
   2616                                        ResourceFormat texture_format,
   2617                                        const gfx::Rect& window_rect) {
   2618   DCHECK(texture_id);
   2619   DCHECK_GE(window_rect.x(), 0);
   2620   DCHECK_GE(window_rect.y(), 0);
   2621   DCHECK_LE(window_rect.right(), current_surface_size_.width());
   2622   DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
   2623 
   2624   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
   2625   GLC(gl_,
   2626       gl_->CopyTexImage2D(GL_TEXTURE_2D,
   2627                           0,
   2628                           GLDataFormat(texture_format),
   2629                           window_rect.x(),
   2630                           window_rect.y(),
   2631                           window_rect.width(),
   2632                           window_rect.height(),
   2633                           0));
   2634   GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
   2635 }
   2636 
   2637 bool GLRenderer::UseScopedTexture(DrawingFrame* frame,
   2638                                   const ScopedResource* texture,
   2639                                   const gfx::Rect& viewport_rect) {
   2640   DCHECK(texture->id());
   2641   frame->current_render_pass = NULL;
   2642   frame->current_texture = texture;
   2643 
   2644   return BindFramebufferToTexture(frame, texture, viewport_rect);
   2645 }
   2646 
   2647 void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) {
   2648   current_framebuffer_lock_.reset();
   2649   output_surface_->BindFramebuffer();
   2650 
   2651   if (output_surface_->HasExternalStencilTest()) {
   2652     SetStencilEnabled(true);
   2653     GLC(gl_, gl_->StencilFunc(GL_EQUAL, 1, 1));
   2654   } else {
   2655     SetStencilEnabled(false);
   2656   }
   2657 }
   2658 
   2659 bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame,
   2660                                           const ScopedResource* texture,
   2661                                           const gfx::Rect& target_rect) {
   2662   DCHECK(texture->id());
   2663 
   2664   current_framebuffer_lock_.reset();
   2665 
   2666   SetStencilEnabled(false);
   2667   GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_));
   2668   current_framebuffer_lock_ =
   2669       make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL(
   2670           resource_provider_, texture->id()));
   2671   unsigned texture_id = current_framebuffer_lock_->texture_id();
   2672   GLC(gl_,
   2673       gl_->FramebufferTexture2D(
   2674           GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0));
   2675 
   2676   DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
   2677              GL_FRAMEBUFFER_COMPLETE ||
   2678          IsContextLost());
   2679 
   2680   InitializeViewport(
   2681       frame, target_rect, gfx::Rect(target_rect.size()), target_rect.size());
   2682   return true;
   2683 }
   2684 
   2685 void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) {
   2686   EnsureScissorTestEnabled();
   2687 
   2688   // Don't unnecessarily ask the context to change the scissor, because it
   2689   // may cause undesired GPU pipeline flushes.
   2690   if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_)
   2691     return;
   2692 
   2693   scissor_rect_ = scissor_rect;
   2694   FlushTextureQuadCache();
   2695   GLC(gl_,
   2696       gl_->Scissor(scissor_rect.x(),
   2697                    scissor_rect.y(),
   2698                    scissor_rect.width(),
   2699                    scissor_rect.height()));
   2700 
   2701   scissor_rect_needs_reset_ = false;
   2702 }
   2703 
   2704 void GLRenderer::SetDrawViewport(const gfx::Rect& window_space_viewport) {
   2705   viewport_ = window_space_viewport;
   2706   GLC(gl_,
   2707       gl_->Viewport(window_space_viewport.x(),
   2708                     window_space_viewport.y(),
   2709                     window_space_viewport.width(),
   2710                     window_space_viewport.height()));
   2711 }
   2712 
   2713 void GLRenderer::InitializeSharedObjects() {
   2714   TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects");
   2715 
   2716   // Create an FBO for doing offscreen rendering.
   2717   GLC(gl_, gl_->GenFramebuffers(1, &offscreen_framebuffer_id_));
   2718 
   2719   shared_geometry_ = make_scoped_ptr(
   2720       new GeometryBinding(gl_, QuadVertexRect()));
   2721 }
   2722 
   2723 const GLRenderer::TileCheckerboardProgram*
   2724 GLRenderer::GetTileCheckerboardProgram() {
   2725   if (!tile_checkerboard_program_.initialized()) {
   2726     TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize");
   2727     tile_checkerboard_program_.Initialize(output_surface_->context_provider(),
   2728                                           TexCoordPrecisionNA,
   2729                                           SamplerTypeNA);
   2730   }
   2731   return &tile_checkerboard_program_;
   2732 }
   2733 
   2734 const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() {
   2735   if (!debug_border_program_.initialized()) {
   2736     TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize");
   2737     debug_border_program_.Initialize(output_surface_->context_provider(),
   2738                                      TexCoordPrecisionNA,
   2739                                      SamplerTypeNA);
   2740   }
   2741   return &debug_border_program_;
   2742 }
   2743 
   2744 const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() {
   2745   if (!solid_color_program_.initialized()) {
   2746     TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize");
   2747     solid_color_program_.Initialize(output_surface_->context_provider(),
   2748                                     TexCoordPrecisionNA,
   2749                                     SamplerTypeNA);
   2750   }
   2751   return &solid_color_program_;
   2752 }
   2753 
   2754 const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() {
   2755   if (!solid_color_program_aa_.initialized()) {
   2756     TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize");
   2757     solid_color_program_aa_.Initialize(output_surface_->context_provider(),
   2758                                        TexCoordPrecisionNA,
   2759                                        SamplerTypeNA);
   2760   }
   2761   return &solid_color_program_aa_;
   2762 }
   2763 
   2764 const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram(
   2765     TexCoordPrecision precision) {
   2766   DCHECK_GE(precision, 0);
   2767   DCHECK_LT(precision, NumTexCoordPrecisions);
   2768   RenderPassProgram* program = &render_pass_program_[precision];
   2769   if (!program->initialized()) {
   2770     TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize");
   2771     program->Initialize(
   2772         output_surface_->context_provider(), precision, SamplerType2D);
   2773   }
   2774   return program;
   2775 }
   2776 
   2777 const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA(
   2778     TexCoordPrecision precision) {
   2779   DCHECK_GE(precision, 0);
   2780   DCHECK_LT(precision, NumTexCoordPrecisions);
   2781   RenderPassProgramAA* program = &render_pass_program_aa_[precision];
   2782   if (!program->initialized()) {
   2783     TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize");
   2784     program->Initialize(
   2785         output_surface_->context_provider(), precision, SamplerType2D);
   2786   }
   2787   return program;
   2788 }
   2789 
   2790 const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram(
   2791     TexCoordPrecision precision) {
   2792   DCHECK_GE(precision, 0);
   2793   DCHECK_LT(precision, NumTexCoordPrecisions);
   2794   RenderPassMaskProgram* program = &render_pass_mask_program_[precision];
   2795   if (!program->initialized()) {
   2796     TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize");
   2797     program->Initialize(
   2798         output_surface_->context_provider(), precision, SamplerType2D);
   2799   }
   2800   return program;
   2801 }
   2802 
   2803 const GLRenderer::RenderPassMaskProgramAA*
   2804 GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) {
   2805   DCHECK_GE(precision, 0);
   2806   DCHECK_LT(precision, NumTexCoordPrecisions);
   2807   RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision];
   2808   if (!program->initialized()) {
   2809     TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize");
   2810     program->Initialize(
   2811         output_surface_->context_provider(), precision, SamplerType2D);
   2812   }
   2813   return program;
   2814 }
   2815 
   2816 const GLRenderer::RenderPassColorMatrixProgram*
   2817 GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) {
   2818   DCHECK_GE(precision, 0);
   2819   DCHECK_LT(precision, NumTexCoordPrecisions);
   2820   RenderPassColorMatrixProgram* program =
   2821       &render_pass_color_matrix_program_[precision];
   2822   if (!program->initialized()) {
   2823     TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize");
   2824     program->Initialize(
   2825         output_surface_->context_provider(), precision, SamplerType2D);
   2826   }
   2827   return program;
   2828 }
   2829 
   2830 const GLRenderer::RenderPassColorMatrixProgramAA*
   2831 GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) {
   2832   DCHECK_GE(precision, 0);
   2833   DCHECK_LT(precision, NumTexCoordPrecisions);
   2834   RenderPassColorMatrixProgramAA* program =
   2835       &render_pass_color_matrix_program_aa_[precision];
   2836   if (!program->initialized()) {
   2837     TRACE_EVENT0("cc",
   2838                  "GLRenderer::renderPassColorMatrixProgramAA::initialize");
   2839     program->Initialize(
   2840         output_surface_->context_provider(), precision, SamplerType2D);
   2841   }
   2842   return program;
   2843 }
   2844 
   2845 const GLRenderer::RenderPassMaskColorMatrixProgram*
   2846 GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) {
   2847   DCHECK_GE(precision, 0);
   2848   DCHECK_LT(precision, NumTexCoordPrecisions);
   2849   RenderPassMaskColorMatrixProgram* program =
   2850       &render_pass_mask_color_matrix_program_[precision];
   2851   if (!program->initialized()) {
   2852     TRACE_EVENT0("cc",
   2853                  "GLRenderer::renderPassMaskColorMatrixProgram::initialize");
   2854     program->Initialize(
   2855         output_surface_->context_provider(), precision, SamplerType2D);
   2856   }
   2857   return program;
   2858 }
   2859 
   2860 const GLRenderer::RenderPassMaskColorMatrixProgramAA*
   2861 GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) {
   2862   DCHECK_GE(precision, 0);
   2863   DCHECK_LT(precision, NumTexCoordPrecisions);
   2864   RenderPassMaskColorMatrixProgramAA* program =
   2865       &render_pass_mask_color_matrix_program_aa_[precision];
   2866   if (!program->initialized()) {
   2867     TRACE_EVENT0("cc",
   2868                  "GLRenderer::renderPassMaskColorMatrixProgramAA::initialize");
   2869     program->Initialize(
   2870         output_surface_->context_provider(), precision, SamplerType2D);
   2871   }
   2872   return program;
   2873 }
   2874 
   2875 const GLRenderer::TileProgram* GLRenderer::GetTileProgram(
   2876     TexCoordPrecision precision,
   2877     SamplerType sampler) {
   2878   DCHECK_GE(precision, 0);
   2879   DCHECK_LT(precision, NumTexCoordPrecisions);
   2880   DCHECK_GE(sampler, 0);
   2881   DCHECK_LT(sampler, NumSamplerTypes);
   2882   TileProgram* program = &tile_program_[precision][sampler];
   2883   if (!program->initialized()) {
   2884     TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize");
   2885     program->Initialize(
   2886         output_surface_->context_provider(), precision, sampler);
   2887   }
   2888   return program;
   2889 }
   2890 
   2891 const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque(
   2892     TexCoordPrecision precision,
   2893     SamplerType sampler) {
   2894   DCHECK_GE(precision, 0);
   2895   DCHECK_LT(precision, NumTexCoordPrecisions);
   2896   DCHECK_GE(sampler, 0);
   2897   DCHECK_LT(sampler, NumSamplerTypes);
   2898   TileProgramOpaque* program = &tile_program_opaque_[precision][sampler];
   2899   if (!program->initialized()) {
   2900     TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize");
   2901     program->Initialize(
   2902         output_surface_->context_provider(), precision, sampler);
   2903   }
   2904   return program;
   2905 }
   2906 
   2907 const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA(
   2908     TexCoordPrecision precision,
   2909     SamplerType sampler) {
   2910   DCHECK_GE(precision, 0);
   2911   DCHECK_LT(precision, NumTexCoordPrecisions);
   2912   DCHECK_GE(sampler, 0);
   2913   DCHECK_LT(sampler, NumSamplerTypes);
   2914   TileProgramAA* program = &tile_program_aa_[precision][sampler];
   2915   if (!program->initialized()) {
   2916     TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize");
   2917     program->Initialize(
   2918         output_surface_->context_provider(), precision, sampler);
   2919   }
   2920   return program;
   2921 }
   2922 
   2923 const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle(
   2924     TexCoordPrecision precision,
   2925     SamplerType sampler) {
   2926   DCHECK_GE(precision, 0);
   2927   DCHECK_LT(precision, NumTexCoordPrecisions);
   2928   DCHECK_GE(sampler, 0);
   2929   DCHECK_LT(sampler, NumSamplerTypes);
   2930   TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler];
   2931   if (!program->initialized()) {
   2932     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize");
   2933     program->Initialize(
   2934         output_surface_->context_provider(), precision, sampler);
   2935   }
   2936   return program;
   2937 }
   2938 
   2939 const GLRenderer::TileProgramSwizzleOpaque*
   2940 GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision,
   2941                                         SamplerType sampler) {
   2942   DCHECK_GE(precision, 0);
   2943   DCHECK_LT(precision, NumTexCoordPrecisions);
   2944   DCHECK_GE(sampler, 0);
   2945   DCHECK_LT(sampler, NumSamplerTypes);
   2946   TileProgramSwizzleOpaque* program =
   2947       &tile_program_swizzle_opaque_[precision][sampler];
   2948   if (!program->initialized()) {
   2949     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize");
   2950     program->Initialize(
   2951         output_surface_->context_provider(), precision, sampler);
   2952   }
   2953   return program;
   2954 }
   2955 
   2956 const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA(
   2957     TexCoordPrecision precision,
   2958     SamplerType sampler) {
   2959   DCHECK_GE(precision, 0);
   2960   DCHECK_LT(precision, NumTexCoordPrecisions);
   2961   DCHECK_GE(sampler, 0);
   2962   DCHECK_LT(sampler, NumSamplerTypes);
   2963   TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler];
   2964   if (!program->initialized()) {
   2965     TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize");
   2966     program->Initialize(
   2967         output_surface_->context_provider(), precision, sampler);
   2968   }
   2969   return program;
   2970 }
   2971 
   2972 const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram(
   2973     TexCoordPrecision precision) {
   2974   DCHECK_GE(precision, 0);
   2975   DCHECK_LT(precision, NumTexCoordPrecisions);
   2976   TextureProgram* program = &texture_program_[precision];
   2977   if (!program->initialized()) {
   2978     TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
   2979     program->Initialize(
   2980         output_surface_->context_provider(), precision, SamplerType2D);
   2981   }
   2982   return program;
   2983 }
   2984 
   2985 const GLRenderer::NonPremultipliedTextureProgram*
   2986 GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision) {
   2987   DCHECK_GE(precision, 0);
   2988   DCHECK_LT(precision, NumTexCoordPrecisions);
   2989   NonPremultipliedTextureProgram* program =
   2990       &nonpremultiplied_texture_program_[precision];
   2991   if (!program->initialized()) {
   2992     TRACE_EVENT0("cc",
   2993                  "GLRenderer::NonPremultipliedTextureProgram::Initialize");
   2994     program->Initialize(
   2995         output_surface_->context_provider(), precision, SamplerType2D);
   2996   }
   2997   return program;
   2998 }
   2999 
   3000 const GLRenderer::TextureBackgroundProgram*
   3001 GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision) {
   3002   DCHECK_GE(precision, 0);
   3003   DCHECK_LT(precision, NumTexCoordPrecisions);
   3004   TextureBackgroundProgram* program = &texture_background_program_[precision];
   3005   if (!program->initialized()) {
   3006     TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
   3007     program->Initialize(
   3008         output_surface_->context_provider(), precision, SamplerType2D);
   3009   }
   3010   return program;
   3011 }
   3012 
   3013 const GLRenderer::NonPremultipliedTextureBackgroundProgram*
   3014 GLRenderer::GetNonPremultipliedTextureBackgroundProgram(
   3015     TexCoordPrecision precision) {
   3016   DCHECK_GE(precision, 0);
   3017   DCHECK_LT(precision, NumTexCoordPrecisions);
   3018   NonPremultipliedTextureBackgroundProgram* program =
   3019       &nonpremultiplied_texture_background_program_[precision];
   3020   if (!program->initialized()) {
   3021     TRACE_EVENT0("cc",
   3022                  "GLRenderer::NonPremultipliedTextureProgram::Initialize");
   3023     program->Initialize(
   3024         output_surface_->context_provider(), precision, SamplerType2D);
   3025   }
   3026   return program;
   3027 }
   3028 
   3029 const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram(
   3030     TexCoordPrecision precision) {
   3031   DCHECK_GE(precision, 0);
   3032   DCHECK_LT(precision, NumTexCoordPrecisions);
   3033   TextureProgram* program = &texture_io_surface_program_[precision];
   3034   if (!program->initialized()) {
   3035     TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize");
   3036     program->Initialize(
   3037         output_surface_->context_provider(), precision, SamplerType2DRect);
   3038   }
   3039   return program;
   3040 }
   3041 
   3042 const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram(
   3043     TexCoordPrecision precision) {
   3044   DCHECK_GE(precision, 0);
   3045   DCHECK_LT(precision, NumTexCoordPrecisions);
   3046   VideoYUVProgram* program = &video_yuv_program_[precision];
   3047   if (!program->initialized()) {
   3048     TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize");
   3049     program->Initialize(
   3050         output_surface_->context_provider(), precision, SamplerType2D);
   3051   }
   3052   return program;
   3053 }
   3054 
   3055 const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram(
   3056     TexCoordPrecision precision) {
   3057   DCHECK_GE(precision, 0);
   3058   DCHECK_LT(precision, NumTexCoordPrecisions);
   3059   VideoYUVAProgram* program = &video_yuva_program_[precision];
   3060   if (!program->initialized()) {
   3061     TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize");
   3062     program->Initialize(
   3063         output_surface_->context_provider(), precision, SamplerType2D);
   3064   }
   3065   return program;
   3066 }
   3067 
   3068 const GLRenderer::VideoStreamTextureProgram*
   3069 GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) {
   3070   if (!Capabilities().using_egl_image)
   3071     return NULL;
   3072   DCHECK_GE(precision, 0);
   3073   DCHECK_LT(precision, NumTexCoordPrecisions);
   3074   VideoStreamTextureProgram* program =
   3075       &video_stream_texture_program_[precision];
   3076   if (!program->initialized()) {
   3077     TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize");
   3078     program->Initialize(
   3079         output_surface_->context_provider(), precision, SamplerTypeExternalOES);
   3080   }
   3081   return program;
   3082 }
   3083 
   3084 void GLRenderer::CleanupSharedObjects() {
   3085   shared_geometry_.reset();
   3086 
   3087   for (int i = 0; i < NumTexCoordPrecisions; ++i) {
   3088     for (int j = 0; j < NumSamplerTypes; ++j) {
   3089       tile_program_[i][j].Cleanup(gl_);
   3090       tile_program_opaque_[i][j].Cleanup(gl_);
   3091       tile_program_swizzle_[i][j].Cleanup(gl_);
   3092       tile_program_swizzle_opaque_[i][j].Cleanup(gl_);
   3093       tile_program_aa_[i][j].Cleanup(gl_);
   3094       tile_program_swizzle_aa_[i][j].Cleanup(gl_);
   3095     }
   3096 
   3097     render_pass_mask_program_[i].Cleanup(gl_);
   3098     render_pass_program_[i].Cleanup(gl_);
   3099     render_pass_mask_program_aa_[i].Cleanup(gl_);
   3100     render_pass_program_aa_[i].Cleanup(gl_);
   3101     render_pass_color_matrix_program_[i].Cleanup(gl_);
   3102     render_pass_mask_color_matrix_program_aa_[i].Cleanup(gl_);
   3103     render_pass_color_matrix_program_aa_[i].Cleanup(gl_);
   3104     render_pass_mask_color_matrix_program_[i].Cleanup(gl_);
   3105 
   3106     texture_program_[i].Cleanup(gl_);
   3107     nonpremultiplied_texture_program_[i].Cleanup(gl_);
   3108     texture_background_program_[i].Cleanup(gl_);
   3109     nonpremultiplied_texture_background_program_[i].Cleanup(gl_);
   3110     texture_io_surface_program_[i].Cleanup(gl_);
   3111 
   3112     video_yuv_program_[i].Cleanup(gl_);
   3113     video_yuva_program_[i].Cleanup(gl_);
   3114     video_stream_texture_program_[i].Cleanup(gl_);
   3115   }
   3116 
   3117   tile_checkerboard_program_.Cleanup(gl_);
   3118 
   3119   debug_border_program_.Cleanup(gl_);
   3120   solid_color_program_.Cleanup(gl_);
   3121   solid_color_program_aa_.Cleanup(gl_);
   3122 
   3123   if (offscreen_framebuffer_id_)
   3124     GLC(gl_, gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_));
   3125 
   3126   if (on_demand_tile_raster_resource_id_)
   3127     resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
   3128 
   3129   ReleaseRenderPassTextures();
   3130 }
   3131 
   3132 void GLRenderer::ReinitializeGLState() {
   3133   is_scissor_enabled_ = false;
   3134   scissor_rect_needs_reset_ = true;
   3135   stencil_shadow_ = false;
   3136   blend_shadow_ = true;
   3137   program_shadow_ = 0;
   3138 
   3139   RestoreGLState();
   3140 }
   3141 
   3142 void GLRenderer::RestoreGLState() {
   3143   // This restores the current GLRenderer state to the GL context.
   3144 
   3145   shared_geometry_->PrepareForDraw();
   3146 
   3147   GLC(gl_, gl_->Disable(GL_DEPTH_TEST));
   3148   GLC(gl_, gl_->Disable(GL_CULL_FACE));
   3149   GLC(gl_, gl_->ColorMask(true, true, true, true));
   3150   GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
   3151   GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0));
   3152 
   3153   if (program_shadow_)
   3154     gl_->UseProgram(program_shadow_);
   3155 
   3156   if (stencil_shadow_)
   3157     GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
   3158   else
   3159     GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
   3160 
   3161   if (blend_shadow_)
   3162     GLC(gl_, gl_->Enable(GL_BLEND));
   3163   else
   3164     GLC(gl_, gl_->Disable(GL_BLEND));
   3165 
   3166   if (is_scissor_enabled_) {
   3167     GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
   3168     GLC(gl_,
   3169         gl_->Scissor(scissor_rect_.x(),
   3170                      scissor_rect_.y(),
   3171                      scissor_rect_.width(),
   3172                      scissor_rect_.height()));
   3173   } else {
   3174     GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
   3175   }
   3176 }
   3177 
   3178 void GLRenderer::RestoreFramebuffer(DrawingFrame* frame) {
   3179   UseRenderPass(frame, frame->current_render_pass);
   3180 }
   3181 
   3182 bool GLRenderer::IsContextLost() {
   3183   return output_surface_->context_provider()->IsContextLost();
   3184 }
   3185 
   3186 void GLRenderer::ScheduleOverlays(DrawingFrame* frame) {
   3187   if (!frame->overlay_list.size())
   3188     return;
   3189 
   3190   ResourceProvider::ResourceIdArray resources;
   3191   OverlayCandidateList& overlays = frame->overlay_list;
   3192   OverlayCandidateList::iterator it;
   3193   for (it = overlays.begin(); it != overlays.end(); ++it) {
   3194     const OverlayCandidate& overlay = *it;
   3195     // Skip primary plane.
   3196     if (overlay.plane_z_order == 0)
   3197       continue;
   3198 
   3199     pending_overlay_resources_.push_back(
   3200         make_scoped_ptr(new ResourceProvider::ScopedReadLockGL(
   3201             resource_provider_, overlay.resource_id)));
   3202 
   3203     context_support_->ScheduleOverlayPlane(
   3204         overlay.plane_z_order,
   3205         overlay.transform,
   3206         pending_overlay_resources_.back()->texture_id(),
   3207         overlay.display_rect,
   3208         overlay.uv_rect);
   3209   }
   3210 }
   3211 
   3212 }  // namespace cc
   3213