1 //--------------------------------------------------------------------*/ 2 //--- Massif: a heap profiling tool. ms_main.c ---*/ 3 //--------------------------------------------------------------------*/ 4 5 /* 6 This file is part of Massif, a Valgrind tool for profiling memory 7 usage of programs. 8 9 Copyright (C) 2003-2013 Nicholas Nethercote 10 njn (at) valgrind.org 11 12 This program is free software; you can redistribute it and/or 13 modify it under the terms of the GNU General Public License as 14 published by the Free Software Foundation; either version 2 of the 15 License, or (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, but 18 WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 25 02111-1307, USA. 26 27 The GNU General Public License is contained in the file COPYING. 28 */ 29 30 //--------------------------------------------------------------------------- 31 // XXX: 32 //--------------------------------------------------------------------------- 33 // Todo -- nice, but less critical: 34 // - do a graph-drawing test 35 // - make file format more generic. Obstacles: 36 // - unit prefixes are not generic 37 // - preset column widths for stats are not generic 38 // - preset column headers are not generic 39 // - "Massif arguments:" line is not generic 40 // - do snapshots on client requests 41 // - (Michael Meeks): have an interactive way to request a dump 42 // (callgrind_control-style) 43 // - "profile now" 44 // - "show me the extra allocations since the last snapshot" 45 // - "start/stop logging" (eg. quickly skip boring bits) 46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. 47 // Give each graph a title. (try to do it generically!) 48 // - allow truncation of long fnnames if the exact line number is 49 // identified? [hmm, could make getting the name of alloc-fns more 50 // difficult] [could dump full names to file, truncate in ms_print] 51 // - make --show-below-main=no work 52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' 53 // don't work in a .valgrindrc file or in $VALGRIND_OPTS. 54 // m_commandline.c:add_args_from_string() needs to respect single quotes. 55 // - With --stack=yes, want to add a stack trace for detailed snapshots so 56 // it's clear where/why the peak is occurring. (Mattieu Castet) Also, 57 // possibly useful even with --stack=no? (Andi Yin) 58 // 59 // Performance: 60 // - To run the benchmarks: 61 // 62 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif 63 // time valgrind --tool=massif --depth=100 konqueror 64 // 65 // The other benchmarks don't do much allocation, and so give similar speeds 66 // to Nulgrind. 67 // 68 // Timing results on 'nevermore' (njn's machine) as of r7013: 69 // 70 // heap 0.53s ma:12.4s (23.5x, -----) 71 // tinycc 0.46s ma: 4.9s (10.7x, -----) 72 // many-xpts 0.08s ma: 2.0s (25.0x, -----) 73 // konqueror 29.6s real 0:21.0s user 74 // 75 // [Introduction of --time-unit=i as the default slowed things down by 76 // roughly 0--20%.] 77 // 78 // - get_XCon accounts for about 9% of konqueror startup time. Try 79 // keeping XPt children sorted by 'ip' and use binary search in get_XCon. 80 // Requires factoring out binary search code from various places into a 81 // VG_(bsearch) function. 82 // 83 // Todo -- low priority: 84 // - In each XPt, record both bytes and the number of allocations, and 85 // possibly the global number of allocations. 86 // - (Andy Lin) Give a stack trace on detailed snapshots? 87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger 88 // than a certain size! Because: "linux's malloc allows to set a 89 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will 90 // be handled directly by the kernel, and are guaranteed to be returned to 91 // the system when freed. So we needed to profile only blocks below this 92 // limit." 93 // 94 // File format working notes: 95 96 #if 0 97 desc: --heap-admin=foo 98 cmd: date 99 time_unit: ms 100 #----------- 101 snapshot=0 102 #----------- 103 time=0 104 mem_heap_B=0 105 mem_heap_admin_B=0 106 mem_stacks_B=0 107 heap_tree=empty 108 #----------- 109 snapshot=1 110 #----------- 111 time=353 112 mem_heap_B=5 113 mem_heap_admin_B=0 114 mem_stacks_B=0 115 heap_tree=detailed 116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 117 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 118 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) 119 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) 120 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) 121 n1: 5 0x8049821: (within /bin/date) 122 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) 123 124 125 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 126 t_events: B 127 n 0 0 0 0 0 128 n 0 0 0 0 0 129 t1: 5 <string...> 130 t1: 6 <string...> 131 132 Ideas: 133 - each snapshot specifies an x-axis value and one or more y-axis values. 134 - can display the y-axis values separately if you like 135 - can completely separate connection between snapshots and trees. 136 137 Challenges: 138 - how to specify and scale/abbreviate units on axes? 139 - how to combine multiple values into the y-axis? 140 141 --------------------------------------------------------------------------------Command: date 142 Massif arguments: --heap-admin=foo 143 ms_print arguments: massif.out 144 -------------------------------------------------------------------------------- 145 KB 146 6.472^ :# 147 | :# :: . . 148 ... 149 | ::@ :@ :@ :@:::# :: : :::: 150 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 151 152 Number of snapshots: 50 153 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] 154 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 155 -------------------------------------------------------------------------------- 0 0 0 0 0 0 156 1 345 5 5 0 0 157 2 353 5 5 0 0 158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 160 #endif 161 162 //--------------------------------------------------------------------------- 163 164 #include "pub_tool_basics.h" 165 #include "pub_tool_vki.h" 166 #include "pub_tool_aspacemgr.h" 167 #include "pub_tool_debuginfo.h" 168 #include "pub_tool_hashtable.h" 169 #include "pub_tool_libcbase.h" 170 #include "pub_tool_libcassert.h" 171 #include "pub_tool_libcfile.h" 172 #include "pub_tool_libcprint.h" 173 #include "pub_tool_libcproc.h" 174 #include "pub_tool_machine.h" 175 #include "pub_tool_mallocfree.h" 176 #include "pub_tool_options.h" 177 #include "pub_tool_replacemalloc.h" 178 #include "pub_tool_stacktrace.h" 179 #include "pub_tool_threadstate.h" 180 #include "pub_tool_tooliface.h" 181 #include "pub_tool_xarray.h" 182 #include "pub_tool_clientstate.h" 183 #include "pub_tool_gdbserver.h" 184 185 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK 186 187 //------------------------------------------------------------*/ 188 //--- Overview of operation ---*/ 189 //------------------------------------------------------------*/ 190 191 // The size of the stacks and heap is tracked. The heap is tracked in a lot 192 // of detail, enough to tell how many bytes each line of code is responsible 193 // for, more or less. The main data structure is a tree representing the 194 // call tree beneath all the allocation functions like malloc(). 195 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at 196 // the page level, and each page is treated much like a heap block. We use 197 // "heap" throughout below to cover this case because the concepts are all the 198 // same.) 199 // 200 // "Snapshots" are recordings of the memory usage. There are two basic 201 // kinds: 202 // - Normal: these record the current time, total memory size, total heap 203 // size, heap admin size and stack size. 204 // - Detailed: these record those things in a normal snapshot, plus a very 205 // detailed XTree (see below) indicating how the heap is structured. 206 // 207 // Snapshots are taken every so often. There are two storage classes of 208 // snapshots: 209 // - Temporary: Massif does a temporary snapshot every so often. The idea 210 // is to always have a certain number of temporary snapshots around. So 211 // we take them frequently to begin with, but decreasingly often as the 212 // program continues to run. Also, we remove some old ones after a while. 213 // Overall it's a kind of exponential decay thing. Most of these are 214 // normal snapshots, a small fraction are detailed snapshots. 215 // - Permanent: Massif takes a permanent (detailed) snapshot in some 216 // circumstances. They are: 217 // - Peak snapshot: When the memory usage peak is reached, it takes a 218 // snapshot. It keeps this, unless the peak is subsequently exceeded, 219 // in which case it will overwrite the peak snapshot. 220 // - User-requested snapshots: These are done in response to client 221 // requests. They are always kept. 222 223 // Used for printing things when clo_verbosity > 1. 224 #define VERB(verb, format, args...) \ 225 if (VG_(clo_verbosity) > verb) { \ 226 VG_(dmsg)("Massif: " format, ##args); \ 227 } 228 229 //------------------------------------------------------------// 230 //--- Statistics ---// 231 //------------------------------------------------------------// 232 233 // Konqueror startup, to give an idea of the numbers involved with a biggish 234 // program, with default depth: 235 // 236 // depth=3 depth=40 237 // - 310,000 allocations 238 // - 300,000 frees 239 // - 15,000 XPts 800,000 XPts 240 // - 1,800 top-XPts 241 242 static UInt n_heap_allocs = 0; 243 static UInt n_heap_reallocs = 0; 244 static UInt n_heap_frees = 0; 245 static UInt n_ignored_heap_allocs = 0; 246 static UInt n_ignored_heap_frees = 0; 247 static UInt n_ignored_heap_reallocs = 0; 248 static UInt n_stack_allocs = 0; 249 static UInt n_stack_frees = 0; 250 static UInt n_xpts = 0; 251 static UInt n_xpt_init_expansions = 0; 252 static UInt n_xpt_later_expansions = 0; 253 static UInt n_sxpt_allocs = 0; 254 static UInt n_sxpt_frees = 0; 255 static UInt n_skipped_snapshots = 0; 256 static UInt n_real_snapshots = 0; 257 static UInt n_detailed_snapshots = 0; 258 static UInt n_peak_snapshots = 0; 259 static UInt n_cullings = 0; 260 static UInt n_XCon_redos = 0; 261 262 //------------------------------------------------------------// 263 //--- Globals ---// 264 //------------------------------------------------------------// 265 266 // Number of guest instructions executed so far. Only used with 267 // --time-unit=i. 268 static Long guest_instrs_executed = 0; 269 270 static SizeT heap_szB = 0; // Live heap size 271 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes 272 static SizeT stacks_szB = 0; // Live stacks size 273 274 // This is the total size from the current peak snapshot, or 0 if no peak 275 // snapshot has been taken yet. 276 static SizeT peak_snapshot_total_szB = 0; 277 278 // Incremented every time memory is allocated/deallocated, by the 279 // allocated/deallocated amount; includes heap, heap-admin and stack 280 // memory. An alternative to milliseconds as a unit of program "time". 281 static ULong total_allocs_deallocs_szB = 0; 282 283 // When running with --heap=yes --pages-as-heap=no, we don't start taking 284 // snapshots until the first basic block is executed, rather than doing it in 285 // ms_post_clo_init (which is the obvious spot), for two reasons. 286 // - It lets us ignore stack events prior to that, because they're not 287 // really proper ones and just would screw things up. 288 // - Because there's still some core initialisation to do, and so there 289 // would be an artificial time gap between the first and second snapshots. 290 // 291 // When running with --heap=yes --pages-as-heap=yes, snapshots start much 292 // earlier due to new_mem_startup so this isn't relevant. 293 // 294 static Bool have_started_executing_code = False; 295 296 //------------------------------------------------------------// 297 //--- Alloc fns ---// 298 //------------------------------------------------------------// 299 300 static XArray* alloc_fns; 301 static XArray* ignore_fns; 302 303 static void init_alloc_fns(void) 304 { 305 // Create the list, and add the default elements. 306 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", 307 VG_(free), sizeof(HChar*)); 308 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); } 309 310 // Ordered roughly according to (presumed) frequency. 311 // Nb: The C++ "operator new*" ones are overloadable. We include them 312 // always anyway, because even if they're overloaded, it would be a 313 // prodigiously stupid overloading that caused them to not allocate 314 // memory. 315 // 316 // XXX: because we don't look at the first stack entry (unless it's a 317 // custom allocation) there's not much point to having all these alloc 318 // functions here -- they should never appear anywhere (I think?) other 319 // than the top stack entry. The only exceptions are those that in 320 // vg_replace_malloc.c are partly or fully implemented in terms of another 321 // alloc function: realloc (which uses malloc); valloc, 322 // malloc_zone_valloc, posix_memalign and memalign_common (which use 323 // memalign). 324 // 325 DO("malloc" ); 326 DO("__builtin_new" ); 327 DO("operator new(unsigned)" ); 328 DO("operator new(unsigned long)" ); 329 DO("__builtin_vec_new" ); 330 DO("operator new[](unsigned)" ); 331 DO("operator new[](unsigned long)" ); 332 DO("calloc" ); 333 DO("realloc" ); 334 DO("memalign" ); 335 DO("posix_memalign" ); 336 DO("valloc" ); 337 DO("operator new(unsigned, std::nothrow_t const&)" ); 338 DO("operator new[](unsigned, std::nothrow_t const&)" ); 339 DO("operator new(unsigned long, std::nothrow_t const&)" ); 340 DO("operator new[](unsigned long, std::nothrow_t const&)"); 341 #if defined(VGO_darwin) 342 DO("malloc_zone_malloc" ); 343 DO("malloc_zone_calloc" ); 344 DO("malloc_zone_realloc" ); 345 DO("malloc_zone_memalign" ); 346 DO("malloc_zone_valloc" ); 347 #endif 348 } 349 350 static void init_ignore_fns(void) 351 { 352 // Create the (empty) list. 353 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", 354 VG_(free), sizeof(HChar*)); 355 } 356 357 // Determines if the named function is a member of the XArray. 358 static Bool is_member_fn(XArray* fns, const HChar* fnname) 359 { 360 HChar** fn_ptr; 361 Int i; 362 363 // Nb: It's a linear search through the list, because we're comparing 364 // strings rather than pointers to strings. 365 // Nb: This gets called a lot. It was an OSet, but they're quite slow to 366 // iterate through so it wasn't a good choice. 367 for (i = 0; i < VG_(sizeXA)(fns); i++) { 368 fn_ptr = VG_(indexXA)(fns, i); 369 if (VG_STREQ(fnname, *fn_ptr)) 370 return True; 371 } 372 return False; 373 } 374 375 376 //------------------------------------------------------------// 377 //--- Command line args ---// 378 //------------------------------------------------------------// 379 380 #define MAX_DEPTH 200 381 382 typedef enum { TimeI, TimeMS, TimeB } TimeUnit; 383 384 static const HChar* TimeUnit_to_string(TimeUnit time_unit) 385 { 386 switch (time_unit) { 387 case TimeI: return "i"; 388 case TimeMS: return "ms"; 389 case TimeB: return "B"; 390 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); 391 } 392 } 393 394 static Bool clo_heap = True; 395 // clo_heap_admin is deliberately a word-sized type. At one point it was 396 // a UInt, but this caused problems on 64-bit machines when it was 397 // multiplied by a small negative number and then promoted to a 398 // word-sized type -- it ended up with a value of 4.2 billion. Sigh. 399 static SSizeT clo_heap_admin = 8; 400 static Bool clo_pages_as_heap = False; 401 static Bool clo_stacks = False; 402 static Int clo_depth = 30; 403 static double clo_threshold = 1.0; // percentage 404 static double clo_peak_inaccuracy = 1.0; // percentage 405 static Int clo_time_unit = TimeI; 406 static Int clo_detailed_freq = 10; 407 static Int clo_max_snapshots = 100; 408 static const HChar* clo_massif_out_file = "massif.out.%p"; 409 410 static XArray* args_for_massif; 411 412 static Bool ms_process_cmd_line_option(const HChar* arg) 413 { 414 const HChar* tmp_str; 415 416 // Remember the arg for later use. 417 VG_(addToXA)(args_for_massif, &arg); 418 419 if VG_BOOL_CLO(arg, "--heap", clo_heap) {} 420 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} 421 422 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} 423 424 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {} 425 426 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} 427 428 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { 429 VG_(addToXA)(alloc_fns, &tmp_str); 430 } 431 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { 432 VG_(addToXA)(ignore_fns, &tmp_str); 433 } 434 435 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) { 436 if (clo_threshold < 0 || clo_threshold > 100) { 437 VG_(fmsg_bad_option)(arg, 438 "--threshold must be between 0.0 and 100.0\n"); 439 } 440 } 441 442 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} 443 444 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} 445 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} 446 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} 447 448 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {} 449 450 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} 451 452 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} 453 454 else 455 return VG_(replacement_malloc_process_cmd_line_option)(arg); 456 457 return True; 458 } 459 460 static void ms_print_usage(void) 461 { 462 VG_(printf)( 463 " --heap=no|yes profile heap blocks [yes]\n" 464 " --heap-admin=<size> average admin bytes per heap block;\n" 465 " ignored if --heap=no [8]\n" 466 " --stacks=no|yes profile stack(s) [no]\n" 467 " --pages-as-heap=no|yes profile memory at the page level [no]\n" 468 " --depth=<number> depth of contexts [30]\n" 469 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n" 470 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n" 471 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n" 472 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" 473 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" 474 " or heap bytes alloc'd/dealloc'd [i]\n" 475 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" 476 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n" 477 " --massif-out-file=<file> output file name [massif.out.%%p]\n" 478 ); 479 } 480 481 static void ms_print_debug_usage(void) 482 { 483 VG_(printf)( 484 " (none)\n" 485 ); 486 } 487 488 489 //------------------------------------------------------------// 490 //--- XPts, XTrees and XCons ---// 491 //------------------------------------------------------------// 492 493 // An XPt represents an "execution point", ie. a code address. Each XPt is 494 // part of a tree of XPts (an "execution tree", or "XTree"). The details of 495 // the heap are represented by a single XTree. 496 // 497 // The root of the tree is 'alloc_xpt', which represents all allocation 498 // functions, eg: 499 // - malloc/calloc/realloc/memalign/new/new[]; 500 // - user-specified allocation functions (using --alloc-fn); 501 // - custom allocation (MALLOCLIKE) points 502 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because 503 // it makes the code simpler. 504 // 505 // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom 506 // of an XTree (leaf nodes) are "bottom-XPTs". 507 // 508 // Each path from a top-XPt to a bottom-XPt through an XTree gives an 509 // execution context ("XCon"), ie. a stack trace. (And sub-paths represent 510 // stack sub-traces.) The number of XCons in an XTree is equal to the 511 // number of bottom-XPTs in that XTree. 512 // 513 // alloc_xpt XTrees are bi-directional. 514 // | ^ 515 // v | 516 // > parent < Example: if child1() calls parent() and child2() 517 // / | \ also calls parent(), and parent() calls malloc(), 518 // | / \ | the XTree will look like this. 519 // | v v | 520 // child1 child2 521 // 522 // (Note that malformed stack traces can lead to difficulties. See the 523 // comment at the bottom of get_XCon.) 524 // 525 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short 526 // for "saved". When the XTree is duplicated for a snapshot, we duplicate 527 // it as an SXTree, which is similar but omits some things it does not need, 528 // and aggregates up insignificant nodes. This is important as an SXTree is 529 // typically much smaller than an XTree. 530 531 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two 532 // allocations per Pt. 533 534 typedef struct _XPt XPt; 535 struct _XPt { 536 Addr ip; // code address 537 538 // Bottom-XPts: space for the precise context. 539 // Other XPts: space of all the descendent bottom-XPts. 540 // Nb: this value goes up and down as the program executes. 541 SizeT szB; 542 543 XPt* parent; // pointer to parent XPt 544 545 // Children. 546 // n_children and max_children are 32-bit integers. 16-bit integers 547 // are too small -- a very big program might have more than 65536 548 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. 549 UInt n_children; // number of children 550 UInt max_children; // capacity of children array 551 XPt** children; // pointers to children XPts 552 }; 553 554 typedef 555 enum { 556 SigSXPt, 557 InsigSXPt 558 } 559 SXPtTag; 560 561 typedef struct _SXPt SXPt; 562 struct _SXPt { 563 SXPtTag tag; 564 SizeT szB; // memory size for the node, be it Sig or Insig 565 union { 566 // An SXPt representing a single significant code location. Much like 567 // an XPt, minus the fields that aren't necessary. 568 struct { 569 Addr ip; 570 UInt n_children; 571 SXPt** children; 572 } 573 Sig; 574 575 // An SXPt representing one or more code locations, all below the 576 // significance threshold. 577 struct { 578 Int n_xpts; // number of aggregated XPts 579 } 580 Insig; 581 }; 582 }; 583 584 // Fake XPt representing all allocation functions like malloc(). Acts as 585 // parent node to all top-XPts. 586 static XPt* alloc_xpt; 587 588 static XPt* new_XPt(Addr ip, XPt* parent) 589 { 590 // XPts are never freed, so we can use VG_(perm_malloc) to allocate them. 591 // Note that we cannot use VG_(perm_malloc) for the 'children' array, because 592 // that needs to be resizable. 593 XPt* xpt = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt)); 594 xpt->ip = ip; 595 xpt->szB = 0; 596 xpt->parent = parent; 597 598 // We don't initially allocate any space for children. We let that 599 // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any 600 // children anyway. 601 xpt->n_children = 0; 602 xpt->max_children = 0; 603 xpt->children = NULL; 604 605 // Update statistics 606 n_xpts++; 607 608 return xpt; 609 } 610 611 static void add_child_xpt(XPt* parent, XPt* child) 612 { 613 // Expand 'children' if necessary. 614 tl_assert(parent->n_children <= parent->max_children); 615 if (parent->n_children == parent->max_children) { 616 if (0 == parent->max_children) { 617 parent->max_children = 4; 618 parent->children = VG_(malloc)( "ms.main.acx.1", 619 parent->max_children * sizeof(XPt*) ); 620 n_xpt_init_expansions++; 621 } else { 622 parent->max_children *= 2; // Double size 623 parent->children = VG_(realloc)( "ms.main.acx.2", 624 parent->children, 625 parent->max_children * sizeof(XPt*) ); 626 n_xpt_later_expansions++; 627 } 628 } 629 630 // Insert new child XPt in parent's children list. 631 parent->children[ parent->n_children++ ] = child; 632 } 633 634 // Reverse comparison for a reverse sort -- biggest to smallest. 635 static Int SXPt_revcmp_szB(const void* n1, const void* n2) 636 { 637 const SXPt* sxpt1 = *(const SXPt *const *)n1; 638 const SXPt* sxpt2 = *(const SXPt *const *)n2; 639 return ( sxpt1->szB < sxpt2->szB ? 1 640 : sxpt1->szB > sxpt2->szB ? -1 641 : 0); 642 } 643 644 //------------------------------------------------------------// 645 //--- XTree Operations ---// 646 //------------------------------------------------------------// 647 648 // Duplicates an XTree as an SXTree. 649 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) 650 { 651 Int i, n_sig_children, n_insig_children, n_child_sxpts; 652 SizeT sig_child_threshold_szB; 653 SXPt* sxpt; 654 655 // Number of XPt children Action for SXPT 656 // ------------------ --------------- 657 // 0 sig, 0 insig alloc 0 children 658 // N sig, 0 insig alloc N children, dup all 659 // N sig, M insig alloc N+1, dup first N, aggregate remaining M 660 // 0 sig, M insig alloc 1, aggregate M 661 662 // Work out how big a child must be to be significant. If the current 663 // total_szB is zero, then we set it to 1, which means everything will be 664 // judged insignificant -- this is sensible, as there's no point showing 665 // any detail for this case. Unless they used --threshold=0, in which 666 // case we show them everything because that's what they asked for. 667 // 668 // Nb: We do this once now, rather than once per child, because if we do 669 // that the cost of all the divisions adds up to something significant. 670 if (0 == total_szB && 0 != clo_threshold) { 671 sig_child_threshold_szB = 1; 672 } else { 673 sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); 674 } 675 676 // How many children are significant? And do we need an aggregate SXPt? 677 n_sig_children = 0; 678 for (i = 0; i < xpt->n_children; i++) { 679 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 680 n_sig_children++; 681 } 682 } 683 n_insig_children = xpt->n_children - n_sig_children; 684 n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); 685 686 // Duplicate the XPt. 687 sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt)); 688 n_sxpt_allocs++; 689 sxpt->tag = SigSXPt; 690 sxpt->szB = xpt->szB; 691 sxpt->Sig.ip = xpt->ip; 692 sxpt->Sig.n_children = n_child_sxpts; 693 694 // Create the SXPt's children. 695 if (n_child_sxpts > 0) { 696 Int j; 697 SizeT sig_children_szB = 0, insig_children_szB = 0; 698 sxpt->Sig.children = VG_(malloc)("ms.main.dX.2", 699 n_child_sxpts * sizeof(SXPt*)); 700 701 // Duplicate the significant children. (Nb: sig_children_szB + 702 // insig_children_szB doesn't necessarily equal xpt->szB.) 703 j = 0; 704 for (i = 0; i < xpt->n_children; i++) { 705 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 706 sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); 707 sig_children_szB += xpt->children[i]->szB; 708 } else { 709 insig_children_szB += xpt->children[i]->szB; 710 } 711 } 712 713 // Create the SXPt for the insignificant children, if any, and put it 714 // in the last child entry. 715 if (n_insig_children > 0) { 716 // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt 717 // doesn't involve a call to dup_XTree(). 718 SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt)); 719 n_sxpt_allocs++; 720 insig_sxpt->tag = InsigSXPt; 721 insig_sxpt->szB = insig_children_szB; 722 insig_sxpt->Insig.n_xpts = n_insig_children; 723 sxpt->Sig.children[n_sig_children] = insig_sxpt; 724 } 725 } else { 726 sxpt->Sig.children = NULL; 727 } 728 729 return sxpt; 730 } 731 732 static void free_SXTree(SXPt* sxpt) 733 { 734 Int i; 735 tl_assert(sxpt != NULL); 736 737 switch (sxpt->tag) { 738 case SigSXPt: 739 // Free all children SXPts, then the children array. 740 for (i = 0; i < sxpt->Sig.n_children; i++) { 741 free_SXTree(sxpt->Sig.children[i]); 742 sxpt->Sig.children[i] = NULL; 743 } 744 VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; 745 break; 746 747 case InsigSXPt: 748 break; 749 750 default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); 751 } 752 753 // Free the SXPt itself. 754 VG_(free)(sxpt); sxpt = NULL; 755 n_sxpt_frees++; 756 } 757 758 // Sanity checking: we periodically check the heap XTree with 759 // ms_expensive_sanity_check. 760 static void sanity_check_XTree(XPt* xpt, XPt* parent) 761 { 762 tl_assert(xpt != NULL); 763 764 // Check back-pointer. 765 tl_assert2(xpt->parent == parent, 766 "xpt->parent = %p, parent = %p\n", xpt->parent, parent); 767 768 // Check children counts look sane. 769 tl_assert(xpt->n_children <= xpt->max_children); 770 771 // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's 772 // children's sizes. See comment at the bottom of get_XCon. 773 } 774 775 // Sanity checking: we check SXTrees (which are in snapshots) after 776 // snapshots are created, before they are deleted, and before they are 777 // printed. 778 static void sanity_check_SXTree(SXPt* sxpt) 779 { 780 Int i; 781 782 tl_assert(sxpt != NULL); 783 784 // Check the sum of any children szBs equals the SXPt's szB. Check the 785 // children at the same time. 786 switch (sxpt->tag) { 787 case SigSXPt: { 788 if (sxpt->Sig.n_children > 0) { 789 for (i = 0; i < sxpt->Sig.n_children; i++) { 790 sanity_check_SXTree(sxpt->Sig.children[i]); 791 } 792 } 793 break; 794 } 795 case InsigSXPt: 796 break; // do nothing 797 798 default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); 799 } 800 } 801 802 803 //------------------------------------------------------------// 804 //--- XCon Operations ---// 805 //------------------------------------------------------------// 806 807 // This is the limit on the number of removed alloc-fns that can be in a 808 // single XCon. 809 #define MAX_OVERESTIMATE 50 810 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) 811 812 // This is used for various buffers which can hold function names/IP 813 // description. Some C++ names can get really long so 1024 isn't big 814 // enough. 815 #define BUF_LEN 2048 816 817 // Determine if the given IP belongs to a function that should be ignored. 818 static Bool fn_should_be_ignored(Addr ip) 819 { 820 static HChar buf[BUF_LEN]; 821 return 822 ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf) 823 ? True : False ); 824 } 825 826 // Get the stack trace for an XCon, filtering out uninteresting entries: 827 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main. 828 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c 829 // becomes: a / b / main 830 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked 831 // as an alloc-fn. This is ok. 832 static 833 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[]) 834 { 835 static HChar buf[BUF_LEN]; 836 Int n_ips, i, n_alloc_fns_removed; 837 Int overestimate; 838 Bool redo; 839 840 // We ask for a few more IPs than clo_depth suggests we need. Then we 841 // remove every entry that is an alloc-fn. Depending on the 842 // circumstances, we may need to redo it all, asking for more IPs. 843 // Details: 844 // - If the original stack trace is smaller than asked-for, redo=False 845 // - Else if after filtering we have >= clo_depth IPs, redo=False 846 // - Else redo=True 847 // In other words, to redo, we'd have to get a stack trace as big as we 848 // asked for and remove more than 'overestimate' alloc-fns. 849 850 // Main loop. 851 redo = True; // Assume this to begin with. 852 for (overestimate = 3; redo; overestimate += 6) { 853 // This should never happen -- would require MAX_OVERESTIMATE 854 // alloc-fns to be removed from the stack trace. 855 if (overestimate > MAX_OVERESTIMATE) 856 VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); 857 858 // Ask for more IPs than clo_depth suggests we need. 859 n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, 860 NULL/*array to dump SP values in*/, 861 NULL/*array to dump FP values in*/, 862 0/*first_ip_delta*/ ); 863 tl_assert(n_ips > 0); 864 865 // If the original stack trace is smaller than asked-for, redo=False. 866 if (n_ips < clo_depth + overestimate) { redo = False; } 867 868 // Filter out alloc fns. If requested, we automatically remove the 869 // first entry (which presumably will be something like malloc or 870 // __builtin_new that we're sure to filter out) without looking at it, 871 // because VG_(get_fnname) is expensive. 872 n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 ); 873 for (i = n_alloc_fns_removed; i < n_ips; i++) { 874 if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) { 875 if (is_member_fn(alloc_fns, buf)) { 876 n_alloc_fns_removed++; 877 } else { 878 break; 879 } 880 } 881 } 882 // Remove the alloc fns by shuffling the rest down over them. 883 n_ips -= n_alloc_fns_removed; 884 for (i = 0; i < n_ips; i++) { 885 ips[i] = ips[i + n_alloc_fns_removed]; 886 } 887 888 // If after filtering we have >= clo_depth IPs, redo=False 889 if (n_ips >= clo_depth) { 890 redo = False; 891 n_ips = clo_depth; // Ignore any IPs below --depth. 892 } 893 894 if (redo) { 895 n_XCon_redos++; 896 } 897 } 898 return n_ips; 899 } 900 901 // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. 902 // Unless the allocation should be ignored, in which case we return NULL. 903 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry ) 904 { 905 static Addr ips[MAX_IPS]; 906 Int i; 907 XPt* xpt = alloc_xpt; 908 909 // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. 910 Int n_ips = get_IPs(tid, exclude_first_entry, ips); 911 912 // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if 913 // 'main' is marked as an alloc-fn.) 914 if (n_ips > 0 && fn_should_be_ignored(ips[0])) { 915 return NULL; 916 } 917 918 // Now do the search/insertion of the XCon. 919 for (i = 0; i < n_ips; i++) { 920 Addr ip = ips[i]; 921 Int ch; 922 // Look for IP in xpt's children. 923 // Linear search, ugh -- about 10% of time for konqueror startup tried 924 // caching last result, only hit about 4% for konqueror. 925 // Nb: this search hits about 98% of the time for konqueror 926 for (ch = 0; True; ch++) { 927 if (ch == xpt->n_children) { 928 // IP not found in the children. 929 // Create and add new child XPt, then stop. 930 XPt* new_child_xpt = new_XPt(ip, xpt); 931 add_child_xpt(xpt, new_child_xpt); 932 xpt = new_child_xpt; 933 break; 934 935 } else if (ip == xpt->children[ch]->ip) { 936 // Found the IP in the children, stop. 937 xpt = xpt->children[ch]; 938 break; 939 } 940 } 941 } 942 943 // [Note: several comments refer to this comment. Do not delete it 944 // without updating them.] 945 // 946 // A complication... If all stack traces were well-formed, then the 947 // returned xpt would always be a bottom-XPt. As a consequence, an XPt's 948 // size would always be equal to the sum of its children's sizes, which 949 // is an excellent sanity check. 950 // 951 // Unfortunately, stack traces occasionally are malformed, ie. truncated. 952 // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a 953 // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; 954 // nor can we do sanity check an XPt's size against its children's sizes. 955 // This is annoying, but must be dealt with. (Older versions of Massif 956 // had this assertion in, and it was reported to fail by real users a 957 // couple of times.) Even more annoyingly, I can't come up with a simple 958 // test case that exhibit such a malformed stack trace, so I can't 959 // regression test it. Sigh. 960 // 961 // However, we can print a warning, so that if it happens (unexpectedly) 962 // in existing regression tests we'll know. Also, it warns users that 963 // the output snapshots may not add up the way they might expect. 964 // 965 //tl_assert(0 == xpt->n_children); // Must be bottom-XPt 966 if (0 != xpt->n_children) { 967 static Int n_moans = 0; 968 if (n_moans < 3) { 969 VG_(umsg)( 970 "Warning: Malformed stack trace detected. In Massif's output,\n"); 971 VG_(umsg)( 972 " the size of an entry's child entries may not sum up\n"); 973 VG_(umsg)( 974 " to the entry's size as they normally do.\n"); 975 n_moans++; 976 if (3 == n_moans) 977 VG_(umsg)( 978 " (And Massif now won't warn about this again.)\n"); 979 } 980 } 981 return xpt; 982 } 983 984 // Update 'szB' of every XPt in the XCon, by percolating upwards. 985 static void update_XCon(XPt* xpt, SSizeT space_delta) 986 { 987 tl_assert(clo_heap); 988 tl_assert(NULL != xpt); 989 990 if (0 == space_delta) 991 return; 992 993 while (xpt != alloc_xpt) { 994 if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); 995 xpt->szB += space_delta; 996 xpt = xpt->parent; 997 } 998 if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); 999 alloc_xpt->szB += space_delta; 1000 } 1001 1002 1003 //------------------------------------------------------------// 1004 //--- Snapshots ---// 1005 //------------------------------------------------------------// 1006 1007 // Snapshots are done in a way so that we always have a reasonable number of 1008 // them. We start by taking them quickly. Once we hit our limit, we cull 1009 // some (eg. half), and start taking them more slowly. Once we hit the 1010 // limit again, we again cull and then take them even more slowly, and so 1011 // on. 1012 1013 // Time is measured either in i or ms or bytes, depending on the --time-unit 1014 // option. It's a Long because it can exceed 32-bits reasonably easily, and 1015 // because we need to allow negative values to represent unset times. 1016 typedef Long Time; 1017 1018 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. 1019 1020 typedef 1021 enum { 1022 Normal = 77, 1023 Peak, 1024 Unused 1025 } 1026 SnapshotKind; 1027 1028 typedef 1029 struct { 1030 SnapshotKind kind; 1031 Time time; 1032 SizeT heap_szB; 1033 SizeT heap_extra_szB;// Heap slop + admin bytes. 1034 SizeT stacks_szB; 1035 SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, 1036 } // otherwise NULL. 1037 Snapshot; 1038 1039 static UInt next_snapshot_i = 0; // Index of where next snapshot will go. 1040 static Snapshot* snapshots; // Array of snapshots. 1041 1042 static Bool is_snapshot_in_use(Snapshot* snapshot) 1043 { 1044 if (Unused == snapshot->kind) { 1045 // If snapshot is unused, check all the fields are unset. 1046 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); 1047 tl_assert(snapshot->heap_extra_szB == 0); 1048 tl_assert(snapshot->heap_szB == 0); 1049 tl_assert(snapshot->stacks_szB == 0); 1050 tl_assert(snapshot->alloc_sxpt == NULL); 1051 return False; 1052 } else { 1053 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); 1054 return True; 1055 } 1056 } 1057 1058 static Bool is_detailed_snapshot(Snapshot* snapshot) 1059 { 1060 return (snapshot->alloc_sxpt ? True : False); 1061 } 1062 1063 static Bool is_uncullable_snapshot(Snapshot* snapshot) 1064 { 1065 return &snapshots[0] == snapshot // First snapshot 1066 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot 1067 || snapshot->kind == Peak; // Peak snapshot 1068 } 1069 1070 static void sanity_check_snapshot(Snapshot* snapshot) 1071 { 1072 if (snapshot->alloc_sxpt) { 1073 sanity_check_SXTree(snapshot->alloc_sxpt); 1074 } 1075 } 1076 1077 // All the used entries should look used, all the unused ones should be clear. 1078 static void sanity_check_snapshots_array(void) 1079 { 1080 Int i; 1081 for (i = 0; i < next_snapshot_i; i++) { 1082 tl_assert( is_snapshot_in_use( & snapshots[i] )); 1083 } 1084 for ( ; i < clo_max_snapshots; i++) { 1085 tl_assert(!is_snapshot_in_use( & snapshots[i] )); 1086 } 1087 } 1088 1089 // This zeroes all the fields in the snapshot, but does not free the heap 1090 // XTree if present. It also does a sanity check unless asked not to; we 1091 // can't sanity check at startup when clearing the initial snapshots because 1092 // they're full of junk. 1093 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) 1094 { 1095 if (do_sanity_check) sanity_check_snapshot(snapshot); 1096 snapshot->kind = Unused; 1097 snapshot->time = UNUSED_SNAPSHOT_TIME; 1098 snapshot->heap_extra_szB = 0; 1099 snapshot->heap_szB = 0; 1100 snapshot->stacks_szB = 0; 1101 snapshot->alloc_sxpt = NULL; 1102 } 1103 1104 // This zeroes all the fields in the snapshot, and frees the heap XTree if 1105 // present. 1106 static void delete_snapshot(Snapshot* snapshot) 1107 { 1108 // Nb: if there's an XTree, we free it after calling clear_snapshot, 1109 // because clear_snapshot does a sanity check which includes checking the 1110 // XTree. 1111 SXPt* tmp_sxpt = snapshot->alloc_sxpt; 1112 clear_snapshot(snapshot, /*do_sanity_check*/True); 1113 if (tmp_sxpt) { 1114 free_SXTree(tmp_sxpt); 1115 } 1116 } 1117 1118 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i) 1119 { 1120 Snapshot* snapshot = &snapshots[i]; 1121 const HChar* suffix; 1122 switch (snapshot->kind) { 1123 case Peak: suffix = "p"; break; 1124 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; 1125 case Unused: suffix = "u"; break; 1126 default: 1127 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); 1128 } 1129 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n", 1130 prefix, suffix, i, 1131 snapshot->time, 1132 snapshot->heap_szB, 1133 snapshot->heap_extra_szB, 1134 snapshot->stacks_szB 1135 ); 1136 } 1137 1138 // Cull half the snapshots; we choose those that represent the smallest 1139 // time-spans, because that gives us the most even distribution of snapshots 1140 // over time. (It's possible to lose interesting spikes, however.) 1141 // 1142 // Algorithm for N snapshots: We find the snapshot representing the smallest 1143 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone. 1144 // We have to do this one snapshot at a time, rather than finding the (N/2) 1145 // smallest snapshots in one hit, because when a snapshot is removed, its 1146 // neighbours immediately cover greater timespans. So it's O(N^2), but N is 1147 // small, and it's not done very often. 1148 // 1149 // Once we're done, we return the new smallest interval between snapshots. 1150 // That becomes our minimum time interval. 1151 static UInt cull_snapshots(void) 1152 { 1153 Int i, jp, j, jn, min_timespan_i; 1154 Int n_deleted = 0; 1155 Time min_timespan; 1156 1157 n_cullings++; 1158 1159 // Sets j to the index of the first not-yet-removed snapshot at or after i 1160 #define FIND_SNAPSHOT(i, j) \ 1161 for (j = i; \ 1162 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ 1163 j++) { } 1164 1165 VERB(2, "Culling...\n"); 1166 1167 // First we remove enough snapshots by clearing them in-place. Once 1168 // that's done, we can slide the remaining ones down. 1169 for (i = 0; i < clo_max_snapshots/2; i++) { 1170 // Find the snapshot representing the smallest timespan. The timespan 1171 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between 1172 // snapshot A and B. We don't consider the first and last snapshots for 1173 // removal. 1174 Snapshot* min_snapshot; 1175 Int min_j; 1176 1177 // Initial triple: (prev, curr, next) == (jp, j, jn) 1178 // Initial min_timespan is the first one. 1179 jp = 0; 1180 FIND_SNAPSHOT(1, j); 1181 FIND_SNAPSHOT(j+1, jn); 1182 min_timespan = 0x7fffffffffffffffLL; 1183 min_j = -1; 1184 while (jn < clo_max_snapshots) { 1185 Time timespan = snapshots[jn].time - snapshots[jp].time; 1186 tl_assert(timespan >= 0); 1187 // Nb: We never cull the peak snapshot. 1188 if (Peak != snapshots[j].kind && timespan < min_timespan) { 1189 min_timespan = timespan; 1190 min_j = j; 1191 } 1192 // Move on to next triple 1193 jp = j; 1194 j = jn; 1195 FIND_SNAPSHOT(jn+1, jn); 1196 } 1197 // We've found the least important snapshot, now delete it. First 1198 // print it if necessary. 1199 tl_assert(-1 != min_j); // Check we found a minimum. 1200 min_snapshot = & snapshots[ min_j ]; 1201 if (VG_(clo_verbosity) > 1) { 1202 HChar buf[64]; 1203 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); 1204 VERB_snapshot(2, buf, min_j); 1205 } 1206 delete_snapshot(min_snapshot); 1207 n_deleted++; 1208 } 1209 1210 // Slide down the remaining snapshots over the removed ones. First set i 1211 // to point to the first empty slot, and j to the first full slot after 1212 // i. Then slide everything down. 1213 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } 1214 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } 1215 for ( ; j < clo_max_snapshots; j++) { 1216 if (is_snapshot_in_use( &snapshots[j] )) { 1217 snapshots[i++] = snapshots[j]; 1218 clear_snapshot(&snapshots[j], /*do_sanity_check*/True); 1219 } 1220 } 1221 next_snapshot_i = i; 1222 1223 // Check snapshots array looks ok after changes. 1224 sanity_check_snapshots_array(); 1225 1226 // Find the minimum timespan remaining; that will be our new minimum 1227 // time interval. Note that above we were finding timespans by measuring 1228 // two intervals around a snapshot that was under consideration for 1229 // deletion. Here we only measure single intervals because all the 1230 // deletions have occurred. 1231 // 1232 // But we have to be careful -- some snapshots (eg. snapshot 0, and the 1233 // peak snapshot) are uncullable. If two uncullable snapshots end up 1234 // next to each other, they'll never be culled (assuming the peak doesn't 1235 // change), and the time gap between them will not change. However, the 1236 // time between the remaining cullable snapshots will grow ever larger. 1237 // This means that the min_timespan found will always be that between the 1238 // two uncullable snapshots, and it will be much smaller than it should 1239 // be. To avoid this problem, when computing the minimum timespan, we 1240 // ignore any timespans between two uncullable snapshots. 1241 tl_assert(next_snapshot_i > 1); 1242 min_timespan = 0x7fffffffffffffffLL; 1243 min_timespan_i = -1; 1244 for (i = 1; i < next_snapshot_i; i++) { 1245 if (is_uncullable_snapshot(&snapshots[i]) && 1246 is_uncullable_snapshot(&snapshots[i-1])) 1247 { 1248 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i); 1249 } else { 1250 Time timespan = snapshots[i].time - snapshots[i-1].time; 1251 tl_assert(timespan >= 0); 1252 if (timespan < min_timespan) { 1253 min_timespan = timespan; 1254 min_timespan_i = i; 1255 } 1256 } 1257 } 1258 tl_assert(-1 != min_timespan_i); // Check we found a minimum. 1259 1260 // Print remaining snapshots, if necessary. 1261 if (VG_(clo_verbosity) > 1) { 1262 VERB(2, "Finished culling (%3d of %3d deleted)\n", 1263 n_deleted, clo_max_snapshots); 1264 for (i = 0; i < next_snapshot_i; i++) { 1265 VERB_snapshot(2, " post-cull", i); 1266 } 1267 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n", 1268 min_timespan, min_timespan_i-1, min_timespan_i); 1269 } 1270 1271 return min_timespan; 1272 } 1273 1274 static Time get_time(void) 1275 { 1276 // Get current time, in whatever time unit we're using. 1277 if (clo_time_unit == TimeI) { 1278 return guest_instrs_executed; 1279 } else if (clo_time_unit == TimeMS) { 1280 // Some stuff happens between the millisecond timer being initialised 1281 // to zero and us taking our first snapshot. We determine that time 1282 // gap so we can subtract it from all subsequent times so that our 1283 // first snapshot is considered to be at t = 0ms. Unfortunately, a 1284 // bunch of symbols get read after the first snapshot is taken but 1285 // before the second one (which is triggered by the first allocation), 1286 // so when the time-unit is 'ms' we always have a big gap between the 1287 // first two snapshots. But at least users won't have to wonder why 1288 // the first snapshot isn't at t=0. 1289 static Bool is_first_get_time = True; 1290 static Time start_time_ms; 1291 if (is_first_get_time) { 1292 start_time_ms = VG_(read_millisecond_timer)(); 1293 is_first_get_time = False; 1294 return 0; 1295 } else { 1296 return VG_(read_millisecond_timer)() - start_time_ms; 1297 } 1298 } else if (clo_time_unit == TimeB) { 1299 return total_allocs_deallocs_szB; 1300 } else { 1301 tl_assert2(0, "bad --time-unit value"); 1302 } 1303 } 1304 1305 // Take a snapshot, and only that -- decisions on whether to take a 1306 // snapshot, or what kind of snapshot, are made elsewhere. 1307 // Nb: we call the arg "my_time" because "time" shadows a global declaration 1308 // in /usr/include/time.h on Darwin. 1309 static void 1310 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, 1311 Bool is_detailed) 1312 { 1313 tl_assert(!is_snapshot_in_use(snapshot)); 1314 if (!clo_pages_as_heap) { 1315 tl_assert(have_started_executing_code); 1316 } 1317 1318 // Heap and heap admin. 1319 if (clo_heap) { 1320 snapshot->heap_szB = heap_szB; 1321 if (is_detailed) { 1322 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1323 snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); 1324 tl_assert( alloc_xpt->szB == heap_szB); 1325 tl_assert(snapshot->alloc_sxpt->szB == heap_szB); 1326 } 1327 snapshot->heap_extra_szB = heap_extra_szB; 1328 } 1329 1330 // Stack(s). 1331 if (clo_stacks) { 1332 snapshot->stacks_szB = stacks_szB; 1333 } 1334 1335 // Rest of snapshot. 1336 snapshot->kind = kind; 1337 snapshot->time = my_time; 1338 sanity_check_snapshot(snapshot); 1339 1340 // Update stats. 1341 if (Peak == kind) n_peak_snapshots++; 1342 if (is_detailed) n_detailed_snapshots++; 1343 n_real_snapshots++; 1344 } 1345 1346 1347 // Take a snapshot, if it's time, or if we've hit a peak. 1348 static void 1349 maybe_take_snapshot(SnapshotKind kind, const HChar* what) 1350 { 1351 // 'min_time_interval' is the minimum time interval between snapshots. 1352 // If we try to take a snapshot and less than this much time has passed, 1353 // we don't take it. It gets larger as the program runs longer. It's 1354 // initialised to zero so that we begin by taking snapshots as quickly as 1355 // possible. 1356 static Time min_time_interval = 0; 1357 // Zero allows startup snapshot. 1358 static Time earliest_possible_time_of_next_snapshot = 0; 1359 static Int n_snapshots_since_last_detailed = 0; 1360 static Int n_skipped_snapshots_since_last_snapshot = 0; 1361 1362 Snapshot* snapshot; 1363 Bool is_detailed; 1364 // Nb: we call this variable "my_time" because "time" shadows a global 1365 // declaration in /usr/include/time.h on Darwin. 1366 Time my_time = get_time(); 1367 1368 switch (kind) { 1369 case Normal: 1370 // Only do a snapshot if it's time. 1371 if (my_time < earliest_possible_time_of_next_snapshot) { 1372 n_skipped_snapshots++; 1373 n_skipped_snapshots_since_last_snapshot++; 1374 return; 1375 } 1376 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); 1377 break; 1378 1379 case Peak: { 1380 // Because we're about to do a deallocation, we're coming down from a 1381 // local peak. If it is (a) actually a global peak, and (b) a certain 1382 // amount bigger than the previous peak, then we take a peak snapshot. 1383 // By not taking a snapshot for every peak, we save a lot of effort -- 1384 // because many peaks remain peak only for a short time. 1385 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1386 SizeT excess_szB_for_new_peak = 1387 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); 1388 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { 1389 return; 1390 } 1391 is_detailed = True; 1392 break; 1393 } 1394 1395 default: 1396 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); 1397 } 1398 1399 // Take the snapshot. 1400 snapshot = & snapshots[next_snapshot_i]; 1401 take_snapshot(snapshot, kind, my_time, is_detailed); 1402 1403 // Record if it was detailed. 1404 if (is_detailed) { 1405 n_snapshots_since_last_detailed = 0; 1406 } else { 1407 n_snapshots_since_last_detailed++; 1408 } 1409 1410 // Update peak data, if it's a Peak snapshot. 1411 if (Peak == kind) { 1412 Int i, number_of_peaks_snapshots_found = 0; 1413 1414 // Sanity check the size, then update our recorded peak. 1415 SizeT snapshot_total_szB = 1416 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 1417 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, 1418 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); 1419 peak_snapshot_total_szB = snapshot_total_szB; 1420 1421 // Find the old peak snapshot, if it exists, and mark it as normal. 1422 for (i = 0; i < next_snapshot_i; i++) { 1423 if (Peak == snapshots[i].kind) { 1424 snapshots[i].kind = Normal; 1425 number_of_peaks_snapshots_found++; 1426 } 1427 } 1428 tl_assert(number_of_peaks_snapshots_found <= 1); 1429 } 1430 1431 // Finish up verbosity and stats stuff. 1432 if (n_skipped_snapshots_since_last_snapshot > 0) { 1433 VERB(2, " (skipped %d snapshot%s)\n", 1434 n_skipped_snapshots_since_last_snapshot, 1435 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); 1436 } 1437 VERB_snapshot(2, what, next_snapshot_i); 1438 n_skipped_snapshots_since_last_snapshot = 0; 1439 1440 // Cull the entries, if our snapshot table is full. 1441 next_snapshot_i++; 1442 if (clo_max_snapshots == next_snapshot_i) { 1443 min_time_interval = cull_snapshots(); 1444 } 1445 1446 // Work out the earliest time when the next snapshot can happen. 1447 earliest_possible_time_of_next_snapshot = my_time + min_time_interval; 1448 } 1449 1450 1451 //------------------------------------------------------------// 1452 //--- Sanity checking ---// 1453 //------------------------------------------------------------// 1454 1455 static Bool ms_cheap_sanity_check ( void ) 1456 { 1457 return True; // Nothing useful we can cheaply check. 1458 } 1459 1460 static Bool ms_expensive_sanity_check ( void ) 1461 { 1462 sanity_check_XTree(alloc_xpt, /*parent*/NULL); 1463 sanity_check_snapshots_array(); 1464 return True; 1465 } 1466 1467 1468 //------------------------------------------------------------// 1469 //--- Heap management ---// 1470 //------------------------------------------------------------// 1471 1472 // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, 1473 // which is a foothold into the XCon at which it was allocated. From 1474 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and 1475 // decremented (at deallocation). 1476 // 1477 // Nb: first two fields must match core's VgHashNode. 1478 typedef 1479 struct _HP_Chunk { 1480 struct _HP_Chunk* next; 1481 Addr data; // Ptr to actual block 1482 SizeT req_szB; // Size requested 1483 SizeT slop_szB; // Extra bytes given above those requested 1484 XPt* where; // Where allocated; bottom-XPt 1485 } 1486 HP_Chunk; 1487 1488 static VgHashTable malloc_list = NULL; // HP_Chunks 1489 1490 static void update_alloc_stats(SSizeT szB_delta) 1491 { 1492 // Update total_allocs_deallocs_szB. 1493 if (szB_delta < 0) szB_delta = -szB_delta; 1494 total_allocs_deallocs_szB += szB_delta; 1495 } 1496 1497 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) 1498 { 1499 if (heap_szB_delta < 0) 1500 tl_assert(heap_szB >= -heap_szB_delta); 1501 if (heap_extra_szB_delta < 0) 1502 tl_assert(heap_extra_szB >= -heap_extra_szB_delta); 1503 1504 heap_extra_szB += heap_extra_szB_delta; 1505 heap_szB += heap_szB_delta; 1506 1507 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); 1508 } 1509 1510 static 1511 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB, 1512 Bool exclude_first_entry, Bool maybe_snapshot ) 1513 { 1514 // Make new HP_Chunk node, add to malloc_list 1515 HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk)); 1516 hc->req_szB = req_szB; 1517 hc->slop_szB = slop_szB; 1518 hc->data = (Addr)p; 1519 hc->where = NULL; 1520 VG_(HT_add_node)(malloc_list, hc); 1521 1522 if (clo_heap) { 1523 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB); 1524 1525 hc->where = get_XCon( tid, exclude_first_entry ); 1526 1527 if (hc->where) { 1528 // Update statistics. 1529 n_heap_allocs++; 1530 1531 // Update heap stats. 1532 update_heap_stats(req_szB, clo_heap_admin + slop_szB); 1533 1534 // Update XTree. 1535 update_XCon(hc->where, req_szB); 1536 1537 // Maybe take a snapshot. 1538 if (maybe_snapshot) { 1539 maybe_take_snapshot(Normal, " alloc"); 1540 } 1541 1542 } else { 1543 // Ignored allocation. 1544 n_ignored_heap_allocs++; 1545 1546 VERB(3, "(ignored)\n"); 1547 } 1548 1549 VERB(3, ">>>\n"); 1550 } 1551 1552 return p; 1553 } 1554 1555 static __inline__ 1556 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB, 1557 Bool is_zeroed ) 1558 { 1559 SizeT actual_szB, slop_szB; 1560 void* p; 1561 1562 if ((SSizeT)req_szB < 0) return NULL; 1563 1564 // Allocate and zero if necessary. 1565 p = VG_(cli_malloc)( req_alignB, req_szB ); 1566 if (!p) { 1567 return NULL; 1568 } 1569 if (is_zeroed) VG_(memset)(p, 0, req_szB); 1570 actual_szB = VG_(malloc_usable_size)(p); 1571 tl_assert(actual_szB >= req_szB); 1572 slop_szB = actual_szB - req_szB; 1573 1574 // Record block. 1575 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True, 1576 /*maybe_snapshot*/True); 1577 1578 return p; 1579 } 1580 1581 static __inline__ 1582 void unrecord_block ( void* p, Bool maybe_snapshot ) 1583 { 1584 // Remove HP_Chunk from malloc_list 1585 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); 1586 if (NULL == hc) { 1587 return; // must have been a bogus free() 1588 } 1589 1590 if (clo_heap) { 1591 VERB(3, "<<< unrecord_block\n"); 1592 1593 if (hc->where) { 1594 // Update statistics. 1595 n_heap_frees++; 1596 1597 // Maybe take a peak snapshot, since it's a deallocation. 1598 if (maybe_snapshot) { 1599 maybe_take_snapshot(Peak, "de-PEAK"); 1600 } 1601 1602 // Update heap stats. 1603 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); 1604 1605 // Update XTree. 1606 update_XCon(hc->where, -hc->req_szB); 1607 1608 // Maybe take a snapshot. 1609 if (maybe_snapshot) { 1610 maybe_take_snapshot(Normal, "dealloc"); 1611 } 1612 1613 } else { 1614 n_ignored_heap_frees++; 1615 1616 VERB(3, "(ignored)\n"); 1617 } 1618 1619 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB); 1620 } 1621 1622 // Actually free the chunk, and the heap block (if necessary) 1623 VG_(free)( hc ); hc = NULL; 1624 } 1625 1626 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was 1627 // ignored, but the realloc is not requested to be ignored, and we are 1628 // shrinking the block, then we have to ignore the realloc -- otherwise we 1629 // could end up with negative heap sizes. This isn't a danger if we are 1630 // growing such a block, but for consistency (it also simplifies things) we 1631 // ignore such reallocs as well. 1632 static __inline__ 1633 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) 1634 { 1635 HP_Chunk* hc; 1636 void* p_new; 1637 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; 1638 XPt *old_where, *new_where; 1639 Bool is_ignored = False; 1640 1641 // Remove the old block 1642 hc = VG_(HT_remove)(malloc_list, (UWord)p_old); 1643 if (hc == NULL) { 1644 return NULL; // must have been a bogus realloc() 1645 } 1646 1647 old_req_szB = hc->req_szB; 1648 old_slop_szB = hc->slop_szB; 1649 1650 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes. 1651 if (clo_heap) { 1652 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB); 1653 1654 if (hc->where) { 1655 // Update statistics. 1656 n_heap_reallocs++; 1657 1658 // Maybe take a peak snapshot, if it's (effectively) a deallocation. 1659 if (new_req_szB < old_req_szB) { 1660 maybe_take_snapshot(Peak, "re-PEAK"); 1661 } 1662 } else { 1663 // The original malloc was ignored, so we have to ignore the 1664 // realloc as well. 1665 is_ignored = True; 1666 } 1667 } 1668 1669 // Actually do the allocation, if necessary. 1670 if (new_req_szB <= old_req_szB + old_slop_szB) { 1671 // New size is smaller or same; block not moved. 1672 p_new = p_old; 1673 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); 1674 1675 } else { 1676 // New size is bigger; make new block, copy shared contents, free old. 1677 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); 1678 if (!p_new) { 1679 // Nb: if realloc fails, NULL is returned but the old block is not 1680 // touched. What an awful function. 1681 return NULL; 1682 } 1683 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB); 1684 VG_(cli_free)(p_old); 1685 new_actual_szB = VG_(malloc_usable_size)(p_new); 1686 tl_assert(new_actual_szB >= new_req_szB); 1687 new_slop_szB = new_actual_szB - new_req_szB; 1688 } 1689 1690 if (p_new) { 1691 // Update HP_Chunk. 1692 hc->data = (Addr)p_new; 1693 hc->req_szB = new_req_szB; 1694 hc->slop_szB = new_slop_szB; 1695 old_where = hc->where; 1696 hc->where = NULL; 1697 1698 // Update XTree. 1699 if (clo_heap) { 1700 new_where = get_XCon( tid, /*exclude_first_entry*/True); 1701 if (!is_ignored && new_where) { 1702 hc->where = new_where; 1703 update_XCon(old_where, -old_req_szB); 1704 update_XCon(new_where, new_req_szB); 1705 } else { 1706 // The realloc itself is ignored. 1707 is_ignored = True; 1708 1709 // Update statistics. 1710 n_ignored_heap_reallocs++; 1711 } 1712 } 1713 } 1714 1715 // Now insert the new hc (with a possibly new 'data' field) into 1716 // malloc_list. If this realloc() did not increase the memory size, we 1717 // will have removed and then re-added hc unnecessarily. But that's ok 1718 // because shrinking a block with realloc() is (presumably) much rarer 1719 // than growing it, and this way simplifies the growing case. 1720 VG_(HT_add_node)(malloc_list, hc); 1721 1722 if (clo_heap) { 1723 if (!is_ignored) { 1724 // Update heap stats. 1725 update_heap_stats(new_req_szB - old_req_szB, 1726 new_slop_szB - old_slop_szB); 1727 1728 // Maybe take a snapshot. 1729 maybe_take_snapshot(Normal, "realloc"); 1730 } else { 1731 1732 VERB(3, "(ignored)\n"); 1733 } 1734 1735 VERB(3, ">>> (%ld, %ld)\n", 1736 new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); 1737 } 1738 1739 return p_new; 1740 } 1741 1742 1743 //------------------------------------------------------------// 1744 //--- malloc() et al replacement wrappers ---// 1745 //------------------------------------------------------------// 1746 1747 static void* ms_malloc ( ThreadId tid, SizeT szB ) 1748 { 1749 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1750 } 1751 1752 static void* ms___builtin_new ( ThreadId tid, SizeT szB ) 1753 { 1754 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1755 } 1756 1757 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) 1758 { 1759 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1760 } 1761 1762 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) 1763 { 1764 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); 1765 } 1766 1767 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) 1768 { 1769 return alloc_and_record_block( tid, szB, alignB, False ); 1770 } 1771 1772 static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) 1773 { 1774 unrecord_block(p, /*maybe_snapshot*/True); 1775 VG_(cli_free)(p); 1776 } 1777 1778 static void ms___builtin_delete ( ThreadId tid, void* p ) 1779 { 1780 unrecord_block(p, /*maybe_snapshot*/True); 1781 VG_(cli_free)(p); 1782 } 1783 1784 static void ms___builtin_vec_delete ( ThreadId tid, void* p ) 1785 { 1786 unrecord_block(p, /*maybe_snapshot*/True); 1787 VG_(cli_free)(p); 1788 } 1789 1790 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) 1791 { 1792 return realloc_block(tid, p_old, new_szB); 1793 } 1794 1795 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) 1796 { 1797 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); 1798 1799 return ( hc ? hc->req_szB + hc->slop_szB : 0 ); 1800 } 1801 1802 //------------------------------------------------------------// 1803 //--- Page handling ---// 1804 //------------------------------------------------------------// 1805 1806 static 1807 void ms_record_page_mem ( Addr a, SizeT len ) 1808 { 1809 ThreadId tid = VG_(get_running_tid)(); 1810 Addr end; 1811 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1812 tl_assert(len >= VKI_PAGE_SIZE); 1813 // Record the first N-1 pages as blocks, but don't do any snapshots. 1814 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1815 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1816 /*exclude_first_entry*/False, /*maybe_snapshot*/False ); 1817 } 1818 // Record the last page as a block, and maybe do a snapshot afterwards. 1819 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1820 /*exclude_first_entry*/False, /*maybe_snapshot*/True ); 1821 } 1822 1823 static 1824 void ms_unrecord_page_mem( Addr a, SizeT len ) 1825 { 1826 Addr end; 1827 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1828 tl_assert(len >= VKI_PAGE_SIZE); 1829 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1830 unrecord_block((void*)a, /*maybe_snapshot*/False); 1831 } 1832 unrecord_block((void*)a, /*maybe_snapshot*/True); 1833 } 1834 1835 //------------------------------------------------------------// 1836 1837 static 1838 void ms_new_mem_mmap ( Addr a, SizeT len, 1839 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1840 { 1841 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1842 ms_record_page_mem(a, len); 1843 } 1844 1845 static 1846 void ms_new_mem_startup( Addr a, SizeT len, 1847 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1848 { 1849 // startup maps are always be page-sized, except the trampoline page is 1850 // marked by the core as only being the size of the trampoline itself, 1851 // which is something like 57 bytes. Round it up to page size. 1852 len = VG_PGROUNDUP(len); 1853 ms_record_page_mem(a, len); 1854 } 1855 1856 static 1857 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid ) 1858 { 1859 // brk limit is not necessarily aligned on a page boundary. 1860 // If new memory being brk-ed implies to allocate a new page, 1861 // then call ms_record_page_mem with page aligned parameters 1862 // otherwise just ignore. 1863 Addr old_bottom_page = VG_PGROUNDDN(a - 1); 1864 Addr new_top_page = VG_PGROUNDDN(a + len - 1); 1865 if (old_bottom_page != new_top_page) 1866 ms_record_page_mem(VG_PGROUNDDN(a), 1867 (new_top_page - old_bottom_page)); 1868 } 1869 1870 static 1871 void ms_copy_mem_remap( Addr from, Addr to, SizeT len) 1872 { 1873 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1874 ms_unrecord_page_mem(from, len); 1875 ms_record_page_mem(to, len); 1876 } 1877 1878 static 1879 void ms_die_mem_munmap( Addr a, SizeT len ) 1880 { 1881 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1882 ms_unrecord_page_mem(a, len); 1883 } 1884 1885 static 1886 void ms_die_mem_brk( Addr a, SizeT len ) 1887 { 1888 // Call ms_unrecord_page_mem only if one or more pages are de-allocated. 1889 // See ms_new_mem_brk for more details. 1890 Addr new_bottom_page = VG_PGROUNDDN(a - 1); 1891 Addr old_top_page = VG_PGROUNDDN(a + len - 1); 1892 if (old_top_page != new_bottom_page) 1893 ms_unrecord_page_mem(VG_PGROUNDDN(a), 1894 (old_top_page - new_bottom_page)); 1895 1896 } 1897 1898 //------------------------------------------------------------// 1899 //--- Stacks ---// 1900 //------------------------------------------------------------// 1901 1902 // We really want the inlining to occur... 1903 #define INLINE inline __attribute__((always_inline)) 1904 1905 static void update_stack_stats(SSizeT stack_szB_delta) 1906 { 1907 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); 1908 stacks_szB += stack_szB_delta; 1909 1910 update_alloc_stats(stack_szB_delta); 1911 } 1912 1913 static INLINE void new_mem_stack_2(SizeT len, const HChar* what) 1914 { 1915 if (have_started_executing_code) { 1916 VERB(3, "<<< new_mem_stack (%ld)\n", len); 1917 n_stack_allocs++; 1918 update_stack_stats(len); 1919 maybe_take_snapshot(Normal, what); 1920 VERB(3, ">>>\n"); 1921 } 1922 } 1923 1924 static INLINE void die_mem_stack_2(SizeT len, const HChar* what) 1925 { 1926 if (have_started_executing_code) { 1927 VERB(3, "<<< die_mem_stack (%ld)\n", -len); 1928 n_stack_frees++; 1929 maybe_take_snapshot(Peak, "stkPEAK"); 1930 update_stack_stats(-len); 1931 maybe_take_snapshot(Normal, what); 1932 VERB(3, ">>>\n"); 1933 } 1934 } 1935 1936 static void new_mem_stack(Addr a, SizeT len) 1937 { 1938 new_mem_stack_2(len, "stk-new"); 1939 } 1940 1941 static void die_mem_stack(Addr a, SizeT len) 1942 { 1943 die_mem_stack_2(len, "stk-die"); 1944 } 1945 1946 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) 1947 { 1948 new_mem_stack_2(len, "sig-new"); 1949 } 1950 1951 static void die_mem_stack_signal(Addr a, SizeT len) 1952 { 1953 die_mem_stack_2(len, "sig-die"); 1954 } 1955 1956 1957 //------------------------------------------------------------// 1958 //--- Client Requests ---// 1959 //------------------------------------------------------------// 1960 1961 static void print_monitor_help ( void ) 1962 { 1963 VG_(gdb_printf) ("\n"); 1964 VG_(gdb_printf) ("massif monitor commands:\n"); 1965 VG_(gdb_printf) (" snapshot [<filename>]\n"); 1966 VG_(gdb_printf) (" detailed_snapshot [<filename>]\n"); 1967 VG_(gdb_printf) (" takes a snapshot (or a detailed snapshot)\n"); 1968 VG_(gdb_printf) (" and saves it in <filename>\n"); 1969 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n"); 1970 VG_(gdb_printf) ("\n"); 1971 } 1972 1973 1974 /* Forward declaration. 1975 return True if request recognised, False otherwise */ 1976 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req); 1977 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) 1978 { 1979 switch (argv[0]) { 1980 case VG_USERREQ__MALLOCLIKE_BLOCK: { 1981 void* p = (void*)argv[1]; 1982 SizeT szB = argv[2]; 1983 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False, 1984 /*maybe_snapshot*/True ); 1985 *ret = 0; 1986 return True; 1987 } 1988 case VG_USERREQ__RESIZEINPLACE_BLOCK: { 1989 void* p = (void*)argv[1]; 1990 SizeT newSizeB = argv[3]; 1991 1992 unrecord_block(p, /*maybe_snapshot*/True); 1993 record_block(tid, p, newSizeB, /*slop_szB*/0, 1994 /*exclude_first_entry*/False, /*maybe_snapshot*/True); 1995 return True; 1996 } 1997 case VG_USERREQ__FREELIKE_BLOCK: { 1998 void* p = (void*)argv[1]; 1999 unrecord_block(p, /*maybe_snapshot*/True); 2000 *ret = 0; 2001 return True; 2002 } 2003 case VG_USERREQ__GDB_MONITOR_COMMAND: { 2004 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]); 2005 if (handled) 2006 *ret = 1; 2007 else 2008 *ret = 0; 2009 return handled; 2010 } 2011 2012 default: 2013 *ret = 0; 2014 return False; 2015 } 2016 } 2017 2018 //------------------------------------------------------------// 2019 //--- Instrumentation ---// 2020 //------------------------------------------------------------// 2021 2022 static void add_counter_update(IRSB* sbOut, Int n) 2023 { 2024 #if defined(VG_BIGENDIAN) 2025 # define END Iend_BE 2026 #elif defined(VG_LITTLEENDIAN) 2027 # define END Iend_LE 2028 #else 2029 # error "Unknown endianness" 2030 #endif 2031 // Add code to increment 'guest_instrs_executed' by 'n', like this: 2032 // WrTmp(t1, Load64(&guest_instrs_executed)) 2033 // WrTmp(t2, Add64(RdTmp(t1), Const(n))) 2034 // Store(&guest_instrs_executed, t2) 2035 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); 2036 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); 2037 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); 2038 2039 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); 2040 IRStmt* st2 = 2041 IRStmt_WrTmp(t2, 2042 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), 2043 IRExpr_Const(IRConst_U64(n)))); 2044 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); 2045 2046 addStmtToIRSB( sbOut, st1 ); 2047 addStmtToIRSB( sbOut, st2 ); 2048 addStmtToIRSB( sbOut, st3 ); 2049 } 2050 2051 static IRSB* ms_instrument2( IRSB* sbIn ) 2052 { 2053 Int i, n = 0; 2054 IRSB* sbOut; 2055 2056 // We increment the instruction count in two places: 2057 // - just before any Ist_Exit statements; 2058 // - just before the IRSB's end. 2059 // In the former case, we zero 'n' and then continue instrumenting. 2060 2061 sbOut = deepCopyIRSBExceptStmts(sbIn); 2062 2063 for (i = 0; i < sbIn->stmts_used; i++) { 2064 IRStmt* st = sbIn->stmts[i]; 2065 2066 if (!st || st->tag == Ist_NoOp) continue; 2067 2068 if (st->tag == Ist_IMark) { 2069 n++; 2070 } else if (st->tag == Ist_Exit) { 2071 if (n > 0) { 2072 // Add an increment before the Exit statement, then reset 'n'. 2073 add_counter_update(sbOut, n); 2074 n = 0; 2075 } 2076 } 2077 addStmtToIRSB( sbOut, st ); 2078 } 2079 2080 if (n > 0) { 2081 // Add an increment before the SB end. 2082 add_counter_update(sbOut, n); 2083 } 2084 return sbOut; 2085 } 2086 2087 static 2088 IRSB* ms_instrument ( VgCallbackClosure* closure, 2089 IRSB* sbIn, 2090 VexGuestLayout* layout, 2091 VexGuestExtents* vge, 2092 VexArchInfo* archinfo_host, 2093 IRType gWordTy, IRType hWordTy ) 2094 { 2095 if (! have_started_executing_code) { 2096 // Do an initial sample to guarantee that we have at least one. 2097 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure 2098 // 'maybe_take_snapshot's internal static variables are initialised. 2099 have_started_executing_code = True; 2100 maybe_take_snapshot(Normal, "startup"); 2101 } 2102 2103 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } 2104 else if (clo_time_unit == TimeMS) { return sbIn; } 2105 else if (clo_time_unit == TimeB) { return sbIn; } 2106 else { tl_assert2(0, "bad --time-unit value"); } 2107 } 2108 2109 2110 //------------------------------------------------------------// 2111 //--- Writing snapshots ---// 2112 //------------------------------------------------------------// 2113 2114 HChar FP_buf[BUF_LEN]; 2115 2116 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here. 2117 // Then change Cachegrind to use it too. 2118 #define FP(format, args...) ({ \ 2119 VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ 2120 FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ 2121 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ 2122 }) 2123 2124 // Nb: uses a static buffer, each call trashes the last string returned. 2125 static const HChar* make_perc(double x) 2126 { 2127 static HChar mbuf[32]; 2128 2129 VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf); 2130 // XXX: this is bogus if the denominator was zero -- resulting string is 2131 // something like "0 --%") 2132 if (' ' == mbuf[0]) mbuf[0] = '0'; 2133 return mbuf; 2134 } 2135 2136 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, HChar* depth_str, 2137 Int depth_str_len, 2138 SizeT snapshot_heap_szB, SizeT snapshot_total_szB) 2139 { 2140 Int i, j, n_insig_children_sxpts; 2141 SXPt* child = NULL; 2142 2143 // Used for printing function names. Is made static to keep it out 2144 // of the stack frame -- this function is recursive. Obviously this 2145 // now means its contents are trashed across the recursive call. 2146 static HChar ip_desc_array[BUF_LEN]; 2147 const HChar* ip_desc = ip_desc_array; 2148 2149 switch (sxpt->tag) { 2150 case SigSXPt: 2151 // Print the SXPt itself. 2152 if (0 == depth) { 2153 if (clo_heap) { 2154 ip_desc = 2155 ( clo_pages_as_heap 2156 ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc." 2157 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc." 2158 ); 2159 } else { 2160 // XXX: --alloc-fns? 2161 2162 // Nick thinks this case cannot happen. ip_desc_array would be 2163 // conceptually uninitialised here. Therefore: 2164 tl_assert2(0, "pp_snapshot_SXPt: unexpected"); 2165 } 2166 } else { 2167 // If it's main-or-below-main, we (if appropriate) ignore everything 2168 // below it by pretending it has no children. 2169 if ( ! VG_(clo_show_below_main) ) { 2170 Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip); 2171 if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) { 2172 sxpt->Sig.n_children = 0; 2173 } 2174 } 2175 2176 // We need the -1 to get the line number right, But I'm not sure why. 2177 ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc_array, BUF_LEN); 2178 } 2179 2180 // Do the non-ip_desc part first... 2181 FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB); 2182 2183 // For ip_descs beginning with "0xABCD...:" addresses, we first 2184 // measure the length of the "0xabcd: " address at the start of the 2185 // ip_desc. 2186 j = 0; 2187 if ('0' == ip_desc[0] && 'x' == ip_desc[1]) { 2188 j = 2; 2189 while (True) { 2190 if (ip_desc[j]) { 2191 if (':' == ip_desc[j]) break; 2192 j++; 2193 } else { 2194 tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc); 2195 } 2196 } 2197 } 2198 // Nb: We treat this specially (ie. we don't use FP) so that if the 2199 // ip_desc is too long (eg. due to a long C++ function name), it'll 2200 // get truncated, but the '\n' is still there so its a valid file. 2201 // (At one point we were truncating without adding the '\n', which 2202 // caused bug #155929.) 2203 // 2204 // Also, we account for the length of the address in ip_desc when 2205 // truncating. (The longest address we could have is 18 chars: "0x" 2206 // plus 16 address digits.) This ensures that the truncated function 2207 // name always has the same length, which makes truncation 2208 // deterministic and thus makes testing easier. 2209 tl_assert(j <= 18); 2210 VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc); 2211 FP_buf[BUF_LEN-18+j-5] = '.'; // "..." at the end make the 2212 FP_buf[BUF_LEN-18+j-4] = '.'; // truncation more obvious. 2213 FP_buf[BUF_LEN-18+j-3] = '.'; 2214 FP_buf[BUF_LEN-18+j-2] = '\n'; // The last char is '\n'. 2215 FP_buf[BUF_LEN-18+j-1] = '\0'; // The string is terminated. 2216 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); 2217 2218 // Indent. 2219 tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char 2220 depth_str[depth+0] = ' '; 2221 depth_str[depth+1] = '\0'; 2222 2223 // Sort SXPt's children by szB (reverse order: biggest to smallest). 2224 // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for 2225 // two reasons. First, if we do it during dup_XTree, it can get 2226 // expensive (eg. 15% of execution time for konqueror 2227 // startup/shutdown). Second, this way we get the Insig SXPt (if one 2228 // is present) in its sorted position, not at the end. 2229 VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), 2230 SXPt_revcmp_szB); 2231 2232 // Print the SXPt's children. They should already be in sorted order. 2233 n_insig_children_sxpts = 0; 2234 for (i = 0; i < sxpt->Sig.n_children; i++) { 2235 child = sxpt->Sig.children[i]; 2236 2237 if (InsigSXPt == child->tag) 2238 n_insig_children_sxpts++; 2239 2240 // Ok, print the child. NB: contents of ip_desc_array will be 2241 // trashed by this recursive call. Doesn't matter currently, 2242 // but worth noting. 2243 pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len, 2244 snapshot_heap_szB, snapshot_total_szB); 2245 } 2246 2247 // Unindent. 2248 depth_str[depth+0] = '\0'; 2249 depth_str[depth+1] = '\0'; 2250 2251 // There should be 0 or 1 Insig children SXPts. 2252 tl_assert(n_insig_children_sxpts <= 1); 2253 break; 2254 2255 case InsigSXPt: { 2256 const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" ); 2257 FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n", 2258 depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, 2259 make_perc(clo_threshold)); 2260 break; 2261 } 2262 2263 default: 2264 tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); 2265 } 2266 } 2267 2268 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n) 2269 { 2270 sanity_check_snapshot(snapshot); 2271 2272 FP("#-----------\n"); 2273 FP("snapshot=%d\n", snapshot_n); 2274 FP("#-----------\n"); 2275 FP("time=%lld\n", snapshot->time); 2276 FP("mem_heap_B=%lu\n", snapshot->heap_szB); 2277 FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); 2278 FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); 2279 2280 if (is_detailed_snapshot(snapshot)) { 2281 // Detailed snapshot -- print heap tree. 2282 Int depth_str_len = clo_depth + 3; 2283 HChar* depth_str = VG_(malloc)("ms.main.pps.1", 2284 sizeof(HChar) * depth_str_len); 2285 SizeT snapshot_total_szB = 2286 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 2287 depth_str[0] = '\0'; // Initialise depth_str to "". 2288 2289 FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); 2290 pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str, 2291 depth_str_len, snapshot->heap_szB, 2292 snapshot_total_szB); 2293 2294 VG_(free)(depth_str); 2295 2296 } else { 2297 FP("heap_tree=empty\n"); 2298 } 2299 } 2300 2301 static void write_snapshots_to_file(const HChar* massif_out_file, 2302 Snapshot snapshots_array[], 2303 Int nr_elements) 2304 { 2305 Int i, fd; 2306 SysRes sres; 2307 2308 sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, 2309 VKI_S_IRUSR|VKI_S_IWUSR); 2310 if (sr_isError(sres)) { 2311 // If the file can't be opened for whatever reason (conflict 2312 // between multiple cachegrinded processes?), give up now. 2313 VG_(umsg)("error: can't open output file '%s'\n", massif_out_file ); 2314 VG_(umsg)(" ... so profiling results will be missing.\n"); 2315 return; 2316 } else { 2317 fd = sr_Res(sres); 2318 } 2319 2320 // Print massif-specific options that were used. 2321 // XXX: is it worth having a "desc:" line? Could just call it "options:" 2322 // -- this file format isn't as generic as Cachegrind's, so the 2323 // implied genericity of "desc:" is bogus. 2324 FP("desc:"); 2325 for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { 2326 HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i); 2327 FP(" %s", arg); 2328 } 2329 if (0 == i) FP(" (none)"); 2330 FP("\n"); 2331 2332 // Print "cmd:" line. 2333 FP("cmd: "); 2334 if (VG_(args_the_exename)) { 2335 FP("%s", VG_(args_the_exename)); 2336 for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { 2337 HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); 2338 if (arg) 2339 FP(" %s", arg); 2340 } 2341 } else { 2342 FP(" ???"); 2343 } 2344 FP("\n"); 2345 2346 FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); 2347 2348 for (i = 0; i < nr_elements; i++) { 2349 Snapshot* snapshot = & snapshots_array[i]; 2350 pp_snapshot(fd, snapshot, i); // Detailed snapshot! 2351 } 2352 VG_(close) (fd); 2353 } 2354 2355 static void write_snapshots_array_to_file(void) 2356 { 2357 // Setup output filename. Nb: it's important to do this now, ie. as late 2358 // as possible. If we do it at start-up and the program forks and the 2359 // output file format string contains a %p (pid) specifier, both the 2360 // parent and child will incorrectly write to the same file; this 2361 // happened in 3.3.0. 2362 HChar* massif_out_file = 2363 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); 2364 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i); 2365 VG_(free)(massif_out_file); 2366 } 2367 2368 static void handle_snapshot_monitor_command (const HChar *filename, 2369 Bool detailed) 2370 { 2371 Snapshot snapshot; 2372 2373 if (!clo_pages_as_heap && !have_started_executing_code) { 2374 // See comments of variable have_started_executing_code. 2375 VG_(gdb_printf) 2376 ("error: cannot take snapshot before execution has started\n"); 2377 return; 2378 } 2379 2380 clear_snapshot(&snapshot, /* do_sanity_check */ False); 2381 take_snapshot(&snapshot, Normal, get_time(), detailed); 2382 write_snapshots_to_file ((filename == NULL) ? 2383 "massif.vgdb.out" : filename, 2384 &snapshot, 2385 1); 2386 delete_snapshot(&snapshot); 2387 } 2388 2389 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req) 2390 { 2391 HChar* wcmd; 2392 HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */ 2393 HChar *ssaveptr; 2394 2395 VG_(strcpy) (s, req); 2396 2397 wcmd = VG_(strtok_r) (s, " ", &ssaveptr); 2398 switch (VG_(keyword_id) ("help snapshot detailed_snapshot", 2399 wcmd, kwd_report_duplicated_matches)) { 2400 case -2: /* multiple matches */ 2401 return True; 2402 case -1: /* not found */ 2403 return False; 2404 case 0: /* help */ 2405 print_monitor_help(); 2406 return True; 2407 case 1: { /* snapshot */ 2408 HChar* filename; 2409 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2410 handle_snapshot_monitor_command (filename, False /* detailed */); 2411 return True; 2412 } 2413 case 2: { /* detailed_snapshot */ 2414 HChar* filename; 2415 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2416 handle_snapshot_monitor_command (filename, True /* detailed */); 2417 return True; 2418 } 2419 default: 2420 tl_assert(0); 2421 return False; 2422 } 2423 } 2424 2425 static void ms_print_stats (void) 2426 { 2427 #define STATS(format, args...) \ 2428 VG_(dmsg)("Massif: " format, ##args) 2429 2430 STATS("heap allocs: %u\n", n_heap_allocs); 2431 STATS("heap reallocs: %u\n", n_heap_reallocs); 2432 STATS("heap frees: %u\n", n_heap_frees); 2433 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs); 2434 STATS("ignored heap frees: %u\n", n_ignored_heap_frees); 2435 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs); 2436 STATS("stack allocs: %u\n", n_stack_allocs); 2437 STATS("stack frees: %u\n", n_stack_frees); 2438 STATS("XPts: %u\n", n_xpts); 2439 STATS("top-XPts: %u (%d%%)\n", 2440 alloc_xpt->n_children, 2441 ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); 2442 STATS("XPt init expansions: %u\n", n_xpt_init_expansions); 2443 STATS("XPt later expansions: %u\n", n_xpt_later_expansions); 2444 STATS("SXPt allocs: %u\n", n_sxpt_allocs); 2445 STATS("SXPt frees: %u\n", n_sxpt_frees); 2446 STATS("skipped snapshots: %u\n", n_skipped_snapshots); 2447 STATS("real snapshots: %u\n", n_real_snapshots); 2448 STATS("detailed snapshots: %u\n", n_detailed_snapshots); 2449 STATS("peak snapshots: %u\n", n_peak_snapshots); 2450 STATS("cullings: %u\n", n_cullings); 2451 STATS("XCon redos: %u\n", n_XCon_redos); 2452 #undef STATS 2453 } 2454 2455 //------------------------------------------------------------// 2456 //--- Finalisation ---// 2457 //------------------------------------------------------------// 2458 2459 static void ms_fini(Int exit_status) 2460 { 2461 // Output. 2462 write_snapshots_array_to_file(); 2463 2464 // Stats 2465 tl_assert(n_xpts > 0); // always have alloc_xpt 2466 2467 if (VG_(clo_stats)) 2468 ms_print_stats(); 2469 } 2470 2471 2472 //------------------------------------------------------------// 2473 //--- Initialisation ---// 2474 //------------------------------------------------------------// 2475 2476 static void ms_post_clo_init(void) 2477 { 2478 Int i; 2479 HChar* LD_PRELOAD_val; 2480 HChar* s; 2481 HChar* s2; 2482 2483 // Check options. 2484 if (clo_pages_as_heap) { 2485 if (clo_stacks) { 2486 VG_(fmsg_bad_option)( 2487 "--pages-as-heap=yes together with --stacks=yes", ""); 2488 } 2489 } 2490 if (!clo_heap) { 2491 clo_pages_as_heap = False; 2492 } 2493 2494 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we 2495 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or 2496 // platform-equivalent). We replace it entirely with spaces because then 2497 // the linker doesn't complain (it does complain if we just change the name 2498 // to a bogus file). This is a bit of a hack, but LD_PRELOAD is setup well 2499 // before tool initialisation, so this seems the best way to do it. 2500 if (clo_pages_as_heap) { 2501 clo_heap_admin = 0; // No heap admin on pages. 2502 2503 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) ); 2504 tl_assert(LD_PRELOAD_val); 2505 2506 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity. 2507 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core"); 2508 tl_assert(s2); 2509 2510 // Now find the vgpreload_massif-$PLATFORM entry. 2511 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif"); 2512 tl_assert(s2); 2513 2514 // Blank out everything to the previous ':', which must be there because 2515 // of the preceding vgpreload_core-$PLATFORM entry. 2516 for (s = s2; *s != ':'; s--) { 2517 *s = ' '; 2518 } 2519 2520 // Blank out everything to the end of the entry, which will be '\0' if 2521 // LD_PRELOAD was empty before Valgrind started, or ':' otherwise. 2522 for (s = s2; *s != ':' && *s != '\0'; s++) { 2523 *s = ' '; 2524 } 2525 } 2526 2527 // Print alloc-fns and ignore-fns, if necessary. 2528 if (VG_(clo_verbosity) > 1) { 2529 VERB(1, "alloc-fns:\n"); 2530 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { 2531 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i); 2532 VERB(1, " %s\n", *fn_ptr); 2533 } 2534 2535 VERB(1, "ignore-fns:\n"); 2536 if (0 == VG_(sizeXA)(ignore_fns)) { 2537 VERB(1, " <empty>\n"); 2538 } 2539 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { 2540 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i); 2541 VERB(1, " %d: %s\n", i, *fn_ptr); 2542 } 2543 } 2544 2545 // Events to track. 2546 if (clo_stacks) { 2547 VG_(track_new_mem_stack) ( new_mem_stack ); 2548 VG_(track_die_mem_stack) ( die_mem_stack ); 2549 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); 2550 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); 2551 } 2552 2553 if (clo_pages_as_heap) { 2554 VG_(track_new_mem_startup) ( ms_new_mem_startup ); 2555 VG_(track_new_mem_brk) ( ms_new_mem_brk ); 2556 VG_(track_new_mem_mmap) ( ms_new_mem_mmap ); 2557 2558 VG_(track_copy_mem_remap) ( ms_copy_mem_remap ); 2559 2560 VG_(track_die_mem_brk) ( ms_die_mem_brk ); 2561 VG_(track_die_mem_munmap) ( ms_die_mem_munmap ); 2562 } 2563 2564 // Initialise snapshot array, and sanity-check it. 2565 snapshots = VG_(malloc)("ms.main.mpoci.1", 2566 sizeof(Snapshot) * clo_max_snapshots); 2567 // We don't want to do snapshot sanity checks here, because they're 2568 // currently uninitialised. 2569 for (i = 0; i < clo_max_snapshots; i++) { 2570 clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); 2571 } 2572 sanity_check_snapshots_array(); 2573 } 2574 2575 static void ms_pre_clo_init(void) 2576 { 2577 VG_(details_name) ("Massif"); 2578 VG_(details_version) (NULL); 2579 VG_(details_description) ("a heap profiler"); 2580 VG_(details_copyright_author)( 2581 "Copyright (C) 2003-2013, and GNU GPL'd, by Nicholas Nethercote"); 2582 VG_(details_bug_reports_to) (VG_BUGS_TO); 2583 2584 VG_(details_avg_translation_sizeB) ( 330 ); 2585 2586 VG_(clo_vex_control).iropt_register_updates 2587 = VexRegUpdSpAtMemAccess; // overridable by the user. 2588 2589 // Basic functions. 2590 VG_(basic_tool_funcs) (ms_post_clo_init, 2591 ms_instrument, 2592 ms_fini); 2593 2594 // Needs. 2595 VG_(needs_libc_freeres)(); 2596 VG_(needs_command_line_options)(ms_process_cmd_line_option, 2597 ms_print_usage, 2598 ms_print_debug_usage); 2599 VG_(needs_client_requests) (ms_handle_client_request); 2600 VG_(needs_sanity_checks) (ms_cheap_sanity_check, 2601 ms_expensive_sanity_check); 2602 VG_(needs_print_stats) (ms_print_stats); 2603 VG_(needs_malloc_replacement) (ms_malloc, 2604 ms___builtin_new, 2605 ms___builtin_vec_new, 2606 ms_memalign, 2607 ms_calloc, 2608 ms_free, 2609 ms___builtin_delete, 2610 ms___builtin_vec_delete, 2611 ms_realloc, 2612 ms_malloc_usable_size, 2613 0 ); 2614 2615 // HP_Chunks. 2616 malloc_list = VG_(HT_construct)( "Massif's malloc list" ); 2617 2618 // Dummy node at top of the context structure. 2619 alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); 2620 2621 // Initialise alloc_fns and ignore_fns. 2622 init_alloc_fns(); 2623 init_ignore_fns(); 2624 2625 // Initialise args_for_massif. 2626 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", 2627 VG_(free), sizeof(HChar*)); 2628 } 2629 2630 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) 2631 2632 //--------------------------------------------------------------------// 2633 //--- end ---// 2634 //--------------------------------------------------------------------// 2635